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Abstract

We present fast methods for filtering voltage measurements and performing optimal inference
of the location and strength of synaptic connections in large dendritic trees. Given noisy, subsam-
pled voltage observations we develop fast l1-penalized regression methods for Kalman state-space
models of the neuron voltage dynamics. The value of the l1-penalty parameter is chosen using cross-
validation or, for low signal-to-noise ratio, a Mallows’ Cp-like criterion. Using low-rank approxima-
tions, we reduce the inference runtime from cubic to linear in the number of dendritic compartments.
We also present an alternative, fully Bayesian approach to the inference problem using a spike-and-
slab prior. We illustrate our results with simulations on toy and real neuronal geometries. We
consider observation schemes that either scan the dendritic geometry uniformly or measure linear
combinations of voltages across several locations with random coefficients. For the latter, we show
how to choose the coefficients to offset the correlation between successive measurements imposed by
the neuron dynamics. This results in a “compressed sensing” observation scheme, with an important
reduction in the number of measurements required to infer the synaptic weights.



1 Introduction

Understanding the synaptic organization of local neural circuits remains a central challenge in neu-
roscience. To make progress towards this aim it would be of great value to measure the full synaptic
connectivity on the dendritic tree. In particular, we would like to quantify not just which neurons
are connected to a given cell, but also where these synaptic inputs are on the postsynaptic dendritic
tree, and with what strength (Fig. 1). Such a technique would help in addressing a variety of open
questions on the localization and maintenance of synaptic plasticity (Sjostrom et al., 2008), and
would facilitate the study of nonlinear dendritic computations.

To achieve this goal, we can combine the ability to stimulate individual presynaptic neurons
with high temporal resolution (either electrically, via intracellular stimulation, or optically (Packer
et al., 2012) and to simultaneously image postsynaptic neurons at subcellular spatial resolution.
In particular, we can use two available, complementary types of data to obtain the best possible
estimates:

1. Anatomical measurements of the postsynaptic neuron’s shape and dendritic arborization. This
provides a backbone on which we can build a dynamical model of the postsynaptic cell.

2. Voltage-sensitive fluorescence, observed at subcellular resolution. Modern imaging methods
can access small dendritic structures and allow rapid observations from many spatial locations
(Reddy and Saggau, 2005; Iyer et al., 2006; Vucinic and Sejnowski, 2007; Kralj et al., 2011).
This provides access to the key dynamical variable of interest, the spatiotemporal subthreshold
voltage.

Since current voltage imaging technologies have relatively low signal-to-noise ratio (SNR) (Djurisic
et al., 2004; Dombeck et al., 2004; Sacconi et al., 2006; Nuriya et al., 2006; Canepari et al., 2007;
Milojkovic et al., 2007; Fisher et al., 2008; Djurisic et al., 2008; Canepari et al., 2008; Peterka et al.,
2011), we have to apply optimal filtering methods to exploit these measurements fully.

In this paper we present fast methods to optimally filter these voltage measurements and infer
the location and strength of synaptic connections in the dendritic tree. The problem is formulated
in a state-space model framework and builds on fast Bayesian methods that we have previously
developed (Huys et al., 2006; Huys and Paninski, 2009; Paninski and Ferreira, 2008; Paninski, 2010;
Huggins and Paninski, 2012; Pnevmatikakis, Paninski, Rad and Huggins, 2012), for performing op-
timal inference of subthreshold voltage given noisy and incomplete observations. A key contribution
of this work is to note that these fast filtering methods can be combined with fast optimization
methods from the sparse Bayesian literature (Efron et al., 2004) to obtain a fast solution to this
synaptic estimation problem.

We also present a fully Bayesian approach to the inference problem, using a spike-and-slab
prior (Mitchell and Beauchamp, 1988). Although computationally more intensive, this approach
provides confidence intervals for the estimates of the synaptic weights.

An additional contribution of this paper is in the area of experimental design. There has
been much interest recently in experimental implementations of the compressed sensing paradigm
(Nikolenko et al., 2008; Studer et al., 2012), which allows one to reconstruct a signal that is sparse
in some basis from a small number of measurements (Candès and Wakin, 2008). In our case, the
measurements are performed on voltages with a temporal dynamics dictated by the cable equation
of the neuron. We show how to compensate for this dynamics in the voltage observations in such a
way that the compressed sensing results apply to our case.

