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Abstract Software systems can automatically submit crash reports to a repos-
itory for investigation when program failures occur. A significant portion of
these crash reports are duplicate, i.e., they are caused by the same software
issue. Therefore, if the volume of submitted reports is very large, automatic
grouping of duplicate crash reports can significantly ease and speed up analysis
of software failures. This task is known as crash report deduplication. Given
a huge volume of incoming reports, increasing quality of deduplication is an
important task. The majority of studies address it via information retrieval
or sequence matching methods based on the similarity of stack traces from
two crash reports. While information retrieval methods disregard the position
of a frame in a stack trace, the existing works based on sequence matching
algorithms do not fully consider subroutine global frequency and unmatched
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frames. Besides, due to data distribution differences among software projects,
parameters that are learned using machine learning algorithms are necessary
to provide more flexibility to the methods. In this paper, we propose TraceSim
– an approach for crash report deduplication which combines TF-IDF, optimum
global alignment, and machine learning (ML) in a novel way. Moreover, we
propose a new evaluation methodology for this task that is more comprehensive
and robust than previously used evaluation approaches. TraceSim significantly
outperforms seven baselines and state-of-the-art methods in the majority of
the scenarios. It is the only approach that achieves competitive results on all
datasets regarding all considered metrics. Moreover, we conduct an extensive
ablation study that demonstrates the importance of each TraceSim’s element
to its final performance and robustness. Finally, we provide the source code
for all considered methods and evaluation methodology as well as the created
datasets.

Keywords Duplicate Crash Report, Crash Report Deduplication, Duplicate
Crash Report Detection, Automatic Crash Reporting, Stack Trace

1 Introduction

Many software products are nowadays equipped with automated crash reporting
systems such as Apport1, Mozilla Socorro2, and CrashPad3. These systems
detect software crashes, collect data related to user environment, system state
and execution information (Ahmed et al, 2014), and group such data into
a so-called crash report. While automated crash reporting systems reduce
the dependence on users to collect relevant information about failures, they
drastically increase the number of crash reports. For instance, according to
Campbell et al (2016), Mozilla Firefox received around 2.2 million crash reports
in the first week of 2016. A significant portion of these crash reports were
duplicates, i.e., multiple reports related to the same software bug. For example,
we found that 72% of the reports of the IntelliJ Platform (a JetBrains product
family) were duplicates.

In software projects, duplicate crash reports are grouped into clusters called
buckets. This grouping helps to prioritize the bug fixing, provides supplemental
information about a failure, and reduces the effort required to fix a bug (Glerum
et al, 2009; Dhaliwal et al, 2011). However, due to the massive volume of crash
reports submitted daily, it is unfeasible to manually allocate new reports to
buckets. For instance, considering that 13,000 crash reports were submitted per
hour for Mozilla Firefox (Campbell et al, 2016) and, that a “superhuman” could
review one report per second, a triager would take around 3.6 hours to identify
the buckets of these new reports. Hence, it is vital for large software projects to
automatically assign crash reports to buckets. This task is known as duplicate

1 https://wiki.ubuntu.com/Apport
2 https://crash-stats.mozilla.com/
3 https://goto.google.com/crash/root
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crash report detection, crash report bucketing or crash report deduplication
(Campbell et al, 2016; Dang et al, 2012).

During the program lifetime, a stack (named call stack) keeps track of active
subroutines. We consider a subroutine active if it is under execution or waiting
for the completion of other subroutines. Call stacks are composed of frames:
data structures that store information on a single active subroutine (such
as its return address and arguments). These frames are stored following the
LIFO (last in, first out) principle, i.e., the frames related to the last executed
subroutines are on the top of the stack. The stack trace is hence a snapshot of
the call stack in memory which is captured and presented to the user when a
system crashes.

In Figure 1, we illustrate a crash report. This example presents the details
about the system and environment in lines 1–7. This information is variable
and depends on the application. Moreover, reports may include user descriptions
of bugs and how they could be reproduced. In Figure 1, lines 9–43 represent a
stack trace. It encompasses valuable information for developers to understand
and fix an error (Schroter et al, 2010).

1 Date: 2016-01-20T22:11:48.834Z
2 Product: XXXXXXXXXXXX
3 Version: 144.3143
4 Action: null
5 OS: Mac OS X
6 Java: Oracle Corporation 1.8.0_40-release
7 Message: new child is an ancestor
8
9 java.lang.IllegalArgumentException: new child is an ancestor

10   at javax.swing.tree.DefaultMutableTreeNode.insert(DefaultMutableTreeNode.java:179)
11   at javax.swing.tree.DefaultMutableTreeNode.add(DefaultMutableTreeNode.java:411)
12   at com.openapi.application.impl.ApplicationImpl$8.run(ApplicationImpl.java:374)

.....
41   at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
42   at java.lang.Thread.run(Thread.java:745)
43   at org.ide.PooledThreadExecutor$2$1.run ....

Fig. 1: Crash report example

The majority of previous studies addresses crash report deduplication mainly
by measuring similarity between the stack traces of two crash reports. Lerch
and Mezini (2013), Campbell et al (2016), and Sabor et al (2017) use traditional
information retrieval techniques to compute this similarity. These works propose
to encode stack traces as vectors whose dimensions are related to subroutine
names (fully-qualified names of functions) and values are calculated using Term
Frequency – Inverse Document Frequency (TF-IDF) (Manning and Schütze,
1999). One key drawback of information retrieval methods is that they ignore
the order of the subroutines in a stack trace. Other studies (Dang et al, 2012;
Modani et al, 2007; Brodie et al, 2005; Bartz et al, 2008) explicitly consider the
sequence of function calls within stack traces and employ variants of sequence
matching algorithms (such as edit distance, longest common subsequence and
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optimal global alignment) to measure the similarity between two stack traces.
Brodie et al (2005) were the first to use a sequence matching algorithm to
compute the similarity between two stack traces. Moreover, in the matching
algorithm, they considered two pieces of information to weight the importance
of a subroutine in a given stack trace: its position in the stack trace and its
frequency in a large database. The rationale behind this is twofold: (i) bugs are
more likely to be related to subroutines in the top positions of the stack trace
(Schroter et al, 2010); and (ii) rare subroutines are more relevant than frequent
ones, similarly to TF-IDF. Later, Dang et al (2012) proposed PDM, a method
that also considers subroutine position when comparing two stack traces by
means of a sequence matching algorithm. PDM, different from Brodie et al
(2005), includes a machine learning (ML) algorithm to learn the parameters that
control the impact of frame position in the matching algorithm. In that way,
PDM can adapt to different data distributions from varied software projects or
even to temporal shifts in the same project. One neglected aspect in the current
literature is the proper consideration of subroutines that exist in only one of
the two stack traces under comparison. We call these subroutines unmatched
as opposed to matched subroutines that are present in both stack traces. In
Brodie et al (2005), for instance, position and frequency are considered only
for matched subroutines. For unmatched ones, the similarity score is given
by a negative constant value. In Dang et al (2012), unmatched subroutines
are ignored when computing the similarity score. However, these missing
subroutines may be important to estimate the similarity (or, in this case, the
dissimilarity) between stack traces, especially the ones that are rare and lie in
the top positions.

In this work, we propose TraceSim, the first technique that structurally
combines TF-IDF, optimum global alignment, and machine learning for crash
report deduplication. To compute the similarity between two stack traces,
TraceSim finds the optimum global alignment between them by means of the
Needleman-Wunsch (NW) algorithm. Differently from previous approaches,
we leverage the flexibility of this global alignment algorithm to consider all
subroutines, either matched or unmatched, to compute the similarity score
between two stack traces. Moreover, for all subroutines, TraceSim considers both
their frequency in a large database (TF-IDF) and their position in the stack
traces. Additionally, TraceSim employs a ML algorithm to learn parameters
that regulate the influence of all these elements within the NW algorithm.
Hence, TraceSim can be viewed as a generalization of the methods proposed
by both Brodie et al (2005) and Dang et al (2012).

Inspired by works on bug deduplication, we also propose a new evaluation
methodology for crash report deduplication. Our comprehensive methodology
considers different aspects of the problem, such as the system capacity to
separate non-duplicates from duplicates, the accuracy of report assignment to
buckets, and the system performance for ranking. By means of this methodology,
we compare TraceSim to state-of-the-art and baseline systems using four
datasets from open-source projects (Ubuntu, Eclipse, Netbeans and Gnome)
and one industrial dataset (JetBrains). Additionally, a detailed ablation study
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is performed to assess distinct elements of TraceSim, namely TF-IDF, global
aligment and ML.

The main contributions of this paper are summarized as follows:

1. We propose TraceSim, a novel method for crash report deduplication that
combines TF-IDF, global alignment, and machine learning. We experimen-
tally demonstrate that each one of these methodological choices significantly
contributes to TraceSim’s performance and robustness.

2. We report on the most comprehensive experimental evaluation which in-
cludes many previous methods in the literature and assesses different aspects
of these methods. The experiments are performed on five distinct projects
involving distinct programming languages and characteristics. TraceSim
significantly outperforms the competitive methods in the majority of the
scenarios, and it is the only method that consistently performs well in all
scenarios.

3. We provide our full evaluation framework4 which comprises: datasets gener-
ated from open source projects, implementations of all considered methods,
and implementation of the proposed evaluation methodology. The provided
framework is crucial for reproducibility, so that future works can easily
compare new methods with Tracesim and other relevant methods from the
literature within a comprehensive and unified framework.

The remainder of this paper is organized as follows. Section 2 describes the
proposed method. Section 3 presents the existing techniques that address crash
report deduplication. Section 4 presents the proposed evaluation methodology
and the experimental setup. In Section 5, we experimentally compare TraceSim
to competitive techniques and report on several ablation studies. Section 6
discusses the possible threats to the validity of our work. Finally, concluding
remarks are given in Section 7.

2 TraceSim

A common assumption in the literature is that failures caused by the same bug
are represented by similar system executions. Since a stack trace can capture
the state of a system execution right before a crash, crash deduplication usually
proceeds by mainly comparing the similarity between stack traces. In order to
compute this similarity, many studies employ sequence matching algorithms so
that they can measure the overlapping between two stack traces keeping track
of the order of the compared frames.

