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Abstract
In various sports large amounts of data are nowadays collected and analyzed to help scouts
with identifying talented young athletes. In contrast, the literature on result-based talent
identification in road cycling is remarkably scarce. The purpose of this paper is to provide
insight into the possibilities of the use of publicly available data to discover new talented
Under-23 (U23) riders via statistical learning methods (linear regression and random forest
techniques). At the same time, we try to find out the main determinants of success for U23
riders in their first years of professional cycling. We collect results for more than 25000 road
cycling races from2007–2018 and considermore than 2500 riders from over 80 countries.We
use the data from 2007 to 2017 to train and validate our models, and use the data from 2018
to predict how well U23 riders will perform in their first three elite years. Our results reveal
that past U23 race results appear to be important predictors of future cycling performance.

Keywords Scouting · Talent identification · Professional road cycling · Performance

1 Introduction

One of the main goals of scouting is to identify young prospects, who could make a fine
addition to professional teams (Schumaker et al. 2010). In road cycling, while there is little
disagreement on EddyMerckx being the greatest of all time (Cherchye andVermeulen 2006),
there is much more debate on who will become the “next Eddy Merckx”. For instance, at
the age of 19, the Belgian rider Remco Evenepoel was already given that label in the media
(Farrand 2018).

Talent discovery in professional road cycling is currently done by national cycling feder-
ations, professional teams, and rider agents. Some of the national cycling federations, such
as Cycling Australia and British Cycling, have started a talent identification program, which
focuses on young cyclists (typically starting at the age of 7), subjecting them to basic physical
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tests, and providing support with respect to training (Hopker 2016). The best professional
cycling teams have their own scout and development team.While for various sports the ability
of scouts to identify talented individuals should not be underestimated, the process is often
subjective (e.g. based on intuition or gut feeling) and much of the expert knowledge remains
tacit (Williams and Reilly 2000; Vaeyens et al. 2009; Cobley et al. 2020). In other worldwide
sports such as football or basketball, agents or intermediates can help match young athletes
with teams and advertise them to team managers, however, Brocard and Larson (2016) state
that this practice is anecdotal in cycling.

Effectively and efficiently identifying young talents from a massive pool of potentials is
quite a challenge. Note that the International Cycling Union reports a million licensed bike
riders, with more than 1500 of them professional riders.1 While the academic literature on
talent identification has boomed in recent years (for an overview, see e.g. Johnston et al. 2018;
Vaeyens et al. 2008), and the use of advanced data gathering tools and statistical methods
to find talented athletes has become the standard in many sports such as soccer (Boon and
Sierksma 2003; Pappalardo et al. 2019), football (Lehman 2020), basketball (Manisera et al.
2020), or archery (Muazu Musa et al. 2019), the contributions with respect to cycling are
rare. In fact, as far as we are aware, there is no quantitative large-scale talent identification
system for (road) cycling described in the literature.

The contribution of this paper is to develop a computer-aided system to assist scouts in
professional road cycling to make a first selection of talented new riders that—given further
training and experience—are likely to become top professional riders. Given that professional
cyclists reach peak performance at a relatively late age (29.5 years, Longo et al. 2016) and that
several studies have shown that predictions about future success tend to be more accurate
when made closer to the time of peak performance (Vaeyens et al. 2008; Mostaert et al.
2021), we focus on the Under-23 (U23) age category. For more than 2500 U23 riders from
over 80 countries, we analyze their results in more than 25000 races from 2007 to 2018. We
acknowledge that more detailed data on races (e.g. level of competition) and race events (e.g.
position data for each rider on short time frames), as well as physiological data on the riders
(e.g. weight, maximal oxygen uptake) could be of great value, however, currently no such
data is (publicly) available, and certainly not on the scale required for talent identification.
Hence, this paper works with variables based on race results and basic personal data (age and
nationality), and quantifies future success of riders in terms of the UCI points (see Sect. 2)
collected in their first three years of elite racing. As riders do not participate in all races, not
all races may be equally difficult to win. While alternative rankings exist that explicitly cope
with this issue, e.g. Bradley–Terry paired-comparison models (Bradley and Terry 1952), we
believe that the UCI rankings sufficiently capture this aspect as more prestigious races, that
typically attract the best riders, receive more points.

The talent identification problem can be approached from two angles: predicting the rider’s
race results in terms of UCI points, and assessing the probability that the rider will belong
to the best professional riders of his age group. The former is tackled by means of a linear
regression and a random forest regression model, while we use a random forest probabilistic
classification model to achieve the latter. The linear regression also provides insight in the
determinants of success for U23 riders in their first years as professionals.

