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Abstract

Vehicle re-identification (Re-ID) is urgently demanded to alleviate the
pressure caused by the increasingly onerous task of urban traffic man-
agement. Multiple challenges hamper the applications of vision-based
vehicle Re-ID methods: (1) The appearances of different vehicles of the
same brand/model are often similar; However, (2) the appearances of
the same vehicle differ significantly from different viewpoints. Previ-
ous methods mainly use manually annotated multi-attribute datasets
to assist the network in getting detailed cues and in inferencing
multi-view to improve the vehicle Re-ID performance. However, finely
labeled vehicle datasets are usually unattainable in real application
scenarios. Hence, we propose a Discriminative-Region Attention and
Orthogonal-View Generation (DRA-OVG) model, which only requires
identity (ID) labels to conquer the multiple challenges of vehicle Re-ID.
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The proposed DRA model can automatically extract the discrimina-
tive region features, which can distinguish similar vehicles. And the
OVG model can generate multi-view features based on the input view
features to reduce the impact of viewpoint mismatches. Finally, the dis-
tance between vehicle appearances is presented by the discriminative
region features and multi-view features together. Therefore, the signif-
icance of pairwise distance measure between vehicles is enhanced in a
complete feature space. Extensive experiments substantiate the effec-
tiveness of each proposed ingredient, and experimental results indicate
that our approach achieves remarkable improvements over the state-
of-the-art vehicle Re-ID methods on VehicleID and VeRi-776 datasets.

Keywords: Vehicle re-identification, unsupervised semantic positioning,
viewpoint identification, orthogonal-view feature generation.

1 Introduction

The purpose of vehicle Re-ID is to retrieve the images of a target vehicle from
images taken by multiple traffic surveillance cameras[1]. Vehicle Re-ID has
been widely studied because of its potential applications in ancillary traffic
management and intelligent surveillance. Nevertheless, due to the unique 3-
D structure and the standardized production mode, the vehicle Re-ID task
is more challenging than the similar problem called person Re-ID[2-9], which
has achieved outstanding outcomes.

As shown in Fig. 1 (a), from the same viewpoint, the appearances of dif-
ferent vehicles may be highly similar. On the other hand, various viewpoints
often lead to false-negative cases. Especially the viewpoints have no overlap-
ping fields, which are almost uncorrelated in the feature space, such as the
front and back of vehicles (the two flanks of a vehicle are always symmetrical
and similar). Thus, we define the front and back views as a pair of orthogonal
views.

To distinguish different vehicles with similar appearances, some recently
proposed vehicle Re-ID methods attempt to make full use of discriminating
details [10, 11]. However, the detail-based methods suffer some disadvantages
such as incorrect localization of details and the need for a large amount of
annotation data [12-14], limiting their application in practical scenarios.

In order to solve the viewpoint mismatch problem when comparing vehicle
images, scholars proposed some multi-view inference models [15]. Recently,
the popular Generative Adversarial Network (GAN) has been introduced to
transform the original view features into multi-view features [16]. Research [17]
involves manually marked viewpoint labels instead of the traditional min-max
games to optimize the network since the transformation of features for vehicle
Re-ID has a specific direction. However, viewpoint information can hardly be
acquired due to the high label cost in real-world scenarios.
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Fig. 1 (a) The main challenges of vehicle Re-ID. (b) The basic intention of our method.

Analyzing the existing datasets shows that vehicle ID is a compulsory
label and is relatively easy to obtain in natural scenes. Therefore, we pro-
pose a discriminative-region attention and orthogonal-view generation model
(DRA-OVG), which only utilizes ID labels to construct the identity feature
of vehicles in a complete feature space. Fig. 1 (b) shows the basic strategy of
our method: Given a pair of images, under unsupervised conditions, the DRA
model extracts their discriminative region features, and the OVG model gener-
ates their orthogonal-view features from the original-view features. Finally, the
discriminative and multi-view features are combined to optimize the distance
metrics.

The main contributions of this paper are highlighted as follows:

(1) We propose a prototype generation module that can generate semantic
prototypes by leveraging the mapping rule in feature space beneath an image
set. These prototypes can automatically locate different semantic regions of
vehicle images. Thereby, the algorithm’s dependence on fine-grained labeled
data is greatly reduced.

(2) A discriminative region attention model (DRA) is proposed to address
the high intra-class similarity problem. The DRA model uses semantic proto-
types to extract discriminative region features containing more vehicle details,
which help encode vehicle identities to distinguish between similar vehicles.

(3) We propose an orthogonal-view generation (OVG) model to address
the problem of high intra-class discrepancy. In the OVG model, we combine
the features of two special local semantics to construct the vehicle viewpoint
feature, which can deduce a vehicle’s viewpoint. We use the viewpoint feature
to automatically extract the supervisory information for training the genera-
tion network to realize orthogonal-view generation without additional manual
annotation. Then, we align vehicle features in the viewpoint domain to reduce
the negative impact of viewpoint differences.

The rest of the paper is organized as follows: Section II reviews some
related works. The proposed discriminative region attention and orthogonal-
view generation model are presented in Section III. The proposed methods
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are evaluated on VehicleID and VeRi-776 datasets and are compared with sev-
eral existing state-of-the-art methods in Section IV. Section V discusses the
advantages and limitations of our method, and Section VI concludes this paper.

2 RELATED WORKS
2.1 Re-ID by Traditional Method and DNN

With the extensive use of deep neural networks (DNN), more and more vehicle
Re-ID methods use DNN to extract vehicle features for making further refor-
mations. Sun et al. [18] fused vehicle features extracted by ResNet50 [19] and
GoogLeNet [20] to encode vehicle images for getting powerful descriptors. In
addition to using the existing networks, some people designed new network
structures for vehicle Re-ID. For example, Zhu et al. [21] proposed a shortly
and densely connected convolutional neural network (SDC-CNN) for vehicle
Re-ID. The special structure can significantly enhance the feature learning
ability of the network. With vehicle orientation and metadata attributes being
considered, Huang et al.[22] proposed a viewpoint-aware temporal attention
model for vehicle Re-ID by utilizing deep-learning features extracted from
consecutive frames.