The paper is organized as follows. Section 2 presents the basic ideas of the inference and obser-
vation methods, with the mathematical details presented in the Appendices. Section 3 illustrates
our results with simulated data on a toy neuron and on a real large dendrite tree. We conclude in
Section 4 with some possible extensions to our model.
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Figure 1: Schematic of proposed method. By observing a noisy, subsampled spatiotemporal voltage signal on
the dendritic tree, simultaneously with the presynaptic neuron’s spike train, we can infer the strength of a given
presynaptic cell’s inputs at each location on the postsynaptic cell’s dendritic tree.

2 The dynamical model

The dynamical model

For concreteness, we begin with the following model. We assume that observations are available from
a neuron with N compartments in which the passive cable dynamics and the observation equations
are

Vt+dt = AVt +WUt + εt, εt ∼ N (0, σ2dtI) t = 0, . . . , T − 1 (2.1)

yt = BtVt + ηt, ηt ∼ N (0, CyI) t = 1, . . . , T . (2.2)

In the first equation, Vt is an unobserved N -dimensional vector of compartment voltages at time t
that evolves according to a discretized cable equation with timestep dt, perturbed by a Gaussian
noise source εt; N (µ,C) denotes a Gaussian density of mean µ and covariance C and I is the
identity matrix of the appropiate dimension. Assuming we can stimulate K presynaptic neurons
in a controlled manner, Ut represents a K-dimensional vector of known presynaptic signals (the
presynaptic spike times filtered by some fixed synaptic current filter). Finally, W is the N × K
matrix of synaptic weights that we want to estimate.

We assume an experimental setting in which we simultaneously perform S voltage observations
at each discrete time t. (S could vary with time, but to keep the notation manageable we will
assume that S is fixed here.) In the second equation, (2.2), yt is an S−dimensional vector of
observations related instantaneously to Vt by the S×N matrix Bt that specifies how the observations
are performed. We will discuss below several forms for Bt. Cy is the noise covariance of the
observations, which depends on the imaging apparatus used in each experiment. We assume this
covariance is proportional to the identity for simplicity, i.e. Cy ∝ I, but this condition can also be
easily relaxed.

The inverse of the cable dynamics matrix A ∈ RN×N is sparse and symmetric. It encodes the
membrane leak at each compartment as well as coupling currents between adjacent compartments.
The sparseness of A−1 follows from its “tree-tridiagonal” form: the off-diagonal elements A−1n1n2

are
non-zero only if compartments n1 and n2 are first neighbors in the dendritic tree (see Hines (1984)
and Paninski (2010) for details). Note that we are taking explicit advantage of the fact that the
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anatomy of the imaged cell is known (or at least may be reconstructed post hoc); thus we know a
priori which compartments are adjacent, and specifying the matrix A comes down to setting a few
resistivity coefficients, if the diameter of each compartment can be estimated reliably (see Huys et al.
(2006) for further discussion.) In general, we can potentially recover A and σ2 via an Expectation-
Maximization approach (Huys and Paninski, 2009), by observing the neuron’s response to varied
subthreshold current injections, before any presynaptic spikes are elicited.

This linear Gaussian model, with a passive (i.e. voltage independent) dynamic matrix A, can be
a valid description for regimes with low network firing rate, so that the postsynaptic dendritic tree is
in a subthreshold state. Furthermore, we assume that synaptic inputs are sufficiently small that the
postsynaptic response may be treated using linear dynamics. (In an experimental setting we may
enforce the subthreshold condition pharmacologically, by blocking voltage-gated sodium channels in
the post-synaptic cell.)

On the other hand, real neural systems are known to depart from this linear, passive Gaussian
regime. The noise can be non-Gaussian and strongly correlated (due, e.g., to unobserved spikes in
the circuit), and the dynamics equation becomes non-linear when voltage dependent conductances
and driving forces are taken into account. Also, for some measurement techniques, the observation
equation may depart from the form (2.2). We discuss some of these generalizations in Section 4.