The remainder of this paper is organized as follows. Section 2 provides a gentle intro-
duction into the history and organizational side of professional road cycling. Section 3 then
discusses the related literature, and Sect. 4 presents the data that we use to train our talent
identification system. Next, Sect. 5 proposes the regression and classification based talent

1 https://www.uci.org/docs/default-source/publications/2019-uci-rapport-annuel-inside-english-web.pdf.
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identification models and derives the main determinants of talented U23 riders. All models
are benchmarked against a naive baseline model that makes use of podium places only. Sec-
tion 6 assesses the quality of the proposed models and constructs a ranking of riders that are
predicted to break through as professional riders. Finally, conclusions follow in Sect. 7.

2 Background in cycling

In this section, we briefly sketch the context of cycling, as well as the UCI points ranking.
For a more in-depth introduction and background in professional road cycling, we refer to
Mignot (2016) and Rebeggiani (2016). Details on the UCI points ranking can be found in
the UCI Cycling Regulations.2

Professional road cycling has a rich history with the first races dating back to the late nine-
teenth century. Throughout the twentieth century, racing became more popular in European
countries such as France, Belgium, Italy, and Spain. As a reaction to the internationalization
of the sport, a number of national cycling federations founded the ‘Union Cycliste Interna-
tional (UCI)’. To date, the UCI is the world governing body of cycling and is responsible for,
inter alia, organizing the cycling calendar, issuing racing licenses, and enforcing race rules
and anti-doping regulations.

There are two kinds of road races: one-day races, which are settled in a single event, and
stage races, where a general classification (GC) is made based on each riders’ accumulated
race time over all stages (although individual stage victories are also considered valuable
wins). The most prestigious one-day races are known as classics or monuments, such as Tour
of Flanders and Paris–Roubaix. Although a typical stage race takes one week, the so-called
grand tours last for three weeks and are organized in France (Tour de France), Italy (Giro
d’Italia), and Spain (Vuelta a España). The UCI categorizes each road race depending on its
relevance and difficulty, with World Tour races being the highest level races. Besides, there
are two race categories that are restricted to young non-professional riders only: U23 (for
riders under the age of 23), and juniors (for riders under the age of 19). Note, however, that
since 2016, any rider under the age of 23 can race the U23 World Championship, including
professionals.

TheUCI distinguishes three tiers of teams, and this classification largely determines access
to the races. The World Teams are the highest category in professional road cycling: they are
subject to strict regulations and can participate in the most important races. The second and
third tier of professional cycling are formed by the Pro Teams and Continental Teams. As an
exception, the World Championships are run amongst national teams.

While modern day road cycling is a team sport in the sense that riders (so-called
domestiques) usually work together with their teammates, sacrificing their own chances
to accomplish success for their team leader, race results rank riders individually (team time
trials excepted). The UCI manages the UCI World Ranking, where in each UCI race riders
can collect UCI points according to their race rank. A higher rated race will result in the
successful riders receiving more points (and more riders being awarded UCI points), as illus-
trated in Table 1. The UCIWorld Ranking accumulates the points collected over the last year
on a rolling basis (i.e. each race result replaces last year’s result), updated every week. Note
that this ranking includes all male riders from the World Tour down to U23 riders, and is
not to be confused with the UCI World Tour ranking (discontinued in 2018), which included
only riders from World Teams, and their results in World Tour races.

2 www.uci.org/docs/default-source/rules-and-regulations/part-ii-road/2-roa-20210101-e.pdf.
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Table 1 Illustration of UCI points awarded in 2020 for top ten results for various race types

Race/rank 1 2 3 4 5 6 7 8 9 10

Tour de France GC 1000 800 675 575 475 400 325 275 225 175

Tour de France Stage 120 50 25 15 5 0 0 0 0 0

Monument 500 400 325 275 225 175 150 125 100 85

U23 World Championship 200 150 125 100 85 70 60 50 40 35

Note that in many races, UCI points are also awarded for results outside the top ten

Riders and teams highly value UCI points. This is not so much due to the trophy awarded
to the end-of-the year UCI World Ranking leader, as to the fact that UCI points determine
the order of the team cars, the number of riders that each nation can delegate to the World
Championships, and which Pro Teams can participate in World Tour races. Consequently,
on an individual level, riders can use their UCI points to negotiate a higher wage or a team
transfer.