A classic sequence matching method is the Needleman–Wunsch (NW)
algorithm (Needleman and Wunsch, 1970), which finds the optimal global
alignment between two sequences. A global alignment consists in aligning
the elements of two sequences end-to-end. In Figure 2, we illustrate a global
alignment of two stack traces (stack1 and stack2). Filled rectangles represent

4 Temporary link: https://drive.google.com/file/d/1ZXj1DBqKDiVU3GZ4iU_

fVzD0IxiLlmCU. A Github repository link will be added to the final version.
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frames and empty ones symbolize gaps: special structures that allow to shift
the position of an element in the alignment. As can be observed, frames can
be lined up to gaps, where each gap represents that a specific subroutine is
missing in that position of the stack trace. We call a match the alignment
of identical frames (e.g., the frames Maps.difference in stack1 and stack2).
In contrast, we name the alignment of two different frames a mismatch (e.g.,
the frames ValidatorPage.performOk and BuilderPage.schedCleaner). In
this work, a mismatch is considered as equivalent to two gap alignments
since it is unlikely that two different subroutines possess interchangeable func-
tionality (Brodie et al, 2005). For instance, ValidatorPage.performOk and
BuilderPage.schedCleaner are clearly different and, therefore, it is appropri-
ate to align these frames to gaps.

Two stack traces can be aligned in multiple ways. The optimal global
alignment problem is formulated as a maximization problem such that each
possible frame alignment (match, mismatch, and gap) has an assigned value.
Thus, the optimum solution for the problem corresponds to the global alignment
for which the sum of the match values minus the sum of the mismatch and
gap values is maximum. A common scheme is to define the values for matches,

PreferenceDialog.buttonPressed

SafeRunner.run

ValidatorPage.performOk
OptCfgBlock.processChanges

OptCfgBlock.getPreferenceChanges
Maps.difference

util.HashMap.<init>

JFaceUtil.run

PreferenceDialog.run

SafeRunnable.run
PreferenceDialog.okPressed

Dialog.widgetSelected
TypedListener.handleEvent

PreferenceDialog.buttonPressed

SafeRunner.run

BuilderPage.schedCleaner

OptCfgBlock.getPreferenceChanges
Maps.difference
HashMap.<init>

HashMap.putMapEntries

JFaceUtil.run

PreferenceDialog.run

SafeRunnable.run
PreferenceDialog.okPressed

Dialog.widgetSelected
TypedListener.handleEvent

Fig. 2: Best Global Alignment Example: 12 matches, 1 mismatches, and 2
gaps. Matches, mismatches and gaps are represented by blue, red, and yellow,
respectively.

mismatches and gap alignments as constants, such that a specific alignment
is always associated to the same value. In order to leverage the peculiar
characteristics of stack traces, we employ a scheme that computes the alignment
values in a more effective way for the crash deduplication task. In this scheme,
weights are assigned to each frame. These weights estimate the frame importance
to discriminate two stack traces and are used to compute match, mismatch
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and gap values. Our hypothesis is that some frames are more relevant than
others for comparison and, hence, their correct or wrong alignment should
have higher impact on the computed similarity score. The NW algorithm is
more suitable for our proposed scheme than other classic sequence matching
algorithms, e.g. longest common subsequence (LCS) and Levenshtein distance
(also known as edit distance). In the LCS, the similarity is only affected by the
matches since mismatches are not allowed and gap values are zero. Hence, the
incorrect alignment of important frames is not considered for measuring the
similarity. Conversely, the matches of relevant and irrelevant frames are not
distinguishable in the edit distance because the match values are always zero.
The NW algorithm is the method that allows us to fully consider the weights
of all frames to measure the similarity of stack traces.

In the remainder of this section, we describe TraceSim, our proposed method
for crash report deduplication. This method computes the similarity of two
stack traces sq and sc from a new query report q and a candidate report
c, respectively. Each stack trace is represented as a sequence of frames, i.e.,
sq = (sq1, s

q
2, . . . , s

q
|sq|)1 and sc = (sc1, s

c
2, . . . , s

c
|sc|), where sq1 and sc1 are the

frames at the top of the stack traces, and |sq| and |sc| are the number of
frames in sq and sc, respectively. Following the majority of the studies, we
only consider two frames as equal when their subroutine names are exactly the
same. In order to compare sq and sc, TraceSim first assigns a weight to each
frame of these two stack traces. Then, by means of the NW algorithm, our
method finds the optimal maximum global alignment between sq and sc by
considering the match, mismatch, and gap values proportional to the frame
weights. The NW algorithm runs in O(|sq| · |sc|) time. Finally, the score of the
optimal alignment is normalized by a technique based on the Jaccard index
(Chierichetti et al, 2010). The normalization is fundamental for an effective
comparison of alignment scores since it adjusts the scores by the frame weights
of the stack traces.

2.1 Frame Weight Computation

Bugs are more frequently located in the top frames of stack traces (Schroter
et al, 2010). Hence, it is natural to consider that frames near the top are more
relevant for crash deduplication than the bottom ones. Nonetheless, frames,
including those in the top positions, could be associated to subroutines that
are common through the database, e.g, subroutines that are related to logging,
thread pooling, error-handling and entry points. These subroutines poorly
accommodate the discrimination of similar stack traces since they appear
in multiple crashes caused by different errors. Therefore, we consider that a
frame’s importance for crash report deduplication (frame weight) depends on
two factors: its position in the stack trace (local weight) and its frequency in
the database (global weight).
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The local weight of the i-th frame in a stack trace s is computed as follows:

lw(si) =
1

iα
, (1)

where α ∈ R>0 is a parameter that controls the function smoothness. Equa-
tion (1) assigns larger local weight values to frames located at the top of a
stack trace.

The global weight is defined based on a well-known information retrieval
technique: Term Frequency – Inverse Document Frequency. In our context, the
term frequency (TF) is always equal to 1 since the global weight is computed
for a frame in a specific position within the stack trace. This is due to the fact
that the alignment algorithm is intrinsically dependent on the order of the
frames and not only on their frequencies, like in the original TF-IDF. Therefore,
given a crash report database S, the inverse document frequency (IDF) of a
frame si is simply defined as:

IDF(si) =
|S|

df(si)
,

where |S| is the total number of stack traces in the database S and df(si) is
the document frequency of the subroutine si, i.e., the number of stack traces
that contain a subroutine si among the set S of stack traces. Hence, the global
weight of the i-th frame in a stack trace s is computed as follows:

gw(si) = e
− β

IDF(si) , (2)

where β ∈ R>0 is a parameter that controls the function smoothness. The rarer
a subroutine is, the larger are the values computed by Equation (2).

Finally, the weight of a frame si is defined as:

w(si) = lw(si)× gw(si). (3)

2.2 Optimal Global Alignment

Being based on the Needleman-Wunsch algorithm, TraceSim applies dynamic
programming to find the optimal global alignment between stack traces sq and
sc as follows. Let us define a matrix M in which Mi,j is the optimal alignment
score between the subsequences sq1, s

q
2, . . . , s

q
i and sc1, s

c
2, . . . , s

c
j . The matrix M

is iteratively computed using a bottom-up strategy:

Mi,j = max


Mi−1,j + gap(sqi )

Mi,j−1 + gap(scj)

Mi−1,j−1 + F (sqi , s
c
j)

, (4)

where F (sqi , s
c
j) is given by:

F (sqi , s
c
j) =

{
mismatch(sqi , s

c
j), if sqi 6= scj

match(sqi , s
c
j), otherwise

. (5)
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The match, mismatch and gap values are calculated by the functions
match(·), mismatch(·), and gap(·), respectively. These values are proportional
to the frames’ weights and represent their discriminative power.

The first and second lines in Equation (4) are associated with frames aligned
to gaps. Since this is an incorrect alignment of only one frame, the gap value
for a frame s′ is computed as:

gap(s′) = −w(s′). (6)

The first line in Equation (5) denotes a mismatch between sqi and scj (the
two frames are different). Since gap alignments are preferable to mismatches
for crash deduplication, the mismatch value is equivalent to lining up the two
frames to gaps. This is expressed as:

mismatch(sqi , s
c
j) = −w(sqi )− w(scj). (7)

The second line in Equation (5) denotes a match between sqi and scj . Inspired
by Dang et al (2012), the function match(·) in TraceSim is defined as:

match(sqi , s
c
j) = max(w(sqi ),w(scj))× diff(sqi , s

c
j). (8)

We assume that stack traces emerging from the same error contain subroutines
in the same region of the stack trace. Therefore, in Equation (8), the maximum
weight between the two matched frames is normalized by the diff(·) function
that measures the alignment offset of two frames as follows:

diff(sqi , s
c
j) = e−γ|i−j|,

where γ ∈ R>0 is a parameter that controls the exponential function smoothness.
Thus, we penalize matches in which the positions of the matched frames are
discrepant.

Finally, the score of the best global alignment between sq and sc is defined
as:

align(sq, sc) = M|sq|,|sc|. (9)

2.3 Normalization

Figure 3 illustrates three stack traces (stack3, stack4 and stack5) and their
respective frame weights. By applying the algorithm described in Section 2.2,
we obtain align(stack3, stack4) = −0.66 and align(stack3, stack5) = −0.67.

According to these alignment scores, stack3 is slightly more similar to
stack4 than to stack5. However, this is counter-intuitive since all frames in
stack3 and stack4 are different while stack3 and stack5 share four subroutines
in the same positions. This problem occurs because all frames in stack4 have
a low weight and, consequently, the resulting gaps and mismatches do not
present a significant impact to the maximum score. As such, it is ineffective to
compare alignment scores because they depend on the frame weights of the
compared stack traces.
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Fig. 3: Normalization report example

Moreover, in order to help users to interpret similarity scores, it is desired
to limit scores within a range. Note that according to (9), the alignment score
is unbounded, i.e., its value might vary between −∞ to +∞. Besides, there
exists an asymmetry in the algorithm since match(·) depends on the maximum
of the frame weights whereas mismatch(·) is defined by the sum of the weights.
Due to these two characteristics, it is challenging to normalize the alignment
scores using canonical normalization, e.g. via min-max scaling. Based on the
assumption that the proportion of shared subroutines between two stack traces
is a good indicator for the deduplication, we propose a normalization inspired
by the weighted Jaccard index (Deza and Deza, 2016), which computes the
similarity between two documents Z and Y as:

jaccard(Z, Y ) =

∑|T |
k=1 min(zk, yk)∑|T |
k=1 max(zk, yk)

, (10)

where T is the set of unique terms in the dataset (called vocabulary); and z, y ∈
R|T | are vector representations of Z and Y , respectively. Each dimension of z
and y corresponds to a specific term in the vocabulary T . This representation
is called vector space model (VSM) (Manning and Schütze, 1999).