2.2 Fine-Grained Re-ID

In the recognition field, some traditional methods have yielded outstanding
results. For example, [23] proposed a slope difference distribution method
(SDD) to define and extract shape features for gesture recognition. SDD can
effectively solve the problem of object recognition with different shapes, such
as gesture recognition. However, it is not suitable for vehicle Re-ID. Because
vehicles usually have very similar shapes, the difference between them only
exists in the detailed appearance features. Thus, the slope feature cannot be
used to identify vehicles. With the profound understanding of vehicle Re-ID,
numerous emerging works tried to improve Re-ID’s performance by using sub-
tle visual differences. Considering the specific structures of vehicle images, Liu
et al. [10] proposed a region-aware deep model (RAM) to extract features
from a series of local regions by hard segmentation and separately trained
each branch to increase the network’s attention to details. Guo et al. [13] pro-
posed a two-level attention network model. The model is composed of a hard
part attention module and a soft pixel attention module, which can adaptively
extract the discriminatory features from the visual appearance of vehicles.
Khorramshahi et al.[24] leveraged an attention-based model, which could learn
to focus on different parts of a vehicle by conditioning the feature maps on
visible key points. In order to utilize the relationship between visual appear-
ances under different levels. Wei et al. [25] proposed a segmentation end-to-end
RNN-based hierarchical attention (RNN-HA) classification model for vehicle
Re-ID. The RNN-HA model consists of three coupled modules that capture
different levels of vehicle appearances to describe a vehicle comprehensively.
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For a better combination of detail cues and global appearances, He et al.
[26] proposed a part-regularized discriminatory-feature preserving method to
enhance the perceptive ability of subtle discrepancies and developed a novel
framework to integrate the part constraints with the global Re-ID models by
introducing a detection branch. Furthermore, Wang et al.[27] proposed a novel
attribute-guided network (AGNet), which could learn global representation
with abundant attribute features in an end-to-end manner. Specifically, an
attribute-guided module is proposed in AGNet to generate an attribute mask,
which could inversely guide the selection of discriminative features for category
classification. He et al.[28] proposed a pure transformer-based Re-ID method
named TransRelID. TransReID introduces side information embeddings (SIE)
to mitigate feature bias towards camera/view variations by plugging in learn-
able embeddings to incorporate these non-visual clues. Specifically, the method
encodes the camera and viewpoint labels into 1-D embeddings. Then, the
embeddings are fused with visual features as positional embeddings to address
the feature bias towards the camera/view variations problem. This method
achieves state-of-the-art performance on both person Re-ID and vehicle Re-
ID tasks. Quispe et al.[29] proposed AttributeNet (ANet) that jointly extracts
identity-relevant features and attribute features. ANet enables interaction by
distilling the Re-ID helpful attribute feature and adding it into the general
Re-ID feature to increase discrimination. However, all of these fine-grained
methods require additional attribute annotations for helping them to get
fine-grained features extraction ability, limiting their applicability.

2.3 Generation Based Re-ID Model

Enormous methods were devised to solve the problem of multi-view differ-
ences. Zhou et al. [17] proposed two end-to-end depth structures: The spatially
concatenated ConvNet and the CNN-LSTM bi-directional loop. The two struc-
tures take advantage of CNN and long short-term memory (LSTM) to learn
the transformations across different viewpoints of vehicles. Due to GAN’s[16]
advantages in image generation, some scholars also used the GAN to gener-
ate multi-view features of vehicles. Zhou et al. [15] proposed a view-aware
attention multi-view inference (VAMI) model. Given a vehicle image from an
arbitrary viewpoint, VAMI infers the multi-view features through GAN to
optimize pairwise distance metrics’ learning. Wang et al. [30] proposed a gen-
eral framework named kernelized multi-view subspace analysis (KMSA) for
multi-view data dimension reduction. KMSA directly handles the multi-view
feature representation in the kernel space, which provides a feasible channel
for direct manipulations of multi-view data with different dimensions. Besides,
to address the severe domain bias problem, Peng et al.[31] proposed a domain
adaptation framework for vehicle Re-ID (DAVR), which narrows the cross-
domain bias by fully exploiting the labeled data from the source domain to
adapt to the target domain.
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Table 1 Notations used in the paper.

Notation [ Description

T one feature in feature maps
Xset a set of all features of the vehicles in the subset
I one image
l the relationship between two images
T the regional semantic of vehicle images
dr the prototype of the semantic r
L, the location indication matrix of the semantic r
p" the probability of the occurrence of semantic r
PT the probability matrix of semantic r
fq the generated orthogonal-view feature
fg the real orthogonal-view feature
fa the fused discriminative region feature
fo the original view feature
fo the viewpoint feature
L loss function

3 Proposed Methods

3.1 Preliminaries and Problem Formulation

Common notes, shown in table 1, are used throughout the paper. Given an
image I of size H x W x C, we use the feature extraction network F' to
extract base features, and the activations of a middle layer in F' are called
”feature maps” with h X w X ¢ elements. We consider the feature maps as
having h x w positions with each position containing a c-dimensional feature
x. The corresponding local semantic of the original image is encoded in = [32].
We take the features of an image set to construct a feature set X ¢, namely
Xset = {z}; € R}, where x; represents the feature at the position (i, j)
(te{l,---,h}, je{l,--- ,w}) in the feature maps of image n.

