J Comput Neurosci (2010) 29:327-350
DOI 10.1007/s10827-009-0195-x

CuBIC: cumulant based inference of higher-order
correlations in massively parallel spike trains

Benjamin Staude - Stefan Rotter - Sonja Griin

Received: 20 December 2008 / Revised: 7 August 2009 / Accepted: 1 September 2009 / Published online: 28 October 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Recent developments in electrophysiological
and optical recording techniques enable the simultane-
ous observation of large numbers of neurons. A mean-
ingful interpretation of the resulting multivariate data,
however, presents a serious challenge. In particular, the
estimation of higher-order correlations that character-
ize the cooperative dynamics of groups of neurons is
impeded by the combinatorial explosion of the para-
meter space. The resulting requirements with respect
to sample size and recording time has rendered the
detection of coordinated neuronal groups exceedingly
difficult. Here we describe a novel approach to infer
higher-order correlations in massively parallel spike
trains that is less susceptible to these problems. Based
on the superimposed activity of all recorded neurons,
the cumulant-based inference of higher-order corre-
lations (CuBIC) presented here exploits the fact that
the absence of higher-order correlations imposes also
strong constraints on correlations of lower order. Thus,
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estimates of only few lower-order cumulants suffice
to infer higher-order correlations in the population.
As a consequence, CuBIC is much better compatible
with the constraints of in vivo recordings than previous
approaches, which is shown by a systematic analysis of
its parameter dependence.
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1 Introduction

More than 50 years after its first conception (Hebb
1949), the idea that entities of thought or percep-
tion are represented by the coordinated activity of
(large) neuronal groups has lost nothing of its attraction
(e.g., Wennekers et al. 2003; Harris 2005; Sakurai and
Takahashi 2006). Now known as the “assembly hy-
pothesis”, the concept of a single, unified principle
underlying such diverse computational tasks as associ-
ation and pattern completion (e.g., Palm 1982), bind-
ing (e.g., Singer and Gray 1995), language processing
(e.g., Wennekers et al. 2006), or memory formation
and retrieval (e.g., Pastalkova et al. 2008) has inspired
numerous theoretical and experimental neuroscientists.
However, whether or not the dynamic formation of
cell assemblies constitutes a fundamental principle of
cortical information processing remains a controversial
issue of current research (e.g., Singer 1999; Shadlen
and Movshon 1999; van Vreeswijk 2006). While initially
mainly technical problems limited the experimental
surge for support of the assembly hypothesis (state-of-
the-art electrophysiological setups in the last century
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allowed to record only few neurons simultaneously),
the recent advent of multi-electrode array and optical
imaging techniques reveals fundamental shortcomings
of available analysis tools (Brown et al. 2004).

Based on the efficacy of synchronized presynaptic
spikes to reliably generate output spikes (Abeles 1982;
Konig et al. 1995; Diesmann et al. 1999), the temporal
coordination of spike timing is a commonly accepted
signature of assembly activity (e.g., Gerstein et al. 1989;
Abeles 1991; Singer et al. 1997; Harris 2005). Conse-
quently, approaches to detect assembly activity have
focused on the detection of correlated spiking. Statis-
tically, coordinated spiking of large neuronal groups
has been associated to higher-order correlations among
the corresponding spike trains (Martignon et al. 1995,
2000), where “genuine higher-order correlations” are
assumed, if coincident spikes of a neuronal group can-
not be explained/predicted by the firing rate and pair-
wise correlations alone. Mathematical frameworks for
the estimation of such correlations exist (Nakahara and
Amari 2002; Martignon et al. 1995; Schneider and Griin
2003; Giitig et al. 2003), however, run into combinator-
ial difficulties, as they assign one correlation parameter
for each group of neurons and thus require in the order
of 2V parameters for a population of N simultaneously
recorded neurons. Comparing the number of parame-
ters to the available sample size of typical electro-
physiological recordings (e.g. a population of N = 100
neurons implies ~ 10°° parameters while 100 s of data
sampled at 10 kHz provide ~ 10% samples) illustrates
the principal infeasibility of this approach. In fact, the
estimation of such higher-order correlations runs into
severe practical problems even for populations of N ~
10 neurons (Martignon et al. 1995, 2000; Del Prete et al.
2004).

Due to the limitations of multivariate approaches,
most studies in favor of cortical cell-assemblies resort
to pairwise interactions. And indeed, the existence and
functional relevance of pairwise interactions has been
demonstrated in various cortical systems and behav-
ioral paradigms (e.g., Eggermont 1990; Vaadia et al.
1995; Kreiter and Singer 1996; Riehle et al. 1997; Kohn
and Smith 2005; Sakurai and Takahashi 2006; Fujisawa
et al. 2008). However, although pairwise analysis can
indicate highly correlated groups of neurons (Berger
et al. 2007; Fujisawa et al. 2008), knowledge of higher-
order correlations is essential to conclude on large, syn-
chronously firing assemblies (see examples in Fig. 4 for
illustration). The importance to transcend pairwise de-
scriptions of parallel spike trains is further underscored
by the strong impact of higher-order correlations on the
dynamics of cortical neurons (e.g., Bohte et al. 2000;
Kuhn et al. 2003). Taken together, we believe that
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the increasing number of simultaneously observable
neurons can only be exploited by analysis techniques
that go beyond mere pairwise correlations but are nev-
ertheless applicable given the limited sample size of
electrophysiological data (Brown et al. 2004).

In this study, we present a novel cumulant based
inference procedure for higher-order correlations
(CuBIC). The method is specifically designed to de-
tect the presence of higher-order correlations under
the constraints of the limited sample size typical of
standard experimental paradigms. This is achieved by
combining three basic ideas. First, CuBIC is based
on the binned and summed spiking activity across all
recorded neurons (population spike count). This trans-
forms the multivariate problem to estimate all ~ 2V
model parameters into a parsimoniously parametrized
univariate problem, thereby dramatically reducing the
required sample size. Furthermore, pooling the spik-
ing activity avoids the need for sorting the multi-unit
spike trains recorded on a single electrode into isolated
single neuron spike trains. Correlations among the in-
dividual spike trains are measured by the cumulants of
the population spike count. Importantly, the cumulant
correlations of higher order used here do not conform
to the higher-order parameters of the exponential fam-
ily used by, e.g., Schneidman et al. (2006). Second, we
use the compound Poisson process (e.g., Snyder and
Miller 1991; Daley and Vere-Jones 2005) as a flexible,
intuitive, and analytically tractable model of correlated
spiking activity. Here, correlations among spike trains
are modeled by the insertion of additional coincident
events in continuous time (Holgate 1964; Ehm et al.
2007; Johnson and Goodman 2008; Staude et al. 2010).
As a consequence, the conceptual difference between
the discretely sampled data (population spike count)
and the continuous time spike trains is an explicit
feature of the present framework. And third, we for-
malize the observation that even small correlations of
lower order can imply synchronized spiking of large
neuronal groups (Amari et al. 2003; Benucci et al. 2004;
Schneidman et al. 2006).

The first and second ideas are elaborated in
Section 2. Based on the compound Poisson process,
Section 3 thoroughly formalizes the third idea, where
we analytically derive confidence intervals for a hier-
archy of statistical hypothesis tests. The tests are then
combined to compute a lower bound £ for the order
of correlations in a given data set. Importantly, the
inferred lower bound & can considerably exceed the
order of the estimated correlations. Thereby, CuBIC
avoids the direct estimation of higher-order correla-
tions, which is practically infeasible for orders of m 2 5,
but nevertheless reveals their presence. As shown by



J Comput Neurosci (2010) 29:327-350

329

extensive Monte Carlo simulations (Section 4), using
the third cumulant suffices to reliably detect existing
correlations of order > 10 in large neuronal pools (here
N ~ 100 neurons with average count-correlation co-
efficients of ¢ ~ 0.01). Thus, CuBIC achieves an un-
precedented sensitivity for higher-order correlations in
scenarios with reasonable sample sizes, i.e. experiment
durations of T < 100 s. The Discussion section re-
lates the cumulant-based correlations used here to the
higher-order interaction parameters of the exponen-
tial family (e.g., Martignon et al. 1995; Nakahara and
Amari 2002; Shlens et al. 2006) and critically discusses
the implications of the hypothesized compound Poisson
process. Preliminary results have been presented previ-
ously in abstract form (Staude et al. 2007).

2 Measurement & model

2.1 Measurement

Assume an observation of a large number of parallel
spike trains. To measure correlation, we describe such

——
—
—
—
—
—
—
—
——

Time

Fig.1 Schema of the compound Poisson process and its measure-
ment. Left half: spike event times (horizontal bars) of individual
neurons x(f),...,xy(f) and tick marks of the carrier process
z(f) (top) with the associated amplitudes (numbers above the
ticks), represented in continuous time. The population spike
count Z(s) (below the spike trains) counts the number of spikes
across all neurons in bins of width 4 (dotted lines). Right half:
distribution of the amplitudes a; of the carrier process z(f) (am-
plitude distribution f4, fop) and distribution of the population
spike count Z (s) (complexity distribution fz, bottom, estimated
from 100 s of data with the given amplitude distribution and

2(t) = 8(t—t;)-a

a population as a succession of “patterns”, X(s) :=
(X1(5), ... Xn()T (T denotes transpose), one pattern
for every time bin of width 4. The components of X
are the binned, discretized spike trains, i.e. X;(s) is the
spike count of the ith neuron in the interval [s, s + /).
Given these patterns, we define the population spike
count Z(s) at s as the total spike count in the sth bin

(Fig. 1)

N
= ZX,-(S).
i=1

The variable Z (s), from here on referred to as the
“complexity” of the population at s, counts the number
of spikes that fall into the interval [sh, (s + 1)h), irre-
spective of the neuron IDs that emitted these spikes.
In the case where the X; are binary (“1” for one or
more spikes in the bin, “0” for no spike), Z (s) is simply
the number of neurons that spike in the time slice.
As opposed to most other frameworks for correlation
analysis (e.g., Aertsen et al. 1989; Martignon et al.
1995; Griin et al. 2002a; Nakahara and Amari 2002;
Shlens et al. 2006), however, the method presented

Z(s)

Amplitude distribution fa

T

Carrier rate v

Pr{a;

123456
3

Complexity distribution fz

a bin size of h = 5ms; dashed line: Poisson fit, corresponding
to an independent population with the same firing rates). To
construct a population of correlated spike trains, amplitudes a;
are drawn for all events #; in the carrier process i.i.d from f4. The
individual processes x;(f) are then constructed by copying every
event at ¢; of the carrier process z(f) into a; “child” processes
xi(f) (the specific process IDs are here drawn randomly from
{1,..., N}). Correlations of order £ are induced, whenever events
in the carrier process are copied into more than & processes, i.e.
if the amplitude distribution assigns non-zero probabilities for
amplitudes > ¢ (see Theorem 1 in Section 2.4)
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in this study does not assume binary variables. As a
consequence, our term “complexity” as the “number of
spikes per bin in the population” does not comply with
the “number of active neurons per bin” used in binary
frameworks.

