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Abstract 

Deep neural networks are vulnerable to adversarial 

examples, which are crafted by applying small, human-

imperceptible perturbations on the original images, so as 

to mislead deep neural networks to output inaccurate 

predictions. Adversarial attacks can thus be an important 

method to evaluate and select robust models in safety-

critical applications. However, under the challenging 

black-box setting, most existing adversarial attacks often 

achieve relatively low success rates on adversarially 

trained networks and advanced defense models. In this 

paper, we propose AdaBelief Iterative Fast Gradient 

Method (ABI-FGM) and Crop-Invariant attack Method 

(CIM) to improves the transferability of adversarial 

examples. ABI-FGM and CIM can be readily integrated 

to build a strong gradient-based attack to further boost 

the success rates of adversarial examples for black-box 

attacks. Moreover, our method can also be naturally 

combined with other gradient-based attack methods to 

build a more robust attack to generate more transferable 

adversarial examples against the defense models. 

Extensive experiments on the ImageNet dataset 

demonstrate the method’s effectiveness. Whether on 

adversarially trained networks or advanced defense 

models, our method has higher success rates than state-

of-the-art gradient-based attack methods.  

1. Introduction 

In the field of image recognition, deep neural networks 

are capable of classifying images with performance 

superior to that of humans (Krizhevsky et al., 2017; 

Simonyan et al., 2014; Szegedy et al, 2015; He et al., 

2016). However, researchers have found that deep neural 

networks are very fragile. Szegedy et al. (2015) found 

for the first time the intriguing properties of deep neural 

networks: adding small, human-imperceptible 

perturbations to the original image, can make deep 

neural networks give an erroneous output with high 

confidence. These disturbed images are adversarial 

examples, in addition, adversarial examples with strong 

attack performance are an important tool to evaluate the 

robustness of the model. Studying how to generate more 

transferable adversarial examples can help to assess and 

improve the robustness of the models. 

With the knowledge of the network structure and weights, 

many methods can successfully generate adversarial 

examples and perform white-box attacks, including 

optimization-based methods such as box-constrained L-

BFGS (Szegedy et al., 2015), one-step gradient-based 

method such as fast gradient sign method (Goodfellow 

et al., 2014), multi-step iterative gradient-based methods 

such as iterative fast gradient sign method (Alexey et al., 

2016) and momentum iterative fast gradient sign method 

(Dong et al., 2018), and Carlini & Wagner attack method 

(Carlini et al., 2017). However, under the white-box 

setting, the attackers need to fully know the structure and 

parameters of a given model, which is difficult to achieve 

in the adversarial environment. In general, adversarial 

examples generated for one model may also be 

adversarial to others, i.e., adversarial examples have a 

certain degree of transferability, which enables black-

box attacks and poses real security issues. 

Despite adversarial examples are generally transferable, 

to further improve their transferability for effective 

black-box attacks remains to be explored. Xie et al (2019) 

propose a diverse input method based on data 

augmentation to improve the transferability of 

adversarial examples. Dong et al (2019) propose a 

translation-invariant attack method to generate 

adversarial examples that are less sensitive to the 

discriminative regions of the white-box model being 

attacked, and have higher transferability against the 

defense models. Lin et al (2020) propose a scale-

invariant attack method to generate more transferable 

adversarial examples. However, these existing methods 

often exhibit low success rates under the black-box 

setting, especially for defense models and adversarially 

trained networks. 

To this end, by regarding the adversarial example 

generation process as an optimization process similar to 

deep neural network training, we propose two new 

methods to generate more transferable adversarial 

examples, namely AdaBelief Iterative Fast Gradient 

Method (ABI-FGM) and Crop-Invariant attack Method 

(CIM). 

• We introduce Adabelief optimizer into iterative 

gradient attack to form AdaBelief Iterative Fast 

Gradient Method. This method adopts adaptive 

learning rate, and considers the difference between 

the first moment and gradient to control the size of 

forward step in the iterative process, which 

effectively optimizes the convergence process and 

improves the transferability of adversarial examples. 

• Inspired by data enhancement (Krizhevsky et al., 

2017; Simonyan et al., 2014), we find that image 

edge information has little influence on the correct 

classification of images, and crop the image edge 

within a certain range can reduce the overfitting, so 

we find that deep neural networks have crop-

invariant property. Based on this, we propose a Crop-

Invariant attack Method, which optimizes the 

adversarial perturbations over the crop copies of the 

input images to generate more transferable 

adversarial examples. 



• Besides, ABI-FGM and CIM can be naturally 

integrated to build a strong gradient-based attack to 

further boost the success rates of adversarial 

examples for black-box attacks. Moreover, 

combining our ABI-FGM and CIM with existing 

gradient-based attack methods (e.g., diverse input 

method (Xie et al., 2019), translation-invariant 

method (Dong et al., 2019)) can further boost the 

attack success rates of adversarial examples. 

Extensive experiments on the ImageNet dataset 

(Russakovsky et al., 2015) show that our method have 

higher success rates of black-box attack in both normally 

trained models and adversarially trained models than 

existing baseline attack methods. In addition, by 

integrating with baseline attacks, the attack success rates 

of our method under the black-box setting are further 

improved. In particular, our best method, CI-AB-SI-TI-

DIM (Crop-Invariant AdaBelief Iterative FGM 

integrated with scale-invariant and translation-invariant 

diverse input method), achieves an average success rate 

of 97.3% against seven models under multi-model 

setting. We hope that the proposed attack method can 

help evaluate the robustness of models and effectiveness 

of defense methods. 