A pair of images are defined as (I%, I°), and 1%° is the identity relationship
between them. If 1% and I belong to the same vehicle, [*® = 1, otherwise,
1% = 0. For an image I, we aim to get its discriminative feature and generate
its orthogonal-view feature by the following functions:

fd :T(F(I)’{Lr}ﬁzl)’ (1)

fo = G(F(I)), (2)
where F(-) is the feature extraction network, and Gy(-) generates orthogonal-
view features base on the original view. T'(-) fuses features of different
semantics. L, is the indication matrix that indicates the location of the specific
semantic r, and R represents the defined number of discriminative regions. f,
and fy represent the generated orthogonal-view feature and the fused discrim-
inative region feature, respectively. After defining f, and f4, we aim to design
and optimize T'(-), G(-), and L, to shorten the distance between fg and fé’,
f% and f% when [%® = 1, and maximize the distance when [ = 0 by using the
distance metrics loss [33].
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3.2 OVERVIEW OF THE METHOD

As shown in Fig. 1 (b), the DRA-OVG model is divided into two parts: a DRA
model with advantages of extracting and fusing discriminative region features
and an OVG model with advantages of orthogonal-view feature generation.
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Fig. 2 The overview of the framework of DRA. (a) The offline generation process of seman-
tic prototypes and (b) the process of extracting and re-encoding the features of discriminative
regions.

Fig. 2 shows the structure of DRA. After encoding the image, we lever-
age the mapping consistency of the same semantic regions in feature space
to generate semantic prototypes offline, which can be used to calculate the
indication matrix L,. Then, under the guidance of L,, the features of dis-
criminative regions can be extracted. Finally, the feature fusion network 7'(-)
encodes regional features as discriminative feature f;. Besides, the structure of
the OVG model is illustrated in Fig. 3. We design a viewpoint feature genera-
tor to construct vehicles’ viewpoint features f,. The distribution law of f, in
the high-dimensional feature space is applied to get viewpoint discriminators,
which can help us automatically extract real orthogonal-view features fg for
each image. We use fg to supervise the learning of G#(-). The optimized G (-)
can generate orthogonal-view features f, based on original view features f,.
During testing, f,, fq, and fgq are combined to express vehicles’ identity. The
details of each part are described in the following subsections.

3.3 Discriminative Region Attention

When distinguishing two similar vehicles, people often focus on the differences
between the same semantics. For example, they may compare the appearances
of lights or the appearances of air intake grilles of two vehicles. Based on the
same idea, we designed the DRA model to deal with the problem of identifying
similar vehicles.
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3.3.1 Offline prototypes generation

Unlike previous methods[10, 13], we do not focus on studying a single image but
leverage the mapping consistency beneath an image set to generate semantic
prototypes. Fig. 2 (a) shows the generation process of the prototypes. First,
we use F' to extract features of all vehicles in a subset, and all features of the
vehicles construct Xge¢. At this time, each feature xz encodes a local semantic
of the original image, and the features which represent the same semantic
should be relatively close in the feature space. Therefore, we use the spectral
clustering algorithm to mine the mapping consistency. We cluster the X, into
five classes and the center vectors of each class are used as semantic prototypes:
{dy,da,- -+ ,ds}, d. € R°. The location of the semantic r is detected by d,.
In the DRA model, we only use the prototype generation module to generate
prototypes once, and it will not be used in the online training stage.

3.3.2 Location indication matrix

The probability of the occurrence of semantic r at each position is expressed
as:

(Eij
e ,0) 3)
ldr | 2|
where | - | denotes the norm of the vector. According to the meaning of pij, all
Dij of an image construct a probability matrix P” whose dimensions are h X w:

pl; = maa(

Py Pl
P’r‘ — c RhX’u), (4)

Plha) " Plhw)

To facilitate calculation, we convert the probability matrix into a binary form
to get the indication matrix, which can help us extract local semantic features
of the vehicle by basic matrix operations:

Ly = sgn(P"), ()

where sgn(-) is a sign function. The element in L, takes 1 where its
corresponding element in P" is positive and takes 0 otherwise.

3.3.3 Discriminative features extraction and fusion

Feature maps of the pool5 layer in F are used to extract discriminative region
features. We use {dy,da, - - - ,ds} to generate indication matrices, and then vari-
ous semantic regions of vehicle images are positioned according to the matrices.
As shown in Fig 6, after visualizing the positioning results, we find that the
semantic prototypes can detect the regions of annual inspection stickers, lights,
air intake grilles, seats and background of vehicles. It is worth noting that F
trained for vehicle Re-ID automatically focuses on these semantic meanings



Springer Nature 2021 BTEX template

DRA-OVG model for Vehicle Re-identification 9

by its convolution kernels. We only mine and leverage this rule rather than
design it. According to the data in Tabel 5, we select the regions of the annual
inspection sticker, light, and intake grille as the discriminative regions, and we
present their prototypes as {d1, ds, d3}. In the online learning stage, {d1, da, ds}
are used to extract discriminative region features. Then we concatenate these
features for global average pooling. The fusion net is designed as a fully con-
nected network with four layers. As illustrated in Fig. 2 (b), classification loss
and triplet loss are used together to optimize the fusion network. a; and asg
adjust the proportional relationship between these loss functions. The whole
process of generating f; is shown in Algorithm 1.

Algorithm 1 Discriminative features fusion

Require: Input image I, prototypes {d;,ds,d3};
Ensure: Fused discriminative region feature fy;
1: Feed I into F to get feature maps of pool5;
2: for r=1,2,3 do
3: Use d, and the feature maps of pool5 to compute L, by (3), (4), and
(5);
4: end for
5. Feed the feature maps of pool5, Ly, Lo, and L3 into (1) to compute fg;
6: return fy

v Same ID with input |

h I
I Viewpoint |
| Feature | . Enm =
| Generator | [ ]
Viewpoint tags
Judge the viewpoint by Euclidean dlstance

[ - ey 4y 1 _____

| Viewpoint | | Front —l
| Feature | ! Back i
| Generator | Cluster oA T
""""""""""" Viewpoint (Centres)

discriminators
Real Orthogonal-view Feature Extraction

Fig. 3 The overview of the structure of OVG. (a) The extraction process of the real
orthogonal-view features and (b) the learning process of orthogonal-view feature generation.
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Fig. 4 The details of the viewpoint feature generator. The translucent heat maps visually
show the internal fundamental of the model.