In crash deduplication, stack traces can be cast as documents and subrou-
tines in the frames as vocabulary terms. Let us consider V as a vocabulary
of subroutines. Thus, a stack trace s = (s1, . . . , s|s|) can be represented as a

vector x ∈ R|V | whose k-th dimension is given by:

xk =

|s|∑
i=1

w(si)× 1[si = tk], (11)

where tk is the k-th term in V and 1[si = tk] returns 1 when the subroutine in
a frame si is equal to tk, and 0 otherwise. In summary, we assign zero to the
dimensions of x whose associated subroutines in V do not appear in a stack
trace. In the opposite case, the dimension value is the sum of all frame weights
w(si) of a specific subroutine tk.
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Given the corresponding vectors xq and xc for the stack traces sq and sc,
respectively, we normalize the score of the maximum global alignment by:

sim(sq, sc) =
align(sq, sc)∑|V |
i max(xqi , x

c
i )
. (12)

Thus, sim(sq, sc) belongs to the interval [−1, 1].

2.4 Machine learning

The three parameters of TraceSim (α, β, and γ) are tuned via a machine
learning technique: Tree-structured Parzen Estimator (TPE) – a Bayesian
hyperparameter optimizer (Bergstra et al, 2013b). TPE finds parameter values
that maximize the sum of two metrics on a given tuning set. Then, such param-
eters are used on a subsequent validation set for final evaluation. In Section
4.4, we describe the training and evaluation processes, including the optimized
metrics. In Sections 4.2 and 4.3, we introduce four additional parameters, also
tuned using TPE, that control some preprocessing procedures.

3 Related Work

The optimal global alignment as well as the longest common subsequence, the
edit distance, and the longest prefix match are well-known sequence matching
problems. These problems have been extensively studied over the decades and
have been applied to many different domains. In the literature, many studies
have addressed crash report deduplication as one of these sequence matching
problems.

Brodie et al (2005) proposed a variant of the Needleman-Wunsh (NW)
algorithm to compare two stack traces. Similarly to TraceSim, its match value
depends on three factors: the position and document frequency of the matched
frame in the new report and the alignment offset of the two matched frames.
However, unlike TraceSim, the method of Brodie et al (2005) does not contain
parameters that control the influence of the frame position and document
frequency on the match value. Thus, it cannot adapt to the software project
particularities, e.g., the relevance of frame positions for crash deduplication
may vary among applications. Moreover, its gap and mismatching values are
constant, i.e., they do not depend on frame positions and subroutine document
frequencies. Therefore, the optimal alignment score is equally affected by
incorrectly matching 1) rare subroutines located at the top, and 2) frequent
ones located at the bottom. Finally, the alignment scores are not regularized
by the stack trace length and the document frequencies.

Two studies – Bartz et al (2008) and Dhaliwal et al (2011) – proposed
techniques based on edit distance for crash report deduplication. Edit distance
measures the dissimilarity between two sequences as the minimum number of
edit operations (insertions, removals and substitutions) required to convert one
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of the sequences into another (see e.g. (Miller et al, 2009)). It was shown by
Sellers (1974) that edit distance and optimal global alignment are equivalent
problems. Bartz et al (2008) designed a logistic regression to calculate the
probability of crash reports being duplicate. As features, this method uses the
edit distance between two stack traces and categorical data comparisons (event
type, process name and exception code). For computing edit distance, the
substitution cost depends on the modules, offsets and subroutines of the frames.
Besides that, insertion and deletion penalties have different values when a new
group (a subsequence of frames with the same module) is created or removed.
This method assumes that module and offset information are always present
in C/C++ stack traces, which is not necessarily true. Dhaliwal et al (2011)
proposed to organize crash reports with a two-level grouping scheme. First,
they created a first-level group (coarse granularity) that contains reports with
the same frame in the top position. After that, they reorganized the reports in
the first level into subgroups (fine granularity). These subgroups are generated
based on the edit distance between the reports. The drawback of these two
studies is that they ignore two important pieces of frame information: position
and document frequency.

Modani et al (2007) reported that prefix match achieves better precision
and recall values than the edit distance and the technique proposed by Brodie
et al (2005). Prefix match considers the similarity of two stack traces as the
length of the longest common prefix between the stack traces normalized by
the size of the longest stack trace. One drawback of Prefix match is that small
differences in the top and middle positions can highly affect the computed
similarity.

Dang et al (2012) applied an agglomerative hierarchical clustering technique
to cluster crash reports. To compute stack trace similarities, they proposed a
method called position dependent model (PDM) that finds the optimal common
subsequence of two stack traces. PDM employs an algorithm similar to the
Needleman-Wunsh algorithm but for which the gap and mismatch values are
zero, i.e., they do not affect the final solution score. Like TraceSim, the match
value is computed using the position of the nearest frame to the top and the
alignment offset of the matched frames. However, PDM does not consider the
document frequency of the frames to compute the similarity score. Therefore,
frequent subroutines in the top positions of the stack can highly affect the
similarity, even though these subroutines may occur in the top positions of
many unrelated stack traces. Moreover, the similarity score is not affected by
neither mismatches nor gaps.

Another group of studies proposed techniques based on information retrieval.
Lerch and Mezini (2013) proposed to use the TF-IDF technique (implemented
by Lucene5) to calculate the similarity of stack traces. Campbell et al (2016)
compared the TF-IDF method (implemented by ElasticSearch6) with signature-
based methods. According to them, these methods are appropriate for industrial

5 https://lucene.apache.org/
6 https://www.elastic.co/elasticsearch/
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projects since such environments require a search complexity of O(n log n) where
n is the number of reports. In their work, two crash reports were considered
duplicate when their similarity score was greater than a defined threshold. The
authors found TF-IDF to be superior to other techniques. Besides, the authors
proposed a new tokenization that tokenizes camel-cased texts, achieving better
cluster metric values by using all data from crash reports.

Sabor et al (2017) proposed DURFEX – a new technique for crash report
deduplication. In order to reduce sparsity, DURFEX employs package names
instead of fully-qualified method signatures. Besides that, the n-grams of the
package names are generated to keep the temporal order of the frames. After
preprocessing, DURFEX converts the stack traces to vectors using TF-IDF.
The similarity between two reports is then given by the linear combination
of the features generated from categorical data comparisons with the cosine
similarity of stack trace vectors.

Moroo et al (2017) proposed a re-ranking scheme to combine sequence
matching methods with information retrieval. First, they use the TF-IDF
method to generate a ranked list of the most similar reports to a query. Then,
PDM is employed to calculate a new similarity score for the top-k reports.
Finally, the top-k reports are reordered based on the weighted harmonic
mean of TF-IDF and PDM. This combination of techniques is limited since a
subroutine’s document frequency and positions are considered independently
for the comparison. TraceSim can compare the frame orders of stack traces
using this supplementary information.

Three studies propose methods for crash report deduplication focusing on
report and bucket comparison. Kim et al (2011) developed a method called
CrashGraph that represents both stack traces and buckets as graphs. The nodes
of a graph represent the subroutines, and the edges link nodes whose subroutines
are adjacent within the stack traces. The similarity between a stack trace and
a bucket is computed as the percentage of edges shared between their graph
representations. Koopaei and Hamou-Lhadj (2015) proposed CrashAutomata:
a method that generates n-grams for each stack trace, and then prunes the
n-grams whose frequencies exceed a given threshold. An automata is generated
for each bucket based on the extracted n-grams of the stack traces. CrashGraph
and CrashAutomata can be negatively affected by bucket heterogeneity and
they ignore the document frequencies of the subroutines. Ebrahimi et al (2019)
trained a Hidden Markov Model (HMM) for each bucket of crash reports. These
HMM models are used to detect whether a crash report belongs to a bucket.
This method is not scalable since an HMM model has to be trained for each
bucket. Moreover, it cannot be applied in software projects whose buckets can
contain only one report.

Unlike the existing matching algorithms, TraceSim combines the position
and document frequency of frames to compute weights, providing an estimation
of the frame’s importance to crash deduplication. As supported by the results
in Section 5, we believe that this scheme improves the method’s capability
to distinguish relevant frames from irrelevant ones and, consequently, it helps
the method to better adjust the similarity score based on the correct (or
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wrong) matching of frames. Moreover, unlike information retrieval techniques,
TraceSim leverages the document frequency of the subroutines without losing
track of the frame order.

4 Experimental Setup

In this section, we present the main components of our experimental setup: the
datasets used in the experiments, preprocessing steps, strategies to compare
reports with multiple stack traces, our evaluation methodology, and competing
baseline methods. The datasets from open-source applications and the developed
code are available online7.

4.1 Datasets

Open data sources that contain crash reports are scarce and the few available
are unfit for investigating crash report deduplication. For instance, Mozilla
maintains a repository8 of crash reports related to their products, but bucket
assignment is performed automatically by their own system which hinders an
accurate evaluation. Therefore, in the literature, one popular alternative for
this problem is to mine bug tracking systems (BTS) of open-source applications
in order to extract crash reports that include stack traces. Some of these BTSs
include manually assigned buckets.

We use four datasets generated from BTS data of open-source projects.
Campbell et al (2016) created a crash report dataset from bug reports in the
Ubuntu bug repository9 comprising issues from 617 different software systems
for Ubuntu that are compatible with the C debugger. We have generated three
other datasets from bug reports of three popular BTSs: Eclipse10, Netbeans11

and Gnome12. We only considered reports submitted before January 1st 2020.
NetBeans and Eclipse are well-known integrated development environments
(IDEs) developed in Java, while Gnome’s BTS keeps track of bugs from 648
software projects (applications, libraries, bindings, among others) developed
for the GNOME desktop environment. We extracted stack traces from the
description field and attached files of bug reports. To better imitate real crash
reports, we remove the attachments uploaded at most ten minutes after the
report creation. This timespan has shown to be suitable for removing files that
were uploaded after the bug report inspection by the triaging team. The parser
developed by Lerch and Mezini (2013) was employed to extract stack traces

7 https://drive.google.com/file/d/1ZXj1DBqKDiVU3GZ4iU_fVzD0IxiLlmCU
8 https://crash-stats.mozilla.org/
9 https://bugs.launchpad.net/

10 https://bugs.eclipse.org/bugs/
11 https://bz.apache.org/netbeans/
12 https://bugzilla.gnome.org/
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from Eclipse and NetBeans BTSs, while the Parse::StackTrace13 module was
used to extract stack traces from Gnome BTS.