To regard the values of Z (s) in different bins as i.i.d.
random variables, we here assume that Z (s) and Z (s +
k) are independent for k # 0 (zero memory), and that
the distribution of Z(s) does not depend on the time
bin s (stationarity). We name the resulting distribution
of population spike counts

fz() :=Pr{Z =1)

the “complexity distribution” of the population. The
validity of these assumptions with respect to real spike
trains, and potential adaptations of CuBIC, are dis-
cussed in Section 5.3.

Despite ignoring the specific neuron IDs that con-
tribute to the patterns X(s), the complexity distribution
nevertheless contains information about the correlation
structure of the population. For instance, if the counting
variables {X;}ic(1,... ) are independent Poisson counts,
the corresponding population spike count, being the
sum of the independent Poisson variables, is again a
Poisson variable, and thus the complexity distribution
fz is a Poisson distribution. Correlations change the
relative probabilities for patterns of high and low com-
plexities as compared to the independent case, as can
be seen by comparing the complexity distribution of the
correlated population and its independent Poisson fit
in Fig. 1 (blue bars and dashed gray line, respectively;
see also Griin et al. 2008a and Louis and Griin 2009).
We quantify such deviations from independence by
means of the cumulants «,,[ Z] of the population spike
count Z.

2.1.1 Correlations and cumulants

Like the more familiar (raw) moments E[Z"] of a
random variable Z, the cumulants «,,[ Z] characterize
the shape of its distribution (see Appendix A and,
e.g., Stratonovich 1967; Gardiner 2003). Most com-
mon are the first two cumulants, the expectation and
the variance. These admit simple expressions in terms
of the moments: «;[Z] = E[Z] and «;[Z] = E[Z?] —
E[Z]? = Var[Z]. Similar expressions for higher cumu-
lants, however, are exceedingly complicated (see Stuart
and Ord 1987 for explicit expressions for m < 10).

The most important property of cumulants, and their
advantage over the raw moments is that the cumulant
of the sum of independent random variables is the sum
of their cumulants. For m =2 and Z = YV, X, for
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instance, we have the well-known variance-covariance
relationship

N
KZ[Z] = Var[Z] = Var |:Z 1‘71:|
i=1
N
= Zvar[Xi] + ZCOV [Xi. X;]. 1)

i=1 it ]

Equation (1) shows that Var[ziji | Xil=
YN, Var[X;] if ¥,,;Cov[X;, X;]=0, which is the
case if the X; are (pairwise) uncorrelated. Cumulant
correlations of higher order, the so-called “mixed”
or “connected” cumulants, are a straightforward gen-
eralization of the covariance in exactly this sense: if
the population has neither pairwise nor triple-wise
cumulant correlations, then «3[Z] = Zfi | k3[Xi] (see
Appendix A for a concise definition, and Gardiner
2003, for a general introduction). Higher-order cumu-
lant correlations generalize the covariance also with
respect to the fact that E[ X X;] = E[ X] E[ X,] implies
Cov[ X}, X,] = 0. That is, if the multivariate random
vector X decomposes into independent subgroups, then
the cumulant correlations vanish (Streitberg 1990). For
notational consistency, we will from now on stick to the
cumulant notation, e.g., use “first/second cumulant”
instead of the more familiar terms “mean/variance”.

A further consequence of Eq. (1) is that «y[Z]
is influenced only by the single process statistics
(via Zfi | Var[X;]) and pairwise correlations (via
> 4 CovlX;, X i1). No higher-order correlations con-
tribute to the second cumulant. This holds also for
higher cumulants, i.e. ,,[Z] depends on correlations
among the X; of maximal order m. And finally, in the
same way that k,[Z] depends on pairwise correlations
and the single process statistics, also «,,[Z] does not
measure pure mth order correlations, but depends on
correlations of all orders up to m. While a correction
of the second cumulant for the influence of the single
process statistics would be straightforward (subtracting
Zfil Var[X;] in Eq. (1), see Appendix B), correcting
higher cumulants for the influence of correlations of
lower order is exceedingly complicated. We therefore
employ a parametric model for Z, the compound
Poisson process (see next section), the parameters of
which can be interpreted straightforwardly in terms of
higher-order correlations among the X;.

We would like to stress that the higher-order corre-
lations defined by cumulants differ strongly from the
higher-order parameters of the exponential family used
by, e.g. Martignon et al. (1995), Nakahara and Amari
(2002), Shlens et al. (2006). The relationship between
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these two frameworks is discussed in more detail in
Section 5.1 (see also Staude et al. 2010).

2.2 Model

As opposed to the discretized, i.e. binned, population
spike count Z (s) of the previous section, the proposed
model operates in continuous, i.e. unbinned time. That
is, we model the process z(f) = Zfi 1 Xi(t), where x;(¢) =
> j8(t — tl}) denotes the ith unbinned, continuous-time
spike train (i=1,..., N) with spike-event times t’]
The model we propose for z(?) is that of a compound
Poisson process (CPP)

20 =) 8t —1tpaj, )
J

where the event times ¢; constitute a Poisson process,
and the marks a; are i.i.d. integer-valued random vari-
ables, drawn independently for all ¢;. The marks a;
determine the number of neurons that fire at time ¢;,
and will be referred to as the “amplitude” of the event
at time ¢;. The probability that an event has a specific
amplitude is determined by the amplitude distribution
fa, ie. fa(§) =Pr{a; =&} (see Fig. 1). The Poisson
process that generates the events ¢; is called the “carrier
process” of the model and its rate v is the “carrier rate”.
Processes of this type are also referred to as general-
ized, or marked, Poisson processes (see e.g. Snyder and
Miller 1991 for a general definition and Ehm et al. 2007
for an application to spike train analysis).

To interpret the CPP as the lumped process of a
correlated population of N spike trains, and to utilize
the CPP for the generation of artificial data, the events
of z(t) are assigned to individual processes x;(¢) (i =
1,..., N). The simplest model draws the a; process
IDs that receive a spike at ¢; as a random subset from
{1,... N}, independently for all event times ¢; (Fig. 1).
This results in a homogeneous population of correlated
Poisson processes, where all processes have the same
rate, all pairs of processes have identical correlations,
and so on. The SIP/MIP models presented in Kuhn
et al. (2003) are special cases of this more general
model (see also Appendix B for examples). As the
inference procedure CuBIC presented in the remainder
of this study is based solely on the summed activity,
however, it is not affected by the details of the copying
procedure. In particular, CuBIC does not presuppose
that the population is homogeneous.

2.3 Relating measurement and model

To interpret the continuous-time model parameters v
and f4 in terms of correlations among the counting

variables X;, we now relate the former to the cumulants
of the population spike count Z. First of all, note that
as the carriers process z(¢) is a Poisson process, the
population spike counts in different bins are i.i.d. For
[ =1,..., N, define the processes y;(¢) that determine
all event times ¢; in Eq. (2) with given amplitude a; =/
(compare Appendix A). Then the CPP z(¢) admits the
representation z(¢) = Zfi 1L yi(®). As a consequence,
the discretized population spike count satisfies Z =
Zl’i 1Y, where the Y; are the counting variables ob-
tained from the processes y;(¢) using a bin size h. As
the event times ¢; of z(¢) follow a Poisson process and
the subsequent amplitudes a; are independent, the y;()
are independent Poisson processes. The rate v; of y;(¢)
is given by vy = fa()-v (! =1,2,...). Hence, the Y;
are Poisson variables with parameter vh. As a conse-
quence, all cumulants of Y; are identical and given by
km[ Y] =vih (m = 1,2, ...; Gardiner 2003). The scaling
behavior of the cumulants «,,[[Y;] = ["'«,,[Y;] for all m
(Mattner 1999) yields

N ) N
Km[Z] = Km |:Zl : Yl:| {Yl}md;pendem Zlmxm [Y7]

l !

N
=Y I"vh.
/

Using v; = fa(/) - v and Zl’il "M fa(l) = E[A™] =:
wmlA], we finally have

Equation (3) is the central equation of this study and
requires a few more remarks. First, it implies that the
first two cumulants of the population spike count, k[ Z]
and k[ Z], are determined solely by the carrier rate v
and the first two moments of the amplitude distribu-
tion, u[A] and uy[A]. As k[Z] and «,[ Z] determine
firing rates and pairwise correlations in the population
(Appendix B, Egs. (24) and (26)), we conclude that all
CPP models with identical carrier rate v and identical
w1l A] and u,[A] generate populations with identical
rates and pairwise correlations. Differences in higher-
order correlations can thus be modeled by choosing
different higher moments for f4 (see Section 2.4 for
the precise relationship between the entries of the
amplitude distribution and higher-order correlations in
the population). This makes the CPP a very flexible
and convenient model to generate artificial data sets
with identical firing rates and pairwise correlations,
yet different higher-order correlations (see Section 4
and Appendix B for examples, and Kuhn et al. 2003;
Ehm et al. 2007; Staude et al. 2010 for alternative
parametrizations).
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Second, the moments of the strictly positive, integer-
valued variable A increase with the order, i.e. satisfy
uml Al < umi1[A] for m > 1. By Eq. (3), this implies
that also the cumulants of Z increase with the order,
i.e. k[ Z] < k1l Z]. This is a reformulation of the
fact that insertion of joint spikes as done in the CPP
generates only positive correlations (e.g., Brette 2009;
Johnson and Goodman 2008, Johnson and Goodman,
unpublished manuscript), and it shows that certain
combinations of cumulants cannot be realized by the
CPP.

2.4 Terminology

The conceptual difference between the measured data
(the counting variables X; and the complexity distribu-
tion fz) and the parametric model that we assume to
underlie this measurement (the CPP) is crucial for the
remainder of this study. To illustrate this difference,
note that f, depends on the bin size 4 used in the
discretization. Larger bin widths increase the proba-
bilities for high complexities, while smaller bin widths
increase the probability for empty bins. The parameters
of the CPP, on the other hand, do not change with the
bin size. For instance, if all events of z(¢) have ampli-
tude a; = 1, i.e. the amplitude distribution has a single
peak at & = 1, the population consists of independent
Poisson processes, irrespective of the bin size used for
the analysis, or even the number of recorded neurons.
In other words: patterns of complexity Z > 2 can occur
by chance, while events of amplitude £ > 2 do not occur
by chance but imply correlations in the population. The
order of the correlation, in turn, is determined by the
amplitudes of the events in the corresponding CPP (see
Appendix A for the proof):

Theorem 1 Let z(f) = Zfi ,Xi(®) be a compound
Poisson process with amplitude distribution f,, and let
X = (Xy,..., Xn)T be the vector of counting variables
obtained from the x;(t) with a bin width h. Then the
components of X have correlations of order m if and
only if fa assigns non-zero probabilities to amplitudes
> m.

The above theorem confirms the intuitive conception
that, within the framework of the CPP, correlations of
a certain order m require injected coincidences into at
least m processes (events of amplitudes > m). Also,
a population with only pairwise but no higher-order
correlations has events of maximal amplitude m = 2.
Importantly, correlations in the above theorem are
defined strictly on the basis of the discretized counting
variables X;. As a consequence, they do not resolve
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(and do not depend on) the perfect temporal precision
of the coincident events in the CPP: if the events of
z(¢) were copied into the individual processes with a
temporal jitter that is small with respect to the bin size
h, the correlations among the counting variables will
hardly be affected (see Section 5.3.3 for a more detailed
discussion). Note also that events of amplitude & induce
not only correlations of order &, but also of orders < &.