3 Related literature

As discussed in Sect. 1, the literature on talent scouting in cycling is limited. However, several
important contributions have been made in four related research fields.

A first and prominent part of the literature focuses on the various physiological (e.g.
maximal oxygen uptake), psychological (e.g. behavioural dynamics), and physical factors
(e.g. air and rolling resistance) that influence cycling power output, velocity, and winning
probability. For a general overview of these factors we refer to Atkinson et al. (2003), Faria
et al. (2005b, a) and Phillips and Hopkins (2020), and we refer to Lucia et al. (2003) for an
overview of the physiological aspects in the Tour de France. For scouts, these studies could
be of interest since they could help to identify the relevant physiological measures that are
required to excel at a later age (Svendsen et al. 2018; Menaspà et al. 2010), or to orient
cyclists towards their best discipline (see Mostaert et al. 2020).

Another strand of literature focuses on predicting race outcomes. Olds et al. (1995) are
one of the first to use simulation tools to predict cycling times in a road time trial based
on physiological, biophysical, and environmental variables. Olds (1998) later extends this
model to predict the winning chances of a breakaway group. Rodríguez-Gutiérrez (2014)
shows that the leaders of elite cycling teams achieve better performance not only because
they have greater abilities but also because they get support and help from their domestiques.
The author defines rider performance as the total number of points earned adjusted by the total
number of kilometers ridden in a season and performs among others a two-stage least squares
analysis, instrumenting for physiological features and rider and team quality. Kholkine et al.
(2020) focus on predicting the winners of the 2018 and 2019 editions of the Tour of Flanders.
They consider features based on past rider performance in similar races (time difference
relative to the winner), long-term rider’s profile (e.g. total career points), and the quality of
a rider’s team (total points collected by the team in the previous year).

A third and related strand of literature is to rank riders or teams at the end of a multi-stage
race or season. Instead of simply looking at the total number of victories or UCI points
collected, Cherchye and Vermeulen (2006) and Rogge et al. (2013) take into account the
fact that professional cyclists pursue multiple objectives that cannot be traded off easily (e.g.
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stage wins versus second places in GC’s). In particular, Cherchye and Vermeulen (2006)
propose a robust ranking method using only ordinal information regarding the importance
of the different objectives and come up with an all-time ranking of Tour de France partici-
pants listing Eddy Merckx, Bernard Hinault, and Lance Armstrong on top. Furthermore, a
rider’s individual performance is not determined by his individual characteristics only but
also by team characteristics, since team leaders benefit from their domestiques’ help. Ana-
lyzing results from the Tour de France (2002–2005), Prinz and Wicker (2012) come to the
conclusion that team managers should pay attention to the composition of the team: having
only one strong team captain and several good domestiques turned out more effective than
having several star riders (i.e. potential captains) in a team. Rogge et al. (2013) evaluate the
performance of cycling teams in the Tour de France (2007–2011) using data envelopment
analysis. They conclude that teams that focus on the general classification are often more
efficient than teams that focus on sprint stage wins, or on the hilly (transition) stages. Also
interesting is the study by Hsia (2017) who uses pairwise comparisons of past race results
in the UCI Mountain Bike World Cup to rank riders and predict future race outcomes. Com-
pared to the traditional UCI point-based ranking, their method may better reflect ability of
riders as competitors may enter a different number of races and the level of competition may
vary between races.

A fourth andfinal part of the literature uses junior race results to infer themain determinants
of elite cycling success. Schumacher et al. (2006) investigate for over 8000 riders and 100
nationalities whether riders that achieved success in the junior world championships are on
average more likely to achieve top 10 places in any of the elite word championships or grand
tours. For several track cycling disciplines, their results confirm this hypothesis, however, for
road cycling they did not find a significant trend between junior and elite success. Svendsen
et al. (2018) investigate for 80Norwegian cyclists whether there are any statistical differences
on the level of training, performance, or physiological data between juniors that becameWorld
Tour riders in their first year of elite rider and juniors that did not. Their main findings suggest
that junior riders who reached the world tour level scored significantly better in the junior
national championship and have a higher maximal aerobic power. Similarly, Mostaert et al.
(2021) investigate for over 300 Belgian cyclists whether there is a link between U15, U17,
and junior race results and the chance to later become a member of a professional elite racing
team. Their findings suggest that every top 10 result in one of 6 consideredU17 or junior races
increases this chance with respectively 3–5% and 6%. Interestingly, no significant relation
was found for the U15 category.