At some point after a new report is submitted, a user of a bug tracking
system analyzes and assigns it to either an existing (duplicate report) or a new
bucket (new bug). Thus, there is a time gap between the report submission and
the triage assessment. In the meantime, a recently submitted report can be
incorrectly labeled. We believe that the span of one year substantially reduces
label instability. Therefore, in the Eclipse dataset, we only keep reports created
before 2019. NetBeans started to gradually migrate their reports to another
BTS in the middle of 2017. Thus, we only consider reports submitted until 2016
for Netbeans. Finally, for Gnome’s BTS, we have found a significant reduction
in the number of submitted reports with stack traces after 2011 (only ∼ 2.2%
of all reports in Gnome were created between 2012 and 2018). The cause of
this decrease is unknown, thus we have decided to remove reports submitted
during this period to avoid undesirable bias.

Besides open-source projects, we evaluate our method using data from the
JetBrains crash report processing system Exception Analyzer. This system
handles reports from various products of the IntelliJ Platform product family,
which includes IntelliJ Idea, PyCharm, Kotlin Plugin and others. Its products
have a large user base, and their maintainers receive several hundreds of crash
reports per day. If a product from the IntelliJ Platform crashes, then Exception
Analyzer receives the generated report. Newly arrived crash reports are fed
to the classification algorithm, which either assigns the report to an existing
issue (which means that the report corresponds to an existing bug) or leaves it
without treatment. In the latter case, the report status is unclassified and it is
considered that a new bug is encountered. Next, unclassified crash reports are
grouped together using a clustering algorithm. These groups are then manually
inspected by an on-duty QA engineer who is selected among the developers of
IntelliJ Platform every day. The QA engineer can accept the generated issue
candidate and thus, create a new issue, or decline it. The clustering algorithm
can create meaningless issues by combining crash reports belonging to different
bugs. In this case, the QA engineer can manually move reports belonging to
the faulty issue to other issues or leave them untouched. Moreover QA engineer
can analyze and move reports from one issue to another, a more suitable one,
doing that not only for new issues or new reports, but also for existing ones.
QA engineer provides continued activity of supporting stack trace database
in a consistent state. The latter approach may be reasonable since new, but
similar crash reports can arrive later and then automatic clustering can create
a new issue correctly. Finally, new issues are passed to the developers of IntelliJ
Platform for fixing. Both classifying and clustering algorithms rely on stack
trace comparison.

The statistics of Ubuntu, Netbeans, Eclipse, Gnome, and JetBrains datasets
are presented in Table 1. For Jetbrains, we show the total number of crash
reports (including the automatically classified ones) and the number of manually

13 https://metacpan.org/pod/Parse::StackTrace
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labeled reports inside parenthesis. For the other datasets, we use manually
labeled data only. It is important to highlight that Jetbrains, Nebtbeans, and
Eclipse are composed of Java stack traces whereas Ubuntu and Gnome consist
of C/C++ stack traces.

Table 1: Statistics of datasets. The number of manually labeled reports are
shown inside parenthesis for JetBrains. In the datasets of open-source projects,
only manually labeled data are used.

Dataset Period # Duplicates # Reports # Buckets

Ubuntu 2007/05/25 - 2015/10/18 11,468 15,293 3,825
Eclipse 2001/10/11 - 2018/12/31 8,332 55,968 47,636
Netbeans 1998/09/25 - 2016/12/31 13,703 65,417 51,714
Gnome 1998/01/02 - 2011/12/31 117,216 218,160 100,944
Jetbrains 2018/08/09 - 2020/05/20 880,476 (6,516) 925,233 (51,273) 44,757

4.2 Preprocessing

The structure of stack traces depends on the programming language. An
example of a stack trace in both C/C++ and Java is depicted in Figure 4.

eclipse.commands.ExecutionException: an exception occurred
at eclipse.commands.DefaultOperationHistory.execute(DefaultOperationHistory.java:521)
at eclipse.CopyFilesOperation.performCopy(CopyFilesOperation.java:1294)
at eclipse.CopyFilesOperation.copyResources(CopyFilesOperation.java:1815)
at eclipse.jface.ModalContext$ModalContextThread.run(ModalContext.java:122)

#0 0xa2753f in gnash::remove_listener (listener=) at bits/stl_set.h:387

#1 0xa27581 in ~button_character_instance () at button_character_instance.cpp:280

#2 0x408fee in __check_rhosts_file () from /lib/libc.so.6 

#3 0x402fa1 in waitpid () from /lib/libpthread.so.0 

#4 0xb34478 in ?? () from /usr/lib/libglib-2.0.so.0

Position Subroutine name Arguments SourceAddress

Exception Class Subroutine name SourceException Message

C/C++

Java

Fig. 4: Stack trace example

As shown in this figure, Java stack traces are typically composed of exception
class name and message, subroutine names (fully-qualified name of the method)
and location in source code. A subroutine source consists of the file and the
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line where a subroutine was paused. Stack traces in C/C++ may present a
wide variety of information about each frame but their content depends on the
debugger and system libraries. For instance, in Figure 4, the C/C++ stack
trace contains frame positions, frame pointer addresses, subroutine names,
arguments, and sources. For both programming languages, we only extract the
subroutine names and the position of the frames. All remaining information is
ignored for crash report deduplication.

We found some subroutine names inconsistencies in C/C++ stack traces. In
order to correct them, subroutine names were preprocessed using the following
steps. First, since in some cases the parser could not accurately separate
arguments from subroutine names, we had to search for these inconsistencies
and remove them from subroutine names manually. After that, we stripped
the pattern GI and underscore symbols ( ) from the beginnings of names
since these prefixes are likely inserted by the debugger or compiler. Therefore,
following these steps, for instance, GI libc free (mem=0x3) and libc free
are transformed to libc free.

When a debug package of a software system is not installed on a machine,
the stack trace may contain frames for which information about the subroutine
call is missing. In these frames, subroutines are represented as ?? in C/C++
and HIDDEN.HIDDEN in Java. We refer to these subroutines as unknown
subroutines. In our experiments, we test two different strategies to handle
such subroutines: the first approach considers them as equivalent for stack
trace comparison, while the second treats them as different. Although the first
strategy prevents the wrong comparison of different subroutines, the second
one can detect patterns of subsequences with unknown subroutines.

Removing recursion is an important preprocessing step (Brodie et al, 2005;
Modani et al, 2007). We test two different recursion removal algorithms. The
first algorithm, proposed by Brodie et al (2005), removes subsequent frames
with the same subroutine names. The second one, developed by Modani et al
(2007), strips all frames that occurred between two similar frames of the
same subroutine. Finally, to remove uninformative functions, we employed the
unsupervised algorithm created by Modani et al (2007). In this method, a
frame is considered uninformative when the document frequency percentage
of its subroutine name is higher than a threshold. Consecutive uninformative
frames in the top and bottom positions are removed from the stack traces.

4.3 Multiple Stack Traces

Crash reports may include multiple stack traces, mainly due to multi-processing
and multi-threading systems. When such systems crash, each process or thread
usually generates a specific stack trace. Since the information of which thread-
/process that caused the crash may be unknown, all stack traces are considered
for deduplication. Another cause is related to the data characteristics. In Net-
beans and Eclipse BTSs, bug reports can include multiple stack traces within
their description and attached files. According to Schroter et al (2010), these
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extra stack traces provide additional information about an issue. Thus, we keep
all stack traces found in a report. Finally, stack traces from a nested exception
were considered as different stack traces since some of them are related to
process/thread executions and the extraction method proposed by Lerch and
Mezini (2013) incorrectly considers a significant amount of nested exceptions
to be single stack traces. In Table 2, we present the number of reports with
multiple stack traces.

Table 2: Number of reports with multiple stack traces (ST), total number of
reports, and the ratio of these two quantities for each dataset.

BTS # Reports w/ Multiple ST # Reports Ratio

Ubuntu 5 15,293 0.03%
Eclipse 13,641 55,968 24.37%
Netbeans 40,147 65,417 61.37%
Gnome 174,841 218,160 80.14%

In order to compute the similarity between two crash reports q and c that
contain multiple stack traces, we compute the similarity of all possible pairs
of stack traces, in which one member of the pair belongs to the query crash
report q and the other comes from the candidate crash report c. Thus, a
similarity matrix S ∈ Rm×n is created where Si,j is the similarity between the
i-th and j-th stack traces in q and c, respectively. We then assess six different
strategies to reduce this matrix to a real number. The first strategy performs
the reduction as follows:

max stg(S) = max
1≤i≤m,1≤j≤n

Si,j . (13)

Basically, this strategy returns the highest value in the similarity matrix.
The next five strategies perform matrix reduction by applying a maximum

operation followed by a mean operation. The first one is defined as follows:

query stg(S) =
1

m

m∑
i

max
1≤j≤n

Si,j . (14)

query stg(·) computes the average of the maximum similarity of each stack
trace in the query. A similar strategy can be applied to the stack traces in the
candidate:

cand stg(S) = query stg(Sᵀ). (15)

Instead of considering the stack trace sources, the third strategy calculates
the mean of maximum values of the shortest report (report that contains the
smallest number of stack traces):

short stg(S) =

{
query stg(S), if m ≤ n
cand stg(S), otherwise.

(16)
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The opposite strategy is defined as follows:

long stg(S) =

{
query stg(S), if m ≥ n
cand stg(S), otherwise.

(17)

Finally, the last approach is:

avg stg(S) =
query stg(S) + cand stg(S)

2
. (18)

4.4 Proposed Evaluation Methodology

In previous literature, there is no widely adopted methodology for evaluation of
crash report deduplication systems. Nevertheless, two common approaches are
ranking (Lerch and Mezini, 2013; Sabor et al, 2017) and binary classification
(Bartz et al, 2008; Modani et al, 2007). Both approaches have their own
strengths, as well as some key limitations. In ranking approaches, a query
crash report q is given and its similarity to each previously submitted report
is computed. Then, a ranked list of candidate reports, sorted by decreasing
similarity to q, is evaluated by means of classic ranking metrics. The higher the
system ranks duplicates of q in that list, the better its performance is. However,
ranking metrics are usually not defined for singleton (non-duplicate) queries.
This is a key drawback of ranking methodologies because they disregard the
ability of a system to filter out singleton crash reports. This is highly undesirable
given the large volume of crash reports submitted to a typical crash report
system. In contrast, binary classification approaches focus exactly on this
filtering task. Such approaches tackle the classification problem of predicting
if a query crash report is either duplicate or non-duplicate. However, they
ignore one, if not the most, important aspect of crash report deduplication:
identification of reports concerning the same software bug. In summary, the
blind spot of binary classification approaches is covered by ranking approaches,
and vice-versa.