3 Cumulant based inference of higher-order
correlations (CuBIC)

This section describes our cumulant based inference
procedure for higher-order correlations (CuBIC). The
outcome of CuBIC is a lower bound & on the order
of correlation in the spiking activity of large groups of
simultaneously recorded neurons. As will be shown in
Section 4, this lower bound can exceed the order of
the cumulants that were estimated for the inference.
Thereby, CuBIC can provide statistical evidence for
large correlated groups without the discouraging re-
quirements on sample size that direct tests for higher-
order correlations have to meet. This is achieved by
exploiting constraining relations among correlations of
different orders. For illustration, consider as an exam-
ple the extreme situation of 4 simultaneously recorded
neurons, where all neuron pairs have a correlation
coefficient of ¢ = 1. As ¢ =1 implies identity for all
pairs of spike trains, all four spike trains of this example
must be identical (Fig. 2, left). In other words, a spike
in one neuron implies joint spike events in all the
other neurons. Thus, the data must have correlation of
order 4.

The key observation of this example is that the order
of correlation we inferred (§ = 4) exceeds the order
m of the measured correlations (here m = 2). CuBIC
formalizes this example in the framework of the CPP,
and generalizes it in two aspects:

1. Assume the correlation coefficients had been some-
what smaller than 1: do we still need correlation
of order 4 to explain the measured pairwise cor-
relation? Or would correlation of order 3 as in
Fig. 2, middle, or even of order 2 as in Fig. 2,
right, suffice to explain the measured correlations?
In other words: What order of correlation is min-
imally required to explain the measured pairwise
correlations?

2. Can we formulate a similar reasoning for measured
correlations of higher order? What order of cor-
relation is minimally required to explain the mea-
sured correlations of third (fourth,...) order?
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Neurons

Fig. 2 Strong pairwise correlations imply higher-order correla-
tions. Raster plots show populations that have a single event
amplitude that differs in the three panels (left: all events have
amplitude 4, middle: amplitude 3, right: amplitude 2). Note that
an increase in pairwise correlations in the right population can

The next section details our approach to answer the first
question. The results are then generalized to answer the
second question (Section 3.2). Finally, we explain how
CuBIC combines the results to infer a lower bound for
the order of correlation in a given data set (Section 3.3).

3.1 Testing pairwise correlations (m = 2)

We approach the first aspect with a hierarchy of sta-
tistical hypothesis tests, labeled by the integer &. For
fixed &, the null hypothesis Hg,g states that the pairwise
correlations (thus the superscript “2”) in the population
are compatible with the assumption that there is no
correlation beyond order &; the alternative Hﬁ’é states
that correlation of order higher than & is necessary to
explain the pairwise correlations. Rejection of e.g. H§‘4
in favor of H>* thus implies the existence of correlation
of at least order 5. The test statistics to decide between
these alternatives is the second sample cumulant of
the population spike count, and the compound Poisson
process provides the framework to analytically derive
the required confidence bounds.

3.1.1 The null hypothesis Hé’é

The formulation of a null hypothesis requires a care-
ful distinction between the random variable that de-
scribes the experiment, and the data sample that is
tested against the hypothesis. For a fixed value of
the test parameter &, this section formulates the null
hypothesis H*, using the random variable Z’ that
describes the population spike count of a neuronal
population. Section 3.1.2 explains how a given data
sample {Z{, ..., Z| } is tested against Hé’é.

The null hypotheses Hg,g is based on the CPP model
whose population spike count has the maximal second
cumulant under the constraints that (a) the first cumu-
lant equals that of a given population spike count Z’,
and (b) the maximal order of correlation in the model
is &£. Using the amplitude distribution f4 to parametrize

Time

only be achieved by increasing the event amplitude and thereby
the order of correlation. The plots thus illustrate the populations
that are maximally correlated with correlations of order <4
(left), < 3 (middle) and < 2 (right)

its correlation structure, this CPP model is the solution
of the constrained maximization problem

K5 ¢ = max{ia[ Z]}
v, fa

subjectto «([Z] =K[Z'] 4)
and fa(k)=0fork > &,

where v and f,4 are the CPP parameters that determine
the population spike count Z. We rewrite Eq. (4) by
observing that the second constraint ( f4(k) = 0 for k >
&) together with Eq. (3) implies «:[Z] = ux[Alvh =
S5 P fayvh. With v = fa(l) - v (Section 2.3), we
thus have

£ 12 V1
K[Z] = levlh =l 1| :|h (%)
=1 &-2 Vg

where the dot denotes the standard scalar product. Us-
ing Eq. (5) and the vector notation &,, := (1", ..., &™7T
and Vg := (vy, ..., Ug)T, the maximization problem of
Eq. (4) becomes

Ky ¢ i= max {52 : T)gh} (6)
Ve
subject to s}l “Veh =Kk [Z'].

In Eq. (6), both the function to maximize (&, -
Vgh) and the constraint (51 -vgh = k1[Z']) depend lin-
early on the parameters vz = (vy, ..., v¢). Problems of
this type, so-called Linear Programming Problems, are
uniquely solvable, e.g. using the Simplex Method (Press
et al. 1992, Chapter 10.8). The solution yields the upper
bound for the second cumulant «; , and the correspond-
ing parameter vector v;. The carrier rate and amplitude
distribution of the CPP that maximizes Eq. (6) are then
given by v* = Zle viand f,.() = v/ /v*.

Assume that the combination of firing rates and pair-
wise correlations in the population can be realized with
correlations of order < &. Then, the second cumulant of
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its population spike count Z’ must be smaller than the
upper bound k5, computed in the previous section. We
thus formulate the null hypothesis

HS‘S N VAR
The alternative hypothesis
H* 1 i0[Z'] > Ky e

states that, within the framework of the CPP model,
the pairwise correlations in the population imply the
presence of correlation of order > £.

3.1.2 Test statistics and their distributions

The derivations in the previous section require the
cumulants «1[Z'] and k»[ Z'] of the random variable Z'.
Given only a data sample {Z{,..., Z} of size L, we
estimate these quantities by the standard sample mean
and (unbiased) sample variance (Stuart and Ord 1987)

L
~ ’ 1 ’
ki =i[Z'] = 7 1§:1 Z,
1 < >
k2 = I,(\‘Q[Z/] = m E (Zl/ — kl) .

=1

The test of the data sample against Hé’é requires the
distribution of the test statistics k, under the null hy-
pothesis. To derive this distribution, recall that E[k,] =
k2[Z'] and Var[k,] = %Z] — %’ where the «;[Z']
are the unknown cumulants of the variable Z' that
underlies the sample (Stuart and Ord 1987). The trick
of CuBIC is to assume in Hé’é that Z’ is the population
spike count of the CPP that solves Eq. (6) after the
unknown cumulant «;[Z’] has been substituted with its
estimate k;. Under this assumption, all cumulants of Z’
can be computed by inserting the model parameters v*
and f4- into Eq. (3), which yields

palA*] pal A*1? D
L L -1 ’

Varlk,] = ( (7)

Given sample sizes of L > 10.000 (roughly corre-
sponding to 10-100 s of data, see Section 4.2 and
Fig. 6(d)), the distribution of k, under HS’S is well ap-
proximated by a normal distribution. Taken together,
under Hé’é the test statistics k, is normal with mean «; .
and variance given by Eq. (7), such that the p-value for
the test against H,* is

2
(t — K;%_)

Pre = fk S vall P T 2 Varlk,)

@ Springer

The rejection of the null hypothesis Hé’g for a given
& implies that the pairwise correlations in the data are
not compatible with the assumption that there is no
correlation beyond order &. Thus, rejecting Hé’é implies
that £ 4 1 is a lower bound for the order of correlation.

3.2 Testing higher-order correlations (m > 2)

We now generalize the tests with measured pairwise
correlations (m = 2) to exploit also estimated correla-
tions of higher order (m > 2). The difference to the
tests with m = 2 is that the upper bound for the mth
cumulant involves all cumulants up to order m — 1. The
generalization of the maximization problem (Eq. (4))
reads

K 7= T?j({’(m[z]}

subjectto  «;[Z] = «;[Z'] foralli < m (8)
and fa(k)=0fork > &,

where, as before, the «;[Z’] are the cumulants of the
random variable Z’. Using the v-parametrization of
Eq. (5), we can rewrite Eq. (8) as the Linear Program-
ming Problem

K o= n}_)?x {ém : ﬁgh} )

subjectto  E™ 'Wih =kn i[Z'],

where E™' is a (£ x m — 1)-dimensional coeffi-
cient matrix with entries E;”fl =10l and kn_1[Z'] =
®1[Z, ..., km_1[Z']T is the column-vector of the first
m — 1 cumulants of Z’. Solving Eq. (9) yields both the
maximal mth cumulant « . and the rate vector Vf,
which again can be used to compute the corresponding
model parameters v* and f7.

In direct analogy to the case m =2, the (m,&)-
null hypothesis Hy' % states that correlation of orders
1,2,...,m are compatible with the assumption that
there is no correlation beyond order &. This implies that

km[Z'] falls below the upper bound /c;;_g, and we define

H(')n’S ckmlZ'] < Ko

To test a sample {Z},..., Z}} against HS”'E, we
estimate correlations of order m by the mth sample
cumulant of the population spike count, the so-called
the mth k-statistics &, (Stuart and Ord 1987; the sample
mean and unbiased sample variance defined above are
the first two k-statistics). And again, we assume that Z’
is the population spike count of the CPP model that
solves Eq. (4) after the unknown «;[Z’] have been re-
placed by the estimates k; (i = 1, ..., m — 1). Then, the
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test statistics k, is normally distributed with mean «,, .
and variance Varl[k,,], where expressions for Varlk,,]
can be found in the literature (Stuart and Ord 1987).

The p-value of Hy' £ is thus given by

(r— ":1,5)2

me= | ———exp -~ N ar. (10
P /k T vark,] P < 2Var[km]) (10)

Note that after substituting the true cumulant vec-
tor K,,—1[Z'] by its estimate k1 := (ki, ..., kyp_1)" in
Eq. (9), the resulting constraint " 'V = k,,—; con-
sists of m — 1 equations for the £ positive parameters
Vi, ..., vg. Unfortunately, there can be combinations of
estimated cumulants for which these equations cannot
be solved. In this case, Eq. (9) does not posses a solu-
tion, and the corresponding null hypothesis cannot be
tested (see also Section 3.3).

3.3 Computing the lower bound

In the preceding section, CuBIC was presented as a
collection of hypothesis tests H('J”’E, labeled by the in-
dices m (the order of the estimated cumulant) and &
(the maximal order of correlation in the null). We now
combine these tests to infer a lower bound ,{: for the
order of correlation in a given data set. To do so, recall
that rejecting Hy' £ for given m and & implies that the
combination of the first m cumulants requires corre-
lation of order > £. As a consequence, every rejected
hypothesis H,' 8 implies that £ 4+ 1 is a lower bound
for the highest order of correlation in the data. The
question thus is: which of these bounds should we use?