3.4 Orthogonal-View Feature Generation

One can easily infer the orthogonal view based on a given view of a vehicle.
That is because people have learned this corresponding relation from a lot of
life experiences. Based on the same idea, we design the OVG model to infer
the orthogonal-view feature from the original view feature by learning the
corresponding relation between the features of orthogonal-view pairs.

3.4.1 Viewpoint feature generator

Generation of vehicles’ viewpoint features is the core of our OVG model, so we
first introduce the viewpoint feature generator, whose structure is illustrated in
Fig. 4. Since the features of lights and annual inspection stickers are noticeably
different between orthogonal viewpoints, we use those features to construct
viewpoint feature f, for each vehicle.

Identifying whether the annual inspection stickers are present or not and
the colors of lights are vulnerable to the surrounding unrelated information.
So we hope to locate these local semantic regions more accurately to reduce
the influence of irrelevant factors.

Unfortunately, we cannot finely position these semantic regions of vehicles
through the feature maps of a single layer. The prototypes generated by the
feature maps of pool5 are robust to interference, but the location is not precise
enough. That is because deep convolution kernels have a large receptive field, so
the semantics expressed by deep convolution features are more advanced, and
no similar semantics would appear in the same image. However, this also means
the semantic regions located by deep layer feature maps are so coarse that
they cannot be utilized to identify viewpoints. On the contrary, the prototypes
generated by the feature maps of poold can subtly locate the target semantic
regions, but it is fallible. That is also understandable because the receptive
field of the shallow convolution kernels is narrow, so their semantics are basic
and similar. Therefore, utilizing the intersection of the indication matrices
computed by the feature maps of poold and pool5 layers to accurately and
robustly locate the regions of vehicles’ annual inspection stickers and lights is
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a better solution. We have also tried to use the feature maps of other layers
to locate stickers and lights, but the outcomes are not satisfactory.

As shown in Fig. 4, we put a set of images into I’ to extract feature maps,
then the feature maps of pool5 and poold layers are fed into the prototype
generation module, which shares the same structure with that in Fig. 2(a),
to generate semantic prototypes {d},d3, - ,ds} and {d3,d3,--- ,d2}, respec-
tively. The local semantic indication matrix is calculated by (3), (4), and (5).
The probability matrices P" are up-sampled to the same size as the input image
by bilinear interpolation to generate heat maps. As shown in Fig. 5, we intu-
itively select the annual inspection sticker prototype and the light prototype,
represented as {d},d3} and {d,d5}, by those heat maps.

After obtaining the prototypes, the viewpoint feature generator can
generate an image’s viewpoint feature easily, as detailed in algorithm 2.

Algorithm 2 Viewpoint feature generation
Require: Input image I, {d},d3}, {d},d5} and F;
Ensure: Viewpoint feature f, of I;
1: Feed I into F' to get feature maps of poold and pool5;
2: for r =1,2 do

3: Use d} and the feature maps of pool4 to compute L} by (3), (4), and
(5);

4 Use d> and the feature maps of pool5 to compute L2 by (3), (4), and
(5);

5: Up-sample L? to the size of L;

6: if r=1 then

7. Linte'r' — L4 N L5;

8: Extract f, from feature maps of pool4 according Li"te";

9: fv — GAP(fr)a

10: else

11: Linte'r' — L4 N L5.

12: Extract f, from feature maps of poold according Li"te";

13: fu < concat(fy,, GAP(f;));

14: end if

15: end for
16: return f,.

3.4.2 Real orthogonal-view feature extraction

With only the vehicle ID label, we hope to design an algorithm that automat-
ically extracts supervisory information for G(-) to reduce the cost of manual
annotation. Fig. 3(a) demonstrates the process intuitively. First, we use the
viewpoint feature generator model to generate the viewpoint features of all
vehicles in the subset, and then we cluster these features into two clusters.
We take the center vectors of the two clusters as the discriminators of the two
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viewpoints. Since the annual inspection sticker and light only appear simulta-
neously in the front view, the images containing the vehicle’s front view are
grouped into one group. The remaining images (mainly containing the back
views of vehicles) are divided into the other group. Therefore, we define the
centers of these two groups as the front-view and back-view discriminator,
respectively. Given a certain image, all images that share the same ID in the
training set can be found according to the ID label. We put these images
into the viewpoint feature generator to generate viewpoint features and then
calculate their distance between the viewpoint discriminators to judge the
viewpoints of the images. The view features orthogonal to the original view
are selected according to the viewpoint tags representing each image’s view-
point. Finally, the real orthogonal-view feature fg is obtained by global average
pooling.

3.4.3 Orthogonal-view feature generation

We design G¢(-) as a four-layer fully connected network, which is shown in
Fig. 3 (b). It receives the global feature of the original view and outputs the
orthogonal-view feature. The loss function is formalized as follows:

L:generator = %ln (Gf (.fo) - fg)Qa (6)
f

where f, is the output of the last fully connected layer of F' and fg is the real
orthogonal-view feature of the input image. In the testing phase, we use G(-)
to generate orthogonal-view features of vehicles, and the real orthogonal-view
feature extraction module will not be used.

3.5 Distance Metrics

During testing, we use DRA-OVG to obtain f,, fy, and f4. For a vehicle,
fr and fp come from f, and f, and represent the front view and back view
features, respectively. The distance between images is calculated by:

dist = w; - (\/(f}’ — [+ \/(qu - fzf)Q)

where ff, f{, and f represent the discriminative, front view, and back view
features of query images, respectively. fg, f]?, and fy represent the discrimina-
tive, front view and back view features of candidate images, respectively. w;
and wq are hyper-parameters.