2. Related Work 

In this section, we first provide the background 

knowledge, and then briefly sort out the related works 

about adversarial attack and defense methods. Let x and

y be an input image and the corresponding ground-truth 

label, respectively. The term represents neural network 

parameters and ( , , )J x y denotes a loss function, 

usually the cross-entropy loss. The primary objective is 

to mislead the model by maximizing ( , , )J x y  to 

generate a visually indistinguishable adversarial 

example advx  from x  , that is, to make the model 

misclassified. We used an L


norm bound in this work to 

measure the distortion between x and advx , such that
*|| ||x x 


−  , where  is the magnitude of the 

perturbation. Therefore, the generation of adversarial 

examples can be converted into solving the following 

constrained optimization problem: 

    argmax ( , , ), . . || || .
adv

adv adv

x

J x y s t x x 


−     (1) 

2.1. Attack Method 

Here we provide a brief introduction of several attack 

methods of generating adversarial examples. 

Fast Gradient Sign Method (FGSM). FGSM 

(Goodfellow et al., 2014) is one of the most basic 

methods to generate adversarial examples, which seeks 

the adversarial perturbations in the direction of the loss 

gradient. The method can be expressed as 

         ( ( , , )),adv

x
x x sign J x y = +          (2) 

Where sign( ) is the sign function to limit the distortion 

between x and
advx in the L


 norm bound. 

Iterative Fast Gradient Sign Method (I-FGSM). I-

FGSM (Alexey et al., 2016) is an iterative version of 

FGSM, which iteratively apply fast gradient multiple 

times with a small step size . The update equation is as 

follows: 

1
Clip { ( ( , , ))},adv adv adv
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Where /T = , in which T  is the number of 

iterations. The function Clip ( )
x

   make the generated 

adversarial examples satisfy the L


 norm bound. It has 

been shown that I-FGSM has a higher success rate of 

white-box attack than FGSM at the cost of worse 

transferability. 

Momentum Iterative Fast Gradient Sign Method 

(MI-FGSM). MI-FGSM (Dong et al., 2018) proposes to 

integrate the momentum term into iterative attack 

method to stabilize update directions, so as to improve 

the transferability of adversarial examples. The update 

procedure is as follows: 

0
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Where 
t

g  is the accumulated gradient at iteration t  

and is the decay factor of the momentum term. 

Diverse Input Method (DIM). DIM (Xie et al., 2019) 

applies random transformations to the original inputs 

with a given probability at each iteration to alleviate the 

overfitting phenomenon. The transformations include 

the random resizing and the random padding. This 

method can be integrated into other baseline attack 

methods to further improve the transferability.  

Translation-Invariant Method (TIM). Dong et al. 

(2019) proposes a translation-invariant attack method to 

generate adversarial examples that are less sensitive to 

the discriminative regions of the white-box model being 

attacked, and have higher transferability against the 

defense models. To improve the efficiency of attacks, 

they further implement their method by convolving the 

gradient at the untranslated image with a pre-defined 

kernel matrix. TIM can also be combined with other 

gradient-based attack methods to generate more 

transferable adversarial examples.  

Scale-Invariant Nesterov Iterative Method (SI-NI-

FGSM). Lin et al. (2020) regards the adversarial 

example generation process as an optimization process, 

and propose two new attack methods, namely Nesterov 

Iterative Fast Gradient Sign Method (NI-FGSM) and 

Scale-Invariant attack Method (SIM), to improve the 

transferability of adversarial examples. In particular, the 

combination of SI-NI-M and TIM-DIM, namely SI-NI-

TI-DIM, which greatly improves the success rate of 

black-box attack. 

 



2.2. Defense Methods 

In order to protect deep learning models from the threat 

of adversarial examples, various defense methods have 

been proposed to against them (Madry et al., 2018; 

Papernot et al., 2016; Xie et al, 2018; Guo et al., 2017; 

Samangouei et al, 2018; Mao et al., 2020;). Goodfellow 

et al. (2014) proposed to put the adversarial examples 

into the training data and get them involved in the model 

training process to improve the robustness of the model. 

Since ordinary adversarial training is still susceptible to 

adversarial examples, Tramer et al. (2018) suggested 

ensemble adversarial training to further enhance the 

robustness of the model, which means adversarial 

examples generated by multiple models separately are 

put into the training set of a single model to obtain a more 

robust classifier. Liu et al. (2019) proposed a JPEG-

based defensive compression framework, namely 

“feature distillation”, to effectively rectify adversarial 

examples without impacting classification accuracy on 

benign data. Cohen et al. (2019) use randomized 

smoothing to obtain an ImageNet classifier with certified 

adversarial robustness. Due to the error amplification 

effect of the standard denoiser, the small residual 

adversarial noise is gradually amplified, leading to the 

wrong classification of the model. For this reason, Liao 

et al. (2018) put forward high-level representation 

guided denoiser to purify the adversarial examples. Jia et 

al. (2019) utilize an end-to-end image compression 

model to defend adversarial examples. The above 

mentioned defense methods can be generally classified 

into two types: input modification and network structure 

or parameter modification. In this paper, we aim to 

generate more transferable adversarial examples to 

evaluate the model and improve its robustness. 

3. Methodology 

3.1. Motivation 

Under the white-box setting, the adversarial examples 

tend to demonstrate strong attack capability, while in the 

black-box setting, the attack performance is poor, which 

we believe is the result of overfitting of adversarial 

examples, that is, the attack performance variance of the 

same adversarial examples in the white-box and black-

box setting which is similar to the performance 

difference of the same neural network in the training set 

and the test set. 