Evidently, we aim to infer the highest order of corre-
lation that is present in the data. Hence, the objective is
to find the maximum of all the lower bounds that were
obtained from the hierarchy of tests. We thus aim for
the pair (m, &) with the highest value of & such that the
corresponding null hypothesis Hy' fis rejected.

A conceptual algorithm for this search is presented
in Fig. 3. It consists of two nested loops: for a fixed
order of the estimated cumulant m, the inner loop
searches the highest & for which Hy' 4 s rejected; the
outer loop iterates over subsequent orders m. The free
parameters of the algorithm are the test level «, and,
to ensure termination of the loops, upper bounds for
the cumulant (m,,,,) and the maximal order of corre-
lation assumed in the null (&,,,; see Section 5 for their
choice). After initializing the test variables (m = 2, & =
1, ém = 1), we estimate the first m cumulants from the
data by computing the corresponding k-statistics. Next,
we check if Eq. (9) is solvable for the current values
of m and & (yellow box). This check consists of two
steps. The first step checks if the first m — 1 estimated

Set o, Mmazs Eman
m=2¢£=1

test against H{"*

I compute #, - (Eq. 9) |

I compute p,, ¢ (Eq. 10) |

b —E+1

m < Mipazx
yes

¥
(é=maxé.)

Fig.3 Procedure to infer the highest lower bound £ for the order
of correlation in a given data set. The pair (m, £) with the highest
& such that the corresponding null hypothesis H(')" 4 s rejected
is found by two nested loops. For any given m, the inner loop
over & increases the lower bound &, whenever Eq. (9) can be
solved (right rhomb in upper yellow box) and the corresponding
hypothesis is rejected (p,,,¢ < «). This loop terminates (p,,e > o
or £ < &pay) With &, = max{g\Hg“g rejected} + 1, which is the
highest lower bound for the current value of m. The outer loop
runs over the order of estimated cumulants m. The procedure
terminates if the first m — 1 estimated cumulants violate the
constraints of the CPP model (left rhomb in upper yellow box), or
if the the order of the cumulant m reached the predefined upper
bound myay (rhomb below lower blue box). Finally, the bounds
for different m are compared and their maximum é = max,, ém is
returned

cumulants increase with order m, a requirement of the
CPP model assumed to underlie the data (left rhomb
in yellow box; compare last paragraph of Section 2.3).
If this is not the case, then ky <k, <...<k,y_1 18
false for all m’ > m, which implies that Eq. (9) cannot
be solved for m’ > m. If the solution, i.e. the maxi-
mal cumulant «,, . and the model parameters v* and
fa=, are not available, however, the corresponding p-
values (Eq. (10)) cannot be computed. In this case, no
hypothesis Hy' ¥ with m’ > m can be tested, and the
procedure is terminated. If the first m — 1 estimated
cumulants are in principle compatible with the CPP,
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we check in the second step if the current value of &
can solve Eq. (9) (right rhomb in yellow box). If this
is not the case, & is increased by 1 until either Eq. (9)
can be solved, or & reaches its upper bound &,,,. In
the former case, the data are tested against Hy' 5 (blue
box), in the latter case the test is skipped. At rejection
of Hy' % (rightward arrow at the box p,,; < a) we set
é‘m = & + | and, unless & reached the upper bound §,,,,y,
repeat the inner loop with & set to & + 1. The loop
terminates with &, = max{§|H6""$ rejected} + 1, which
is the largest lower bound for the current value of m. As
we reject the “zeroth” hypothesis H(')”'O by convention
(every data set has correlations of order > 0), this holds
even if the tests for the current value of m were skipped.
The inner loop is repeated with new m set to m + 1,
until m reaches the upper bound m,,,,. Finally, the

lower bounds obtained for the different values of m
are compared, and their maximum is returned as the
absolute lower bound &. A MatLab-implementation of
the proposed algorithm is available upon request.

4 Simulation results
4.1 Illustration

Before we present a systematic analysis of the proposed
procedure in Section 4.2, we illustrate CuBIC’s sensitiv-
ity by a comparison of three sample data sets (Fig. 4).
All three data sets are based on the same number
of neurons (N = 100) with identical firing rates (A =
10 Hz) and pairwise correlations (¢ = 0.01 in N¢ = 30

2 a1
= 10
g .48
8 10 . .[
<] -5
a 10

1 3 5 3 11 13 15 1 3 5 11 13 15 1 3 5 13 11 13 15
a 10075
c
2 50
=]
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3
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0 5 Complexity Z 20 25 0 5 Complexity Z 20 25 0 5 Complexity Z 20 25
(0] 1
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é. 0 1 (|

12 12 1 3 7 9 11 13 15 12 1 3 7 9 11 13 15

13 7 9 1113 15
g

Fig. 4 CuBIC results for three example data sets with identical
rates and pairwise correlations, but different higher-order corre-
lations (each column shows one data set). Amplitude distribu-
tions (fop, logarithmic y-scale) illustrate the correlation structure
of the respective CPP. Below are the raster displays of the activ-
ities of N = 100 processes demonstrated for a period of the first
2 s of a total simulation time of 7" = 100 s. The third panels from
top show the population spike counts of the data, computed with
a bin width of # = 5 ms. Their histograms (of the total simulation
time) are shown in the fourth panel as the complexity distribution
Z (blue bars) and its logarithmically transformed version (green
line graph, y-axis on the right). The bottom panels show the
results of CuBIC, i.e. the p-values for subsequent hypothesis tests

assuming increasingly higher & in the null-hypotheses H(')" 4 The
left graph shows the results for the second cumulant (m = 2), the
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graph on the right uses the third cumulant (m = 3), respectively.
Red filled circles denote p-values below a significance level of
a = 0.05. Correlation in the data sets was induced by events of
amplitude &, = 2 (Setl, left), &y, = 7 (Set2, middle), and &y, =
15 (Set3, right), that were injected in addition to the background
spikes at £ = 1. In all data sets, the carrier rate v and the relative
probabilities of events of amplitude 1 and &;y,, were chosen to
mimic N = 100 neurons with identical firing rates (10 Hz). We
let 70 of those neurons fire independently (neuron IDs 1-70) and
Nc =30 to form a homogeneously correlated subgroup with a
count-correlation coefficient of ¢ = 0.01 (neuron IDs 71 - 100),
yielding higher-order event rates vg, of v, =43.5 Hz in Setl,
v7 = 2.07 Hz in Set2 and v;5 = 0.41 Hz in Set3. Test parameters:
a =0.05, &nax = 15, Mypax = 4
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and ¢ = 0 in the remaining 70 neurons). The difference
between the data sets lies solely in their higher-order
correlation structure, i.e. their maximal order of corre-
lation (Fig. 4, top panels). All sets have amplitudes at
& = 1 that generate independent “background spikes”.
Correlations are induced by additional events of am-
plitudes &, > 1 that differ across data sets: &, =2
in Setl (left), &, =7 in Set2 (middle), and &, = 15
in Set3 (right). Thus, Setl has correlation of order 1
and 2, Set2 has correlations up to order 7, and Set3
has correlations up to order 15. The identical pairwise
correlations in the three data sets are achieved by
adjusting the rate vg, = v - fa(&s,) of the higher-order
events (see Appendix B for the relationship between
the model parameters v, f4 and the population statis-
tics V, N¢, A and ¢). Test parameters were set to &, =
15 and m,,,4, = 4.

The similarity of the raster displays and population
spike counts (Fig. 4, 2nd and 3rd from top) of the three
data sets may illustrate that such standard visualization
methods cannot reveal the differences in the higher-
order properties of the data sets. Larger probabilities
for patterns of high complexity induced by the higher-
order correlations present in Set2 and Set3 are visible
in the complexity distributions (third row of panels)
only when plotted on a logarithmic scale (green lines).
The low rates of the higher-order events imposed by
the small pairwise correlations (v; = 2.07 Hz in Set2,
vis = 0.41 Hz in Set3) makes their detection in the
three distributions (bars) very difficult on a linear scale.

The identical pairwise correlations in all three data
sets are reflected in identical results for tests with m =
2. For all data sets, Hg‘s is rejected (p < 0.03, indicated
by red marks) only for & = 1, implying that the pairwise
correlations are significant and events of amplitude 1
are not enough to explain the data. As H(z)‘é is retained
for & > 1 in all data sets (p > 0.05), the lower bound
for m = 2 is & = 2 (see Fig. 3), i.e. the tests with m = 2
do not imply correlation of order > 2 in any of the data
sets.

Test results with m = 3 differ strongly for the three
data sets (Fig. 4, lower panels, right graphs). For Setl,
only H;'' is rejected and all Hg,g for & > 2 are retained.
Hence §3 = 2. For Set2, Hg’s isrejectedforé = 1,...,06,
yielding & = 7, while for Set3 the rejection of all null-
hypotheses for & < 12 yields & = 13. In all tests with
m = 4 (data not shown), the smallest values for & that
solved Eq. (9) yielded non-significant p values (for
Setl P42 =05, for Set2 P49 = 08, for Set3 D416 =
0.67). Hence, no hypothesis with m = 4 was rejected
except for Hg’o which is rejected by convention. Thus,
£, = 1 in all data sets. For the total lower bounds & =

maxm{é'm} = max {ég, §3, §4}, we thus obtain é‘ =2 for
Setl, é = 7 for Set2, andé = 13 for Set3.

The lower bound corresponds to the maximal order
of correlation in Setl (&, =2) and Set2 (&y, = 7).
Only for Set3 the lower bound falls short of the true
maximum by 2 (&, = 15), but nevertheless indicates
correlations of higher order than in Set2. Taken to-
gether, the three examples illustrate that CuBIC reli-
ably detects differences in higher-order statistics, even
if firing rates (here A = 10 Hz) and very small pairwise
correlations (here ¢ = 0.01 in 30 out of 100 neurons) are
identical.

4.2 Parameter dependence of test performance

Several parameters are likely to influence CuBIC’s
performance. For instance, the number of recorded
neurons, N, the collection of firing rates, Ay, ..., An,
the duration of the experiment, 7, and the bin size,
h, influence the amount of available data and can thus
be expected to effect test results. Also the correla-
tion structure, i.e. the rate and the order of injected
coincidences, parametrized by the N — 1 probabilities
of the amplitude distribution f4, is likely to affect
the performance of the method. However, some of
the parameters mentioned above are in fact redundant
with respect to the test statistics used here, i.e. the k-
statistics of the population spike count Z. For instance,
Z depends only on the summed firing rate A = Zfi 1 A
but not on the precise combination of the rates of indi-
vidual neurons. To analyze the parameter dependence
of CuBIC (Section 4.2.3), we focus on parameters that
are relevant in experimental data and avoid the above-
mentioned redundancies. Furthermore, we restrict our
analysis to tests with the third cumulant, thus study
the inner loop in Fig. 3 for m = 3. To keep notation
simple, we drop the subscript 3 and write £ = & in the
remainder of this section. The upper bound for & was
&max = 30 in all simulations.