The likelihood function and the sparsity penalty

We assume that in equations (2.1)-(2.2) the variables and parameters are as follows:

• Known/Observed: A,Ut, σ
2, dt, Bt, yt, Cy.

• Unknown/Unobserved: Vt,W.

If the system evolves during T time units, we can collect all the voltages Vt into the NT -vector V
and all the observations yt into the ST -vector Y . The complete log-likelihood for the combined V
and Y variables is (Durbin et al., 2001)

log p(Y, V |W ) = log p(Y |V ) + log p(V |W ) (2.3)

=

T∑
t=1

log p(yt|Vt) +

T∑
t=2

log p(Vt|Vt−1,W ) + log p(V1) (2.4)

= −1

2

T∑
t=1

(yt −BtVt)TC−1y (yt −BtVt) (2.5)

−1

2

T∑
t=2

(Vt −AVt−1 −WUt−1)TC−1V (Vt −AVt−1 −WUt−1)

−1

2
V T1 C

−1
0 V1 + const. ,

where CV = σ2dtI, by eq. (2.1). In equation (2.3), log p(Y, V |W ) abbreviates
log p(Y, V |W,U,A, σ,B,Cy). Equation (2.3) uses the factorization p(Y, V |W ) = p(Y |V )p(V |W ) and
the first sum in (2.4) reflects the independence of the measurements yt for each t. The second sum
in (2.4) follows from the fact that the probability distribution of Vt only depends on Vt−1 and WUt.
Finally, equation (2.5) reflects the Gaussian nature of each term in (2.4), as follows from (2.1)-(2.2).
In the last term we assumed E(V1) = 0 (having parameterized V → V − Vrest to simplify the dy-
namics equation) and for the initial state covariance C0 = cov(V1) we choose a convenient initial
stationary condition on which we elaborate in Appendix C.

The log-likelihood (2.3) cannot be evaluated because it involves the unobserved voltages Vt, so it
is useful to consider p(Y |W ), obtained by marginalizing the voltages as

p(Y |W ) =

∫
p(Y, V |W ) dV . (2.6)
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Since p(Y, V |W ) is Gaussian in (Y, V ) with mean linearly dependent on W, the marginal p(Y |W )
has the same property, and therefore log p(Y |W ) is quadratic in W,

log p(Y |W ) =
∑
i,j

rijW
ij +

1

2

∑
i,i′,j,j′

W ijMij,i′j′W
i′j′ + const. (2.7)

where i = 1 . . . N , j = 1 . . .K. We compute the coefficients rij and Mij,i′j′ in Appendix A. In
particular, Mij,i′j′ is negative semidefinite and symmetric.

Our goal is to estimate the N ×K synaptic weights W as

Ŵ (λ) = arg max
W

log p(W |Y, λ) (2.8)

= arg max
W

[log p(Y |W ) + log p(W |λ)] , (2.9)

where we take for W a log-prior with an l1 penalty that enforces a sparse solution,

log p(W |λ) = −λ
∑
i,j

|W i,j |+ const. (2.10)

The prior (2.10) is referred to as the lasso prior (for ‘least absolute shrinkage and selection operator’)
in the statistics literature; its effect is to sparsen the estimated Ŵ in (2.9), i.e., to make its components
exactly 0 if they do not have a strong measurable influence on the observed data Y (Tibshirani, 1996).
In our case, we introduce this prior because we expect the synaptic contact with the presynaptic
neuron to occur only at a relatively small number of compartments in the dendritic tree.

The value of λ in (2.10) controls the sparsity of Ŵ (λ): when λ is large, the number of non-zero
components in Ŵ (λ) is small, and vice versa. The motivation to introduce this prior here is that
we expect the number of non-zero synaptic weights for each presynaptic neuron to be much smaller
than the number of compartments N . While this prior turns out to be extremely convenient here
(as we discuss next), more involved priors are possible; see section 4 for some further discussion.

Eq.(2.9) is a concave problem. We would like to solve it for a range of values of λ and then
select a particular λ according to some criterion. If log p(Y |W ) were the quadratic error of a linear
regression with Gaussian noise, the solution to (2.9) for all λ could be obtained by the Least Angle
Regression (LARS) algorithm introduced in Efron et al. (2004).

