
Network Offloading Policies for Cloud Robotics:
a Learning-based Approach

Sandeep Chinchali∗, Apoorva Sharma‡, James Harrison§, Amine Elhafsi‡, Daniel Kang∗,
Evgenya Pergament†, Eyal Cidon†, Sachin Katti∗†, Marco Pavone‡

Departments of Computer Science∗, Electrical Engineering†, Aeronautics and Astronautics‡, and Mechanical Engineering§

Stanford University, Stanford, CA
{csandeep, apoorva, jharrison, amine, ddkang,
evgenyap, ecidon, skatti, pavone}@stanford.edu

Abstract—Today’s robotic systems are increasingly turning to
computationally expensive models such as deep neural networks
(DNNs) for tasks like localization, perception, planning, and
object detection. However, resource-constrained robots, like low-
power drones, often have insufficient on-board compute resources
or power reserves to scalably run the most accurate, state-of-
the art neural network compute models. Cloud robotics allows
mobile robots the benefit of offloading compute to centralized
servers if they are uncertain locally or want to run more accurate,
compute-intensive models. However, cloud robotics comes with a
key, often understated cost: communicating with the cloud over
congested wireless networks may result in latency or loss of data.
In fact, sending high data-rate video or LIDAR from multiple
robots over congested networks can lead to prohibitive delay for
real-time applications, which we measure experimentally. In this
paper, we formulate a novel Robot Offloading Problem — how
and when should robots offload sensing tasks, especially if they
are uncertain, to improve accuracy while minimizing the cost of
cloud communication? We formulate offloading as a sequential
decision making problem for robots, and propose a solution using
deep reinforcement learning. In both simulations and hardware
experiments using state-of-the art vision DNNs, our offloading
strategy improves vision task performance by between 1.3-2.6x
of benchmark offloading strategies, allowing robots the potential
to significantly transcend their on-board sensing accuracy but
with limited cost of cloud communication.

I. INTRODUCTION

For autonomous mobile robots such as delivery drones to
become ubiquitous, the amount of onboard computational
resources will need to be kept relatively small to reduce energy
usage and manufacturing cost. However, simultaneously, per-
ception and decision-making systems in robotics are becoming
increasingly computationally expensive1 [51]. In addition to
restrictions on computation, autonomous robotic systems may
also have storage limitations for, e.g., cached maps.

To avoid these restrictions, it is possible for a robot to
offload computation or storage to the cloud, where resources

1For example, deep neural network-based vision systems running on a
consumer GPU are able to perform detection at a rate of approximately 180
frames per second (fps), but the GPU consumes approximately 150W. In
contrast, mobile-optimized GPUs such as the Nvidia Jetson TX1 are only
capable of running the detection pipeline at 70fps, while still consuming 10W
of power [49]. As a point of comparison, consumer drones typically consume
in the range of 20-150W during hover [7]. As a result, reaching practical
detection rates on small mobile robots will result in large power demands that
will substantially reduce the operational time of the robot.

Offload
Logic

Robot Model
Cloud Model

Mobile Robot
Limited Network

Sensory
Input

Cloud

Offload ComputeLocal Compute
Image, Map
Databases

Query the cloud for better accuracy?
Latency vs. Accuracy vs. Power …

Fig. 1: Autonomous mobile robots are faced with a key tradeoff.
Should they rely on local compute models, which could be
fast, power-efficient, but less accurate? Or, should they offload
computation to a more accurate model in the cloud, which
increases latency due to congested networks? In this paper,
we propose a novel algorithmic framework to address such
tradeoffs.

are effectively limitless. This approach, which is commonly
referred to as cloud robotics [31], imposes a set of trade-offs
that have hitherto only been marginally addressed in the litera-
ture. Specifically, while offloading computation (for example)
to the cloud reduces the onboard computing requirements, it
may result in latency that could severely degrade performance,
as well as information loss or total failure if a network is
highly congested. Indeed, even economical querying of cloud
resources may quickly overload a network in the case where
the data transfer requirements are relatively large (such as
high definition (HD) video or LIDAR point clouds) or where
multiple robots are operating.

In this work, we formally study the decision problem
associated with offloading to cloud resources for robotic
systems. Given the limitations of real-world networks, we
argue that robots should offload only when necessary or highly
beneficial, and should incorporate network conditions into this
calculus. We view this problem as a (potentially partially-
observed) Markov Decision Process (MDP) [11], where an
autonomous system is deciding whether to offload at every

ar
X

iv
:1

90
2.

05
70

3v
1

 [
cs

.R
O

]
 1

5
Fe

b
20

19

time step.
Contributions and Organization: In Section II, we survey

existing work on the offloading problem in robotics and find
that it under-emphasizes key costs of cloud communication such
as increased latency, network congestion, and load on cloud
compute resources, which in turn adversely affect a robot. We
further show experimentally that current cloud robotics systems
can lead to network failure and/or performance degradation,
and discuss how this problem will become more severe in the
future without intervention. To address this gap, we formulate
a novel cost-based cloud offloading problem in Section III,
and describe characteristics of this problem that make it
difficult to solve with simple heuristics. In Section IV, we
propose solutions to this problem based on deep reinforcement
learning [52, 53], which are capable of handling diverse
network conditions and flexibly trade-off robot and cloud
computation. In Section V, we demonstrate that our proposed
approach allows robots to intelligently, but sparingly, query
the cloud for better perception accuracy, both in simulations
and hardware experiments. To our knowledge, this is the first
work that formulates the general cloud offloading problem as
a sequential decision-making problem under uncertainty and
presents general-purpose, extensible models for the costs of
robot/cloud compute and network communication.

II. BACKGROUND & RELATED WORK

A. Cloud Robotics

Cloud robotics has been proposed as a solution to limited
onboard computation in mobile robotic systems, and the term
broadly refers to the process of offloading to cloud-based
computational resources [31, 21, 55, 30]. For example, a
robot may offload video processing and associated perception,
audio and natural language processing, or other sensory inputs
such as LIDAR. Concretely, this approach has been used in
mapping [39] and localization [44], perception [46], grasping
[29], visuomotor control [56], speech processing [50], and other
applications [43]. For a review of work in the field, we refer
the reader to [30]. Cloud robotics can also include offloading
complex decision making to a human, an approach that has
been used in path planning [23, 25], and as a backup option
for self-driving cars in case of planning failures [35].