4.2.1 Parameters

We investigate the performance of CuBIC with respect
to five parameters: the duration of the experiment, 7,
the total firing rate of the population, A = Zf\i | Ais
the bin width used to discretize the data, A, and two
parameters, &, and p, that characterize the correlation
structure (amplitude distribution, f4) of the data. We
here consider amplitude distributions that consist of
two isolated peaks only: a “background-peak” at & =1
and a second peak at £ = &, that determines the max-
imal order of correlation in the data (see for examples
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Fig. 4, top row). The relative height of the two peaks is
parametrized by the moments ratio

w2l Al

L= AT

where u;[A] = E[A]] = Z?’zl £ f4(£) is the ith mo-
ment of A.

Substituting the moments ;[ A] in Eq. (11) by the
cumulants of Z via Eq. (3) shows that p equals the
Fano Factor of the population spike count, i.e. p =
% = % (see e.g., Kumar et al. 2008; Kriener et al.
2008). This interpretation is valid for arbitrary ampli-
tude distributions, and provides a method to estimate
p from data. For a more intuitive interpretation of p,
consider a population of N neurons with identical firing
rates, where a sub-population of N¢ neurons forms
a homogeneously correlated subgroup, while the re-
maining N — N¢ neurons fire independently (compare
rasters displays in Fig. 4). In this case p relates to the
(average) pairwise count correlation coefficient ¢ of the
correlated subgroup
e Ne-D (12)

Nc(Ne — 1)

For a derivation of this relation see Appendix B,
Eq. (29). In case of a completely homogeneous popula-
tion with N = N¢, this simplifies to ¢ = % (compare
e.g., Kumar et al. 2008; Kriener et al. 2008). In either
case, the correlation parameter p determines the effect
of higher-order events on the pairwise correlations in
the population.

(11)

4.2.2 Quantification of test performance

We asses CuBIC’s performance by Monte-Carlo tech-
niques. That is, we compute the lower bound for the
order of correlation £ (Figs. 3 and 5(a)) for each of
1000 data sets that are simulated from the CPP model
with identical parameter combinations. The resulting
(estimated) distribution p(£) then indicates the range
of lower bounds for this particular parameter combi-
nation. We thus study the parameter dependence of
CuBIC’s performance by the parameter dependence
of the distribution of p(§) (Fig. 5(b)). For the specific
parameter combination of Fig 5(a), for instance, lower
bounds fall almost exclusively between E=8and &£ =
14 (Fig. 5(b), bottom panel). Increasing the correla-
tion parameter p gradually sharpens and shifts p(é) to
higher values of & (Fig. 5(b)). CuBIC performs opti-
mally if the lower bound corresponds to the maximal
order of correlation in all Monte-Carlo simulations, i.e.
if £ = &yn for all data sets. In this case, p(é) is a delta-
peak located at &, (Fig. 5(b), top panel).

@ Springer

=

p-value
o
o O =
£ d
£ d
£ d
£ d
£ d
£ d
£ d
£ d
£ d
E <« iy

p=1.2 A I
Am
17 1 a- A A
N 0.5 P |
= 0 R | o [ P
1 ~ 5 A 11 A15=§Syn

¢ €05

Fig. 5 Quantification of test performance. (a) p-values for tests
against HS'E and the resulting lower bound for the order of
correlation & = max{élHS‘E rejected} + 1 (here £ = 10) for one
data set (parameters: Esyn =15, A = 10 Hz, T = 100s, p = 1.02

and & =1 ms). Red filled circles denote rejected hypotheses,
i.e. p-values below 0.05. (b) Three estimated distributions of

lower bounds p(§), each obtained via Monte-Carlo simulations
of 1000 data sets with identical parameter combinations. Pa-
rameters as in (a), only for different values of the correlation
parameter (bottom: p = 1.02, middle: p = 1.2; top: p =3.75).
The two percentiles &s = max{£]| ZI?:&H p(k) > 0.95} and &5 =
max{&| Zi":éﬂ p(k) < 0.05} are marked by arrowheads (see text
for interpretation), also at the corresponding parameter values in
Fig. 6(c). Observe the shift and sharpening of p(£) towards the
maximal order of correlation in the data &, = 15 (dashed line)
for increasing p

To further reduce complexity, we will discuss the
parameter dependence of p(£) by means of the two
percentiles (black triangles in Fig. 5(b))

ks =max {1 &| D" p(k) > 0.95
k=E+1

£95 = max { £| Z p(k) <0.05
k=E+1

CuBIC performs optimally if p(£) is a delta peak as
in Fig. 5(b), top panel, i.e. if &s + 1 = &, = &s5. More
generally, a value of &y > 0 indicates that CuBIC re-
liably infers the existence of higher-order correlations
(é‘ > 0in 95% of all cases), while a value of &5 < &,
guarantees that the actual order is not overestimated
(¢ > &syn in less than 5% of all cases, no false positives).

As mentioned before (Section 3.3), certain combi-
nations of sample cumulants, e.g. k, < k;, represent
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untestable data sets and yield lower bounds of E=1.
To avoid border effects for extremely small pairwise
correlations (p < 1.05), we set & = 1 not only if k, < k,
but also if k, does not significantly exceed ky, i.e. if HS"
is retained (marked as dotted lines in Fig 6(c)).

4.2.3 Results

Figure 6 shows the dependence of CuBIC’s perfor-
mance on the population firing rate A (Fig. 6(a)), the
duration of the experiment 7' (Fig. 6(b)), the correla-
tion strength (population Fano Factor) p (Fig. 6(c)) and
the bin width & (Fig. 6(d)) for different values of &,
(crosses in Fig. 6(a—d) denote the default parameters
that are fixed while only one of them is varied).

Changes in the population firing rate A, the duration
of the experiment 7, and the correlation strength p
have qualitatively very similar effects on the perfor-
mance (Fig. 6(a), (b), and (c), respectively). For all
analyzed values of &, (dark blue, green, and yellow
lines) and small values of either of the parameters, i.e.
A =10 Hz (Fig. 6(a)), T = 1s (Fig. 6(b)) or p = 1.0087
(Fig. 6(c)), the distributions of lower bounds p(€) ex-
tend from &yps = 0 (lower lines) to &5 < &, (upper lines
below colored triangles). Hence, lower bounds might
not exceed the trivial value of é =1 for such small
parameter values. Increasing either of the parameters
gradually shifts p(é), i.e. &5 and &ys, to higher values
of £, thus indicating improved performance. The ex-
act quality of the performance, captured by the width
of p(é), i.e. the distance between &p; and &5, and in
particular its difference from &, (colored triangles,
compare also Fig. 5(b)), depends crucially on the order
of correlation &;,,, present in the data.

For &, = 7 (dark blue lines), CuBIC performs opti-
mally (&5 + 1 = 7 = &5, compare Fig. 5(b)) for exper-
iment durations of 7 > 100 s (Fig. 6(b)) and a wide
range population Fano Factors (p > 1.17, Fig. 6(c)).
Such optimality is not guaranteed for the analyzed
range of the population firing rate A, although popula-
tion rates above A = 400 Hz yield a lower percentile of
£s = 5, indicating close-to-optimal performance (£ >
6 =&y, — 1 in 95% of all cases, Fig. 6(a)). Smaller
values of either of the parameters shift p(é) to lower
values, indicating impaired performance. Nevertheless,
as the lower percentile &ps is considerably larger than
zero even for population rates as low as A =20 Hz,
experiment durations of 7 = 6 s and population Fano
Factors of p = 1.02, CuBIC reliably detects the pres-
ence of higher-order correlations for a wide range of
parameter combinations.

In the other extreme, where the same pairwise corre-
lations (identical value of p) are realized by correlations
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Fig. 6 Parameter dependence of CuBIC for m = 3. Shown are
the percentiles &5 and &ys (lower and upper curves of same color,
respectively; see Fig. 5(b)), as a function of (a) the population
firing rate A, (b) the duration of the experiment 7, (c¢) the
correlation strength p, and (d) the bin width 4 for data sets
with correlation of maximal order &y, =7 (dark blue), &y, = 15
(green) and &y, = 30 (yellow). Crosses denote default parameter
combinations (A = 10 Hz, T=100s, p =1.087 and h = 1 ms)
one of which is varied in the different panels. Additional x axes
show corresponding values of the total spike count n = AT (a
and b), the pairwise correlation coefficient ¢ assuming a popula-
tion of N = 100 neurons, N¢ = 30 of which are homogeneously
correlated (c¢), and the sample size L = % (d). Arrowheads
on the right indicate &y,, which is the optimal value for &os.
Data points for the dashed lines in (¢) contain data sets were k»
did not significantly exceed k; (compare Section 4.2.2). Upward
arrowheads in (¢) denote the percentiles for the parameter com-
binations of Fig. 5(b)

of order &, = 30 (yellow lines), p(é‘) falls short of its
optimum (§p5 + 1 = 30 = &5, see Fig. 5(b), top panel)
even for high values of all investigated parameters,
i.e. population rates of A = 10* Hz, experiment dura-
tions of T = 103 s and correlation strengths of p = 5.35
(Fig. 6(a), (b) and (c), respectively). Note, however,
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that also here &;5 > 0 even for moderate values of A,
T and p, implying that the presence of higher-order
correlations is reliably detected, albeit not their actual
order. For the default values A = 10° Hz, T = 100 s and
p = 1.087 (yellow crosses in Fig. 6(a—d)), for instance,
lower bounds for &,,, = 30 fall between §=20and& =
241in 90% of the analyzed data sets (£yps = 19, &5 = 24).

Test performance for &, = 15 (green lines) is some-
where in between the often optimal results for &, =7
and the more indicative results for &, = 30. In short,
optimal performance is achieved only for high popula-
tion Fano Factors (p > 3.75, rightmost black triangle in
Fig. 6(c)), while the presence of higher-order correla-
tions is reliably detected (£ > 0) for a wide range of
parameters (A > 70 Hz, Fig. 6(a), T > 80 s, Fig. 6(b),
and p > 1.02 Hz, Fig. 6(c)).

The qualitative similarity between Fig. 6(a) and (b)
result from the identical effect of the varied parame-
ters, A and 7, on the expected spike count n = AT
(Fig. 6(a), (b), top x axis). As n affects the quality of the
estimators k; , both A and T influence test results in a
similar manner. The similar p-dependence results from
the fact that increasing p increases the probability for
high-amplitude events f4(&,,), which simplifies their
detection (Fig. 6(c)).

Changes in the bin width /4 (Fig. 6(d)) affect CuBIC’s
performance for all values of &, in a very similar
way. Increasing & decreases the lower percentile from
£5> 0 at h =0.1 ms to &s = 0 for A = 100 ms, irre-
spective of &;,,,. The upper percentiles &5 (upper lines)
can even show non-monotonic behavior: for &, = 15
(green) and &, = 30 (yellow), &os increases for values
between 1 < h < 60 ms and decreases for & > 60 ms.
The median of p(é), which lies roughly in the middle
of &ys and &5, however, remains approximately constant
for h < 60 ms, at least for &, = 15 and &,,, = 30 (green
and yellow, respectively). Therefore, the average lower
bound remains approximately constant as long as & <
10 (L > 10, top axis), but only the variability of £, i.e.
the distance between &ps and &5, increases for this range
of h.