Analogous to the process of training deep learning 

models, the process of generating adversarial examples 

can also be viewed as an optimization problem. 

Therefore, we can apply the methods used to improve the 

generalization performance of deep learning models to 

the generation process of adversarial examples, so as to 

improve the transferability of adversarial examples. 

Methods to improve the generalization performance of 

deep learning models are mainly as follows: (1) improve 

data quality and quantity; (2) use better optimization 

algorithm; (3) enhance optimization algorithm tuning; (4) 

use multiple models. Correspondingly, methods to 

improve the transferability of adversarial examples can 

also start from the following four aspects: (1) data 

augmentation, such as diverse inputs (Xie et al., 2019); 

(2) choose better optimization algorithms, such as 

Momentum Iterative Fast Gradient Sign Method (MI-

FGSM) and Nesterov Iterative Fast Gradient Sign 

Method (NI-FGSM); (3) enhance optimization algorithm 

tuning, such as using multiple iterations and experiments 

to find better value of hyper-parameters; (4) model 

augmentation, such as attacking an ensemble of models 

mentioned in MI-FGSM, the transformation-invariant 

attack mentioned in TIM (Dong et al., 2019) and SI-NI-

FGSM (Lin et al., 2020), and the integration of several 

attack methods which can also be considered as another 

form of model augmentation(Dong et al., 2019; Lin et al., 

2020). Based on the above analysis, and considering the 

existing adversarial examples generation methods, we 

introduce AdaBelief optimizer and crop invariance into 

the adversarial example generation process, and propose 

AdaBelief Iterative Fast Gradient Method (ABI-FGM) 

and Crop-Invariant attack Method (CIM) to generate 

more transferable adversarial examples. 

3.2. AdaBelief Iterative Fast Gradient Method 

Adabelief (Zhuang et al., 2020) is an adaptive learning 

rate optimization algorithm, which can be easily 

modified from Adam (Kingma et al., 2020) without 

additional parameters. The intuition for AdaBelief is to 

adapt the step size according to the “belief” in the current 

gradient direction. The exponential moving average 

(EMA) of the noise gradient, i.e.,
t

m is regarded as the 

prediction of the gradient at the next time step. If the 

observed gradient deviates greatly from the prediction, 

we will not trust the current observation and hence take 

a small step. However, if the observed gradient is close 

to the prediction, we believe it and take a large step to 

speed up the decline of the loss function in the 

dimensions with smaller gradient, to escape from poor 

local minimum, and to make loss function converge 

better. Adabelief optimizer takes convergence speed and 

generalization performance into consideration. 

Therefore, we apply the Adabelief optimizer to generate 

adversarial examples and obtain tremendous benefits 

from the perspective that the adversarial examples 

generation process is similar to the training process of 

deep neural networks. By applying the Adabelief 

optimizer to the process of generating adversarial 

examples, we propose the Adabelief Iterative Fast 

Gradient Method (ABI-FGM) to improve the 

transferability of adversarial examples. 

The AdaBelief Iterative Fast Gradient Method (ABI-

FGM) is summarized in Algorithm 1. Specifically 

speaking, it not only accumulates velocity vector along 

the gradient direction of the loss function in the iteration 

process, but also accumulates the square values of the 

difference between the predicted gradient and the 

gradient by weight. Then, after obtaining the direction of 

parameter updates based on two vectors, ABI-FGM 

adjusts the parameters needed to update with the purpose 



of adjusting the step size according to deviation between 

the actual gradient and predicted one, thus not only 

ensuring convergence speed, but also guaranteeing the 

convergence effect. As for the updating direction, the 

gradient of each iteration ( , , )
x t
J x y   should be 

normalized by its own
1

L distance, because the scale of 

these gradients differs widely in each iteration [8]. 

Similar to Adam (Kingma et al., 2020), 
t

m accumulates 

the gradients of the first t iterations with a decay factor

1
 , defined in Eq. (6). 

t
s accumulates the square values 

of the deviation between the gradient of the first iteration 

and
t

m  with a decay factor
2

  , defined in Eq. (7). The 

value of the hyper-parameter
1

  and
2

  is usually 

between (0,1). The update direction of x is given by Eq. 

(9), where the stability factor   is set to prevent the 

denominator from being zero. By doing this, the update 

on the dimensions with smaller gradient can be sped up. 

We adopt the L


norm bound, the limit requirement of 

which, unlike previous methods, is not met with the sign 

function of gradient, but with the corresponding step size 

and update direction within the corresponding
2

L  norm 

bound. Then, adversarial examples are constrained 

within the L


 norm bound using the clip ( )
x

   function, 

just as what is defined in Eq. (9) and Eq. (10). 