In general, the paradigm is useful in any scenario in which
there is a tradeoff between performance and computational
resources. A notable example of this tradeoff is in perception, a
scenario we use as a case-study in this paper. Specifically, vision
Deep Neural Networks (DNNs) are becoming the de facto
standard for object detection, classification, and localization
for robotics. However, as shown in Table I, different DNNs
offer varied compute/accuracy tradeoffs. Mobile-optimized
vision DNNs, such as MobileNets [47] and ShuffleNets [57],
often sacrifice accuracy to be faster and use less power.
While MobileNet has lower accuracy, it has significantly fewer
parameters and operations than the more accurate Mask R-CNN
model, and thus might be favored for an on-robot processing
model. A cloud-robotics framework would give improved
performance by allowing the robot to query a cloud server

DNN Accuracy Size CPU Infer. GPU Infer.
MobileNet v1 18 18 MB 270 ms 26 ms
MobileNet v2 22 67 MB 200 ms 29 ms
Mask R-CNN 45.2 1.6GB 325 ms 18 ms

TABLE I: Accuracy, size, and speed tradeoffs of deep neural
networks, where accuracy is the standard mean average
precision (mAP) metric on the MS-COCO visual dataset [32].

running the compute-intensive Mask R-CNN model as needed,
and using the onboard model when the lower accuracy is
tolerable.

B. Costs of Offloading

While offloading computation or storage to the cloud has the
potential to enable cheap mobile robots to perform increasingly
complex tasks, these benefits come at a cost. Querying the cloud
is not instant, and there are costs associated with this latency.
Furthermore, mobile robots largely use wireless networks (e.g.,
cellular or WiFi networks), which can be highly stochastic
and low bandwidth [45]. Often, the offloaded data can be
large relative to this bandwidth: HD video (e.g., for detecting
obstacles) from a single robot can be over 8 megabits per
second (Mbps) [58], while cellular networks are often uplink-
limited and have between 1-10 Mbps [45, 33] to share across
users.

Current state-of-the-art methods in cloud robotics largely
fail to adequately consider these costs. For example, to limit
network bandwidth utilization, [39] offload only key-frames
(as opposed to all data) in mapping and localization. These
key-frames are determined without considering the state of the
network connection, and are sent at a predetermined frequency.
In [43], the authors factor in the current state of the system,
and hand-design a one-stage decision rule. However, designing
such decision rules involves a number of trade-offs and can
be difficult. In [46], the authors present a detailed comparison
of offloading characteristics in cloud robotics to inform this
design process, however, hand engineering heuristic solutions
remains difficult and very domain specific, and it is unclear if
these approaches can scale to higher data requirements where
the costs of offloading become more significant.

Related offloading architectures have been employed outside
of cloud robotics in the Internet-of-Things (IoT) community,
especially as machine learning models have increased in
complexity [41, 16]. However, the offloading techniques used
in this field rely on similar techniques, e.g., determining
and offloading key-frames for object detection and utilizing
heuristics such as frame differences to select the key-frames
[15]; the policy is not optimized with system-level performance
in mind. Alternative approaches include splitting neural network
models across edge devices (in our application, the robot) and
the cloud [28], but these may perform poorly under variable
network conditions that are likely as a mobile robot navigates
through regions of varying signal quality.

In this paper, we present an approach to address these hitherto
under-emphasized costs in cloud robotics, that incorporates

Fig. 2: Streaming LIDAR over WiFi using the Robot Operating
System (ROS) produces high-bitrate point cloud streams, which
can lead to a sender receiving only half the data (as pictured)
or even network failure in the multi-robot setting.

features of the input stream and network conditions in the
system-level decision problem of whether or not to offload.

C. Case Study: Costs of Offloading LIDAR Data

Network experiments with ROS: To motivate our contribu-
tions, we measure the impact of streaming LIDAR over a real
network, which might occur in a cloud-based mapping scenario.
The hurdles of streaming LIDAR over wireless networks have
previously been informally described in online forums [3],
but, to our knowledge, never rigorously measured in academic
literature. We measured the effective data-rate when sending
LIDAR over a WiFi connection between an embedded compute
platform useful for robotics (the NVIDIA Jetson Tx2) and a
central server. A Velodyne VLP-16 LIDAR was connected to
the source (NVIDIA Jetson Tx2) and produced point clouds
of average size 426 Kilobytes (KB) at a rate of 10 Hz, as
expected from Velodyne specifications. Using the standard
Robot Operating System (ROS) [42] as the message passing
interface, point clouds were sent in real-time on an uncongested
wireless network, with only one other dormant connected
machine, to a central server.

At the source, we measured a median 33.3 Mbps data-
rate, as expected from our measured average data size of
426 (KB) KiloBytes at 10 Hz. However, at the receiver, we
measured a median data-rate of 16.4 Mbps (less than half
of the sender’s) with a received sampling frequency of only
3.92 Hz. Fig. 2 contrasts sender (red) and receiver (blue) data-
rates. Since the WiFi link had regular delay statistics, we
attribute the low received data-rate to inefficiencies of ROS in
handling a large (33.3 Mbps) sustained stream. In fact, official
ROS documentation for the bandwidth measurement tool
rostopic bw acknowledges that poor network connectivity
and Python, not faster C++, code could be the cause of the

receiver not keeping pace with the sender. Though anecdotal,
we noticed several users on ROS forums with similar issues
for both LIDAR and video.2

For a single sender-receiver pair, the problem we measured
in Fig. 2 may be solved by optimizing ROS receiver code.
Or, one could state-fully encode differences in LIDAR point
clouds, inspired by today’s video encoders [26]. However,
the point cloud stream of 33.3 Mbps is disconcertingly large,
since WiFi networks often attain only 5-100 Mbps [54, 36]
while uplink-limited cellular networks often only sustain 1-10
Mbps [1, 45, 33] across users due to congestion or fading
environments.

Indeed, to stress test the above scenario, we streamed data
from several Velodyne sensors over a previously uncongested
WiFi network and observed severe delay, dropped ROS
messages, and network outages before we could take rigorous
measurements.

Our experiments have striking resemblance to issues faced
in the computer systems community with streaming HD video
to the cloud for computer vision [41, 16, 18]. In the context
of robotics, an informal report from Intel estimates that self-
driving cars will generate 4 Terabytes of sensor data per day,
much more than served by today’s cell networks [2]. Even
if this data could be streamed to the cloud, it will place an
enormous load on cloud compute services, such as the recent
widespread outage of Amazon’s Alexa speech-processing agent
due to an influx of new devices on Christmas day [34]. As
more robotics platforms turn to the cloud, such as the Anki
toy robot which offloads the bulk of its interactive speech
processing [4], robots will have a huge incentive to minimize
their network impact.