(7)
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4 Experiment

In this section, we first introduce the datasets and show some implementation
details of our method. Then some quantitative and qualitative experiments
are shown to evaluate the effectiveness of all proposed components. Finally,
we compare our method with some state-of-the-art methods on VehicleID [34]
and VeRi-776 [35] datasets.

4.1 Dataset

Experiments are mainly conducted on the general VehicleID dataset. Since
each vehicle in the dataset has mainly two orthogonal views (front and back),
the problems of inter-class similarity and intra-class differences are severe at
the same time. Thus it can fully verify the effectiveness of the proposed method.
In addition, there are three test sets in the dataset, which can effectively reduce
the negative impact of random sampling to a certain extent, so it makes more
sense to study on the VehicleID dataset. There are 221,763 images of 26,267
vehicles in the dataset captured by different surveillance cameras in the city.
The training set contains 110178 images, and the test set contains 111585
images. Following the settings in [34], we use three test subsets of different
sizes: 800, 1600, and 2400.

The VeRi-776 dataset contains 776 vehicle IDs captured by 20 cameras,
and each car has multiple viewpoints. The dataset contains 576 vehicles with
37,778 images for training and 200 vehicles with 11,579 images for testing. An
additional set of 1,678 images selected from the testing set are used as query
images. We strictly follow the evaluation protocol proposed in [35].

4.2 Implementation Details

The algorithm is implemented by Pytorch with the GPU mode and runs on
the machine with Geforce GTX 1060 GPU, 6 GB memory, and i5 3470 CPU.
In order to explore the mapping rules of vehicle semantic features in the fea-
ture space, we randomly sampled 1,000 vehicle images from the training set
to construct the offline subset. We choose VGG-16 as the basic network F
to locate the semantic regions accurately due to its good position correspon-
dence between features and semantics regions in original images (some other
common-used networks, such as ResNet and DenseNet, have also been tested
to extract features, but their positioning results of semantics are not satis-
fied as that by VGG-16). Thus, the structure of F is the same as VGG-16
pre-trained on ImageNet. The weights of the F' network are shared through-
out the algorithm. When we train it on vehicle datasets, the Adam algorithm
and cross-entropy loss are used to optimize the network. Furthermore, the
base learning rate is 0.001, which decreases by multiplying 0.1 after every 15
epochs. The batch_size is set to 64. Images are resized to 224 x 224 for both
training and testing. The training of F' is stopped after 100 epochs, and then
its parameters are fixed. The generation network is designed as a four-layer
fully connected structure with 2048, 4096, 2048, and 1024 output dimensions.
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The normalization layer and activation layer are used between fully connected
layers, and the activation function is 'ReLu’.The training of the generator net
and the fusion net is stopped after 50 and 45 epochs, respectively. We use the
SpectrumClustering algorithm in Sklearn to cluster features. Parameters are
set as: n_clusters=5, eigen_solver = None, assign_labels = ’k_means’, random_-
state = None, and other parameters are default values. a; and as are set to
0.1 and 0.9, respectively, and we only use vehicles’ ID labels. The Cumulative
Matching Characteristic (CMC) curve and the mean average precision (mAP)
are used to evaluate our method.

4.3 Qualitative results of viewpoint feature generation

Fig. 5 shows some positioning results of annual inspection stickers and lights.
We obtain satisfactory location results by combining the regions located by
the feature maps of poold and pool5 layers. For annual inspection stickers, to
eliminate the slight interference from the back of vehicles, we used 0.05 as the
threshold for dividing the corresponding P" as two parts: 1 and 0. Moreover,
the positioning of lights is always accurate. The results qualitatively demon-
strate that our method can accurately locate the annual inspection stickers
and lights of vehicles.

Pool5

. - . S - --
.n---- . Foot .!-... ..
........-. emecten .!.--...-.

(a) Positioning of annual inspection stickers (b) Positioning of lights

Fig. 5 The positioning results of annual inspection stickers and lights on VehicleID

4.4 Qualitative Results of Discriminative Region Location

Fig. 6 shows some examples of the localization results of different semantic
regions. It can be visually observed that the prototypes can automatically
detect various parts of vehicles. After knowing what part of the vehicle each
semantic prototype detects, we can select discriminative regions by ablation
experiment shown in Table 5. There are two reasons for choosing the feature
maps of the pool5 layer of the F'. First, the deep convolution kernel has a size-
able sensory field. The features of each position in the feature map can include
rich semantics while paying attention to detailed cues, hence avoiding some
naive errors caused by narrow vision. As shown in Fig. 6, the regions of each
semantic located by the semantic prototype also contain parts of the vehicle
body. Secondly, the deeper convolution kernels represent more advanced and
unique semantics, which can be accurately positioned. The third row of Fig. 5
shows the location results, which are located by the feature maps of the poold
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Table 2 Evaluation (%) of viewpoint identification accuracy on VehicleID.

Layers Size=200  Size=500  Size=1000

poold 50.9 53.4 55.9
poolb 62.3 55.7 58.2
poold-pool5 99.0 97.4 96.5

layer. As we can see, although different semantic regions can be located, there
are many mistake locations.

Original

Lights

N o
Background ‘L
e

Fig. 6 Results of different semantic regions positioning. The first row is the original vehicle
images, and the rest rows are the heat maps of different semantics located by semantic
prototypes on VehiclelD.

4.5 Evaluation of Viewpoint Identification

Before we optimize G(-), we must demonstrate the effectiveness of the view-
point discriminator. We randomly selected 200, 500, and 1000 images of
vehicles from the test set to evaluate the discriminators. Table 2 shows the
accuracy of the viewpoint judgment based on the features of different layers.