3.3. Crop-Invariant Attack Method 

Inspired by data augmentation (Krizhevsky et al., 2017; 

Simonyan et al., 2014), we perform random cropping   

on images within a certain range, then calculate the loss 

functional values of the original image and the cropped 

image, and classify these images. The experimental 

results show that deep neural networks have crop-

invariant property, which means on the same deep neural 

network, the loss function values of the original image 

and the cropped image are close to each other, and the 

classification accuracy rates of the original image and the 

cropped image are close to each other. (see Section 4.2 

for detailed experimental results.) We think this is an 

intriguing property of the boundary area of an image; in 

other words, the most important part of an image tends 

to be in the very center, and the closer to the boundary a 

part is, the less important it is. This is also consistent with 

human habits. When we take pictures or display images, 

we tend to focus the most important part in the center 

position. Cropping the boundary area of the image can 

remove the less important parts of the image and realize 

the loss-preserving transformation of the image (Lin et 

al., 2020). Based on the aforementioned analysis, we 

propose a crop invariant attack method, which optimizes 

the adversarial perturbations over the crop copies of the 

input images: 
1

0
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adv

m
adv

i i
x i

w J C x y
−

=
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Algorithm 1 ABI-FGM 

Input: A clean example x with ground-truth label y ; a 

classifier f with loss function J ; 

Input: Perturbation size ; maximum iterations T ; 

AdaBelief decay factors 1  and 2 ; and a 

denominator stability factor  . 

Output: An adversarial example
advx  

1: /T = ; 0

advx x= ; 0 0g = ; 0 0m = ; 0 0s =  
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8:  Update 1
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where ( )
i

C x is the crop function of the -thi crop copy of 

the input image x , 
i

w is the corresponding weight, m

denotes the number of the crop copies. With this method, 

we can effectively achieve ensemble attacks on multiple 

models by model augmentation, so as to avoid the 

overfitting on white-box model being attacked and 

improves the transferability of adversarial examples. 

3.4. Attack Algorithms 

Moreover, CIM can also be readily combined with MI-

FGSM and NI-FGSM, as CI-MI-FGSM and CI-NI-

FGSM. The details in Appendix A. For the gradient-

based generation process of adversarial examples, ABI-

FGM introduces a better optimization algorithm to 

adaptively scales the step size and optimize the 

convergence process. For the ensemble attack of 

generating adversarial examples, CIM introduces model 

augmentation to derive multiple models to attack from a 

single model. CIM can be naturally combined with ABI-

FGM to form a stronger attack, which we refer to as CI-

AB-FGM (Crop-invariant Adabelief Iterative Fast 

Method). The algorithm of CI-AB-FGM attack is 

summarized in Algorithm 2 in Appendix A. Moreover, 

CIM can also be readily combined with MI-FGSM and 

NI-FGSM, as CI-MI-FGSM and CI-NI-FGSM. The CI-

MI-FGSM and CI-NI-FGSM are summarized in 

Appendix A.  

In addition, to further improve the transferability of 

adversarial examples, CI-AB-FGM can be combined 

with DIM (Diverse Input Method), TIM (Translation-

Invariant Method), SI-NI-FGSM (Scale-Invariant 

Nesterov Iterative Fast Gradient Sign Method) and SI-

NI-TI-DIM (Scale-Invariant Nesterov Iterative FGSM 

integrated with translation-invariant diverse input 

method) to form CI-AB-DIM, CI-AB-TIM, CI-AB-SIM 



and CI-AB-SI-TI-DIM respectively. The detailed 

algorithms for these attack methods are provided in 

Appendix A. 

3.5. Relationships between Different Attacks 

We sort out the relationship between our methods and 

other gradient-based attack methods in terms of better 

optimization algorithms and model augmentation, as 

shown in Figure 1. In summary:  

—From the perspective of introducing better 

optimization algorithms, I-FGSM converts FGSM from 

single-step to multi-step iteration version. MI-FGSM 

introduces momentum term on the basis of I-FGSM, 

while NI-FGSM introduces Nesterov Accelerated 

Gradient on the basis of momentum method. Our method, 

ABI-FGM, is an improvement on I-FGSM by bringing 

the Adabelief optimizer into I-FGSM. These 

improvements optimize the convergence process so that 

more transferable adversarial examples can be generated.  

—From the perspective of model augmentation, there is 

a connection between the crop-invariant attack method, 

other invariant attack methods and the fundamental 

momentum method. They can be connected through 

different conditional settings, as follows. 

—If the input image is not going through loss-preserving 

transformation (Lin et al., 2020), that is, ( )
i

C x x= , CI-

MI-FGSM is degraded to MI-FGSM. 

—Through analysis, it is known that crop-invariant 

property is similar to translation-invariant property in a  

certain range. However, considering the complexity of 

the optimization equation of translation-invariant 

property, we need to expand the number of 

transformation, that is ( ) ( )
i ij

C x C x→  , i ij
w w→  , to 

make the number of cropping transformation and 

translation transformation done with each original image 

the same. On this basis, if the translation function is 

equal to the cropping function at each time, and the 

corresponding weight is equal, that is, ( ) ( )
ij ij

C x T x= ,

C T

ij ij
w w= , then CI-MI-FGSM degrades to TI-MI-FGSM. 

 —if
nes adv

t t t
x x g = +    , ( ) ( )

i i
C x S x=  , 1 /

i
w m= , 

CI-MI-FGSM degrades to SI-NI-FGSM. In other words, 

the conversion between CI-MI-FGSM and SI-NI-FGSM 

requires not only the constraint of image transformation, 

but also the constraint exerted by Nesterov accelerated 

gradient. 

In addition, our CI-MI-FGSM method can also be 

associated with other FGSM-related methods via 

different conditional settings. More importantly, 

clarifying the relationship between different methods 

will not only be beneficial for us to understand the 

existing attack methods, but also help us to explore and 

propose the stronger attack methods to generate more 

transferable adversarial examples. 