Indeed, sharing the network will allow swarms of robots
to reap the benefits of the cloud and, importantly, reduce the
latency they experience in receiving informative responses
from the cloud due to network congestion. We now propose
an algorithmic framework on how robots can combine local
compute, active data filtering, and beneficial querying of the
cloud.

III. PROBLEM STATEMENT

In this paper, we focus on an abstract cloud robotics scenario,
in which a robot experiences a stream of sensory inputs that
it must process. At each timestep, it must choose to process
the input onboard or to offload the processing to the cloud
over a network. In this section, we offer practically motivated
abstractions of these ideas, and combine them to formally
define the robot-offloading problem.

Sensory Input: We model the raw sensory input into the
robot as the sequence {xt}Tt=0, where xt represents the data,
such as a video frame or LIDAR point cloud, that arrives at
time t. While the robot cannot know this sequence in advance,
there may be properties of the distribution over these inputs
that may guide the robot’s offloading policy. For example, this
stream may have temporal coherence (see Fig. 3), such as

2The post ROS Ate My Network Bandwidth! details similar [3] behaviors.

Coherence Time

! = # ! = $

Query
Cloud

SVM Classifier

Robot Model

FaceNet

Embed Face A

90% Conf
%!

Fig. 3: While our framework is general, we demonstrate it on
face recognition from video, a common task for personal assis-
tance robots or search-and-rescue drones. Video surveillance
occurs over a finite horizon episode where a robot can use
either an optimized local model or query the cloud if uncertain.

when objects are relatively stationary in video [27, 26], which
implies that xt is similar to xt−1. As an example, a person will
rarely appear in a video for only a single frame, and instead
will be present for an extended time period, and the image
of the person will likely change slowly. However, building a
model of coherence can be difficult, and so a model-based
approach even based on relatively simple heuristics may be
difficult. Instead, we turn to model-free approaches, which
sidestep modelling temporal coherence and instead can directly
learn (comparatively) simple decision rules.

Computation Models: The computation that we consider
offloading to the cloud is the process of estimating some
output yt given some input xt. For example, in the scenario of
processing a video stream, yt could be a semantically separated
version of the input frame xt (e.g., object detection), useful for
downstream decision making. For the sake of generality, we
make no assumptions on what this computation is, and only
assume that both the robot and the cloud have models that
map a query xt to predictions of yt and importantly, a score
of their confidence conft:

ŷtrobot, conf
t
robot = frobot(x

t)

ŷtcloud, conf
t
cloud = fcloud(xt).

Typically, frobot is a computationally efficient model suitable
for resource-constrained mobile robots. In contrast, fcloud

represents a more accurate model which cannot be deployed
at scale, for example a large DNN or the decision making of a
human operator. The accuracy of these models can be measured
through a loss function L(yt, ŷt) that penalizes differences
between the predictions and the true results, e.g., the cross
entropy loss for classification problems or root mean squared
error (RMSE) loss for regression tasks. In the experiments
in this paper, we operate in a classification setting, in which
confidences are easy to characterize (typically via softmax
output layers). However in the regression setting, there are
also a wide variety of models capable of outputting prediction

confidence [12, 20, 22]. The use of separate, modular robot
and cloud models allows a robot to operate independently in
case of network failure.

Offload Bandwidth Constraints: The volume of data that
can be offloaded is limited by bandwidth, either of the network,
or a human operator. We abstract this notion by giving the
robot a finite query budget of Nbudget samples xt that a robot
can offload over a finite horizon of T timesteps. This formalism
flexibly allows modeling network bandwidth constraints, or
rate-limiting queries to a human. Indeed, the fraction of samples
a robot can offload in finite horizon T can be interpreted as
the robot’s “fair-share” of a network link to limit congestion,
a metric used in network resource allocation [19, 40].

These factors impose a variety of tradeoffs to consider when
designing an effective offloading policy. Indeed, we can see
that the problem of robot offloading can be seen as a sequential
decision making problem under uncertainty. Thus, we formulate
this problem as a Markov Decision Process (MDP), allowing
us to naturally express desiderata for an offloading policy
through the design of a cost function, and from there guide
the offloading policy design process.

A. The Robot Offloading Markov Decision Process

In this section, we express the generic robot offloading
problem as an MDP

Moffload = (Soffload,Aoffload, Roffload,Poffload, T), (1)

where Soffload is the state space, Aoffload is the action space,
Roffload : Soffload×Aoffload → R is a reward function, Poffload :
Soffload × Aoffload × Soffload → [0, 1] defines the stochastic
dynamics, and T is the problem horizon. In the following
section, we define each of these elements in terms of the
abstractions of the robot offloading problem discussed earlier.
Figure 4 shows the interplay between the agent (the robot),
the offloading policy, and the environment, consisting of the
sensory input stream and the robot and cloud prediction models.

Action Space: We consider the offloading decision prob-
lem to be the choice of which prediction ŷ to use for
downstream tasks at time t. The offloading system can either
(A) choose to use past predictions and exploit temporal
coherence to avoid performing computation on the new input
xt, or (B) incur the computation or network cost of using either
the on-device model frobot or querying the cloud model fcloud.
Specifically, we have four discrete actions:

atoffload =


0, use past robot prediction ŷt = frobot(x

τrobot)

1, use past cloud prediction ŷt = fcloud(x
τcloud)

2, use current robot prediction ŷt = frobot(x
t)

3, use current cloud prediction ŷt = fcloud(x
t)

(2)

where τrobot < t is the last time the robot model was queried,
and τcloud < t is the last time the cloud model was queried.

State Space: We define the state in the offload MDP to
contain the information needed to choose between the actions
outlined above. Intuitively, this choice should depend on the
current sensory input xt, the stored previous predictions, a
measure of the “staleness” of these predictions, and finally, the
remaining query budget. We choose to measure the staleness of
the past predictions by their age, defining ∆trobot = t− τrobot

and ∆tcloud = t− τcloud. Formally, we define the state in the
offloading MDP to be:

stoffload = [φ(xt)︸ ︷︷ ︸
features of input

, frobot(x
τrobot)︸ ︷︷ ︸

past robot

, fcloud(x
τcloud)︸ ︷︷ ︸

past cloud

, (3)

∆trobot︸ ︷︷ ︸
last robot query

, ∆tcloud︸ ︷︷ ︸
last cloud query

, ∆Nbudget︸ ︷︷ ︸
remaining queries

, T − t︸ ︷︷ ︸
time left

].