We wish to stress that the larger variability of &
for increased bin sizes is not so much due to the in-
creased average spike count per bin u = A#h, but rather
the resulting decreased sample size L = % (Fig. 6(d),
top x-axis). The expected spike count u© = Ah changes
with the population rate A and the bin width £ in
the exact same manner. However, while increasing p
via A (Fig. 6(a)) from the default value A = 10° Hz
(crosses) to A = 10* Hz does not alter test performance
for &, = 7 (dark blue lines), increasing u via the bin
width from & = 1 ms to & = 10 ms (Fig. 6(d)) drastically
reduces the lower percentile &y (lower dark blue line
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in Fig. 6(d)). The decrease in sample size increases
the variance of our test statistic (compare Eq. (7)) and
therefore decreases test power.

4.2.4 Summary of results

The simulation results of the previous section show that
CuBIC reliably detects the presence of higher-order
correlations for a wide range of parameter values. As
CuBIC is not designed to directly estimate the order of
correlation, the inferred lower bound might not always
correspond to the maximal order of correlation present
in a given data set. The most important parameter is
the sample size L, which is required to be > 10* to re-
liably detect higher-order correlations (Fig. 6(d)), cor-
responding to e.g. an experiment of 7' = 50 s duration
analyzed with a bin size of # = 5 ms. Furthermore, total
spike counts of n = 10* (e.g. N = 100 neurons firing at
1 Hz for T = 100 s; Fig. 6(a) and (b)) and a correlation
parameter (population Fano Factor) in the order of p =
1.087 suffice for the test to reliably detect the presence
of higher-order correlations (lower percentiles &y > 0,
green and dark blue lower lines Fig. 6(a—c)) if correla-
tions in the data are of moderate order (&, =7 and
&yn = 15, green and dark blue lines).

5 Discussion

The identification of active cell-assemblies in simulta-
neously recorded spike trains has been the topic of
extensive research (Gerstein et al. 1985, 1989; Sakurai
1998; Martignon et al. 2000; Griin et al. 2002a, b; Harris
2005; Schrader et al. 2008). Analysis tools that go be-
yond pairs of neurons, however, face severe limitations
due to limited sample sizes of typical electrophysiologi-
cal recordings (Martignon et al. 1995, 2000; Brown et al.
2004). The cumulant based inference of higher-order
correlations (CuBIC) presented in this study avoids the
need for extensive sample sizes. This is achieved by a
combination of three ingredients: (1) pooling, i.e. using
the population spike count and its cumulants to mea-
sure correlations in the population; (2) using the com-
pound Poisson process (CPP) as a parametric model for
correlated spiking populations; and (3) exploiting the
constraining relations among correlations of lower and
higher order in large neuronal pools.

Initially, we presented CuBIC as a hierarchy of
hypothesis tests HO’"’E, indexed by the order of the
estimated cumulants m and the maximal order of cor-
relation & allowed in the null. The algorithm of Fig. 3
combines these tests to infer a lower bound & on
the order of correlation in a given data set (see also
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Section 3.3). As free parameters, the algorithm requires
upper bounds for m (m,,4,) and & (&,4x) to be chosen
by the experimenter. To chose n1,,,,, recall that CuBIC
is extremely sensitive for higher-order correlations al-
ready with m = 3 (Fig. 6). For the parameters analyzed
here, tests with m = 4 increased & only occasionally, as
the smallest £ that solved Eq. (9) typically yielded non-
significant p-values (data not shown). Furthermore, the
reliable estimation of high cumulants is known to re-
quire vast sample sizes. Therefore, although tests with
m > 3 can in principle yield additional information, we
do not expect that choosing the bound for m larger
Myax = 4 improves test results in situations with sample
sizes compatible with electrophysiological experiments.
To chose the upper bound for &, note that &,,,, is also
an upper bound for £. As the maximal order of corre-
lation in the data has to be smaller than the number of
recorded neurons N, we know that é < N must hold.
This suggests to chose &,,c = N, as higher values of
&nax Cannot increase é If the analysis was based on
multi-unit activity and the number of recorded neurons
is unknown, an a posteriori criterion on whether the
chosen value for &,,,, was high enough can be obtained
by inspecting tests with & = &,,,,. That is, if H(’)"'E’"“‘ was
rejected for some m, hypothesis with & > &,,, might
also have been rejected, potentially resulting in higher
é . Thus, if tests against H(')" “Smar are retained for all m,
the chosen §&,,,, was high enough.

The procedure was calibrated with rather restricted
model classes, namely amplitude distributions with
two isolated peaks. Thus, the question arises how dif-
ferences in the correlation structure would influence
CuBICs performance. In the numerical examples of
this study, CuBIC used only the first three cumulants
of the data, which depend on the first three moments
of the amplitude distribution (compare Eq. (3)). As
a consequence, if the data under consideration had a
different amplitude distribution, however with similar
first three moments, CuBIC will produce similar results.
If, for instance, the additional isolated peak at &y, is
exchanged by a somewhat distributed peak centered at
&5yn, the inferred lower bound will be similar.

Importantly, CuBIC is not designed to directly es-
timate the “true” maximal order of correlation in the
data. Furthermore, the neuron IDs that realize the
correlations are currently not resolved. It is important
to keep in mind, however, that approaches that pose
such specific question to the data face severe limitations
with respect to the size of the analyzed populations
(e.g., Shlens et al. 2006; see also Section 5.1). Thus,
we regard the less specific lower bound & obtained by
CuBIC as the price to pay when analyzing large pop-
ulations. Renouncing the specific questions is precisely

what allows CuBIC to detect higher-order correlations
in data sets with previously unreached population size
(N ~ 100) and sample sizes compatible with physiolog-
ical experiments (see Figs. 4 and 6).

5.1 Model dependence of higher-order
correlations

The role of correlations for cortical information
processing has been lively debated (Abeles 1991;
Shadlen and Newsome 1994; Riehle et al. 1997; Singer
1999; Abbott and Dayan 1999; Kohn and Smith 2005;
Schneidman et al. 2006; Shlens et al. 2006; Laurent
2006; Pillow et al. 2008). While in the meantime pair-
wise correlations are widely accepted as a relevant
feature of parallel spike trains, the relevance of higher-
order correlations is controversial. In fact, several re-
cent studies raised doubts about the importance of
higher-order interactions. In two studies that explore
multi-neuron firing patterns in primate (Shlens et al.
2006) and salamander (Schneidman et al. 2006) retina,
data were collected for fairly long times (~ 1 hour),
and distributions of the binary patterns Py for sub-
populations with N < 10 were estimated. Based on
this, a surrogate distribution was generated that repro-
duces the pairwise correlations in the population, but
disregards all higher-order parameters: the “maximum
entropy distribution” P,. A comparison of Py with
P, provides estimates on the amount of information
contained in the higher-order parameters. The results
of both studies indicate that only a negligible fraction
of the total information is contained in the higher-order
parameters (less than 2% in primate retina according
to Shlens et al. 2006, and less than 10% in salaman-
der retina according to Schneidman et al. 2006), and
a recent study reports similar values for neo-cortical
networks (Tang et al. 2008). In other words: almost the
entire information available in the distribution of multi-
neuron firing patterns can already be inferred from
pairwise correlations. So why bother estimating higher-
order parameters?

The consequences of the maximum entropy results
for the relevance of CuBIC are difficult to judge. First
of all, the maximum entropy approach does not appear
to be very sensitive for higher-order correlations. As
shown by Shlens et al. (2006), additional higher-order
coincidences with a rate of ~ 0.3Hz among the N =7
analyzed neurons would not have altered their results.
This “coincidence rate”, however, lies in the parameter
range of Set3 of Fig. 4 (here v;5 = 0.41Hz). In this range
CuBIC detected correlations of order > 13, illustrating
the comparatively low sensitivity of the maximum en-
tropy approach for existing higher-order correlations.
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Second, the combinatorial explosion of the parameter
space limits maximum entropy approaches to only rel-
atively small populations (N < 10), unless additional
assumptions are imposed on the data (Montani et al.
2009; Shlens et al. 2009). Theoretical evidence suggests,
however, that the relevance of higher-order correla-
tions increases with the size of the neuronal population
(Roudi et al. 2009). In fact, using N =24 unsorted
multi-unit spike trains of the rodent whisker system,
Montani et al. (2009) report a significant increase in
information if additional to the pairwise interactions
also triplet interactions are taken into account. Taken
together, we firmly believe that the analysis of large
groups with methods that are sensitive to higher-order
correlations is inevitable to uncover their role in corti-
cal computation.

Our third remark concerns the conceptual differ-
ences between cumulant correlation as measured here,
and the higher-order parameters used in the maximum
entropy framework. The latter is based on the promi-
nent binary exponential family (Martignon et al. 1995;
Nakahara and Amari 2002; Martignon et al. 2000; Giitig
et al. 2003; Del Prete et al. 2004; Shimazaki et al. 2009).
In this setting, spike trains are represented as binary
sequences, such that X;(s) = 1 if the ith neuron has one
or more spikes in the sth bin, and Xj;(s) = 0 otherwise.
Assuming stationarity and no memory, the multivariate
distribution function of the binary pattern vector X
admits the representation

px=exp| Y OXi+ Y 0;XiXi+ ) O XiX; X
i

i<j i<j<k
+.”+91'“NX1'”XN_wi|.

In this framework, higher-order correlations are re-
flected in nonzero “higher-order parameters” 6. For
example, 6;; quantifies third-order interactions of the
triplet (X;, X;, X;). Importantly, these higher-order
parameters are neither equivalent, nor related in any
straightforward way to the cumulant correlations em-
ployed by CuBIC (see Section 2.1.1 and Appendix A).
A major difference, for instance, results from the
equivalence of cumulant-based correlations with the
concept of coincident events addressed by the CPP
(Theorem 1). Given that these coincidences are per-
fectly synchronized, changes in the bin width A do
not affect cumulant-based correlations. In contrast, as
changes in the bin width alter the shape of px, the
interaction parameters 6 inevitably change with /4. Ob-
serve that the bin size dependence of 6 does not result
from the fact that larger bins measure correlations on a
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broader time scale as the time scale of correlation was
assumed to be instantaneous, but is rather inherent to
the exponential family. More generally, cumulant cor-
relations determine to what extent expectation values
of products factorize (e.g., Stratonovich 1967, and our
Section 2.1.1), while the higher-order parameters in the
exponential family measure to what extent the proba-
bility of certain binary patterns can be explained by the
probabilities of its sub-patterns (e.g., Giitig et al. 2003).
Taken together, the two frameworks are designed for
different purposes, and can hence be expected to be
sensitive to different features of the data. A better
insight into their relationship presents an important
path for future research (see also Staude et al. 2010, for
a more detailed discussion).