4. Experiments 

In this section, we intend to conduct extensive 

experiments to prove the efficiency and merits of the 

proposed methods. First, in section 4.1, we will specify 

the experiment settings; then, in section 4.2, we will 

explore the crop-invariance property for deep neural 

networks; in the following two sections, results in 

normally training model and adversarial training models 

will be compared using our methods and existing 

baseline methods respectively ; in section 4.5, the 

efficiency of our proposed methods will be further 

validated by the experimental results in other advanced 

defense models; last, discussion regarding our research 

ideas and future research directions will be presented in 

section 4.6. 

4.1. Experimental Settings 

Dataset. It is less meaningful to craft adversarial 

examples from the original images that are already 

classified wrongly. We randomly select 1000 images 

belonging to 1000 categories (i.e., one image per 

category) from the ImageNet verification set, which 

were correctly classified by our testing networks. All 

images were adjusted to 299×299×3. 

Networks. We consider seven networks. The four 

normally trained networks are Inception-v3 (Inc-v3) 

(Szegedy et al., 2016), Inception-v4 (Inc-v4) (Szegedy 

et al., 2017), Inception-Resnet-v2 (IncRes-v2) (Szegedy 

et al., 2017), and Resnet-v2-101 (Res-101) (He et al., 

2016); the three adversarially trained networks [23] 

(Tramr et al., 2018) are ens3-adv-Inception-v3 (Inc-

v3ens3), ens4-adv-Inception-v3 (Inc-v3ens4), and ens-adv-

Inception-ResNet-v2 (IncRes-v2ens).  

Baselines. We integrate our methods with DIM (Xie et 

al., 2019), TIM, and TI-DIM (Dong et al., 2019), SI-NI-

FGSM and SI-NI-TI-DIM (Lin et al., 2020), to show the 

performance improvement of CI-AB-FGM over these 

baselines. We denote the attacks combined with our CI-

AB-FGM as CI-AB-DIM, CI-AB-TIM, CI-AB-TI-DIM, 

CI-AB-SIM and CI-AB-SI-TI-DIM, respectively. 

Implementation details. For the parameters of different 

attackers, we follow the default settings in (Dong et al., 

2018) with the maximum perturbation 16 = , number 

of iterations  



MI-FGSM

FGSM

I-FGSM

ABI-FGMNI-FGSM

Iterative

Momentum

Nesterov AdaBelief

( ) ( ), 1
i i i

nes adv

t t t

C x S x w m

x x g 

=


 

=       

= +          
 ( )

i
C x x=            

( ) ( )
ij ij

ij ij

C x T x

w w

=



      

=          
(1)Constraint: (2) (3)

MI-FGSM

TI-MI-FGSM

CI-MI-FGSM SI-NI-FGSM
(1)

(2)

(3)

 

Figure 1. Relationships between different attacks 

10T =  , and step size 1.6 =  . For MI-FGSM, the 

decay factor is defaulted to 1.0 = . For DIM, we adopt 

the default transformation probability 0.5p = . For TIM, 

we adopt the Gaussian kernel and the size of the kernel 

is set to 7×7. For SI-NI-FGSM, the number of scale 

copies is set to 5m= , it should be noted that when our 

method is combined with SI-NI-FGSM, the scale factor 

in SIM is not set by default, but is randomly selected 

between [0.1,1] each time. For our CI-AB-FGM, the 

number of crop copies is set to 5m= .In order to take 

into account the role of each transformation, the weight 

i
w   is the same every time, i.e., 1 5

i
w =  . For crop 

function ( )C  , the input image x is first randomly crop to 

a 3rnd rnd  image, with  )279,299rnd  , and then 

padded to the size 299×299×3 in a random manner. For 

intuitive understanding, Appendix B shows some images 

after random cropping and padding. 

4.2. Crop-Invariant Property 

In this section, we first verify the crop-invariant property 

of deep neural networks. we randomly select 1,000 

original images from ImageNet dataset and keep the 

width of the cropped area randomly ranges from 0 to 40 

with a step size 2 (i.e., the input image x is randomly crop 

to a 3rnd rnd   image, with  299,299rnd   range 

to  )259,299rnd  ). Then we input the crop images into 

the testing models, including Inc-v3, Inc-v4, IncRes-2, 

and Res-101, to get the average loss over 1,000 images.  

As shown in Figure 2, it can be seen that the loss curves 

are generally stable when the width of the cropped area 

is in range [0,20]. That is, the loss values are very similar 

for the original and cropped images. Therefore, we 

regard that a cropped image is almost the same as the 

corresponding original image as inputs to the models, 

and we assume that the crop-invariant property of deep 

models is held within  )279,299rnd   (i.e., the width 

of the cropped area is 20). 

4.3. Attack a Single Model 

In this section, we first compare the success rates of MI-

FGSM, NI-FGSM, SI-NI-FGSM and our methods, then  

we integrate our CI-AB-FGM with DIM, TIM, TI-DIM, 

 

Figure 2. The average losses for Inc-v3, Inc-v4, IncRes-v2 and 

Res-101 at each crop width. The results are averaged over 1000 

images. 

SI-NI-FGSM and SI-NI-TI-DIM respectively, and 

compare the black-box attack success rates of our 

extensions with the baselines under single model setting. 

We report the success rates of attacks in Table 1 for our 

methods and other three methods, Table 2 for DIM and 

CI-AB-DIM, Table 3 for TIM and CI-AB-TIIM, Table 4 

for TI-DIM and CI-AB-TI-DIM, Table 5 for SI-NI-

FGSM and CI-AB-SIM, Table 6 for SI-NI-TI-DIM and 

CI-AB-SI-TI-DIM.  