As shown in the last row of Table 2, under the three test sets, all the
accuracies of the viewpoint identification exceed 95%. In order to analyze the
algorithm more deeply, we output some cases where the viewpoint identifica-
tion is wrong. As shown in Fig. 7, the images that cannot be correctly judged
all contain only part of the vehicle body. Since these images lack the features of
the annual inspection stickers or lights, the algorithm fails in these situations.
Excluding these extreme cases, the viewpoint identification algorithm hardly
makes mistakes. The quantitative results in Table 2 suggest that our vehicle
viewpoint identification method can provide reliable supervisory information
for training G(-). It can also be deduced from the data that using feature
maps of a single layer is not enough to distinguish viewpoints accurately.

As shown in Table 3, in order to select the most appropriate number of
clusters for our method, the feature set X, is clustered into different numbers
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Fig. 7 Viewpoint identification error cases display on VehicleID.

Table 3 Evaluation (mAP%) of the DRA model on Veri-776 and VehicleID (size=2400). ¢
is the cluster number of features.

Clusters  Veri-776  VehicleID

c=4 74.41 79.25
c=5 75.01 80.71
c=6 74.73 79.38
c=7 74.56 78.11
c=8 73.68 76.34

Table 4 Evaluation (%) of the OVG model. k is the cluster number of the viewpoint
features on VehiclelD.

Clusters mAP r=1 r=>5
k=2 56.47 55.12 63.24
k=3 47.39 45.50 52.75
k=4 42.24  40.04  48.58

of groups. As can be seen from Table 3, when ¢ = 5, DRA achieves the best
performance, so we set the number of clusters to 5 in this paper.

As shown in Table 4, we try to cluster viewpoint features of the images
in the subset into different numbers of clusters so that we can choose the
most suitable number of generated views for the OVG model. We can see that
when k = 2, the performance of vehicle Re-ID is the best. That is mainly
due to the following reasons: First, the identity features of the vehicle are
mainly concentrated on some specific views (such as the front view and back
view), so generating more views will not introduce more practical information.
Secondly, because the features of the generated views are just a guess, the
original view should play a major role in identifying vehicles. If we generate
more views, the feature of the original view will have less influence on the
distance measurement, which is harmful to vehicle Re-ID. Finally, since there
is a certain imbalance in the vehicle datasets, not every vehicle has images from
so many different viewpoints. Those vehicles that lack images under specific
viewpoints have to be discarded, reducing the number of images in the training
set. That undoubtedly harms network training. Therefore, we finally choose
to generate two views.
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Table 5 Evaluation(%) of the impact of different semantics on the accuracy of Re-ID on
VehicleID (size=2400).

light sticker grille seat background | mAP r=1 r=5

v 44.93 41.17 50.24
v v 68.25 66.91 78.17
v v v 80.71 78.80 90.00
v v v v 80.07 78.53 89.41
v v v v v 78.47 76.03 87.33

Table 6 Evalution (%) of effectiveness of the DRA-OVG on VehicleID (size=2400).

Baselines mAP r=1 r=>5
Global-feat 76.26 74.66 86.45
Global+-L peid 78.62 76.13 87.51
DRA-feat 72.53 70.07 84.54
DRA 80.71 78.80 90.00
ovG 56.47 55.12 63.24
OVG-Global+£ geia 81.88 79.11 91.37
DRA-OVG 82.51 79.25 91.03

4.6 Ablation Studies

As shown in Table 5, we use the features of different semantics to identify
vehicles. It can be seen that the recognition accuracy is the highest when we
use the features of lights, air intake grilles, and annual inspection stickers. The
introduction of the features of seats and background reduces the recognition
accuracy. That is because the passengers on seats and the background of images
vary among images. The features of these two semantics cannot provide a
reliable basis for vehicle Re-ID. Thus we finally choose the regions of light, air
intake grille, and annual inspection sticker as the discriminative regions.

As shown in the first part of Table 6, the Global-feat is the feature obtained
by conducting global average pooling on the output of the pool5 layer. We feed
the Global-feat into the fusion net to conduct classification training, and then
the Global+Lgeiq is obtained. As shown in Fig. 2(b), Lgeiq is the weighted
sum of cross-entropy loss and triplet loss. As with Global-feat, DRA-feat is the
feature obtained by conducting global average pooling on the discriminative
region features.

Part one of Table 6 shows that, since DRA eliminates interfer-
ence from unrelated regions, it achieves better generalization performance
than Global4+Lge;q through the same Re-ID training. Compared with the
Global+L reiq, the DRA model increases the mAP by 2.09% and increases the
rankl by 2.67%. These improvements suggest that the proposed DRA model
is helpful to distinguish similar-looking vehicles. Furthermore, some retrieval
results, which are shown in Fig. 8, qualitatively illustrate that most gallery can-
didates retrieved by the global feature have similar irrelevant details, such as
the same passengers, sunlight-reflection points, and landscape reflections. Our
DRA model can eliminate the influence of those irrelevant features and rank
the candidates with similar discriminative region features at the top position.
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Fig. 8 Comparisons of qualitative results based on global features and discriminative fea-
tures on VehicleID. Query vehicles are framed in purple boxes, red boxes and green boxes
frame the wrong and the correct results respectively .

As shown in the second part of Table 6, we cannot achieve excellent Re-1D
performance using only the OVG model because the generated orthogonal-
view features are only a guess easily disturbing by similar vehicles. The OVG
model is more suitable as a supplement to other models rather than a substi-
tute. The mAP and the rankl are increased by 3.26% and 2.98%, respectively,
when combining OVG with the Global+Lge;q. These meaningful improve-
ments indicate that the proposed OVG model is undoubtedly profitable to
vehicle Re-ID. Moreover, Fig. 9 qualitatively demonstrates the effectiveness
of the OVG model. Most gallery candidates retrieved by global features have
the same viewpoint as the query image. On the contrary, our OVG model can
propose more gallery candidates that are under different viewpoints. The last

\
) ol « 20 .
\

(a) GLobal+ Lzen (b) OVG-GLobal+Lzn

Fig. 9 Comparisons of qualitative results based on global features and OVG-Global+LR.iq
on VehicleID. Query vehicles are framed in purple boxes, red boxes and green boxes frame
the wrong and correct results respectively.

row of Table 6 shows that our DRA-OVG model performs best. Compared
with the Global+L ge;q, our model improves the mAP value by 3.89% and the
rankl value by 3.12%. As shown in Fig. 10, the optimal ratio of w; and ws is
0.1 to 0.65.