Although the studies in the previous paragraph look at between-group differences and can
therefore be used to determine which characteristics may be relevant for talent identification,
none of them can be used directly to identify talent on an individual basis. In fact, apart
from a master’s thesis by Maton (2020), we are not aware of any quantitative large-scale
talent identification system for (road) cycling described in the literature. Maton (2020) uses
junior and U23 race results to predict the total number of PCS points scored in the first two
elite years. As opposed to our approach, the author chooses not to aggregate race results
and instead introduces for each race separately a variable that gives the best ever result of a
rider in that race. As a consequence, dedicated and computationally rather expensive value
imputation techniques are needed to deal with missing values since junior and U23 riders
usually participate in only a selection of all races.
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4 Data and variables

Our study makes use of a dataset of race results between January 2007 and December 2018,
which was obtained through the courtesy of CQ Ranking,3 and appended with data publicly
available from ProCyclingStats.We chose 2007 as a starting point because we could find data
only for the top-tier races prior to 2007, while young riders typically have less competitive
races on their schedule in their first years after they leave the U23 category. Furthermore,
cycling was plagued with doping cases prior to 2007 (Wagner 2010). Recall that the Tour
de France officially has no winner in the years 1999–2005, which were dominated by Lance
Armstrong, and also its 2006 edition saw several riders denied the right to participate due to
Operation Puerto and its apparent winner, Floyd Landis, disqualified. We believe this may
have had an effect on the performance of young riders entering the professional racing circuit
prior to 2007 (see also Lentillon-Kaestner and Carstairs 2010).

From the dataset, we were able to derive the variables given in Table 2 for riders who took
part in at least one U23 race in that period. Note that when a rider appears in a U23 race in a
certain year, he is considered a U23 for the entirety of that year. The dataset is split into two
parts. The first parts consists of 2308 riders that participated in U23 races between January
2007 and December 2017. This data will be used to train and test our models (see Sect. 5).
The second part consists of 270 riders that participated in U23 races between January 2018
and December 2018, but not later (the 2019 U23 Worlds Championship excepted, since that
race is open to professional riders as well). In other words, for these riders, 2018 was their
last season as U23 and hence it remains to be seen how these riders will perform in the future.
Some promising riders together with their estimated performance are listed in Sect. 6.

We measure the performance of riders in their first three years after their U23 career
(possibly as a professional rider) by the average yearly number of UCI points collected in
this period (NeoProfUCI). We acknowledge that alternative measures (e.g. CQ points or PCS
points) could be considered as well, but given the importance and official status of UCI points
(see Sect. 2) and the fact that they can be collected in all UCI races by a fairly large proportion
of the riders that finish the race, we think this is a reasonable choice. Note that 20% (19%)
of the riders only had one (two) year(s) in which they scored UCI points, due to the fact that
they left the U23 category after 2016; in these cases, we take the average over the years in
which they scored UCI points.

Table 2 also lists the independent variables that we consider in this study. All result-based
variables are averaged over the number of years the rider was active in the U23 category. In
case of the collected UCI points (U23UCI), we use a weighted average, where more recent
years receive a higher importance. We also consider the number of victories (U23top1) and
other podium places (U23top3), as winning (and to a lesser extent obtaining a podium spot)
is paramount in cycling. In order to take into account which riders came close to winning, or
in cycling terms “rode the finale”, we count the rider’s number of top 20 results. Although
the cut-off point is somewhat arbitrary, we believe that using top 20 spots is more meaningful
than e.g. looking at time gaps or speed differences, because these depend heavily on the
race circuit, the type of race (e.g. in a stage race, limiting the time gap is of the utmost
importance for some riders, whereas in a one-day race it is not a goal on itself), and the
weather conditions. Hence, they don’t necessarily reflect the strength difference of the riders.
Based on labels given by CQ ranking, we track top 20 results separately for various race
types: sprints (17%), mountain stages (9%), time trials (15%), and general classifications
(10%); the other races we label as hills (49%). We also consider the age at which the rider

3 www.cqranking.com.
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Table 2 Variable description (dependent variable indicated in bold)

Variable name Description

NeoProfUCI Average yearly number of UCI Points during first 3 years as a pro (dependent
variable)

U23UCI Weighted average of UCI Points during U23 career, more recent years get higher
weights

U23top1 Average number of victories during U23 career

U23top3 Average number of top 3 finishes (besides victories) during U23 career

U23top20_Sprints Average number of top 20 finishes in a sprint stage during U23 carreer

U23top20_Mountains Average number of top 20 finishes in a mountain stage during U23 career