In our case the quadratic expression (2.7) contains contributions from the integrated unobserved
voltages V . For this reason, we reformulate in Appendix A.1 the LARS algorithm of Efron et al.
(2004) for our quadratic function of W , log p(Y |W ). Moreover, synaptic connections are either
excitatory or inhibitory (“Dale’s law”), so the non-zero elements of each of the K columns of the
true synaptic matrix W must have a definite sign. We consider in Section A.2 a slight modification
of the LARS algorithm, LARS+, that imposes this sign condition and avoids inferring weights with
the wrong sign due to poor observations or high noise.

As we show in Appendix A, the l1-penalized form of our objective function in (2.9) implies that
the solution for Ŵ (λ) is a piecewise linear function of λ. For λ =∞, the solution to (2.9) is W = 0.
As λ becomes smaller, more and more components become non-zero at the breakpoints of Ŵ (λ),
although at some breakpoints non-zero components can also become zero. The form of the solution
is thus

Ŵ (λ) =

{
0 for λ1 < λ

Ŵ (λi) + ai(λi − λ) for λi+1 < λ < λi i = 1 . . . R ,
(2.11)

where ai are N ×K matrices and the number R of breakpoints until λR+1 = 0 depends on the data.
The LARS/LARS+ algorithm proceeds by successively computing the pairs (λi,ai) until λ = 0 is
reached.

4



An important byproduct of the algorithm is that it provides us with an estimate of the unobserved
voltages,

V̂ (λ) = E[V |Y, Ŵ (λ)] (2.12)

= arg max
V

p(V |Y, Ŵ (λ)) , (2.13)

where the second line is equal to the first because p(V |Y, Ŵ (λ)) is a Gaussian distribution. The
function V̂ (λ) will be important below to select the best value for λ.

The value of Ŵ (λ) at λ = 0, the end point of the path, is the solution to the unpenalized
maximum likelihood problem

Ŵ = arg max
W

log p(Y |W ) , (2.14)

which is the optimal least-squares (OLS) linear solution, due to the quadratic nature of log p(Y |W ).
This Ŵ is the linear combination of the observations yt that minimizes the log-likelihood (2.7). For
LARS+, the end point of the path is the minimum of (2.7), with the restriction that each of the K
columns of the inferred synaptic matrix Ŵ has a definite sign.

Computational cost

The major computational challenge in obtaining W ij(λ) lies in explicitly computing the coeffi-
cients rij and Mij,i′j′ . As shown in Appendix A, computing rij or a row of Mij,i′j′ requires that we
solve a linear equation involving the NT ×NT Hessian matrix

HV V =
∂2 log p(Y, V |W )

∂V ∂V
. (2.15)

Using the block tri-diagonal structure of HV V (see Appendix C), this matrix solve can be performed
in O(TN3) time using standard methods. However, as we show in Appendix C, if S � N (i.e., only
a minority of compartments are imaged directly, as is typically the case in these experiments) we
can perform this operation approximately much more quickly, in O(TNS2) instead of O(TN3) time,
using low-rank perturbation techniques similar to those introduced in Paninski (2010); Huggins and
Paninski (2012); Pnevmatikakis, Paninski, Rad and Huggins (2012); Pnevmatikakis and Paninski
(2012).

To run the LARS/LARS+ algorithm we need the coefficients rij , and at each breakpoint in which
a new weight W ij becomes non-zero, the ij-th row of Mij,i′j′ must be computed. In general we will
need to compute W ij(λ) up to k � NK breakpoints (see below), leading to a total computational
cost from acting with HV V of O(kTNS2). The LARS/LARS+ algorithm also performs some smaller
matrix computations at each breakpoint; including these, the total computational cost is O(kTNS2+
k3).

Model Selection

The next task is to select the point along the LARS path Ŵ ij(λ) that yields the “best” inferred
weights Ŵ ij . Two major methods of model selection for our case include cross-validation and
minimization of Cp-like criteria (see e.g. Efron (2004)). In both cases, the selected model is not that
which minimizes the squared error on the training dataset. This solution (corresponding to (2.14))
would be computationally costly and typically greatly overfits the data, unless the data are very
informative (i.e., high-SNR and T � N).