Our main motivation to use cumulant correlations
is that they enable us to analyze large populations of
simultaneously recorded spike trains. As opposed to
the 6 parameters, cumulant correlations can be inferred
from the population spike count Z,. Thereby, the mul-
tivariate problem to estimate correlations for all 2V — 1
subgroups is transferred into a parsimoniously para-
metrized univariate problem with N parameters. The
small sample size required by CuBIC and its ability to
analyze populations of N > 100 neurons is a direct con-
sequence of this property. Furthermore, the compound
Poisson process presents a very intuitive interpretation
of cumulant correlations (Theorem 1) that directly im-
plements the concept of temporally coordinated spikes
(see also Staude et al. 2008). And finally, the expo-
nential family captures imprecise correlations only at
the cost of ignoring spikes by clipping, as it requires
the variables X; to be binary (e.g., Del Prete et al.
2004), whereas cumulant correlations can be measured
among arbitrary spike counts. We conclude that the
adequate framework to analyze a given data set should
be carefully chosen in view of the specific scientific
question. For the detection of temporally coordinated
spikes in large neuronal populations, we believe that
cumulant-based correlations as exploited by CuBIC are
well-suited.

5.2 Relation to other tools

While algorithms for the generation of correlated spike
trains are becoming available (e.g., Kuhn et al. 2003;
Niebur 2007; Staude et al. 2008; Brette 2009; Macke
et al. 2008; Krumin and Shoham 2009), only few of
these models can be exploited for data analysis. In an
approach similar to ours, Ehm et al. (2007) derive esti-
mators of the continuous time parameters (analogous
to our carrier rate and amplitude distribution) from
the Poissonized bin counts (here: “population spike
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count”) via Fourier inversion of the empirical charac-
teristic function. Instead of inferring lower bounds as
in CuBIC, “empirical de-Poissonization” presented by
Ehm et al. (2007) thus directly estimates the orders of
correlation in the data. However, the more explicit pa-
rameters appear to impose constraints on the data, such
that particular care is required if the expected number
of spikes per bin exceeds a critical value. A compari-
son of CuBIC and the empirical de-Poissonization to
resolve their respective advantages and disadvantages
is currently under way (Reimer et al. 2009).

Besides the higher-order approaches described
above, the majority of available analysis tools for mas-
sively parallel spike trains either exploit pairwise statis-
tics to infer inter-correlated groups by using some sort
of clustering (Gerstein and Aertsen 1985; Gerstein et al.
1985; Berger et al. 2007; Griin et al. 2008b; Fujisawa
et al. 2008), or test the occurrence of specific patterns
against the assumption of complete (Griin et al. 2002a;
Pipa et al. 2008) or partial independence (Berger et al.
2010). The three examples depicted in Fig. (4), how-
ever, illustrate the limitations of both approaches. First,
the three data sets have identical second order statis-
tics, making it impossible for pairwise approaches to
differentiate between them. Second, the combinatorial
explosion prevents the analysis of populations sizes of
N ~ 100 neurons with pattern-based approaches. And
third, it is unclear whether either approach is sensitive
enough to detect correlated groups when pairwise cor-
relation are as low as discussed here.

A novel approach that is recently gaining attention
starts from the analytically tractable generalized linear
model (GLM), and estimates its parameters by max-
imum likelihood techniques (Paninski 2004; Truccolo
et al. 2005; Okatan et al. 2005; Pillow et al. 2008). The
power of this framework is that estimated parameters
can be interpreted in terms of network properties like
e.g. synaptic interactions between nerve cells, stimulus-
response properties and the history dependence of
individual spike trains. To understand how such
anatomical and biophysical attributes of neuronal pop-
ulations relate to higher-order correlations in the joint
spiking of groups of neurons as detected by CuBIC is
subject of current research.

Constraining relations among correlations of differ-
ent order have also been studied by Amari et al. (2003),
Johnson and Goodman (unpublished manuscript) and
Benucci et al. (2004). The latter study defined a com-
binatorial algorithm to obtain upper bounds for cer-
tain observables. Closer to our approach is the study
of Johnson and Goodman (unpublished manuscript),
who derive explicit constraints among correlation coef-
ficients of different orders within the CPP framework.

However, both studies do not provide confidence in-
tervals, hence are not applicable to data analysis in a
straightforward way. Amari et al. (2003) investigated
the relation between population variance and higher-
order correlations in the information geometric frame-
work (Amari and Nagaoka 2000) for the limit of large
population sizes (N — o0). The result is similar to our
findings in the sense that a high population variance im-
plies higher-order correlations. However, results from
large N provide only qualitative suggestions for data
analysis.

5.3 Consequences of underlying model

An important ingredient of the present study is to
use the CPP as a model for correlated spike trains.
A consequence of this model-driven approach is that
the reliability of obtained test results depends crucially
on how well the CPP is suited to describe populations
of spiking neurons in general, and assembly activity in
particular.

5.3.1 Stationarity

We presented the CPP as a model of a stationary
population, i.e. where individual spike trains have
constant firing rates. However, cortical spike trains
typically undergo both stimulus-driven and internally
generated changes in firing rate. To analyze also such
non-stationary data sets, the relatively small required
sample size enables us to use a “sliding-window” ap-
proach (see e.g., Griin et al. 2002b), where data are
cut into quasi-stationary windows of e.g. 100 ms and the
statistics is therein obtained over trials. For the case of
100 trials analyzed with a bin width of & = 1 ms, this
would yield L = 10* samples, which is perfectly in the
required range for CuBIC to yield lower bounds close
to the actual order of correlation (compare Fig. 6(d)).
An alternative could be to directly include the non-
stationarities in the model (Staude and Rotter 2009).
Both approaches present important aspects of future
research.

5.3.2 Single-process properties

Recent studies of cortical spike trains criticize the
use of Poisson processes as models for single spike
trains (Amarasingham et al. 2006; Nawrot et al. 2008).
Without doubt, inclusion of process types deviating
from Poisson in the generating model presents a ma-
jor challenge for the presented procedure. However,
criticism against the Poisson model for cortical spike
trains is typically motivated by either non-exponential
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interval statistics (e.g., Maimon and Assad 2009), or
non-Poissonian spike count distributions for large bin
sizes (h > 50 ms) and high firing rates under ’optimal’
stimulation (A > 50 Hz; e.g. Amarasingham et al. 2006).
Both of these aspects are of little impact if the counting
statistics is sampled with small (£ < 10 ms) bin sizes.
In such a scenario, and in particular for low firing rates
(e.g. Lennie 2003; Lee et al. 2006; Olshausen and Field
2006; Maldonado et al. 2008), neurons will have at most
one spike per bin, leading to almost identical counting
statistics for Poisson processes and other process types
(e.g. gamma processes; van Vreeswijk 2006; Nawrot
et al. 2008). Note also that the CPP does not directly
model individual processes as Poisson processes, but
only assumes the carrier processes to be Poisson. Im-
portantly, the latter can be a good approximation even
if individual processes deviate from strict Poisson statis-
tics. For instance, if background spikes are Poisson and
high-amplitude events are very regular but have a very
low rate (as in Fig. 4), the carrier process is still well
approximated by a Poisson process. More generally, the
sum of increasingly sparse point processes converge to
a Poisson process (Daley and Vere-Jones 2005, but see
Lindner 2006; Cateau and Reyes 2006). Although these
aspects need to be considered and will be subject of
further research, we therefore expect CuBIC to yield
reliable results even if single processes deviate from the
Poisson assumption (Staude et al. 2007).

5.3.3 Precision of coincidences

Cortical correlations are reported on a variety of time
scales, from precise correlations within a few few ms
(Griin et al. 1999; Kohn and Smith 2005; Pazienti et al.
2008; Desbordes et al. 2008) to slow covariations of
firing rates on a time scale of > 50ms (e.g., Kohn
and Smith 2005; Smith and Kohn 2008). The perfect
temporal precision of the joint spikes generated by the
CPP may thus be questioned as a biologically plausi-
ble model of experimental spike trains. In the present
study, the CPP was not intended to realistically model
spike trains in continuous time, however. We presented
the CPP strictly to interpret the correlated counting
variables X;, obtained with a given bin width A. Al-
lowing a temporal jitter in the synchronous events, e.g.
by jittering the coincident events during the inserting
process (see e.g. Staude et al. 2008; Brette 2009), results
in comparable counting variables X; if this jitter is small
compared to the applied bin size (Pazienti et al. 2008).
Although its sensitivity for such imprecise coincidences
remains to be assessed systematically, we expect CuBIC
to tolerate imprecise coincidences with small but realis-
tic jitter.
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A somewhat different issue is the detection of cor-
relations with systematic temporal offset, e.g. due to
functional or “effective” connectivity (Aertsen et al.
1989; Fujisawa et al. 2008). As an extension of CuBIC
to detect also non-zero-lag higher-order correlations,
one may shift individual spike trains against each other
and then analyze this shifted population (cmp. Griin
et al. 1999). As tests for different shifts will generally
not be independent, however, appropriate corrections
that account for multiple testing have to be applied.
Furthermore, the combinatorial explosion that emerges
from shifting all spike train against each other with
different delays requires smart algorithms to reduce the
resulting computational cost.

5.3.4 Positivity of the correlations

A limitation of the CPP is that the insertion of syn-
chronous spike events models spike coordination, not
spike avoidance. As a consequence, correlations in the
CPP can only be positive (Staude et al. 2008; Brette
2009). The CPP cannot model negatively correlated
spike counts, that is, troughs in the cross-correlation
function. Whether or not this is relevant for CuBICs
applicability depends crucially on the properties of
electrophysiological data. The rare reports of negative
correlations, especially among cortical spike trains (e.g.,
Nevet et al. 2007), however, makes us confident that
this is not an important limitation.

6 Conclusions

Based on Hebb’s original ideas (Hebb 1949), the co-
ordinated spiking of large neuronal groups is the con-
ceptual foundation of various “brain theories” (e.g.,
Eggermont 1990; Abeles 1991). However, limitations of
available analysis tools has rendered the exploitation
of the increasing number of simultaneously observ-
able neurons extremely difficult. The CuBIC method
presented in this study is a novel procedure to detect
higher-order correlations in massively parallel spike
trains, which overcomes these limitations. In particu-
lar, the sample size required by our method lies in
a range that is compatible with electrophysiological
experiments. CuBIC assumes data to be stationary
and single processes the sum of which is appropriately
modeled by the CPP, and its extension to account for
dynamically changing, non-Poissonian data is the most
important aspect of future work. Taken together, we
regard CuBIC as a unique opportunity to analyze large
populations of neurons for coordinated spike timing.
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Appendix
A Higher-order correlations and the CPP

A pair of random variables X; and X, is uncorrelated,
if the expectation of their product factorizes

E[ X1 X2] = E[X|]E[X3],

and the covariance Cov[X], X;]:=E[X;X;3] —
E[X|]E[X;] measures the degree of correlation
between them. As the covariance is bounded by the
square root of the individual variances, one quantifies
pairwise correlations by the dimensionless correlation
coefficient

o= COV[Xl, Xg]
o VVar[X;] Var[X3]

(13)

Cumulant-correlations are a generalization of the
(co-)variance to measure correlations among more than
two r.v.s (e.g., Stratonovich 1967; Stuart and Ord 1987;
Streitberg 1990; Papoulis and Pillai 2002; Gardiner
2003; Staude et al. 2010). The cumulants «,,[Z] (m €
N) of a r.v. Z are defined in terms of the coefficients
of the power series expansion of the logarithm of its
characteristic function

Oz () :=log E[¢"*] =) i’"’%xm[Z], (14)

m=1

where © 2z (u) is called the “cumulant generating func-
tion” (c.g.f.) of Z. To relate the cumulants to the more
familiar (raw) moments u,,[Z] := E[Z™], recall that
the latter are defined in terms of the coefficients of the
power series expansion of the characteristic function

& m

vz () = Ele"/] = Y ", Z) (15)

m=1

Expressions relating cumulants to moments are ob-
tained by writing the logarithm of the right hand side
of Eq. (15) as a power series in u, and collecting the
coefficients. For the first two cumulants, this yields

ki1[Z]1=E[Z], and ko[ Z]=E[Z?*|—-E[Z)*=Var[Z].