U23top20_TTs Average number of top 20 finishes in a time trial during U23 career

U23top20_Hills Average number of top 20 finishes in a hilly race during U23 career

U23top20_GCs Average number of top 20 finishes in a general classification during U23 career

Age_Started Age at which the rider first appears in the database

U23Years The number of years the rider raced in U23 races

Continent Continent of the rider (categorical: Top5Europe, Europe, Africa, Asia, Oceania,
America)

rode his first U23 race (Age_Started), and the number of years the rider has been active inU23
races (U23Years). As Mostaert et al. (2021) have shown that there is no relative age effect in
cycling categories above 15 years old, we did however not control for the month in which an
athlete was born. Finally, we include the rider’s continent as a control variable, in which we
make a distinction between the best five European countries according to the number of UCI
points collected in the period 2007–2017 (i.e. Spain, Italy, Belgium, France, Netherlands)
and the other European countries, by considering them as separate continents. Indeed, we
believe that the rich tradition of cycling and the highly developed training infrastructure in
these five countries may give their youth riders an advantage.

We opted not to include variables for the U23 team(s) for which the rider has been riding.
This would create too many variables to get meaningful results, and issues with riders who
don’t have a team (or race in mixed teams for a considerable number of races). Furthermore,
we don’t think that the impact of the team in U23 cycling is as pronounced as in professional
road cycling (Cabaud et al. 2016), since most U23 riders have a “free role” in their team
rather than a task as domestique, which makes sense as they all want to shine in order to be
contracted by a top-tier team.

5 Models

This section proposes various statistical models to predict and understand the performance
of riders in the first three years after their U23 career. To this end, we make use of the first
part of the dataset (period 2007–2017) which we further split into a training set (80%) used
to train the models and a test set (20%) used to validate the models. All models were coded
within the statistical software package R and were tuned for best performance using grid
search in combination with a 10-times repeated 10-fold cross validation resulting in a total
of 100 folds.
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Table 3 Regression coefficients
estimated via ordinary least
squares

Variable name Estimate Std. Error p-value VIF

(Intercept) −22.60 5.87 < 0.001

U23UCI 0.98 0.12 < 0.001 3.22

U23top3 21.40 3.53 < 0.001 2.47

U23top1 30.57 4.82 < 0.001 2.03

U23top20_Hills 4.72 1.54 0.002 2.27

U23top20_Mountains 8.92 2.78 0.001 1.34

U23Years 6.26 2.02 0.002 1.16

Africa −36.21 13.11 0.006 1.05

America 36.08 8.17 < 0.001 1.12

Top5Europe 21.09 4.64 < 0.001 1.20

5.1 Linear regression

Our first model is a linear regression model where we estimate the regression coefficients
via ordinary least squares and a backward variable selection strategy. This means that we
initially include all independent variables in the model and then repeatedly remove the least
significant variable (but not the intercept) and refit the model until all the remaining variables
have a p-value lower than a predefined significance level (0.05 in our case). Table 3 presents
the estimated values of the regression coefficients. Each regression coefficient represents
the marginal and ceteris paribus effect of an independent variable, i.e. the change in the
dependent variable when the corresponding independent variable increases by one unit while
all other independent variables are held constant. Because of the ceteris paribus condition,
the absence of multicollinearity in a regression model is important and can be measured by
the Variance Inflation factor (VIF). In order for a model to have a meaningful interpretation
the VIF of each variable should be at most 5 (see e.g. James et al. 2013), which is clearly the
case as shown in the last column of Table 3.

When analyzing the regression coefficients in Table 3, it is apparent that the number of
UCI points collected by U23 riders serves as an important predictor for their future career:
the average number of UCI points collected in the first three elite years is expected to increase
with 0.98 points for every point the rider scores on average during his U23 career. Regarding
the U23top20 variables, we observe that an additional top 20 result in a mountain stage
is almost worth double compared to an additional top 20 result in a hill stage. One likely
explanation is that there are considerably more hill races than mountain races (see Sect. 4).
Hence, an additional top 20 result in one of the many hill races is worth less than a good
ranking in one of the few mountain races. Because time differences are typically largest in
mountain races, another explanation could be that climbing skills are good predictors for
future top results in grand tours; note that the U23top20_GC variable was deleted during
backward variable selection.