We will consider Mallows’ Cp criterion (Mallows, 1973) in the low signal-to-noise ratio (SNR)
limit, when the stochastic term in (2.1) can be ignored. As we elaborate in Appendix B, in this limit
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and for ST > NK, an estimate of the generalization error of our model is given by

Cp(d) =

T∑
t=1

‖ yt −BtV̂t(λd) ‖2 +2dCy d = 1, 2 . . . NK, (2.16)

where λd is the smallest value of λ at which there are d non-zero weights in the path (2.11). The
value of d is an estimate of the degrees of freedom of the fitted model and we select the value λd
(or equivalently d) that minimizes (2.16). This gives the best compromise between the fit to the
data, represented by the first term (which decreases with lower λ) and the complexity of the model,
represented by the factor d in the second term (which increases with lower λ).

As we discussed above, we expect the number of non-zero synaptic weights to be much smaller
than NK. Thus one can stop the LARS algorithm if after k � NK steps one believes that the
minimum of Cp(d) was attained at some d ≤ k. This is often possible in practice (as we will see
below), though the Cp curve is typically non-convex in d or λ.

The cross-validation approach is conceptually somewhat simpler. In 2-fold cross validation, we
split the interval T into 2 segments and compute the W ij(d) weights using data from one of the
two segments. With these weights we evaluate the log-likelihood in (2.7) with coefficients rij ,Mij,i′j′

computed from the left-out segment. We repeat the procedure (interchanging the training and test
segments) and compute an average likelihood curve, Q̄(d), as the mean of the two test log-likelihoods.
We select the model d at the minimum of this curve. We finally run LARS/LARS+ on the whole
interval T , and estimate the value Ŵ ij for d active weights.

For n-fold cross validation with n > 2, the data can be split into n segments. As above for n = 2,
we successively leave out each of the n observation subsets and use the remaining observations to
compute the synaptic weights W ij(d). In this case the held-out test set will lead to an observed
training dataset Y with a gap in time (where the test set was removed). The likelihood coefficients
rij ,Mij,i′j′ for this case can be obtained by a straightforward application of the method developed
in Appendix A, but for simplicity in this paper we only consider the 2-fold case.

Note that there is a trade-off between these two methods. The Cp criterion is computationally
fast because we only have to run the LARS/LARS+ algorithm once in order to compute the Cp(d)
values in (2.16), but the derivation of equation (2.16) assumes low SNR. On the other hand, the
cross validation method is computationally more intensive, but its valid for any SNR.

A fully Bayesian approach

The methods presented above provide us with point estimates of the synaptic weights, but in some
situations we may be interested in confidence intervals. In such cases we can adopt a fully Bayesian
approach, and consider the posterior distribution of the synaptic weights (not just the maximum)
under a sparsity-inducing prior. Among several possibilities for the latter, we will consider here the
spike-and-slab prior (Mitchell and Beauchamp, 1988) and restrict ourselves to one presynaptic signal
(K = 1) for simplicity. The idea is to augment each synaptic weight Wi with a binary variable si
and consider the prior distribution

p(W, s|a, τ2) =

N∏
i=1

p(Wi|si, τ2)p(si|a) , (2.17)

where each pair (Wi, si) is sampled from

si|a =

{
1 with prob. a ,
0 with prob. 1− a , (2.18)

Wi|si, τ2 ∼

{
δ(Wi) for si = 0 ,

1√
2πτ2

e−
W2
i

2τ2 for si = 1 .
(2.19)
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Note that the sparsity is achieved by assigning a finite probability a to the event si = Wi = 0. On
the other hand, when si = 1, Wi is sampled from the distribution in (2.19), which is a Gaussian with
zero mean and variance τ2. In general, if we have prior information about the synaptic weights, a
and τ could depend on the location of each weight, but we do not pursue this idea here.