Note that the sensory input xt may be high-dimensional, and
including it directly in the planning problem state could yield
an extremely large state-space. Instead, we consider including
features φ(xt) that are a function of the inputs. We note that in
place of our choice of input representation, these state elements
may be any summary of the input stream. The specific choice is
context dependent and depends on the expense associated with
utilizing the chosen features, as well as standard encodings or
feature mappings. We describe the choice of practical features
φ in Section V.

Dynamics: The dynamics in the robot offloading MDP
capture both the stochastic evolution of the sensory input, as
well as how the offloading decisions impact the other state
elements such as the stored predictions and the query budget.
The evolution of xt is independent of the offloading action, and
follows a stochastic transition model that is domain-specific.
For example, the evolution of video frames or LIDAR point
clouds depends on the coherence of the background scene and
robot mobility. The time remaining T − t deterministically
decrements by 1 at every timestep. The other state variable’s
transitions depend on the chosen action.

If atoffload ∈ {0, 1}, then the past prediction elements of the
state do not change, but we increment their age by one. If
atoffload = 2, meaning we used the current on-robot model,
then we update the stored robot model prediction frobot and
reset its age to ∆trobot = 0. Similarly, if we choose to query
the cloud model, atoffload = 3, then we update the stored fcloud

prediction and reset its age to ∆tcloud = 0, and also decrement
the query budget Nbudget by 1.

The modelling of the network query budget is directly based
on by our measurements (Fig. 2) and recent work in the systems
community on network congestion [45, 41, 16]. Our use of
sequential features is inspired by the coherence of video frames
[27, 26], which we also measured experimentally and observed
for LIDAR point clouds.

Reward: We choose the reward function in the MDP to
express our objective of achieving good prediction accuracy
while minimizing both on-robot computation and network
utilization. We can naturally express the goal of high prediction
accuracy by adding a penalty proportional to the loss function

Cloud Model

Robot Limited Network

!"#$#%%

Reward

Offload

!&'#()%*#++'#,)

-%

,% = /

Cloud

,% = {1, 3}
Past Predictions

,% = 5

State 6%

Fig. 4: We formulate a novel Robot Offloading MDP, depicted
above, where a robot uses an on-board offloading policy to
select if it should use cached predictions, query a local model,
or incur the cost, but also accuracy benefits, of querying the
cloud.

L(yt, ŷt) under which the cloud and robot models are evaluated.
We note, however, that this choice of loss is arbitrary, and a
loss derived from some downstream application may be used
instead. Indeed, if a scenario is such that mis-classification will
result in high cost (e.g., mis-classifying a human as a stationary
object during path planning), this may be incorporated into the
MDP reward function. To model the cost of network utilization
and computation, we add action costs. This gives us the reward
function

Rtoffload(st, at) = −αaccuracy L(yt, ŷt)︸ ︷︷ ︸
model error

− βcost cost(a
t)︸ ︷︷ ︸

latency, compute

,

(4)

where αaccuracy, βcost are weights. The costs for network
utilization are best derived from the economic analysis of
onboard power usage and the cost of bandwidth utilization. For
example, a mobile robot with a small battery might warrant a
higher cost for querying the onboard model than a robot with
a higher battery capacity.

B. The Robot Offloading Problem

Having formally defined the robot offloading scenario as
an MDP, we can quantify the performance of an offloading
policy in terms of the expected total reward it obtains in this
MDP. This allows us to formally describe the general robot
offloading problem as:

Problem 1 (Robot Offloading Problem): Given robot model
frobot, cloud model fcloud, a cloud query budget of Nbudget

over a finite horizon of T steps, and an offloading MDP
Moffload (Equation 1), find optimal offloading control pol-
icy π∗

offload : Soffload → Aoffload that maximizes expected
cumulative reward Roffload:

π∗
offload ∈ argmax

πoffload

Ex0,...,xT

(
T∑
t=0

Roffload(stoffload, a
t
offload)

)
,

(5)

where atoffload = π∗
offload(stoffload).

Our MDP formulation, depicted in Fig. 4, is based both on
experimental insights and practical engineering abstractions.
A key abstraction is the use of separate, modular robot and
cloud perception models. Thus, a designer can flexibly trade-
off accuracy, speed, and hardware cost, using a suite of pre-
trained models available today [47], as alluded to in Table I.
Importantly, the robot can always default to its local model
in case of network failure, which provides a guarantee on
minimum performance.

While we have framed this problem as an MDP, we cannot
easily apply conventional tools for exactly solving MDPs
such as dynamic programming, as many of the aspects of
this problem are hard to analytically characterize, notably the
dynamics of the sensory input stream. This motivates studying
approximate solution techniques to this problem, which we
discuss in the following section.

We emphasize that the framework we present is agnostic to
the sensory input modality, and is capable of handling a wide
variety of data streams or cost functions. Moreover, the action
space can be simply extended if multiple offloading options
exist. As such, it describes the generic offloading problem for
robotic systems.

IV. A DEEP RL APPROACH TO ROBOT OFFLOADING

Our Approach: We approach the offloading problem using
deep reinforcement learning (RL) [52, 53, 37] for several
reasons. First and foremost, model-free policy search methods
such as reinforcement learning avoid needing to model the
dynamics of the system. While most of the dynamics of the
system are relatively simple, it is extremely difficult to model
the evolution of the incoming sensory inputs. The model-free
approach is capable of learning optimal offloading policies
based solely on the features included in the state, and may
avoid trying to predict incoming images, for example. Moreover,
the use of a recurrent policy allows better estimation of latent
variables defining the context of the incoming images. This
recurrent policy accounts for possible non-Markovianity of the
state. Indeed, since the state vector only includes features from
the previous two most recent inputs, a Markovian policy likely
can not accurately model the sensory stream.

There are several other advantages to using RL to compute
good offloading policies. RL enables simple methods to handle
stochastic rewards. We have chosen a relatively general reward
function in the previous section, which may be stochastic
due to variable costs associated with network conditions or
variable cost of computation due to other processes. Finally,
an RL based approach allows inexpensive evaluation of the
policy, as it is not necessary to evaluate dynamics and perform
optimization-based action selection as in, e.g., model predictive
control [14]. In contrast to these approaches, a deep RL-based
approach requires only evaluating a neural network. Because
this policy evaluation is performed as an intermediate step to
perception onboard the robot, efficient evaluation is critical to
achieving low latency.