The positive regression coefficient of Top5Europe supports the hypothesis that the rich
tradition of cycling and highly developed training infrastructure in the top five European
countries may give their youth riders an advantage over Asian, Oceanian, and other European
countries (these continent variables were removed from the model in the backward variable
selection step and hence serve as the base category). The negative regression coefficient
for Africa might suggest that it is more difficult for African U23 riders to enter the mainly
European elite road racing circuit. For instance, no African-registered team participated
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in a Grand Tour until 2015, and at the time of writing, there is still only one African-
registered team (Team Qhubeka—Assos) among the World and Pro Teams. The opposite is
true for riders from America, which has several US-registered World and Pro teams, and an
established cycling tradition in Colombia, with successful riders like Rigoberto Uran and
Nairo Quintana as inspiring stars. Although in line with findings by Van Reeth (2016) on the
internationalization of the peloton, the regression coefficients for Africa and America should
be interpreted with caution since there are only 57 African and 155 American U23 riders in
our database.

Finally, the positive coefficient of the U23Years variable suggests that riders are more
likely to be successful in the first three years of their elite career if they have more experience
in the U23 category (e.g. because they started road cycling at the U23 level at a young age).

5.2 Random forest regression

One of themain limitations of linear regression is that it assumes a linear relationship between
the dependent and independent variables, and that it is relatively sensitive towards outliers.
One approach that copes well with the limitations and pitfalls from linear regression is the
random forest approach. As its name suggests, a random forest is a combination of a number
of decorrelated decision trees (typically 500 or 1000), where every tree is created by randomly
selecting a subset of the independent variables at each split and using only a subset of the
observations. The main advantages of random forest algorithms are that they do not assume
any data distribution (unlike linear regression the method is non-parametric), the method is
fairly intuitive and flexible, and typically only few parameters need to be tuned (e.g. number
of trees, number of candidate independent variables at each split, and number of observations
used in each tree).

Although it is not trivial to understand how predictions are made by a random forest
regressionmodel, some insights can be derived by conducting a variable importance analysis.
For each independent variable, the second column of Table 4 shows the estimated percentage
increase in Mean Squared Error (MSE) when this variable would be omitted from the model.
It is clear that the U23UCI variable is the most useful variable in predicting elite road cycling
success. Nevertheless, the high values for several other variables show that it is wise for
scouts to take into account several of the other independent variables as well. The high value
for the time trial variable may be explained by the fact that time trial skills may help to end
up high in the final rankings of a grand tour. Also interesting to see is that the combined
number of second and third positions provides more information to the model than the total
number of victories. Finally, in contrast to the Top5Europe variable, Table 4 hints that the
categorical variables Oceania, Europe, and America are not so reliable to base predictions
on.

5.3 Random forest classification

Instead of predicting UCI points on a continuous scale, we can also address our talent identi-
fication problem as a classification problem by labeling a rider as talented if his performance
in terms of the dependent variable NeoProfUCI is higher than a predefined value. When
determining this value, there is a trade-off between on the one hand labeling too many riders
as talented and on the other hand not having enough samples to learn from. In our model, we
label a rider as talented if the NeoProfUCI variable is within the top-20%; this corresponds to
labeling a rider as talented if he scored more than 75 UCI points in the first three years after
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Table 4 Variable importance in the random forest regression (% increase in Mean Squared Error) and classi-
fication models (Mean Decrease Accuracy)

% Increase MSE Mean decrease accuracy

U23UCI 16.56 50.00

U23top1 7.77 24.92

U23top3 13.87 27.12

U23top20_Sprints 3.98 15.07

U23top20_Mountains 6.02 25.17

U23top20_TTs 11.64 20.04

U23top20_Hills 11.89 33.03

U23top20_GCs 8.79 22.68

Age_Started 4.19 10.41

U23Years 7.24 16.15

Top5Europe 13.66 11.69

Europe 0.31 8.68

Africa 3.46 −0.60

Asia 5.13 6.28

Oceania −2.20 −0.87

America −0.71 1.90

leaving the U23 category. Once the classification labels are created, we construct a random
forest model similar to the one discussed in Sect. 5.2, but with the main difference that we
predict the probability that a rider is talented instead of the dependent variable NeoprofUCI.
Moreover, since there are four times more regular riders than talented riders we correct for
class imbalance by stratified sampling and balanced class weights.

For each independent variable, the third column of Table 4 shows the estimated decrease in
the mean accuracy of a tree, i.e. the percentage of predictions correctly made for the stratified
sample considered in the tree, when the variable is left out the model. Conclusions similar to
the ones of the previous section can be derived.