As shown in Table 1, Our CI-AB-FGM has the highest 
attack success rate on the adversarially training 
networks under the black-box setting. In addition, as 

shown in Table 2-6, our extension methods consistently 

outperform the baseline attacks by 5% ∼ 30% under the 

black-box setting, and achieve nearly 100% success rates 

under the white-box setting. It indicates that CI-AB-

FGM can serve as a powerful method to boost the 

transferability of adversarial examples.  

4.4. Attack an Ensemble of Models 

As demonstrated in (Liu et al., 2016), attacking multiple 

models at the same time can improve the transferability 

of the generated adversarial examples. Therefore, we 

consider to show the performance of our methods by 

attacking multiple models simultaneously. Specifically, 

we attack the ensemble of Inc-v3, Inc-v4, IncRes-v2 and 

Res-101 with equal ensemble weights using DIM, CI-

AB-DIM, TIM, CI-AB-TIM, TI-DIM, CI-AB-TI-DIM, 

SI-NI- FGSM, CI-AB-SIM, SI-NI-TI-DIM and CI-AB-

SI-TI-DIM, respectively. 
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In Table 7, we show the results of ensemble-based 

attacks against the seven models. our methods improve 

the success rates across all experiments on challenging 

adversarially training networks over the baseline 

attacks. Especially, CI-AB-SI-TI-DIM, the extension by 

combining CI-AB-FGM with SI-NI-TI-DIM, can fool 

the adversarially trained models with a high average 

success rate of 95.3%, which outperforms the state-of-

the-art gradient-based attack. The results in the paper 

demonstrate that these advanced adversarially trained 

models provide little robustness guarantee under the 

black-box attack of CI-AB-SI-TI-DIM. 

5. Conclusions 

In this paper, we propose AdaBelief Iterative Fast 

Gradient Method (ABI-FGM) and Crop-Invariant attack 

Method (CIM). Specifically speaking, ABI-FGM 

introduces the AdaBelief optimizer into the generating 

process of adversarial examples to optimize the 

convergence process. CIM optimizes the adversarial 

perturbations over the crop copies of input image to 

generate adversarial examples with more portability. 

ABI-FGM can be naturally combined with CIM to build 

up a strong adversarial attack, namely CI-AB-FGM. 

Table 1. The success rates (%) of adversarial attacks against seven models under single model setting. The adversarial examples are 

crafted on Inc-v3 using MI-FGSM, NI-FGSM, SI-NI-FGSM and our methods. * indicates the white-box attacks. 

Attack Inc-v3* Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens 

MI-FGSM 100.0 48.8 46.8 39.3 15.8 14.6 7.5 

NI-FGSM 100.0 54.2 52.6 43.5 13.8 13.8 7.7 

ABI-FGM(Ours) 100.0 50.1 47.3 40.5 18.0 17.3 8.1 

SI-NI-FGSM 100.0 75.8 70.3 66.5 30.0 28.6 13.6 

CI-MI-FGSM(Ours) 99.3 84.1 79.2 73.0 31.6 29.6 14.6 

CI-NI-FGSM(Ours) 99.7 82.8 79.6 71.1 26.0 25.2 12.0 

CI-AB-FGM(Ours) 99.6 83.6 80.2 70.2 35.8 33.2 17.6 

Table 2. The success rates (%) of adversarial attacks against seven models under single model setting. The adversarial examples are 

crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-152 respectively using DIM and CI-AB-DIM. * indicates the white-box attacks. 

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens  

Inc-v3 
DIM 99.1* 69.9 64.1 59.2 22.5 21.1 10.1 

CI-AB-DIM(Ours) 99.3* 86.5 83.3 75.2 40.4 37.6 19.3 

Inc-v4 
DIM 86.5 99.5* 79.4 73.9 35.4 32.7 19.7 

CI-AB-DIM(Ours) 91.9 99.5* 86.2 77.3 43.9 41.9 25.9 

IncRes-v2 
DIM 86.3 85.1 99.5* 78.6 47.7 41.7 30.9 

CI-AB-DIM(Ours) 91.6 90.1 98.9* 83.5 61.8 54.4 47.6 

Res-101 
DIM 80.8 74.7 73.3 98.0* 43.7 38.4 24.9 

CI-AB-DIM(Ours) 90.9 85.9 87.4 98.4* 62.2 56.8 43.4 

Table 3. The success rates (%) of adversarial attacks against seven models under single model setting. The adversarial examples are 

crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-152 respectively using TIM and CI-AB-TIM. * indicates the white-box attacks. 

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens  

Inc-v3 
TIM 100.0* 51.8 47.4 41.3 25.7 22.3 14.4 

CI-AB-TIM(Ours) 99.4* 82.9 76.8 67.1 54.0 49.7 36.3 

Inc-v4 
TIM 63.7 99.8* 54.9 46.1 31.2 28.1 18.9 

CI-AB-TIM(Ours) 87.1 99.0* 79.4 67.9 56.1 51.5 42.2 

IncRes-v2 
TIM 71.4 65.5 99.6* 58.1 39.3 34.7 29.0 

CI-AB-TIM(Ours) 89.8 87.6 99.2* 79.1 69.7 62.1 61.5 

Res-101 
TIM 54.1 46.8 47.3 98.3* 30.8 28.8 21.0 

CI-AB-TIM(Ours) 84.9 80.9 79.8 98.3* 68.7 62.2 55.3 

Table 4. The success rates (%) of adversarial attacks against seven models under single model setting. The adversarial examples are 

crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-152 respectively using TI-DIM and CI-AB-TI-DIM. * indicates the white-box attacks. 