We represent the RL offloading policy as a deep neural
network and train it using the Advantage Actor-Critic (A2C)
algorithm [38]. We discuss the details of the training procedure
in the next section. We refer to the policy trained via RL as
πRL

offload.
Baseline Approaches: We compare the RL-based policy

against the following baseline policies:
1) Random Sampling πrandom

offload

This extremely simple benchmark chooses a random
atoffload ∈ {0, 1, 2, 3} when the cloud query budget is
not saturated and, afterwards, chooses randomly from
actions 0− 2.

2) Robot-only Policy πall−robot
offload

The robot-only policy chooses atoffload = 2 at every time-
step to query the robot model and can optionally use
past robot predictions atoffload = 0 in between.

3) Cloud-only Policy πall−cloud
offload The cloud-only policy

chooses atoffload = 3 uniformly every Nbudget

T steps
(queries the cloud model) and uses the past cloud predic-
tions atoffload = 1 in between. Essentially, we periodically
sample the cloud model and hold the prediction.

4) Robot-uncertainty Based Sampling πrobot−heuristic
offload

This policy uses robot confidence conftrobot to offload
the qth percentile least-confident samples to the cloud
as long as the remaining cloud query budget allows.

While approaches 2 and 3 may seem simple, we note
that these are the de-facto strategies used in either standard
robotics (all robot computations) or standard cloud robotics
(all offloading with holds to reduce bandwidth requirements).
Robot-uncertainty based sampling is a heuristic that may be
used for key-frame selection, analogously to [39].

V. EXPERIMENTAL PERFORMANCE OF
OUR DEEP RL OFFLOADER

We benchmark our proposed RL-based cloud offloading
policy within a realistic and representative setting for cloud
robotics. Specifically, we focus on a face detection scenario
using cutting edge vision DNNs. This scenario is prevalent in
robotics applications ranging from search and rescue to robots
that assist humans in commercial or industrial settings. More
generally, it is representative of an object detection task that
is a cornerpiece of virtually any robotics perception pipeline.
We test this system with both a simulated input image stream
with controlled temporal coherence as well as on a robotic
hardware platform with real video streams, and find that in
both cases, the RL policy intelligently, and sparingly, queries
the cloud to achieve high prediction accuracy while incurring
low query costs, outperforming baselines.

Face-detection Scenario: We formulate this scenario,
depicted in Fig. 3, in terms of the general abstractions we
introduced in Section III. Here, the sensory input stream is
a video, where each xt is a still frame from that video. To
avoid training a policy over the large image space directly, we
choose the feature encoding φ that is used in the state space
of the offloading MDP to be the sum of absolute differences
between sequential frames. For the on-robot prediction model

frobot, we use a combination of FaceNet [48], a widely-used
pre-trained face detection model which embeds faces into
embedding vectors, together with an SVM classifier over these
embeddings. This model has seen success for face detection in
live streaming video on embedded devices [9]. For the cloud
model fcloud, we use a human oracle, which always gives
an accurate prediction with a high confidence measure. We
used a zero-one loss function to measure the accuracy of the
predictions, with L(yt, ŷt) = 1 if the prediction was incorrect,
and L(yt, ŷt) = 0 if it was correct.

We choose the reward function to balance prediction accuracy
and minimize onboard computation, as well as queries to the
human operator through the network. The cost of past robot
model and cloud queries, denoted by actions 0, 1, was set to
zero (cost(0) = cost(1) = 0), while the robot model cost
was set to cost(2) = 0.4 and the cost of the cloud model was
chosen to be cost(3) = 8.0, to especially penalize querying
the human oracle who will have limited bandwidth. We tested
with different weightings in the reward function (Eqn. 4), and
found αaccuracy = 1.0 and βcost = 7.0 to yield performance
for our specific cost setup, and therefore report results for
this parameter setting. These costs were chosen to incentivize
reasonably rational behavior; in real robotic systems they could
be computed through an economic cost-benefit analysis3.

Offloading Policy Architecture: In practice, the input query
sequence may show time-variant patterns and the MDP may
become nonstationary if the agent only knows the current state.
To address this problem using a recurrent policy, we use a
Long Short Term Memory (LSTM) [24] as the first hidden
layer in the offloader policy to extract a representation over
a short history of states. In particular, the actor (or critic)
DNN has a LSTM first layer of 64 units, a fully-connected
second layer of 256 units, and a softmax (or linear) output
layer. We softly enforce the action constraint of disallowing
the offloading action when the budget has depleted by having
action 3 map to action 2 when Nbudget = 0.

We use standard hyper-parameters for A2C training, with
an orthogonal initializer and RMSprop gradient optimizer.
Specifically, we set actor learning rate to 10−4, critic learning
rate to 5e − 5, minibatch size 20, entropy loss coefficient
0.01, and gradient norm clipping 40. We train A2C over
1 million episodes, with discount factor 0.99 and episode
length T = 80. We observed stable convergence after 350, 000
episodes, consistent over different weightings of the accuracy
and loss terms in the reward.

A key aspect of this problem is how the coherence of the
input stream allows the offloading policy to leverage cached
predictions to avoid excessively querying the cloud model. In
order to test this, we applied the deep RL approach in two
scenarios: a synthetic stream of images where coherence was
controlled, as well as an on-hardware demo which used real
video data. In the following subsections, we detail the training
and testing procedure for each scenario, and discuss the results.

3We provide the offloading simulation environment, robot and cloud FaceNet
models, and MDP dynamics outlined in Eqns. 3 - 4, as a standard OpenAI
gym [13] environment at https://github.com/StanfordASL/cloud robotics.

Fig. 5: RL beats benchmark offloading policies by over 2.6×
in diverse test episodes over a mixture of network conditions.

A. Synthetic Input Stream Experiments

To model the coherence of video frames we observed
experimentally, we divided an episode of T steps into “coherent”
sub-intervals, where only various frames of the same person
appear within one contiguous sub-interval, albeit with different
background and lighting conditions. Then, the input stochas-
tically switches to a new individual, who could be unknown
to the robot model. As such, we simulate a coherent stream
of faces which are a diverse mixture of known and unknown
faces to the robot, as shown at the top of Fig. 3. The length
of a coherence interval was varied between 1/10− 1/12 of an
episode duration T to show a diversity of faces in an episode.

Each training trace (episode of the MDP) lasted T = 80 steps
where a face image (query xt) arrived at each timestep t. To
test RL on a diverse set of network usage limits, we randomly
sampled a query budget Nbudget

T ∈ [0.10, 0.20, 0.50, 0.70, 1.0]
at the start of each trace.

Evaluation: We evaluated the RL policy and the bench-
marks on 100 diverse testing traces each, where the face
pictures present in each trace were distinct from those in
the set of training traces. To test an offloader’s ability to
adapt to various network bandwidth constraints, we evaluated
each trace with four trials on each query budget fraction in
Nbudget

T ∈ [0.10, 0.20, 0.50, 0.70, 1.0], simulating budgets in
highly-constrained to unconstrained networks.