6 Results

This section experimentally evaluates the performance of themodels. First Sect. 6.1 evaluates
the quality of themodels for the period 2007–2017. Section 6.2 then uses themodels to predict
the first three years of professional performance of riders that participated in their last U23
race in 2018. We compare these predictions against the available race results for the period
2019–2021.

6.1 Model validation

In order to evaluate howwell the two regressionmodels fit the data,we consider three different
goodness-of-fit measures. The R2 indicates to what extent the created model explains the
variance of the dependent variable, while the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) directly measure the error of the predictions made. Since in RMSE
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Fig. 1 Calibration plots for the random forest classification model (solid line) and the naive logistic regression
model (dashed line) on the cross-validated training set (left) and the test set (right). Riders are first grouped
into 10 bins based on the probability forecast. The horizontal axis then shows the mean probability forecast in
each bin, while the vertical axis shows the actual relative frequency of talented riders in each bin. The diagonal
line presents a perfectly calibrated model

the prediction errors are squared before they are averaged, the RMSE gives a relatively high
weight to large errors. Table 5 provides the results for the cross-validated training set (CV)
and test set.We observe no notable performance differences in terms of R2 between the linear
regression model and the random forest regression model. Compared to a naive regression
model (‘Naive Reg.’) which uses as independent variables only the podium place variables
U23top1 and U23top3, the R2 values are however substantially better. Table 5 shows that
the linear regression and random forest models make on average a prediction error of around
53 UCI points in the test set, and that these errors are in general less extreme than these of
the naive model (lower RMSE). While the differences in MAE and RMSE may look small,
they can make a difference in practice as these values are averaged over all riders. Indeed,
the majority of the U23 riders in our dataset score only very few UCI points in their first
years as a professional, and hence their typically small absolute prediction errors average
out larger differences in predictions that are present for the most talented riders that score a
decent amount of UCI points.

In order to assess the performance of the random forest classification model, we consider
a naive logistic regression model (‘Naive Class.’) that again uses as independent variables
only the podium place variables. Figure 1 shows the resulting calibration plot: a model is
considered well calibrated if for any level the predicted probability of a rider to be talented
corresponds more or less with the actual probability that the rider is talented. The calibration
plot hints that the models are a bit too optimistic with regard to the future success of riders,
especially for the higher end predictions. Then again, we do not directly interpret the pre-
dicted probabilities. Moreover, for a talent identification system it seems better to be (overly)
optimistic rather than pessimistic as scouts may recognize the false positives relatively sim-
ply whereas false negatives may correspond to talented riders that remain undetected. When
inspecting the log loss measure that penalizes a prediction more heavily when the predicted
class probability diverges further from the actual label (see Table 5), we see that the ran-
dom forest classification model achieves a substantially better log loss than the naive logistic
regression model.
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Fig. 2 Receiver Operating Curve (ROC) for the random forest classification model (solid line) and the naive
logistic regrssion model (dashed line) on the cross-validated training set (left) and the test set (right)

Instead of looking at the probability that a rider is talented, we may also label a rider as
‘talented’ if the predicted probability is above a predefined threshold value, and as ‘regular’
otherwise. There is, however, an important trade-off to be made when choosing this value:
a higher threshold results in better specificity (i.e. the percentage of regular riders identified
as such) but this comes at a cost in terms of sensitivity (i.e. the percentage of talented riders
identified as such). It is therefore interesting to inspect the Receiver Operating Curve (ROC)
which plots the sensitivity against the specificity for different threshold values of the model
(see Fig. 2). A model that always predicts the correct label is situated in the top left corner,
whereas a purely random model or a model that always predicts the same class has a ROC
corresponding to the diagonal line. For reasons outlined in the previous paragraph, scouts
may particularly be interested in models with a high sensitivity and a reasonable specificity.
The area under the ROC (AUC) therefore is a measure for the performance of a model: the
naive model has an AUC of 0.827 on the test set whereas the random forest classification
model has an AUC of 0.855 on the test set (see Table 5). The random forest classification
model is thus clearly the better of the two models.

6.2 Predicting talented riders

Table 6 shows the most promising talents among the 270 riders that had 2018 as the last year
in which they raced in the U23 category. The first two columns give the actual rank of the
riders based on the average UCI points collected in 2019 and 2020 together with their name
and their age in 2019. The third to fifth column provide the UCI points collected and indicate
the type of team that contracted the rider in the given year (one star refers to a World Team,
two stars to a Pro Team, and three stars to a Continental Team). At the time of writing, the
2021 season has not yet ended and the fifth column therefore includes only the UCI points
collected between the first of January and the first of July. For each of the models, the table
also gives the top-20 predictions of the yearly UCI points collected in the first three years
after the U23 career (for the linear and random forest regression models), and the probability
that the rider will belong to the best 20% neo-professionals (for the logistic regression and
random forest classification models).