Other popular approaches (Campbell et al, 2016; Dang et al, 2012; Moroo
et al, 2017) treat crash report deduplication as a clustering problem by consid-
ering buckets of reports as clusters. The clustering metrics consider the global
solution to measure the grouping quality, i.e., all reports are used to compute
the evaluation metrics. However, in practice, software projects frequently con-
tain an initial repository in which submitted reports are already pre-assigned
to buckets. Since these previously submitted reports are considered in our
evaluation methodology, we have opted to not using clustering metrics here.
Instead, we have adopted metrics that are not affected by the presence of
earlier reports.

Bug report deduplication is a problem related to crash report deduplication.
Its input is a textual description of a software issue. The body of literature
regarding this problem is larger than that for crash report deduplication.
Inspired by Banerjee et al (2017), which proposed an evaluation methodology for
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bug report deduplication, our evaluation methodology combines both ranking
and binary classification metrics. For ranking, we use two classic metrics: Mean
Average Precision (MAP) and Recall Rate@k (RR@k) (Sun et al, 2011). For
binary classification, we use the classic Area Under the ROC Curve (AUC).
Thus, our methodology can measure the system capacity to filter duplicate and
non-duplicate reports, compute the percentage of duplicate reports correctly
assigned to buckets, and evaluate ranking quality. Additionally, Rakha et al
(2018), also in the context of bug report deduplication, suggest to evaluate a
system on different portions of a dataset in order to better study how varies
performance due to data changes. Moreover, this idea inspired us to develop
our own methodology to crash report deduplication.

Query and Candidate Sets

In our methodology, a dataset of crash reports is always organized in chrono-
logical order, as this better reflects the real scenario of software engineering
projects. In order to compute each metric, we first select a query set Q of
consecutive crash reports within a given dataset. In Figure 5, we illustrate a
chronologically-ordered dataset, a query set Q within it, and other key aspects
of our methodology. When evaluating a system, each query report q ∈ Q is
considered as a newly submitted crash report; and reports submitted before q
are considered candidate reports, i.e. possible duplicates of q. More specifically,
for each query report q ∈ Q, we define a corresponding candidate set C(q) with
reports in the dataset that were submitted before q.

Previous reports Q: query set

qC(q)
(2 years)

Unreachable
for q

Later reports

Time

Fig. 5: Illustration of a chronologically-ordered dataset in which we select
a query set Q (blue span). Given a query report q ∈ Q, its corresponding
candidate set C(q) is shown.

Same as bug report datasets, crash report datasets can be very large.
Banerjee et al (2017) suggest to limit the candidate set C(q) to a certain time
window in the context of bug report deduplication. This way, we reduce both
the computational cost of duplicate report detection and the performance
degradation due to the repository growth over time. As depicted in Figure 5,
we limit C(q) to a time window of two years. That is, for any q ∈ Q, C(q)
comprises all reports in the dataset submitted at most two years before q.



TraceSim: An Alignment Method for Computing Stack Trace Similarity 21

Reports submitted more than two years before q are not reachable by the
systems being evaluated.

In Table 3, we illustrate a dataset comprising 11 reports identified as C1,
C2, . . . , C11. The query set Q = {C7, C8, C9} is highlighted in blue. The
first step of evaluating a system for a given query set consists of computing
sim(q, c) for all q ∈ Q and c ∈ C(q). For our example, we present these values
in the columns labeled as sim(q, ·) for q ∈ Q. In these columns, a value of UR
in a row c indicates that c /∈ C(q), i.e., report c is unreachable for query q.
For example, when q = C9, reports C1, C2, and C3 are unreachable because
they were submitted more than two years before C9. Additionally, all reports
submitted after q are unreachable for q.

Table 3: Example of a dataset: query set Q = {C7, C8, C9} (blue rows) and
similarities computed by a fictitious system between each query q ∈ Q and
candidate C(q). An UR label indicates that a candidate report c is UnReachable
for a query q.

Id Creation Date Bucket sim(C7, ·) sim(C8, ·) sim(C9, ·)

C1 2014/12/02 BC1 0.0 0.2 UR
C2 2014/12/24 BC1 0.0 0.5 UR
C3 2015/01/01 BC3 0.2 0.1 UR
C4 2015/06/12 BC3 0.7 0.0 0.8
C5 2016/02/22 BC3 0.3 0.3 0.1
C6 2016/05/25 BC6 0.6 0.4 0.3
C7 2016/05/26 BC6 UR 0.0 0.2
C8 2016/12/01 BC8 UR UR 0.1
C9 2017/05/25 BC3 UR UR UR
C10 2017/05/26 BC10 UR UR UR
C11 2017/11/02 BC8 UR UR UR

Limiting C(q) by a time window is usually not a big issue since, in most
cases, crash reports related to a bug are frequently submitted until the bug
is fixed. That is, for most bugs, there is not a large gap between duplicate
reports. In order to show that this is true for our datasets, we present in Table
4 the percentage of query reports that have at least one duplicate bug within a
time window of two years. In the worst case (Eclipse), for less than 2.7% of all
possible query reports, no previous duplicate report is reached using a window
of two years.

For JetBrains, we keep the original two-month time window employed in
their system. We have found that 96.60% of query reports in the Jetbrains
data can reach at least one duplicate report in this time window.

Bucket-Level Metrics

In our exemplary dataset in Table 3, we include a column that indicates the
bucket of each report. A bucket is identified as Bm where m corresponds to
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Table 4: Percentage of query reports that reaches at least one duplicate report
in a time window of two years.

Dataset 2 years

Ubuntu 99.47%
Eclipse 97.36%
Netbeans 98.68%
Gnome 99.50%

its master report, i.e., the first submitted (oldest) report in the bucket. For
instance, bucket {C6, C7} is denoted BC6. When evaluating a system, we
consider that the correct buckets in C(q) are known. Thus, a system does
not need to predict duplicate reports, but duplicate buckets, instead. In that
way, our metrics are defined in terms of candidate buckets instead of candidate
reports. We denote CB(q) the set of candidate buckets for a query q. This set
is derived from C(q), that is, CB(q) comprises buckets whose reports are in
C(q). For example, we have that CB(C7) = {BC1, BC3, BC6}. We then define
the similarity sim(q,B) between a query report q ∈ Q and a bucket B ∈ CB(q)
as the maximum similarity between q and a candidate report c ∈ B, that is:

sim(q,B) = max
c∈B

sim(q, c). (19)

In our example, we have sim(C7, BC3)=0.7. As shown by Equation (19), all
reports from B, even those outside the two-year time window, are considered to
compute sim(q,B). This is natural since we want to capture the full similarity
between B and q.

In Table 5, we present the similarity for all pairs q ∈ Q and B ∈ CB(q) for
this dataset. We can observe that some buckets in the dataset are unreachable
for some queries (the UR value in the table). That is the case when, for a given
query, all reports of some bucket are unreachable. For instance, when q = C9,
bucket BC1 is unreachable because all its reports (C1 and C2) in the dataset
are unreachable for C9. Regarding the same query, BC3 is reachable since at
least one of its reports is reachable for C9, e.g., C4 ∈ C(C9). Thus, all the
reports in BC3 are considered to calculate sim(C9, BC3) including C3 that is
not within the time window.

Based on the similarities between queries and their candidate buckets,
our methodology evaluates a method for crash report deduplication by using
ranking and binary classification metrics.

Ranking Metrics

As mentioned before, ranking metrics disregard a query that corresponds to
a singleton report. For the query set Q = {C7, C8, C9} in Table 3, when
q = C8, our methodology considers C8 as a singleton report since it is the
first report of its bucket (master report). Although C11 is a duplicate of C8
in the dataset, C11 is not considered in this case since it is submitted after



TraceSim: An Alignment Method for Computing Stack Trace Similarity 23

Table 5: Similarity matrix sim(q,B) between each query report q ∈ Q and each
bucket B ∈ CB(q) for the dataset in Table 3. A UR value indicates that all
reports in a bucket B are unreachable for a query q. In the last column, we
present the correct bucket for each query report.

Query q
Buckets

Correct Bucket
BC1 BC3 BC6 BC8

C7 0.0 0.7 0.6 UR BC6

C8 0.5 0.3 0.4 UR BC8

C9 UR 0.8 0.3 0.1 BC3

C8. Therefore, we only consider two duplicate reports in Q (C7 and C9) to
compute the ranking metrics. The set of duplicate reports within Q is denoted
Qd ⊂ Q. Given the similarities between a duplicate query q ∈ Qd and each of
its candidate buckets CB(q), we sort this set in descending order of similarity.
We define this sorted list as L(q) = (Bs1, B

s
2, . . . , B

s
|CB(q)|), where Bsi ∈ CB(q).

In our example, Qd = {C7, C9} and we have: L(C7) = (BC3, BC6, BC1) and
L(C9) = (BC3, BC6, BC8).

The first ranking metric is MAP which is the mean of the Average Precision
(AP) for all queries in Qd:

MAP =

∑
q∈Qd AP(q)

|Qd|
.

In our scenario, AP is very simple because, for a query q ∈ Qd, there is only one
relevant bucket in CB(q) that is the correct bucket for q. For a query q ∈ Qd,
AP is given by:

AP(q) =
1

p
,

where p is the position of the correct bucket for q in the sorted list of candidate
buckets L(q). In our example, AP(C7) = 1/2 and AP(C9) = 1. An AP equal
to one means that the system ranked the correct bucket in first place.

MAP is a relevant ranking metric, especially when comparing different
ranking systems. However, when we consider a realistic scenario in which a
manual triage of possible duplicate reports is necessary, the Recall Rate@k
metric is more informative. This metric is defined as:

RR@k =

∑
q∈Qd 1k(q)

|Qd|
,

where k ≥ 1 is an integer parameter of the metric and 1k(q) is an indicator
function whose value is one when the correct bucket for q is ranked within the
first k positions in L(q). This way, RR@k is the percentage of ranked lists in
which the correct bucket is within the top-k positions. RR@1 is the percentage
of duplicate queries for which the correct bucket is ranked first, corresponding
to the accuracy of a completely autonomous system.
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Due to the two-year time window, the correct bucket of a query q might
not appear in CB(q) and, therefore, its position is undefined in L(q). This
case occurs in real scenarios and it negatively affects the performance of crash
report deduplication systems. To reproduce this impact on real environments,
we consider AP(q) = 0 and 1k(q) = 0 for each query q whose correct bucket is
not in L(q).

Binary Classification Metric

As discussed before, ranking metrics have a relevant limitation: they ignore
non-duplicate reports in the query set. When considering a realistic scenario
in which manual triage is necessary, the ability of a system to filter out non-
duplicate reports is highly valuable. In the following, we explain how to cast a
similarity-based system as a binary classifier that predicts if a query report is
duplicate or not.