We show RL test results for the same representative reward
function parameters described above in Section V-A.

RL Intelligently, but Sparingly, Queries the Cloud: Figure
5 shows the distribution of rewards attained by the different
offloader policies on all test traces, where our RL approach is
depicted in the yellow boxplot. Then, we break down the mean
episode reward into its components of prediction accuracy and
offloading cost, and show the mean performance over all test
traces for each policy in Fig. 6.

https://github.com/StanfordASL/cloud_robotics

Fig. 6: The reward trades off offloading costs, which penalize
network and cloud usage, with classification loss.

Benchmark policies of random-sampling (πrandom
offload), all-robot

compute (πall−robot
offload), periodic cloud-compute (πall−cloud

offload),
and the best confidence-threshold based heuristic policy
(πrobot−heuristic

offload) are shown in the left four boxplots (red to
purple). An oracle upper-bound solution, which is unachievable
in practice since it perfectly knows the robot and cloud
predictions and future timeseries xt, is depicted in gray in
Figs. 5 - 6.

Fig. 5 shows that RL has at least 2.6× higher median episode
reward than the benchmarks, and is competitive with the upper-
bound oracle solution, achieving 0.70× its reward. This is
because the RL policy sparingly queries the costly cloud model,
in contrast to an all-cloud policy that incurs significantly higher
model query and network cost, as shown in Fig. 6, which plots
the mean reward terms and the 95% standard error estimates
to display our certainty in the mean estimate. Essentially, RL
learns to judiciously query the cloud when the robot model
is highly uncertain, which allows it to improve the overall
system accuracy and achieve a low prediction loss (Fig. 6).
Interestingly, it has better prediction accuracy than an “all-
cloud” scheme since bandwidth limits cause this policy to
periodically, but sparsely, sample the cloud and hold past cloud
predictions. RL learns to conserve precious cloud queries when
the query budget Nbudget

T is low and use them when they help
prediction accuracy the most, thereby achieving low prediction
error in Fig. 6.

B. Hardware Experiments

Inspired by deep RL’s promising performance on synthetic
input streams, we built an RL offloader that runs on the
NVIDIA Jetson Tx2 embedded computer, which is optimized
for deep learning and used in mobile robotics. The RL offloader
takes in live video from the Jetson camera and runs the small
nn4.small2.v14 FaceNet DNN from the popular OpenFace

4available at https://cmusatyalab.github.io/openface/models-and-accuracies/

project [9] and an SVM classifier on selected frames as the
robot model. OpenFace [9] provides four pre-trained FaceNet
models, and we chose to use the smallest, fastest model on the
robot, to consider cases where a robot has limited hardware.
The smallest model has half the parameters and is 1.6× faster
on a GPU than the largest FaceNet model [9].

If the RL agent deems a face needs to be offloaded due
to local uncertainty, it can either send the concise Facenet
embedding (128-dimensional byte vector) or the face image to
a central server that can run a larger FaceNet DNN and/or SVM
classifier trained on many more humans of interest as the cloud
model. We use OpenCV for video frame processing, a PyTorch
nn4.small2.v1 OpenFace model, and TensorFlow [5] for
the RL offloader neural network policy to achieve real-time
processing performance on the embedded Jetson platform.

Data Collection: We captured 6 training and 3 testing
videos spanning 9 volunteers, consisting of over 2600 frames
of video where offloading decisions could be made. The nine
volunteers were known to the robot model but our dataset had
18 distinct, annotated people. Collectively, the training and
test datasets showed diverse scenarios, ranging from a single
person moving slowly, to dynamic scenarios where several
humans move amidst background action.

The Jetson was deployed with a robot FaceNet model and
an SVM trained on a subset of images from only 9 people,
while the cloud model was trained on several more images of
all 9 volunteers to be more accurate. The state variables in
Eq. 3 were input to our Deep RL offloader, where the sum
of frame differences

∑
pixels |xt − xt−1|, rather than a full

image, was an important indicator of how quickly video content
was changing. Frame differences are depicted in Fig. 7, which
helps the offloader subtract background noise and hone in on
rapidly-changing faces.

Evaluation and Discussion: As expected, the trained RL
offloader queries the cloud when robot model confidence is low,
the video is chaotic (indicated by large pixel difference scores),
and several hard-to-detect faces appear in the background.

However, it weights such factors together to decide an
effective policy and hence is significantly better than a
confidence-threshold based heuristic. In fact, the decision
to offload to the cloud is only 51.7% correlated (Spearman
correlation coefficient) with robot model confidence, showing
several factors influence the policy.

In our hardware experiments on real streaming video, our
offloader achieved 1.6× higher reward than an all-robot policy,
1.35× better reward than an all-cloud policy, and 0.82× that of
an oracle upper bound solution. Further, it attained 1.1− 1.5×
higher reward than confidence-based threshold heuristics, where
we did a linear sweep over threshold confidences, which depend
on the specific faces in the video datasets.

Our video dataset, robot/cloud models, and offloader code
will be made publicly available. In particular, videos of
the offloading policy show how robot computation can be
effectively juxtaposed with cloud computation in Fig. 7. Finally,
since the offloader has a concise state space and does not take
in full images, but rather a sum of pixel differences as input,

https://cmusatyalab.github.io/openface/models-and-accuracies/

(a) FaceNet on a live video stream. (b) Offload yellow faces.

Fig. 7: Hardware Experiments: Our offloader, depicted on
frame pixel differences, interleaves FaceNet predictions on a
robot (red box) and cloud model (yellow) when uncertain.

it is extremely small (900 KB). Essentially, it is an order of
magnitude smaller than even optimized vision DNNs (Table I),
allowing it to be scalably run on a robot without interfering in
perception or control.

VI. DISCUSSION AND CONCLUSIONS

In this work we have presented a general mathematical
formulation of the cloud offloading problem, tailored to robotic
systems. Our formulation as a Markov Decision Problem
is both general and powerful. We have demonstrated deep
reinforcement learning may be used within this framework
effectively, outperforming common heuristics. However, we
wish to emphasize that RL is likely an effective choice to
optimize offloading policies even for modifications of the
offloading problem as stated.