In addition to evaluating the accuracy of Re-ID, we also test the speed
of our method: Extracting discriminative features for each image takes 80 ms
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Fig. 10 The mAP surface of DRA-OVG on VehicleID (size=2400) when changing the value
of wy and wy in (7).

Table 7 Comparisons with state-of-the-art Re-ID methods on VehicleID.

Test size=800 Test size=1600 Test size=2400

Methods Backbones  mAP r=1 r=>5 mAP r=1 r=>5 mAP r=1 r=>5
LOMOI36] - - 19.76  32.01 - 18.85  29.18 - 1532 25.29
GoogLeNet[20] GoogLeNet - 47.88  67.18 - 43.40  63.68 - 38.27  59.39
FACT[35] GoogLeNet - 49.53  68.07 - 44.59  64.57 - 39.92  60.32
DAVR([31] - 54.01  49.48  68.66 49.72 4518  63.99 45.18  40.71  59.02
Mixed Diff+CCL[34] VGGM 54.60  48.90  73.50 48.10  42.80  66.80 45.50  38.20  61.60
EALN][14] VGGM 7750 7511 88.09 7420 7178  83.94 71.00  69.30 81.42
GS-TRE loss [37] VGGM 75.40 7590  84.20 74.30  74.80  83.60 7240 7400 8270
XVGAN(38] - - 52.87  75.65 - 49.55  68.85 - 44.89  63.38
VAMI[15] - - 63.12  80.83 - 52.87  71.79 - 47.73  66.65
AGNet-ASL-LD[27] - 74.05 71.15  83.78 69.23  69.23 81.41 69.66 65.74 78.28
TAMR [13] ResNet-18  67.64  66.02 79.71 63.69 62.90 76.80 60.97  59.69  73.87
AAVER([39] ResNet-101 - 74.69  93.82 - 68.62  89.95 - 63.54  85.64
PDFP[26] ResNet-50 - 78.40  92.30 - 75.00  88.30 - 74.20  88.40

DRA (ours) VGG-16 84.51 8213 93.43 83.04  80.98 92.04 80.71  78.80  90.00
OVG-Global+£L ge;q(ours) VGG-16 84.43  82.01  93.47 82.16  80.73  91.87 81.88 79.11 91.37
DRA-OVG(ours) VGG-16 85.14 83.40 94.02 83.88 82.31 93.20 82.51 79.25 91.03

(about 12 fps), and extracting the viewpoint feature for an image takes 76 ms
(about 13 fps). Performing a distance measurement between two images takes
about 90 ms (about 11 fps).

4.7 Comparisons with State-of-the-Arts
4.7.1 On VehiclelD

On the VehicleIlD dataset, we compare our DRA-OVG with some state-of-the-
art methods. The second part of Table 7 shows the supervised methods based
on multi-view inference. They use the features of the original views and the
inferred views of vehicles simultaneously. Compared with VAMI[15], the OVG-
Global+LReiq increases by 31.38% on rankl and by 24.72% on rank5 on the
test size of 2,400. The third part of Table 7 shows the supervised methods based
on detailed cues. Among them, TAMR/[13] also extracts discriminative features
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Fig. 11 CMC curves of different Re-ID methods on VehicleID (size=800).

Table 8 Comparisons with state-of-the-art Re-ID methods on VeRi-776.

Methods Backbones mAP r=1 r=>5
LOMO[36] - 7.98 23.87 39.14
GoogLeNet[20] GoogLeNet  17.81 5212  66.79
FACT][35] GoogLeNet 18.73 51.85 67.16
DAVRJ31] - 26.35 62.21 73.66
GS-TRE loss [37] VGGM 5947  96.24  98.97
XVGAN|3g] - 24.65 60.20 77.03
VAMI[15] - 50.13 77.03 90.82
AGNet-ASL-ID[27] - 66.32 90.90 96.20
AAVER([39] ResNet-101 61.18 88.97 94.70
PDFP[26] ResNet-50 74.30 94.30 98.70
PCRNet[40] - 78.60 95.40 98.40
PVEN[41] - 79.50 95.60 98.40

VehicleNet[42] ResNet-50  83.41 96.78 -

Global+Lreid VGG-16 71.68 91.18 97.44
DRA (ours) VGG-16  75.01 94.01 98.98

from the visual appearance of vehicles. Compared with it, our DRA model
increases by 19.11 % on rankl and by 16.13% on rank5. Besides, PDFP[26]
combines global features with local features to address the problem of vehicle
Re-1D, and it also uses annual inspection stickers, lights, and air intake grilles
as discriminative regions. Compared with it, our DRA model increases by 4.6
% on rankl and by 1.6% on rank5 on the large size of the gallery. AAVER][39]
is a two-path adaptive attention model for vehicle Re-ID. The method uses
the manually marked key points to train the network to obtain the ability of
discriminative region localization and viewpoint estimation. Compared with
it, our DRA-OVG model increases by 15.71 % on rankl and by 5.39 % on
rank5 on the large size of the gallery. As shown in Fig. 11, the CMC curves
show the performance of methods more intuitively. As shown in Table 7, the
proposed DRA-OVG model achieves better results than all existing approaches
under the three settings of the gallery size. Therefore, we can conclude that
our model is very beneficial to the vehicle Re-ID task.
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4.7.2 On VeRIi-776

On VeRi-776 dataset, we compare the DRA model with some state-of-the-art
methods. As shown in Table 8, compared with the Global4+L ge;q, our method
increases by 2.83 % on rank1 and by 1.54% on rank5. This result shows that, by
eliminating the interference of irrelevant features, the DRA model can help the
base net achieve a significant improvement on the VeRi-776 dataset. Besides,
compared with some supervised methods based on detail cues in the third part
of Table 8, our method still has certain advantages. DRA increases by 0.71 %
on mAP and by 0.28 % on rank5 when compared with PDFP[26], which also
uses annual inspection stickers, lights, and air intake grilles as discriminative
regions.