Given a query q ∈ Q (including singletons) and the corresponding sorted
list of candidate buckets L(q) = (Bs1, B

s
2, . . .), we use the highest similarity

among all candidate buckets, that is, sim(q,Bs1), as a classification score. For
the example in Table 5, we have the classification scores: sim(C7, Bs1)=0.7,
sim(C8, Bs1)=0.5 and sim(C9, Bs1)=0.8. Since sim(q, ·) ∈ [−1, 1], we can derive
a binary classifier by defining a threshold t such that q is considered duplicate
if sim(q,Bs1) ≥ t. In our evaluation, we do not need to choose t, because we use
the classic Area Under the ROC Curve metric. The ROC curve is a plot of the
true positive rate versus the false positive rate for every possible classification
threshold. AUC summarizes the ROC curve in one meaningful number between
zero and one. For example, the AUC for the query set in Table 5 is equal to
one.

Parameter Tuning and Model Validation

TraceSim and other methods include some parameters that need to be tuned.
In order to avoid reporting overestimated performance, we tune parameters
on a query set denoted tuning set T and then, using the best parameters,
we report final performance on a consecutive and non-overlapping query set
denoted validation set V . Since some concept drift along time in most crash
report datasets is expected, the tuning set comprises the reports immediately
preceded by the reports in the validation set. In Figure 6, we depict these two
sets within a chronologically-ordered dataset. In the figure, we highlight two
query reports: qt ∈ T and qv ∈ V . We can notice that the candidate sets C(qt)
and C(qv) can overlap, but the corresponding query sets T and V do not. The
time period of a validation set V is one year. The corresponding tuning set T is
delimited such that |T d| = 250, that is, T contains 250 duplicate reports along
with all singleton reports submitted in the same period. We have found that
|T d| = 250 leads to good results, and that larger tuning sets did not improve
overall performance.
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Previous reports V: validation set
(1 year)

T: tuning set
(|T d| = 250)

qtC(qt)

qvC(qv)

Later reports

Time

Fig. 6: Depiction of tuning and validation sets within a dataset.

As mentioned in Section 2.4, we tune parameters by means of TPE, a
machine learning technique. We run TPE for 100 iterations14 and choose the
best parameters based on the sum of MAP and AUC values on the tuning
set. The selected parameters are then used to compute the three considered
metrics (MAP, AUC and RR@k) on the corresponding validation set. The
tuned parameters are:

– the ones that control the frame weights used by the optimal global alignment
algorithm: α, β and γ (Sections 2.1 and 2.2);

– the approaches to handling unknown subroutines (Section 4.2);
– the threshold to consider a subroutine as uninformative (Section 4.2);
– recursion removal algorithms (Section 4.2);
– the strategies to reduce the similarity matrix (Section 4.3).

Because of the natural concept drift in our datasets, the performance of a
single method usually varies a lot from one query set to another, even within
the same dataset. Thus, Rakha et al (2018) suggested to perform experimental
evaluation on different portions of the dataset. Based on that suggestion, we
perform our experiments as follows. Along each dataset, we randomly sample
50 validation sets. For each validation set, a corresponding tuning set is selected
comprising reports submitted immediately before the validation reports. In
Figure 7, we illustrate an example of five randomly selected validation sets
within a dataset, along with the corresponding tuning sets. As one can observe,
the selected query sets may overlap.

Unlike the datasets derived from open source projects, Jetbrains contains
much more reports that were labeled by an automated system. To replicate
a similar experimental setup to the production environment of Jetbrains, we
consider such reports for the experiments. However, to mitigate the impact of
mislabelling on the evaluation, automatically classified reports in the tuning
and validation sets are disregarded for computing the ranking and binary
classification metrics. That is, we do not consider these reports as queries, even
though they can be in the candidate sets and they are used to compute the
document frequency of the subroutines. Moreover, since the Jetbrains dataset
contains much more reports than the other datasets, the time period of their
validation is set to only one month and the number of iterations for TPE is

14 We conducted a preliminary investigation to find the best number of iterations.
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2015 2016 2017 2018 2019

Validation setTuning setPrevious reports

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunk 5

Later reports

Fig. 7: Five randomly selected validation sets along with the corresponding
tuning sets within the same dataset.

decreased to 50. The number of sampled validation sets and the size of the
tuning set are not modified.

4.5 Competing Methods

In order to evaluate TraceSim we have selected a number of baselines. For
this, competing methods from the information retrieval, string matching, and
machine learning areas were selected. They have been selected due to TraceSim
being a structural composition of the methods belonging to these groups.

In information retrieval category we have selected two techniques: TF-IDF
and DURFEX. TF-IDF was implemented in Apache Lucene. We did not use
the camel case tokenization because Campbell et al (2016) showed that it
achieves poor performance when using only stack trace information. In fact,
following Lerch and Mezini (2013), we treat subroutine names as single terms.
DURFEX is only tested in Eclipse and Netbeans datasets since it was specifically
developed for Java stack traces. Besides that, in this method, we only consider
the cosine similarity of the stack trace vectors for crash report deduplication.
We also compare TraceSim to five other methods: PDM, Prefix Match, the
original Needleman-Wunsch (NW) algorithm, the matching algorithm proposed
by Brodie et al (2005), and the reranking method designed by Moroo et al
(2017). These methods are described in Section 3. Hereafter, Prefix Match is
abbreviated to PrefixM, and we denote the techniques proposed by Brodie
et al (2005) and Moroo et al (2017) as Brodie and Moroo, respectively. Finally,
for the sake of fairness, all methods have access only to the positions and
subroutine names of the frames in the stack traces.

We disregard some previous methods in our experiments due to different
reasons. Top signature-based methods have been shown to achieve worse
performances than TF-IDF (Campbell et al, 2016). The technique proposed by
Bartz et al (2008) depends on features (frame offsets and module names) that
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are not available in a significant portion of the stack traces in the datasets.
CrashGraph (Kim et al, 2011) leverages all crash reports of a bucket to generate
a bucket representation. As the majority of the works in the literature, our
paper focuses on the similarity of stack traces and, therefore, CrashGraph
is beyond the scope of this study. Ebrahimi et al (2019) propose a method
that requires predefined buckets because an HMM is trained for each bucket.
Koopaei and Hamou-Lhadj (2015) also assume a fixed number of buckets to
evaluate CrashAutomata and it is uncertain how to employ this technique
correctly in a scenario that does not hold such an assumption. Since our
evaluation methodology considers that singletons and new buckets may be
generated during evaluation, which is typical in real projects, we do not consider
these two previous methods.

Regarding the competing methods with learned parameters, their original
studies either do not describe the training process or use grid search to tune
the hyperparameters. Since Tree-structured Parzen Estimator achieves similar
or better performance than grid search (Bergstra et al, 2013b,a; Putatunda
and Rama, 2018), this Bayesian optimization technique is used to tune the
parameters of the competing methods for each chunk. Table 6 presents all
tuned parameters for each method. For all methods, except Durfex and TF-
IDF15, we also tune the following preprocessing choices: the strategies to reduce
the similarity matrix; the approaches to handling unknown subroutines; the
threshold of considering a subroutine as uninformative; and the recursion
removal algorithms.

Table 6: Tuned parameters for each method. For competing methods, we keep
the original names.

Method Parameter

TF-IDF No learnable parameters
PrefixM No learnable parameters
DURFEX N-gram
NW algorithm Match, mismatch and gap values
Brodie Gap value
PDM c and o
Moroo c, o, α, and M
TraceSim α, β and γ

5 Experimental Results

In this section, we compare TraceSim to the competing methods regarding
AUC, MAP, and RR@1 on Ubuntu, Eclipse, Netbeans, Gnome, and JetBrains

15 These strategies were designed for techniques that consider the frame order. Since these
information retrieval techniques are based on the bag-of-words model, such strategies are
not effective for them.
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datasets. The statistics of these datasets are presented in Table 1 (Section 4.1).
We also present an ablation study to assess the main components of TraceSim
and investigate the effectiveness of our method of computing mismatch and gap
values. As previously described, we consider 50 random validation sets for each
dataset. We use the same validation sets, and the corresponding tuning sets, to
evaluate all methods using the three aforementioned metrics. We then report,
for each method, the distribution of each metric in the 50 validation sets using
violin plots (Kampstra, 2008). These plots are produced by the standard kernel
density estimate (KDE) as implemented in the seaborn library (Waskom,
2020). For each violin plot, we present: the estimated distribution curve; three
dashed lines indicating the 25th, the 50th, and the 75th percentiles; and a
white dot indicating the mean metric value.

Additionally, when comparing TraceSim to a competing method (including
different versions of itself in the ablation study), we compute the difference
between the performance obtained by TraceSim and the competing method in
each validation set. These differences in terms of AUC, MAP, and RR@1 are
denoted, respectively, ∆AUC, ∆MAP, and ∆RR@1. These values are positive
whenever TraceSim outperforms a competing method on a validation set. For
each competing method, we plot the distribution of the 50 differences by means
of ordinary box plots. In these plots, we include a white point to indicate
the mean difference between TraceSim and the competing method. Finally,
following Rakha et al (2018), we apply the Wilcoxon signed-rank test (Gehan,
1965) to evaluate whether the obtained performance differences are statistically
significant. The statistical hypotheses are:

H0: The two methods have the same performance.

H1: The two methods have different performance.

The null hypothesis (H0) is rejected in favor of the alternative hypothesis
(H1) whenever p < 0.01. We indicate statistical significance by appending the
symbol F to the name of the competing method within the corresponding box
plot.

5.1 Results

In Figure 8 (left), we present the distributions of the AUC values achieved by
TraceSim and each competing method on the five considered datasets. In turn,
in Figure 8 (right), we depict the performance differences between TraceSim and
other methods in terms of AUC, i.e., ∆AUC. TraceSim consistently achieves
competitive AUC values in all datasets. It significantly outperforms the second
best technique by, on average, 6.44% in Ubuntu, 2.01% in Eclipse, and 1.39%
in Netbeans. In Gnome, TraceSim substantially surpasses all methods except
the NW algorithm which presents similar performance (the mean of ∆AUC
is approximately zero). Finally, in the JetBrains dataset, our method yields
AUC values comparable to Moroo, PDM, and PrefixM. The average of ∆AUC
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Fig. 8: Results regarding AUC. Left: distribution of AUC achieved by TraceSim
and each competing method in all validation sets of each dataset. Right: ∆AUC
between TraceSim and each competing method.
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between TraceSim and these techniques are +0.40%, -0.06%, and -0.22%,
respectively. However, these differences are not statistically significant.