Similar expressions for higher m are increasingly com-

plicated, but algorithms for their computation are avail-

able (e.g. Stuart and Ord 1987; Di Nardo et al. 2008).
Given two independent r.v.s X; and X;, we have

Ox,+x, (W) = logE [ei(uX|+uX2)]
= log E [¢"%1"%]
{Xi} ind;pendent log (E [ei”X'] E [eiqu])
= ]OgE[eiqu] +logE[eiuX2]
= Ox, () + O x, (W)

Writing the c.g.f.s as power series and comparing co-
efficients yields the central property of cumulants: the
cumulant of the sum of independent random variables
is the sum of the individual cumulants

k[ X1 + Xo] = k[ X1] + k[ X2]  for all m

If X, and X, are not independent, the cumulants of
X1 4+ X, contain also “mixed”, or “connected” cumu-
lants. For m = 2, we obtain the well-known equation

K[ X1 + Xol = o[ Xi] + ko[ Xo] + 2611 [ X1, Xa]1 - (16)
= Var[ X ] + Var[X;] + 2 Cov[ X7, X>]
(17)

Equation (16) implies that the second cumulant of
X1 + X, is additive-linear, if and only if x| 1[ X, X>] =
Cov[ X1, X»] =0, i.e. if X; and X, are uncorrelated.
Higher-order cumulant correlations generalize the co-
variance in exactly this sense: they determine the
“degree of linearity” of the higher cumulants (e.g.,
Stratonovich 1967; Gardiner 2003). Formally, higher-
order cumulants arise as coefficients of the c.g.f. of

vector-valued variables X = (X1, ..., Xn)
Oxu): = logE[e"Zjvzl “iXi] (18)
DS i)
= l K —
! Jitee- Nt

m=1 " AJ=(ji,... iV X ji=m}
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Higher-order cumulant correlations exist, if the cor-
responding mixed cumulant «;[X] is non-zero. To be
precise,

Definition 1 Let X be a random vector. Denote the
number of non-zero elements of a multi-index J =
(jis..., jn) € NV by n;. Then the components of X
are said to have correlations of order m if there exists
J € NV with n; = m such that the corresponding mixed
cumulant is non-zero, i.e. k;[X] # 0.

For multi-indices J with only one non-zero el-
ement, e.g. J=(2,0,0...,0), the mixed cumulants
ky; in Eq. (18) are simply the univariate cumulants
more, a generalization of Cov[ X, X] = Var[X] is that
mixed cumulants with identical arguments are the uni-
variate cumulants of the appropriate order

KJ[X9-"9X]=Kj1+...+jN[X]' (20)

Evidently, the c.g.f. of asum of r.vs Z = YN X; is
the multivariate c.g.f. with all arguments set to u

®z(u) := log E[ei"ZJN:1 X1 = log E[eiz}il uXjy
= OxW,...,u).

Inserting into Eq. (18) and comparing coefficients with
Eq. (14) yields

Km[Z] =

|
> X,

=G| Sy =y TN

showing in particular that the mth cumulant of Z de-
pends on correlations of maximal order m.

Proof of Theorem I To prove Theorem 1 of
Section 2.4, we present a multivariate version of
the compound Poisson process (CPP) defined in
Section 2.2 (compare Ehm et al. 2007; Staude et al.
2010). Consider N neurons {x;(H)};<y and let A be
the set of all nonempty subsets of {l,..., N}. For
each M € A, we assign a stationary Poisson process
Yy () with rate v}, that determines the points in
time where the neurons {x;(#)};cp have a joint spike
event. Assuming all the y’,(f)s to be independent, it is
straightforward to verify that z(t) =), 4 Yy, (DI M|
is a CPP as defined in Section 2.2, where |M| denotes
the number of elements of M. The processes y;(f)
of Section 2.3 are given by y;(¢) = Z‘ M=t Y@, and
we obtain the parameters of z(f) (carrier rate v and
amplitude distribution f4) by v=73),,,4v) and
fA(k)=%Z\M\=kV}\/1- Evidently, f4 assigns non-
zero probabilities to events of amplitude > m if and

@ Springer

only if at least one of the rates v}, with |[M| > m is
positive. Using the above definition, Theorem 1 is thus
equivalent to the equivalence of the following two
statements:

(a) at least one mth order mixed cumulant is non-
zero, i.e. there exists a multi-index J € NV with
ny > m such that «;[X] # 0

(b) atleast one of the processes y’,(¢) that determines
coincidences of at least m of the spike trains x;(¢)
has non-zero rate, i.e. there exists M € A with
[M| > m and v}, > 0

The proof is not difficult, yet notationally cumbersome
for arbitrary N. The idea is to decompose Z into the
counting variables Y, of the y’,,(f) and show that their
mixed cumulants «,;[Y’,] vanish if J has more non-zero
elements than the multi-index associated to M.

With the variables Y/, the argument of «;[X], the
pattern vector X = (X1, ...,, Xn), can be written as

N
X=Y" > 6u-Yy.

(=1 |M|=t

eay

where 8y, € {0, 1}V is the binary vector whose ith com-
ponent is 1 if i € M and 0 otherwise. For given J € NV,
we thus have

N N
i XD=k [ YD 8w Yy =)0 ks [Su Yyl

t=1 |M|=t t=1 |M|=t

(22)

where the second equality follows from the indepen-

dence of the Y/,s. Clearly «,;[8x - Y},1 =0 for all M
with ny; > | M|, as in this case the order of the mea-
sured correlation n; exceeds the number of non-zero
components of the argument. In fact, «;[8y - Y},] # 0
if and only if supp(J) C M, as these are the cases where
we do not correlate with the variable 0 (the support
supp(J) is the set of non-zero elements of J). In this
case, ky[8y - Y),] is a cumulant of the Poisson variable
Y, which satisfies «;[8y - Y1 = &ji4+. 4+ [Yi ] = VA
(Eq. (20)). Hence,

vih, supp(J) C M
Sm-Yyl=1M
Kj[ M M] 0, otherwise.
This implies
WXl= )7 Vyh (23)
{M|supp(J)C M}
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Now we can prove the equivalence of statements (a)
and (b).
“(a)=(b)”: Let J* € NV be such that n;+ > m and
«;+[X] # 0. Then by Eq. (23), 3~ yisuppr+)cay Varht # 0,
and as all v}, > 0 there must be at least one Mt e
A with supp(J) € M* and v),, > 0. As n;+ > m, this
M™ must have at least m elements, hence |M™| > m.
“(b)=(a)”: Let M* € A with |[M*| > m and v}, >0
and let JT be the associated multi-index. Then ny+ =
|[M*| > m and

o [X] = Z

{M|supp(J+)C M}

Viyh >v)h >0 O

B Model parameters and population statistics

This appendix relates the parameters of the compound
Poisson process, i.e. the carrier rate v and the ampli-
tude distribution f4, to parameters used in the context
of physiological data, i.e. firing rates A and pairwise
count correlation coefficients ¢, for a population of N
neurons.

Firing rates 'To compute the average rate A, observe
that » = ;5 SN E[X;] = & E[Z] = {x1[Z]. With
Eq. (3), we thus have

. _ El4]
N

v (24)

Pairwise Correlations To compute the count correla-
tion coefficient c¢ for a fixed bin width /4 (Eq. (13)), recall
that by definition of the variance

N
Ka[Z] = Var[Z] =) Var[X;] + ) Cov[X;, X;].
i=1 i#]j

Denoting the population average variance and covari-
ance by

1

N
1
vi= ;Var[X,-], e ) ;COV[XI', Xjl,

T NN—1
: _ KlZ]
the population Fano-Factor (27, reads

©lZ] Zz]i] Var[X:] = Xz Covl X, X;]

alZl YN E[X] YN ELX)]
N N(N = )r
Z,’Zl E[X;] szil E[X]

The Poisson property of the individual processes im-
plies E[ X;] = Var[ X;], which yields Zﬁl E[X] = Nv.

Using the identity of the population Fano-Factor with
C K A .

the moments ratio % = % = p, we finally obtain
r

p=1+(N-1- (25)

Note that by Eq. (25), the pairwise correlations, con-
tained in r, do not depend on the details of the ampli-
tude distribution f,4, but are completely determined by
the ratio of its first two moments p.

If the population is homogeneous (all neurons have
the same firing rate, all pairs are equally correlated,
and so on), the average quantities v and r are the
actual variance and covariance of the processes. In this
case, the count correlation coefficient is given by ¢ = =,
which implies

p—1

Conversely, the moments ratio is given by
p=1+c(N-1). (27)

Correlated subgroups Now consider the case where
N¢ of the N neurons form a homogeneously correlated
subgroup while the remaining Ny = N — N¢ neurons
are independent (see rasters in Fig. 4 for examples). In
this case, we can decompose Z into the contribution
of the correlated, Z ¢, and the uncorrelated, Z;, sub-
populations: Z = Z¢c+ Z;. Now E[Z(] = %E[Z]
and E[Z;] = Var[Z;] = % E[Z]. We can thus write

oE[Z] = Var[Z] = Var[Z¢] + Var[Z[]
N
— Var[Z¢] + WI E[Z].

Dividing by E[Z¢] = ¢ E[Z] yields

pN . Var[Z ] N;

_ Yanzal | M (28)
Nc¢ E[Z(] Nc¢

For a homogeneous population as the correlated sub-
group, the Fano Factor % is related to the pair-
wise correlation coefficient via Eq. (27), i.e. % =
1 4+ ¢(N¢ — 1). Inserting into Eq. (28) and solving for
¢ yields the correlation coefficient of the correlated
subgroup

N -1

= Nee—1) *)

Single interaction process The amplitude distributions
used in Section 4 consist of two isolated peaks

fa) = fa(D)dig + fa(§)dg,,.¢ (30)

where §;, is the Kronecker-Delta. The “single inter-
action process” (Kuhn et al. 2003) is the special case
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with &, = N. Because fa(1) + fa(&sy,) = 1, this model
has three free parameters v, f4(1) and &,,,, which are
related to N, A and p (or ¢) by Egs. (24) and (29).
Straightforward computation yields that homogeneous
populations with mean firing rate A and correlation
parameter p are achieved by setting

)»N[,O -1 + Esyn(gsyn - ;0)]

VvV =

";:syn(%_syn - 1)
and
fA(l) — ‘Svyn (Ssyn - ,0)

(p—1+ Ssyn(‘i:syn - p)

Given A and p are constrained, the event amplitude &y,
that realizes the correlation can be freely chosen as long
as v > 0and n € [0, 1]. This is guaranteed if

1 <p=<&wm=N.
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