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens  

Inc-v3 
TI-DIM 99.5* 79.1 74.2 68.9 49.2 45.8 29.8 

CI-AB-TI-DIM(Ours) 98.7* 83.8 80.5 72.7 60.3 56.6 42.2 

Inc-v4 
TI-DIM 84.4 99.4* 77.0 68.8 51.1 48.8 36.8 

CI-AB-TI-DIM(Ours) 89.6 98.9* 83.2 74.3 61.8 59.1 49.0 

IncRes-v2 
TI-DIM 87.8 85.6 99.4* 78.8 64.8 57.8 55.5 

CI-AB-TI-DIM(Ours) 91.0 90.3 98.9* 82.7 75.1 68.3 68.0 

Res-101 
TI-DIM 78.0 72.4 72.2 98.1* 57.0 54.6 43.9 

CI-AB-TI-DIM(Ours) 87.7 84.7 85.5 97.8* 73.7 71.8 61.5 



Table 5. The success rates (%) of adversarial attacks against seven models under single model setting. The adversarial 

examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-152 respectively using SI-NI-FGSM and CI-AB-SIM. * 

indicates the white-box attacks. 

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens  

Inc-v3 
SI-NI-FGSM 100.0* 75.8 70.3 66.5 30.0 28.6 13.6 

CI-AB-SIM(Ours) 98.1* 88.8 85.8 82.3 57.1 52.8 34.4 

Inc-v4 
SI-NI-FGSM 85.7 98.9* 80.9 73.9 43.3 39.2 22.7 

CI-AB-SIM(Ours) 92.1 98.7* 88.8 82.2 65.4 62.3 47.3 

IncRes-v2 
SI-NI-FGSM 82.5 76.7 95.8* 70.9 43.8 37.1 28.7 

CI-AB-SIM(Ours) 92.3 91 97.5* 86.1 75.6 69.5 65.1 

Res-101 
SI-NI-FGSM 72.9 64.9 64.4 96.1 33.6 29.6 17.8 

CI-AB-SIM(Ours) 86.6 84.7 83.3 97.6* 65.7 60.3 50.1 

Table 6. The success rates (%) of adversarial attacks against seven models under single model setting. The adversarial 

examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-152 respectively using SI-NI-TI-DIM and CI-AB-SI-TI-

DIM. * indicates the white-box attacks. 

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens  

Inc-v3 
SI-NI-TI-DIM 99.1* 81.8 77.8 70.4 54.8 52.7 37.9 

CI-AB-SI-TI-DIM(Ours) 97.9* 88.3 84.3 79.4 73.5 70.9 56.6 

Inc-v4 
SI-NI-TI-DIM 86.4 99.3* 78.8 72.8 61.3 58.2 47.3 

CI-AB-SI-TI-DIM(Ours) 91.9 98.3* 87.8 80.4 76.6 74.0 64.4 

IncRes-v2 
SI-NI-TI-DIM 84.8 84.3 98.9* 78.5 67.2 61.9 57.3 

CI-AB-SI-TI-DIM(Ours) 91.2 90.0 95.9* 84.8 83.1 78.0 78.5 

Res-101 
SI-NI-TI-DIM 83.1 79.0 79.9 98.3* 67.3 63.5 52.4 

CI-AB-SI-TI-DIM(Ours) 86.5 84.1 81.5 97.7* 78.0 75.5 68.2 

Table 7. The success rates (%) of adversarial attacks against seven models under multi-model setting. The adversarial 

examples are crafted for the ensemble of Inc-v3, Inc-v4, IncRes-v2, and Res-152. * indicates the white-box models 

being attacked. 

Attack Inc-v3* Inc-v4* IncRes-v2* Res-101* Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average 

         DIM 99.6 99.0 97.8 97.8 64.6 58.6 40.1 79.6 

CI-AB-DIM(Ours) 99.0 99.0 97.9 97.5 74.3 69.0 53.5 84.3 

TIM 99.9 99.5 99.1 99.5 68.9 63.7 53.3 83.4 

CI-AB-TIM(Ours) 98.9 98.9 98.1 97.5 86.5 85.1 80.0 92.1 

TI-DIM 99.0 98.2 97.5 97.4 81.7 77.5 70.4 88.8 

CI-AB-TI-DIM(Ours) 99.0 98.3 98.0 97.4 87.8 86.4 82.1 92.7 

SI-NI-FGSM 100.0 100.0 100.0 99.9 79.5 74.6 58.5 87.5 

CI-AB-SIM(Ours) 99.6 99.6 99.5 99.5 93.9 92.3 84.2 95.6 

SI-NI-TI-DIM 99.9 99.8 99.8 99.9 93.6 91.3 85.9 95.7 

CI-AB-SI-TI-DIM(Ours) 99.4 99.0 98.9 98.3 96.1 96.1 93.6 97.3 

 

Compared with current FGSM-related methods, 

extensive experiments on the ImageNet dataset show 

that the success rates of our methods under the black-box 

setting have improved considerably. Particularly, by 

combining our methods with the existing gradient-based 

attack ones, a stronger attack method is formed to further 

boost the black-box attack success rates. In addition, we 

also attack an ensemble of methods to increase the 

transferability of adversarial examples, which can be 

shown in our experimental results of the average success 

rate in attacking seven models being as high as 97.3% 

under the ensemble model setting of our best method CI-

AB-SI-TI-DIM. Furthermore, we also attack advanced 

defense models to verify the effectiveness of our 

methods, our experimental results in the latest robustness 

defense methods indicate there is a higher attack success 

rate of our methods than of the current gradient-based 

attack methods. Our work in CI-AB-FGM demonstrates 

other methods used for enhancing the generalization 

performance of deep neural networks are also likely to 

attribute to strong attack, which is one of our future 

research areas, but is contingent on how to find effective 

methods and apply them to the generating process of 

adversarial examples. We hope that the proposed attack 

method can help evaluate the robustness of models and 

effectiveness of defense methods. 
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Appendix A. Details of Algorithms 