In Figure 9 , we present the results of the same experiments but now with
respect to the MAP values obtained by TraceSim and each competing method
on the five datasets. In general, TraceSim significantly outperforms the majority
of the methods regarding MAP in all datasets. The exceptions are TF-IDF in
Gnome and PDM in Eclipse, Netbeans, and JetBrains. Although TraceSim
surpasses TF-IDF by 2.35% on average in Gnome, ∆MAP is not statistically
significant in this case (the variance varies from -10.46% to 18.87% and the
median is relatively close to 0). Regarding PDM, the average of ∆MAP between
TraceSim and this method are +0.76% in Eclipse, -0.04% in Netbeans, and
+0.25% in JetBrains. However, we consider the performance of these methods
comparable since the differences in their results are not significant.

Regarding the RR@1 evaluation metric (Figure 10), TraceSim significantly
outperforms most of the methods in all datasets. Similar to the MAP analysis,
we do not find statistically significant differences in three exceptional cases: TF-
IDF in Gnome, and PDM in both Eclipse and JetBrains. However, we observe
distinctive findings in NetBeans: TraceSim significantly underperforms PDM
(-1.11% on average), achieving results comparable to PrefixM and Moroo. Even
though TraceSim is not dominant in Netbeans regarding RR@1, it consistently
achieves competitive RR@1 values across all datasets. For example, on average,
TraceSim greatly surpasses PDM by 7.47% in Ubuntu and 12.93% in Gnome.

In general, TraceSim consistently achieves competitive performance for each
different combination of dataset and metric. Actually, in the majority of the
experimented scenarios, it significantly outperforms all competing methods.
Our method is surpassed by PDM in a unique scenario (RR@1 on Netbeans).
However, in this same dataset, TraceSim substantially outperforms PDM in
terms of AUC by 6.94% on average. In fact, none of the competing methods were
able to outperform TraceSim across all metrics in a specific dataset. Finally,
TraceSim is the only method that consistently performs well on different
programming languages. For instance, in terms of MAP, there is no significant
difference between PDM and TraceSim on Java datasets (Eclipse, Netbeans,
and JetBrains). However, the improvement of TraceSim over PDM regarding
MAP is, on average, 6.41% in Ubuntu and 11.99% in Gnome.

5.2 Ablation Study

An ablation study aims to assess specific model components by measuring
performance degradation when each component is independently removed.
In this section, we first conduct an ablation study to assess four important
TraceSim components, namely global weight, local weight, the diff(·) function,
and normalization. We then evaluate whether the approach to compute mis-
match and gap values based on frame weights is more effective than previous
strategies proposed in the literature. These two studies are performed only on



TraceSim: An Alignment Method for Computing Stack Trace Similarity 31

TraceSim Moroo PDM PrefixM Brodie NW TF-IDF
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
AP

Moroo PDM PrefixM Brodie NW TF-IDF
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

M
AP

(a) Ubuntu

TraceSim Moroo PDM PrefixM Brodie NW TF-IDF DURFEX
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
AP

Moroo PDM PrefixM Brodie NW TF-IDF DURFEX
-0.05

0.00

0.05

0.10

0.15

0.20

M
AP

(b) Eclipse

TraceSim Moroo PDM PrefixM Brodie NW TF-IDF DURFEX
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
AP

Moroo PDM PrefixM Brodie NW TF-IDF DURFEX

-0.05

0.00

0.05

0.10

0.15

M
AP

(c) Netbeans

TraceSim Moroo PDM PrefixM Brodie NW TF-IDF

0.40

0.50

0.60

0.70

0.80

0.90

M
AP

Moroo PDM PrefixM Brodie NW TF-IDF
-0.10

0.00

0.10

0.20

0.30

M
AP

(d) Gnome

TraceSimMoroo PDM PrefixM Brodie NW TF-IDF DURFEX
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
AP

Moroo PDM PrefixM Brodie NW TF-IDF DURFEX
-0.03

0.00

0.03

0.05

0.07

0.10

0.12

0.15

0.17

M
AP

(e) JetBrains

F p < 0.01

Fig. 9: Results regarding MAP. Left: distribution of MAP achieved by TraceSim
and each competing method in all validation sets of each dataset. Right: ∆MAP
between TraceSim and each competing method.
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Fig. 10: Results regarding RR@1. Left: distribution of RR@1 achieved by
TraceSim and each competing method in all validation sets of each dataset.
Right: ∆RR@1 between TraceSim and each competing method.



TraceSim: An Alignment Method for Computing Stack Trace Similarity 33

Ubuntu, Eclipse, and Netbeans datasets due to the high computational cost of
conducting such extensive experiments on Gnome and JetBrains.

TraceSim Components

We evaluate four important TraceSim components:

– Global Weight. In order to investigate the importance of TF-IDF for
TraceSim, we ignore the global weight when computing the weight of
a frame. This is achieved by setting gw(·) = 1 in Equation (3).

– Local Weight. Although frame positions are known to be valuable features for
crash report deduplication, we measure the importance of this information
for TraceSim. Thus, the local weight term is ignored by setting lw(·) = 1 in
Equation (3).

– The diff(·) function. The difference between the positions of two matched
frames is incorporated in PDM and Moroo. However, the corresponding
papers do not include a study regarding the importance of this aspect. We
ignore the diff(·) function in the match score function by setting diff(·) = 1
in Equation (8).

– Normalization. Many methods (Modani et al, 2007; Lerch and Mezini, 2013;
Sabor et al, 2017; Dang et al, 2012) normalize similarity scores, although
none of them have investigated the importance of this procedure.

In Figure 11, we depict performance differences (∆AUC, ∆MAP, and ∆RR@1)
between the full TraceSim and its modified versions for which we remove each
component listed above.

As shown in Figure 11a, ignoring global weights significantly reduces per-
formance in six out of the nine considered settings. The only three exceptions
are RR@1 on Eclipse as well as RR@1 and MAP on NetBeans. Moreover, the
only setting for which Global Weight deteriorates TraceSim’s performance is
RR@1 on NetBeans. These results corroborate the hypothesis that the global
frequency of subroutines provide valuable information to discriminate impor-
tant frames. In Figure 11b, we observe that TraceSim performs significantly
worse on NetBeans and Eclipse when Local Weight is removed. On the Ubuntu
dataset, this component appears to have no significant impact. As shown in
Figure 11c, the position difference of matched frames significantly improves
model performance in all datasets. This corroborates the hypothesis that du-
plicate stack traces contain important frames in close positions. Finally, in
general, performance degrades significantly when normalization is not applied.
As illustrated in Figure 11d, this component is not significantly relevant only
in three settings: RR@1 on Netbeans, RR@1 on Eclipse, and AUC on Eclipse.

In Appendix A, we additionally report the performance differences between
full TraceSim and each of the meaningful combinations that has at least two of
four components removed. Overall, the findings are similar to the ones reported
in this section.
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(b) Local Weight removed.
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(c) The diff(·) function removed.
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(d) Normalization removed.
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Fig. 11: Ablation study results: distributions of ∆AUC (left), ∆MAP (mid-
dle) and ∆RR@1 (right) between full TraceSim and TraceSim with different
components removed.
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Mismatch and Gap Values

In previous works, mismatch and gap values are defined as zero or some other
constant. TraceSim, in constrast, defines mismatch and gap values based on
frame weights, just as match values. The intuition is that the importance
of unmatched frames should also be considered by the alignment algorithm.
In order to compare the effectiveness of our strategy, we test all meaningful
combinations in which mismatch and gap values are set by one of the following
strategies:

– Zero. Values are set to zero, so that they have no cost in the optimal
alignment.

– Constant. Values are constant real numbers tuned by the ML algorithm
from the set {0.0, 0.1, . . . , 6.0}. These predefined set of values achieved the
best and consistent results.

– Variable. Gap and mismatch values are given by Equations (6) and (7),
respectively. This corresponds to the proposed strategy used in TraceSim
for both values: mismatch and gap.

There are nine possible combinations when considering the three aforemen-
tioned strategies to set mismatch and gap values individually. However, when
Gap=Zero (i.e. gap values are set using the Zero strategy), we have that the
mismatch operation is useless regardless of its value, since we can always replace
a mismatch by two subsequent gaps with no cost in these cases. Thus, we have
that 〈Mismatch=Constant; Gap=Zero〉 and 〈Mismatch=Variable; Gap=Zero〉
are both equivalent to 〈Mismatch=Zero; Gap=Zero〉. This leaves us with seven
meaningful strategies. Thus, in the following, we analyse performance dif-
ferences (∆AUC, ∆MAP, and ∆RR@1) between the full TraceSim method
〈Mismatch=Variable; Gap=Variable〉 and the remaining six strategies.

In Table 5.2, we show whether ∆AUC, ∆MAP, and ∆RR@1 are statistically
significant for each one of the six competing strategies in Ubuntu, Eclipse, and
Netbeans (the datasets names are abbreviated to U, E, and N, respectively).
A F symbol in a cell indicates that TraceSim significantly outperforms the
strategy on the dataset and metric corresponding to that cell. It is important
to highlight that no competing strategy achieves better average performance
than TraceSim in these experiments.

First, we focus on the results of the three strategies in which mismatch
values are defined as zero 〈Mismatch=Zero; Gap=*〉. These results correspond
to the first three rows in Table 5.2. The 〈Mismatch=Zero; Gap=Zero〉 and
〈Mismatch=Zero; Gap=Constant 〉 strategies are equivalent to the strategies
used in PDM and Brodie methods, respectively. Overall, the strategy in which
mismatch is set to zero negatively affects the method performance. For instance,
the 〈Mismatch=Zero; Gap=Zero〉 strategy, the best approach among the three
ones, significantly degrades the performance in Ubuntu regarding all metrics
and in Eclipse and Netbeans in terms of AUC. According to the results, we can
conclude that the TraceSim strategy is more effective than the ones employed
in Brodie and PDM techniques.
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Table 7: Performance differences between TraceSim and the six meaningful
strategies to set mismatch and gap values which are statistically significant. Cells
marked with a F indicate that the performance difference on the corresponding
dataset and metric is statistically significant. Due to space constraints, we
abbreviate Ubuntu, Eclipse, and NetBeans as U, E, and N, respectively, in the
column labels.