Future Work: While there are many theoretical and
practical avenues of future work within the cloud robotics
setting (and more specifically within offloading), we wish to
herein emphasize two problems that we believe are important
for improved performance and adoption of cloud robotics
techniques. First, we have characterized the offloading problem
as an MDP, in which factors such as latency correspond to
costs. However, for safety critical applications such as self-
driving cars, one may want to include hard constraints, such
as a bounding the distribution of latency times. This approach
would fit within the scope of Constrained MDPs [8], which
has seen recent research activity within deep reinforcement
learning [17, 6].

Secondly, we have dealt with input streams that are indepen-
dent of our decisions in this work. However, the input streams
that robotic systems receive are a consequence of the actions
that they take. Therefore, a promising extension to improve
performance of cloud robotics systems is considering the
offloading problem and network characteristics during action
selection (e.g., planning or control). Conceptually, this is related
to active perception [10], but also incorporates information
about network conditions or input stream stale-ness.

REFERENCES

[1] 4g lte speeds vs. your home network.
https://www.verizonwireless.com/articles/

4g-lte-speeds-vs-your-home-network/, 2013. [Online;
accessed 31-Jan.-2019].

[2] Data is the new oil in the future of automated
driving. https://newsroom.intel.com/editorials/
krzanich-the-future-of-automated-driving/#gs.
LoDUaZ4b, 2016. [Online; accessed 30-Jan.-2019].

[3] Ros ate my network bandwidth! https://answers.ros.org/
question/256080/ros-ate-my-network-bandwidth/, 2017.
[Online; accessed 31-Jan.-2019].

[4] The new robot kickstarter by anki is
powered by qualcomm. https://www.
forbes.com/sites/tiriasresearch/2018/08/10/
the-new-robot-kickstarter-by-anki-is-powered-by-qualcomm/
#409bd46275e3/, 2019. [Online; accessed 02-Jan.-2019].

[5] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In Proceedings
of the OSDI 2016. Savannah, Georgia, USA, 2016.

[6] Joshua Achiam, David Held, Aviv Tamar, and Pieter
Abbeel. Constrained policy optimization. In International
Conference on Machine Learning, pages 22–31, 2017.

[7] Rhett Allain. The physics of why bigger drones can fly
longer. Wired Magazine. URL https://www.wired.com/
story/the-physics-of-why-bigger-drones-can-fly-longer.

[8] Eitan Altman. Constrained Markov decision processes.
CRC Press, 1999.

[9] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satya-
narayanan. Openface: A general-purpose face recognition
library with mobile applications. Technical report, CMU-
CS-16-118, CMU School of Computer Science, 2016.

[10] Ruzena Bajcsy. Active perception. Proceedings of the
IEEE, 1988.

[11] R. Bellman. A markovian decision process. Technical
report, DTIC Document, 1957.

[12] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural networks.
International Conference on Machine Learning (ICML),
2015.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv:1606.01540, 2016.

[14] Eduardo F Camacho and Carlos Bordons Alba. Model
predictive control. Springer Science & Business Media,
2013.

[15] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng,
Paramvir Bahl, and Hari Balakrishnan. Glimpse: Contin-
uous, real-time object recognition on mobile devices. In
Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, 2015.

[16] Sandeep P. Chinchali, Eyal Cidon, Evgenya Pergament,
Tianshu Chu, and Sachin Katti. Neural networks meet
physical networks: Distributed inference between edge
devices and the cloud. In ACM Workshop on Hot Topics
in Networks (HotNets), 2018.

[17] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and

 https://www.verizonwireless.com/articles/4g-lte-speeds-vs-your-home-network/
 https://www.verizonwireless.com/articles/4g-lte-speeds-vs-your-home-network/
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/#gs.LoDUaZ4b
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/#gs.LoDUaZ4b
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/#gs.LoDUaZ4b
https://answers.ros.org/question/256080/ros-ate-my-network-bandwidth/
https://answers.ros.org/question/256080/ros-ate-my-network-bandwidth/
https://www.forbes.com/sites/tiriasresearch/2018/08/10/the-new-robot-kickstarter-by-anki-is-powered-by-qualcomm/#409bd46275e3/
https://www.forbes.com/sites/tiriasresearch/2018/08/10/the-new-robot-kickstarter-by-anki-is-powered-by-qualcomm/#409bd46275e3/
https://www.forbes.com/sites/tiriasresearch/2018/08/10/the-new-robot-kickstarter-by-anki-is-powered-by-qualcomm/#409bd46275e3/
https://www.forbes.com/sites/tiriasresearch/2018/08/10/the-new-robot-kickstarter-by-anki-is-powered-by-qualcomm/#409bd46275e3/
https://www.wired.com/story/the-physics-of-why-bigger-drones-can-fly-longer
https://www.wired.com/story/the-physics-of-why-bigger-drones-can-fly-longer

Mohammad Ghavamzadeh. A lyapunov-based approach
to safe reinforcement learning. Neural Information
Processing Systems (NIPS), 2018.

[18] A. Chowdhery and M. Chiang. Model predictive compres-
sion for drone video analytics. In 2018 IEEE International
Conference on Sensing, Communication and Networking
(SECON Workshops), 2018.

[19] Behrouz A Forouzan and Sophia Chung Fegan. TCP/IP
protocol suite. McGraw-Hill Higher Education, 2002.

[20] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep
bayesian active learning with image data. In International
Conference on Machine Learning, 2017.

[21] Ken Goldberg and Ben Kehoe. Cloud robotics and
automation: A survey of related work. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2013-5, 2013.

[22] James Harrison, Apoorva Sharma, and Marco Pavone.
Meta-learning priors for efficient online bayesian re-
gression. Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2018.

[23] Juan Camilo Gamboa Higuera, Anqi Xu, Florian Shkurti,
and Gregory Dudek. Socially-driven collective path
planning for robot missions. IEEE Conference on
Computer and Robot Vision, 2012.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[25] Ashesh Jain, Debarghya Das, Jayesh K Gupta, and
Ashutosh Saxena. Planit: A crowdsourcing approach
for learning to plan paths from large scale preference
feedback. IEEE International Conference on Robotics
and Automation (ICRA), 2015.

[26] Hari Kalva. The h. 264 video coding standard. IEEE
multimedia, 13(4):86–90, 2006.

[27] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. Noscope: Optimizing neural network
queries over video at scale. Proc. VLDB Endow., 2017.

[28] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovin-
ski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neuro-
surgeon: Collaborative intelligence between the cloud and
mobile edge. ACM SIGPLAN Notices, 52(4):615–629,
2017.

[29] Ben Kehoe, Akihiro Matsukawa, Sal Candido, James
Kuffner, and Ken Goldberg. Cloud-based robot grasping
with the google object recognition engine. In Robotics and
Automation (ICRA), 2013 IEEE International Conference
on, pages 4263–4270. IEEE, 2013.