The algorithm of CI-AB-FGM, CI-NI-FGSM and CI-

AB-SI-TI-DIM attacks is summarized in Algorithm 2, 3 

and 4, respectively. We can obtain the CI-MI-FGSM 

attack algorithm by removing step 4 of Algorithm 3 and 

obtain the NI-FGSM attack algorithm by removing 

( )C   in step 6. In addition, we can get the CI-AB-TI-

DIM attack algorithm by removing ( )S   in Step 4 of 

Algorithm 4, and get the CI-AB-SIM attack algorithm by 

removing ( ; )T p  in Step 4 and step 6 of Algorithm 4. 

Of course, our method can also be related to the family 

of Fast Gradient Sign Methods via different parameter 

settings. 

 

Algorithm 2 CI-AB-FGM 

Input: A clean example x with ground-truth label y ; a 

classifier f with loss function J ; 

Input: Perturbation size  ; maximum iterations T ; 
AdaBelief decay factors 1  and 2 ; and a 
denominator stability factor  . 

Output: An adversarial example
advx  

 1: /T = ; 0

advx x= ; 0 0g = ; 0 0m = ; 0 0v =  

 2: for 0t = to 1T −  do 

 3:   for 0i = to 1m−  do 

 4:     Get the gradients by ( , ( ), )adv

x i t
J C x y  

 5:   Get average gradients as 
1

1

0

( , ( ), ),
m
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t i x i t
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 8:   Update 1ts + b 
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1 2 2 1 1(1 ) ( )t t t ts s g m + + +=  + −  −  
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10:   Update 1

adv

tx + by 
1 1

1

1 1 2

adv adv t t
t t

t t

m m
x x

s s


 

+ +
+
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11:   Update 1

adv

tx + by Eq. (5) 

12: return
adv adv

Tx x=  

 

Appendix B. Visualization of images 

The six randomly selected original images and 

corresponding randomly transformed images and 

generated adversarial samples are shown in Figure 3. 

The adversarial examples are crafted on Inc-v3 by the 

CI-AB-SI-TI-DIM method. We can see that these crafted 

adversarial perturbations are human imperceptible. 

 

 

 

Algorithm 3 CI-NI-FGSM 

Input: A clean example x with ground-truth label y ; a 

classifier f with loss function J ; 

Input: Perturbation size ; maximum iterationsT and decay 

factor ; number of scale copies m . 

Output: An adversarial example
advx  

 1:  /T =  

 2:  0

advx x= ; 0
0g =  

 3:  for 0t = to 1T −  do 

 4:    Get 
nes

t
x by 

nes adv

t t t
x x g = +    make a jump 

 in the direction of previous accumulated gradients 

 5:    for 0i =  to 1m− do 

 6:      Get the gradients by ( , ( ), )nes

x i t
J C x y  

 7:    Get average gradients as 

        

1

0

( , ( ), ),
m

nes

i x i t

i

g w J C x y
−

=

=   

 8:    Update 
1t

g
+

 by 
1

1

=
|| ||

t t

g
g g

g


+
 +  

 9:    Update 1

adv

t
x

+  by Eq. (5) 

10:  return 
adv adv

T
x x=  

 

Algorithm 4 CI-AB-SI-TI-DIM 

Input: A clean example x with ground-truth label y ; a 

classifier f with loss function J ; 

Input: Perturbation size ; maximum iterations T ; 
AdaBelief decay factors 1  and 2 ; and a 
denominator stability factor  . 

Output: An adversarial example
advx  

 1:  /T = ; 0

advx x= ; 0 0g = ; 0 0m = ; 0 0v =  

 2:  for 0t = to 1T −  do 

 3:    for 0i = to 1m−  do 

 4:      Get the gradients by 

( , ( ( ( )); ), )adv

x i t
J T C S x p y  

 5:    Get average gradients as 
1

1

0

( , ( ( ( )); ), ),
m

adv

t i x i t

i

g w J T C S x p y
−

+

=

=   

 6:    Convolve the gradients by 1 1*t tg W g+ +=   

 convolve gradient with the pre-defined kernel W  

 7:    Get 1tg + by 1
1

1 1

t
t

t

g
g

g

+
+

+

=  

 8:    Update 1tm + by 1 1 1 1(1 )t t tm m g + += + −  

 9:    Update 1ts + by  
2

1 2 2 1 1(1 ) ( )t t t ts s g m + + +=  + −  −  

10:    Update 1
1 1

11

t
t t

m
m


+

+ +
=

−
; 1

1 1

21

t
t t

s
s




+

+ +

+
=

−
 

11:    Update 

1 1
1

1 1 2

adv adv t t
t t

t t

m m
x x

s s


 

+ +
+

+ +

= + 
+ +

 

12:    Update 1

adv

tx + by Eq. (5) 

13:  return
adv adv

Tx x=  

 

 

 



 

 

 

 
Figure 3. Images from first to third line are original inputs, randomly cropped images, and generated adversarial examples, 

respectively. 
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