Strategy Equiv ∆AUC ∆MAP ∆RR@1
Mismatch Gap U E N U E N U E N

Zero Zero PDM F F F F F
Zero Constant Brodie F F F F F F
Zero Variable – F F F F F F F

Constant Constant – F F F F F F
Constant Variable –
Variable Constant – F F F F F F F

We now consider the results of the three remaining strategies in which mis-
match values are set according to either Constant or Variable strategies. Both
〈Mismatch=Constant; Gap=Constant〉 (fourth row) and 〈Mismatch=Variable;
Gap=Constant〉 (last row) strategies perform significantly worse in, respec-
tively, six and seven out of the nine evaluation settings. On the other hand,
the 〈Mismatch=Constant; Gap=Variable〉 strategy presents negligible effect
on model performance, resulting in no significant difference in any evaluation
setting. After analysing these results more carefully, we found that the con-
stant mismatch value was set to high values in most of the cases by the TPE
technique. More specifically, this value was equal to or greater than 2.0 in 126
out of 150 chunks, i.e. 84% of the cases. Since the upper bound of a gap value
is 1.0 (see Equation (6)), a mismatch value equal to or greater than 2.0 means
that the alignment algorithm will basically avoid mismatches. Recall that in
TraceSim two subsequent gaps can always replace a mismatch with no effect in
the optimal alignment cost. Thus, the 〈Mismatch=Constant; Gap=Variable〉
strategy, when using such high mismatch values, is equivalent to TraceSim.
Overall, the results corroborate the hypothesis that gaps should be prioritized
over mismatches, since gaps are more flexible. Moreover, we conclude that the
proposed strategy to set mismatch and gap values based on frame importance
is relevant to TraceSim’s performance.

In addition to Table 5.2, for more details, we provide box-and-whiskers
plots of the performance differences between TraceSim and the six strategies
in Figure 12 and Figure 13.

5.3 Time Efficiency

The comparison of a query to candidates within a dataset is the most critical
efficiency issue in crash report deduplication. Due to the use of an inverted index,
information retrieval methods are more efficient than matching algorithms to
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(a) Mismatch=Zero/Gap=Zero
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(b) Mismatch=Zero/Gap=Constant
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(c) Mismatch=Zero/Gap=Variable
F p < 0.01

Fig. 12: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between complete TraceSim and three strategies in which mismatch values are
defined as zero.

generate the ranked list of a query q. In one hand, the complexity of information
retrieval methods with inverted index is O(|qb| log |V |d), where |qb| is the set of
subroutines in the query, |V | is the vocabulary size, d is equal to the number of
candidates in C(q). In the other hand, the complexity of matching algorithms
is O(|q||c|max|C(q)|), where |q| is the query length, and |c|max is the longest
candidate in C(q). In real applications, d tends to be much smaller than |C(q)|
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(a) Mismatch=Constant/Gap=Constant

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 A
UC

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 M
AP

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 R
R@

1

(b) Mismatch=Constant/Gap=Variable
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(c) Mismatch=Variable/Gap=Constant
F p < 0.01

Fig. 13: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between complete TraceSim and three strategies in which mismatch values are
set according to either Constant or Variable strategies.

since information retrieval techniques only compute the similarity of candidates
that contain subroutines shared with the query. This explains the considerable
superiority of information retrieval techniques over matching algorithms in
terms of efficiency.

In practice, two simple approaches can be employed to speed up matching
algorithms. The first one consists of using time windows to reduce the number
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Table 8: Throughput (queries / second) of TraceSim with and without time
window, TF-IDF, and Moroo in Gnome and JetBrains.

Method Gnome JetBrains

TraceSim without Time window 0.5319 0.1080
TraceSim with Time window 2.6897 0.2569
TF-IDF 11.7687 1.9476
Mooro 8.8822 0.8051

of candidates to be considered for deduplication. The second approach, called
re-ranking, first creates a temporary ranked list based on information retrieval
techniques. Then it recalculates the similarity score of the top-k candidates in
the list using a more complex algorithm.

We examine the throughput of TraceSim (with and without time window),
TF-IDF, and Moroo (a re-ranking technique) on the two largest datasets:
Gnome and JetBrains. These techniques are executed on one of the original
validation sets in a controlled and homogeneous environment16. Excluding the
reports submitted after the validation sets, the experiment setups in Gnome
and JetBrains contain 216,646 and 901,015 reports, respectively. As we can
observe, the number of reports is very close to the total number of reports in
the datasets (see Table 1).

In Table 8, we show the throughput (queries / second) of TraceSim with
and without time window, TF-IDF, and Moroo in Gnome and JetBrains data
sets. The time window approach improves the algorithm throughput by around
5.0 and 2.5 times in Gnome and JetBrains, respectively. However, even using a
time frame, TF-IDF is substantially more efficient than TraceSim – the speedup
is approximately 4.37 and 7.58 in Gnome and JetBrains. As expected, Moroo
is slower than TF-IDF but the gap is much smaller in comparison to TraceSim
– TF-IDF is 1.32 and 2.41 times faster than Moroo in Gnome and JetBrains.

In brief, it is difficult to determine whether the throughput of TraceSim
presented in Table 8 is viable or not for a particular software project since a
throughput of 2.62 or 0.25 may be satisfactory depending on the application.
In cases that TraceSim is not viable due to its run time, besides calibrating the
time window, re-ranking could be employed to accelerate it. However, more
investigation is needed to figure out whether re-ranking would degrade the
quality of deduplication.

6 Threats to Validity

In this section, we discuss some threats to the validity of our study.
Quality of labeled data. Duplicate crash reports are identified by human

triagers. Since this is not a trivial task, reports might be incorrectly classified

16 The experiments in Section 5.1 and 5.2 were run in a shared and heterogeneous environ-
ment. Therefore, it is difficult to compare the run times based on these experiments.
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as non-duplicate or inserted into an incorrect bucket. To mitigate this threat,
we avoided using the most recent reports from the repositories. The assumption
is that most incorrect labels tend to be corrected over time. Moreover, we
employed data from well-known applications that have been used in literature
for crash deduplication and duplicate bug report detection.

Subject selection bias. The performance of the considered methods is sig-
nificantly dependent on data. Thus, the superiority of a method over other
techniques might differ concerning other software projects. To mitigate this
problem, we have conducted our experiments on five distinct software projects,
which contain stack traces from different programming languages (C/C++
and Java). Moreover, four of our datasets come from different open-source
applications while the other is an industrial dataset from IntelliJ Platform
products.

Stack trace extraction. In the four open source datasets, we extracted
the stack traces from the textual data of bug reports using different parsers
for each programming language. Since textual data is unstructured, parsers
might: extract only partial stack trace information, or miss stack traces (false
negatives), or wrongly detect a fraction of texts as correct stack traces (false
positives). We mitigate these possible issues by using parsers that are well-
known in the literature by the community.

Competing method implementations. Except for the work of Campbell et al
(2016), existing studies did not make available their implementations and/or the
data used for experimentation. Hence, we had to implement all the baselines
and state-of-the-art methods. Even though we have carefully followed the
technique descriptions in the papers, our implementations might not fully
match the originals since crucial components and preprocessing steps of the
techniques might not have been described with complete accuracy, or even
been reported in the study at all.

7 Conclusions

In this paper, we proposed TraceSim, a novel technique for crash report dedu-
plication. TraceSim computes the similarity between a pair of stack traces by
finding the optimal global alignment of their frame sequences. To compute the
alignment score, we assign weights to frames that indicate their discriminative-
ness for stack trace comparison. These weights depend on two factors: 1) the
position of the frames, and 2) the frequency of the subroutines in the dataset.
The influence of these factors on the similarity is regulated by parameters that
are learned using ML algorithms. Unlike previous techniques, the alignment
scores are influenced by the weights of all frames, matched and unmatched, in
the stack traces.

TraceSim and seven competing methods were experimentally evaluated on
five datasets (four generated from open-source projects and one derived from
industrial data) using a new methodology that combines ranking and binary
classification metrics. Except for industrial project data, the full evaluation
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framework – including datasets and the source code of methods and evaluation
methodology – is freely available online. We have found that TraceSim outper-
forms the majority of the existing methods in the literature. Moreover, our
method performs consistently well in all distinct scenarios including datasets
with distinct programming languages. In summary, compared to the previously
proposed methods:

1. TraceSim distinguishes duplicate reports from non-duplicate ones more
accurately.

2. TraceSim assigns reports to their correct buckets more often.
3. TraceSim generates better recommendation lists when the system needs

human assistance.

Furthermore, we conducted an ablation study to investigate the effectiveness
of TraceSim components and its scheme to compute mismatch and gap values.
The results corroborated that the frame position (local weight) and document
frequency (global weight) are valuable for crash report deduplication, as well
as normalization and the use of the position difference of the matched frames.
Finally, the experimental results confirmed the hypothesis that the rarity and
the position of the frames should be considered for computing mismatch and
gap values.

In terms of run time, TraceSim is similar to previously proposed sequence
matching algorithms. However, due to the use of inverted index, information
retrieval methods are more efficient in comparing a query to all n reports within
a repository. Besides employing re-ranking, we plan to investigate additional
approaches to reduce the computational cost without negatively affecting
TraceSim’s performance.
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A Additional ablation study results

In this appendix, we expand the ablation study in which Global Weight, Local Weight, the
diff(·) Function, and normalization are removed. We depict ∆AUC, ∆MAP, and ∆RR@1
between the original TraceSim and each possible configuration that has not more than two
components enabled in Figures 14–21.

The following configurations are not reported:

1. TraceSim without Global Weight and Local Weight. In this case, frame weights are always
equal to 1. Since the normalization was designed based on variable frame weights, the
normalization loses its effectiveness.

2. TraceSim without Global Weight, Local Weight, and the diff(·) Function. Similarly to
the previous configuration, the normalization is not effective because the frame weights
are constants.

3. TraceSim without Global Weight, Local Weight, normalization and the diff(·) Function.
This configuration is equivalent to NW algorithm in which the match, mismatch and
gap values are set to 1.0, 2.0, and 1.0, respectively.
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Fig. 14: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without the diff(·) Function and Normal-
ization.
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Fig. 15: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without Global Weight and the diff(·)
Function.
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Fig. 16: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without Global Weight and Normalization.
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Fig. 17: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without Global Weight, Local Weight and
Normalization.



46 Irving Muller Rodrigues et al.

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 A
UC

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 M
AP

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 R
R@

1

Fig. 18: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without Global Weight, the diff(·) Function,
and Normalization.
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Fig. 19: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without Local Weight and Normalization.
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Fig. 20: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without Local Weight and the diff(·)
Function.
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Fig. 21: Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right)
between full TraceSim and TraceSim without Local Weight, the diff(·) Function
and Normalization.