[30] Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg.
A survey of research on cloud robotics and automation.
IEEE Trans. Automation Science and Engineering, 12(2):
398–409, 2015.

[31] J Kuffner. Cloud-enabled robots in: Ieee-ras international
conference on humanoid robots. Piscataway, NJ: IEEE,
2010.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision,
pages 740–755. Springer, 2014.

[33] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 197–210. ACM,
2017.

[34] Sarah Marsh. Amazon alexa crashes
after christmas day overload. https:
//www.theguardian.com/technology/2018/dec/26/
amazon-alexa-echo-crashes-christmas-day-overload,
2018. [Online; accessed 20-Jan.-2019].

[35] Aarian Marshall. Starsky robotics unleashes
its truly driverless truck in florida. Wired
Magazine. URL https://www.wired.com/story/
starsky-robotics-truck-self-driving-florida-test.

[36] Bradley Mitchell. Learn exactly how fast a wi-
fi network can move. https://www.lifewire.com/
how-fast-is-a-wifi-network-816543, 2018. [Online; ac-
cessed 31-Jan.-2019].

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[38] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International
Conference on Machine Learning, pages 1928–1937,
2016.

[39] Gajamohan Mohanarajah, Vladyslav Usenko, Mayank
Singh, Raffaello D’Andrea, and Markus Waibel. Cloud-
based collaborative 3d mapping in real-time with low-cost
robots. IEEE Transactions on Automation Science and
Engineering, 2015.

[40] Jitendra Padhye, Victor Firoiu, and Don Towsley. A
stochastic model of tcp reno congestion avoidence and
control. 1999.

[41] Chrisma Pakha, Aakanksha Chowdhery, and Junchen
Jiang. Reinventing video streaming for distributed vision
analytics. In 10th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 18), Boston, MA, 2018.
USENIX Association. URL https://www.usenix.org/
conference/hotcloud18/presentation/pakha.

[42] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5.
Kobe, Japan, 2009.

[43] Akhlaqur Rahman, Jiong Jin, Antonio Cricenti, Ashfaqur
Rahman, and Dong Yuan. A cloud robotics framework
of optimal task offloading for smart city applications.
IEEE Global Communications Conference (GLOBECOM),
2016.

[44] Luis Riazuelo, Javier Civera, and JM Martı́nez Montiel.

https://www.theguardian.com/technology/2018/dec/26/amazon-alexa-echo-crashes-christmas-day-overload
https://www.theguardian.com/technology/2018/dec/26/amazon-alexa-echo-crashes-christmas-day-overload
https://www.theguardian.com/technology/2018/dec/26/amazon-alexa-echo-crashes-christmas-day-overload
https://www.wired.com/story/starsky-robotics-truck-self-driving-florida-test
https://www.wired.com/story/starsky-robotics-truck-self-driving-florida-test
https://www.lifewire.com/how-fast-is-a-wifi-network-816543
https://www.lifewire.com/how-fast-is-a-wifi-network-816543
https://www.usenix.org/conference/hotcloud18/presentation/pakha
https://www.usenix.org/conference/hotcloud18/presentation/pakha

C2tam: A cloud framework for cooperative tracking and
mapping. Robotics and Autonomous Systems, 62(4):401–
413, 2014.

[45] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and
Pål Halvorsen. Commute path bandwidth traces from 3g
networks: Analysis and applications. In Proceedings of
the 4th ACM Multimedia Systems Conference, MMSys
’13, pages 114–118, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1894-5.

[46] Javier Salmerón-Garcı, Pablo Íñigo-Blasco, Fernando Dı,
Daniel Cagigas-Muniz, et al. A tradeoff analysis of a
cloud-based robot navigation assistant using stereo image
processing. IEEE Transactions on Automation Science
and Engineering, 12(2):444–454, 2015.

[47] Mark Sandler and Andrew Howard. Mobilenetv2:
The next generation of on-device computer vi-
sion networks. https://ai.googleblog.com/2018/04/
mobilenetv2-next-generation-of-on.html.

[48] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 815–823,
2015.

[49] Zuozhen Liu Song Han, William Shen. Deep drone: Ob-
ject detection and tracking for smart drones on embedded
system. Stanford University CS231a Class Project Report,
2016.

[50] Komei Sugiura and Koji Zettsu. Rospeex: A cloud
robotics platform for human-robot spoken dialogues.
IEEE International Conference on Intelligent Robots and
Systems (IROS), 2015.

[51] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia
Hadsell, Dieter Fox, Jürgen Leitner, Ben Upcroft, Pieter
Abbeel, Wolfram Burgard, Michael Milford, et al. The
limits and potentials of deep learning for robotics. The
International Journal of Robotics Research, 2018.

[52] R.S. Sutton and A.G. Barto. Reinforcement learning: an
introduction. Neural Networks, IEEE Transactions on, 9
(5):1054–1054, 1998.

[53] C. Szepesvári. Algorithms for reinforcement learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 4(1):1–103, 2010.

[54] Lochan Verma, Mohammad Fakharzadeh, and Sunghyun
Choi. Wifi on steroids: 802.11 ac and 802.11 ad. IEEE
Wireless Communications, 20(6):30–35, 2013.

[55] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V.
Vasilakos. Cloud robotics: Current status and open issues.
IEEE Access, 4:2797–2807, 2016. ISSN 2169-3536.

[56] Haiyan Wu, Lei Lou, Chih-Chung Chen, Sandra Hirche,
and Kolja Kuhnlenz. Cloud-based networked visual servo
control. IEEE Transactions on Industrial Electronics,
2013.

[57] Z Xiangyu, Z Xinyu, L Mengxiao, and S Jian. Shufflenet:
an extremely efficient convolutional neural network for
mobile devices. In Computer Vision and Pattern Recog-
nition, 2017.

[58] Youtube. Youtube: Recommended upload encoding
settings. https://support.google.com/youtube/answer/
1722171?hl=en.

https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html
https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en

	I Introduction
	II Background & Related Work
	II-A Cloud Robotics
	II-B Costs of Offloading
	II-C Case Study: Costs of Offloading LIDAR Data

	III Problem Statement
	III-A The Robot Offloading Markov Decision Process
	III-B The Robot Offloading Problem

	IV A Deep RL Approach to Robot Offloading
	V Experimental Performance of Our Deep RL Offloader
	V-A Synthetic Input Stream Experiments
	V-B Hardware Experiments

	VI Discussion and Conclusions