It is fair to say that, based on the available results from 2019 to 2021, our models did not
overlook the top talents. Indeed, all ten best performing young professionals in our dataset
were predicted as a top-30 rider (i.e. top 11%) by at least one of our models. Tadej Pogačar,
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who was ranked second and third by the non-naive regression models, largely surpassed the
predicted UCI points, among others becoming the youngest rider to win the Tour de France
sinceWorldWar II. AlsoMarc Hirshi (FlècheWallone win, Tour de France stage win, bronze
at the Worlds), Jay Hindley (stage win and second place overall in Giro d’Italia), Neilson
Powless (San Sebastián Classic win), Michael Storer (two stage wins in Vuelta a España,
stage win and first place overall in Tour de l’Ain), and Jasper Philipsen (multiple stage wins
in Vuelta a España, and six stage podium places in the Tour de France) managed to taste
victory in top-tier races in their first years as a professional rider. Bjorg Lambrecht would
probably also have turned out a rider of that caliber, if he had not died after crashing into a
concrete culvert in the 2019 Tour de Pologne. Lennard Kämna and in particular Alexandr
Vlasov and Jonas Vingegaard (second place overall and three podium places in the Tour de
France) performed very well in their neoprof years, but were not particularly ranked high
by any model. The naive models, on the other hand, missed 4 out of 10 top talents when
looking at their top 30. Furthermore, all but three of the top-20 riders predicted by any of our
(non-naive) models were hired by a World Team. One of these three, Jasper Philipsen, was
contracted by the prestigious Pro Team Alpecin-Fenix, by many considered to be a better
team than several World Tour Teams.

Finally, Table 6 also includes a number of riderswhodid not (yet) live up to the expectations
of the models, although in most cases, these are riders that were ranked highly by only one
of the three models. For instance, riders such as Pascal Eenkhoorn, Yevgeniy Gidich, and
Robert Stannard have collected a fair share of UCI points and demonstrated their potential
at times, but did not collect a (notable) victory yet. We would like to point out that, due to
the Covid-19 pandemic, the cycling season 2020 (and to a lesser extend also 2021) has been
crippled, as many (smaller) races were not organized. Since neo-pros typically are scheduled
for those races, we believe that they may not have received the same opportunities to collect
UCI points as in normal seasons, which may to some degree explain why some riders have
not performed as predicted.

7 Conclusion

Weprovided an overview on the related literature on talent identification in cycling and devel-
oped three statistical methods that allow to identify talented U23 riders, based on publicly
available data (race results, age, and nationality). Despite the fact that this data is not very
detailed, our results are quite encouraging, as we are able to predict all top-10 successful
professional riders from a set of riders that had 2018 as their final year in the U23 category.
This result is interesting in light of the study by Schumacher et al. (2006), who found that
results in junior races were not a significant predictor for success in elite races.

At the same time, our models provide some deeper insight in what makes a success in
their first years as a professional more likely for a U23 rider. We found that this is not just
determined by the number of podium finishes, but also by the UCI points collected, top 20
results in mountain and hill stages, experience in the the U23 category, as well as the rider’s
continent.

We see our models as a valuable tool for cycling scouts or agents, as they can relatively
easily be applied to a massive set of riders and data, to highlight the most promising talents.
These talents could then be invited for a lab test, to collect the physiological data necessary to
get a better impression of the potential of the rider (see e.g. Svendsen et al. 2018). As the final
position in a race does not fully reveal a rider’s impact on the race, it is clear that our models
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would benefit from more detailed position data such as the total number of kilometers a rider
was present at the front of the peloton. Although such data is currently not yet (publicly)
available, the rise of sensor data and data-driven summarization techniques may change this
in the near future (see e.g. Verstockt et al. 2020).

Finally, the attentive reader will have noticed that our models do not answer the question
in the introduction whether or not Remco Evenepoel is the new Eddy Merckx. The reason
is that Evenepoel never rode an U23 race, moving from the juniors category directly to the
professional level. However, with that in mind, and taking into account that he already won
a World Tour stage race, a classic, and a gold and silver medal at the European and Worlds
time trial championship respectively in his first two seasons as a professional rider, his talent
is undoubtedly exceptional.
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