Our method does lag behind some supervised methods. For example,
VehicleNet[42] uses extensive additional data from other datasets to enhance
its recognition capability. PCRNet[40] relies on a new large-scale Multi-grained
vehicle dataset to learn discriminative part-level features, and PVEN[41]
annotates a subset of VeRi-776 for training vehicle part parsing network. Nev-
ertheless, our method only uses ID labels and is trained under a single dataset.
Thus the training cost of our method is relatively low than those methods. It
can be seen from Table 8 that our DRA model brings apparent benefits to the
vehicle Re-ID on VeRi-776 using only the ID label.

Moreover, due to the unsupervised limitation, our method can only par-
tially solve the cross-view recognition problem (between the front and back
views) for the time being. For multi-view recognition and inference, our OVG
method is still slightly insufficient. Therefore, under the VeRi-776 dataset, the
OVG model is not very helpful for improving the performance of vehicle Re-1D,
which is worthy of further study.

5 Discussion

Fig. 12 Some hard retrieval samples. Query vehicles are framed in purple boxes, red boxes
and green boxes frame the wrong and correct results respectively

As shown in Fig. 12, there are some hard retrieval samples. For the first
case, the identification error is caused by the great difference in illumination.
For the second case, the identification error is caused by some excellent appear-
ance change of the vehicle. These extreme conditions seriously affect extracting
the features of discriminative regions and the inference of orthogonal features,
so our method cannot successfully identify them yet.
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For the optimal number of clusters of X,.;, we determine it as five according
to the recognition accuracy of the DRA model on the two datasets used in this
paper. However, it does not mean that five is always the optimal setting for
other datasets. It is likely to be data-dependent or model-dependent.

The proposed semantic localization method and the viewpoint identifica-
tion method can be considered almost free of computation because we only
need to generate semantic prototypes and viewpoint discriminators once offline
and perform the vector distance measurement operation in the online learn-
ing stage. These two processes need very little calculation. In addition, before
training the fusion net T'(-), we can use F' and the semantic prototypes to
extract discriminative region features of all the images in the training set and
save them. These features can be directly used during the training of the fusion
net T'(-), which significantly speeds up the training. Similarly, for the train-
ing of the generation network G(-), we can also generate the f,, fg and the
viewpoint tag for each image in advance. In the online learning stage, F' is not
required, so the training cost of our method is meager.

Vehicle Re-1ID is a fine-grained image categorization problem. In this prob-
lem, samples often have similar global appearances, and the differences only
exist in local semantics. Therefore, introducing attention mechanisms in cat-
egorization algorithms is a common method to address such problems. The
positioning of local semantic regions crucial for algorithms based on the atten-
tion mechanism. So the proposed unsupervised positioning method of semantic
regions may have some inspirations for other fine-grained categorization
problems.

This paper mainly divided vehicle viewpoints into two categories (the front
and back). Because the side view of vehicles lacks the annual inspection sticker
feature, its viewpoint feature is closer to the back discriminator in the feature
space than the front one. Therefore, given an image taken from the side of a
vehicle, the OVG model will treat it as an image from the back viewpoint and
use its features to generate the features of the vehicle’s front view.

The OVG model proposed in this paper is mainly dedicated to generat-
ing the features of vehicles’ front and back views to help address the vehicle
Re-ID problem. That is due to the following two reasons: First, the front and
back views of a vehicle are very different, and they contain a wealth of detailed
information that can be used to represent the vehicle’s identity. So the combi-
nation of the front and back features is of great help in re-identifying vehicles.
However, the two flanks are symmetrical and similar, and only a few features
can be used to identify the vehicle’s identity. Therefore, generating vehicles’
flank features is relatively less helpful for vehicle Re-ID. Second, our viewpoint
identification algorithm is based solely on the overall data distribution due to
the unsupervised restriction. There are certain limitations in identifying more
refined vehicle viewpoints.
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6 Conclusions

In this paper, we tried to conquer the multiple challenges encountered in vehi-
cle Re-ID tasks by only using the ID label of vehicles. We proposed a method
leveraging the mapping consistency of vehicles’ local semantics in feature space
to generate semantic prototypes. Moreover, these prototypes were used to
filter and transform different semantic features directly in feature space. Fur-
thermore, we designed a DRA-OVG model, which could extract and fuse the
discriminative regional features of vehicles and generate their orthogonal-view
features based on the input view features. Finally, vehicles’ identity features
were constructed in the complete feature space to optimize pairwise distances.

Extensive experiments were conducted to verify the efficiency of the pro-
posed method. First, the heat maps suggested that the prototypes could
accurately locate various semantic regions in a vehicle image. Second, the
ablation experiments verified the effectiveness of the ingredients in the model.
Third, the DRA-OVG model is compared with the state-of-the-art methods
on VehicleID and VeRi-776 datasets. The results reveal that our method could
still surpass most advanced methods with only vehicles’ ID labels.

Although the investigation of this paper may have some inspirations for
unsupervised viewpoint identification and multi-view feature generation, how
to use a vehicle’s flank view under unsupervised conditions to construct the
vehicle’s identity features and generate multi-view features is still a task worth
studying.
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