For the hyperparameters a and τ2 we will use conjugate hyperpriors (Gelman et al., 2004): a
Beta distribution for a and an Inverse Gamma for τ2,

p(a|αa, βa) ∝ aαa(1− a)βa , (2.20)

p(τ2|ατ , βτ ) ∝ τ−2ατ−2e−
βτ
τ2 . (2.21)

The presence of two hyperparameters makes the spike-and-slab similar to the elastic net (Zou and
Hastie, 2005), which combines both lasso and ridge penalties. The sparsity parameter a corresponds
roughly to the lasso λ parameter, while τ−2 is the coefficient of the ridge penalty. The latter is
particularly important for large neurons with synaptic weights localized in several nearby locations:
small values of τ2, which can be favored by an appropriate hyperprior, lead to similar values for
these correlated weights and avoid incorrectly inferring one big and many small weights (Zou and
Hastie, 2005).

Given the observations Y , we combine the prior distribution with the data likelihood,

p(Y |W ) ∝ e
1
2

∑
i,jWiMijWj+

∑
i riWi , (2.22)

and consider the joint posterior distribution

p(W, s, a, τ2|Y ) ∝ p(Y |W )p(W, s|a, τ2)p(a|αa, βa)p(τ2|ατ , βτ ) , (2.23)

which we can sample from using Markov Chain Monte Carlo (MCMC) methods. In particular we use
a Gibbs sampler that cyclically samples a, τ2 and (W, s). For the latter, we use an exact Hamiltonian
Monte Carlo sampler based on the method of (Pakman and Paninski, 2013). The sign constraint
from Dale’s law can be imposed by simply restricting (2.23) to be non-zero only for Wi ≥ 0 or
Wi ≤ 0. Note that this fully Bayesian approach is computationally more intensive than the LARS
method, not only due to the computational cost of the MCMC sampling, but because we need to
pre-compute the full M matrix in (2.22).

Note that in (2.19) we assumed a (truncated) Gaussian prior distribution for the non-zero synaptic
weights. This choice simplifies the sampling from the posterior (2.23), but it is known that heavy-
tailed distributions, such as log-Normal, are a more realistic choice (Song et al., 2005; Barbour et al.,
2007). Although we will not consider them here, such priors can also be studied using appropriate
MCMC techniques, see (Smith, 2013) for details.

Observation Schemes

An observation scheme is a particular selection of the matrices Bt appearing in the observation
equation (2.2). The simplest such matrix would be the identity, i.e., all compartments are observed
directly. Since it is currently not experimentally feasible to observe the voltages on a full large
dendritic tree in three dimensions with high temporal resolution, we will consider the following two
cases in which Bt are fat rectangular matrices, i.e., the number of observations S per time step is
less than the number of compartments N .

• Scan observation.
In this scheme, the S ×N observation matrices Bt are

(Bt)ij =

{
1 for j = p ∗ i+ t mod N i = 1 . . . S, t = 1 . . . T, p ∈ N+

0 otherwise.
(2.24)

In other words, we observe S compartments at each time, at changing locations. Each row has
a 1 at columns separated by p entries, that move cyclically at each observation. Variations of
this scheme are common in many electro-physiological experiments.
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• Compressed sensing.
This relatively new paradigm asserts that the number of measurements needed to reconstruct
a signal is much smaller for sparse than for non-sparse signals. For a review and references
to the literature see, e.g., (Candès and Wakin, 2008). To see how this applies to our case,
let us consider the case with no noise in the voltage dynamics, i.e., σ = 0. As shown in
eqs.(B.3)-(B.6), in this limit the observations yt are related to the synaptic weights as

yt = DtW + ηt (2.25)

where

Dt = BtFt ∈ RS×N (2.26)

Ft = At−2U1 +At−1U2 + · · ·+ Ut−1 (2.27)

The matrix Dt is an “effective” observation matrix. Note that the total number of measure-
ments in an experiment lasting T time steps is ST , and suppose that W has K non-zero entries.
If the entries of Dt are chosen randomly from a zero-mean Gaussian and the total number of
measurements obeys

ST ≥ c1K log(N/K) (2.28)

for some constant c1, then, with overwhelming probability, the quadratic error between W and
its lasso estimate Ŵ is bounded as

||Ŵ −W ||2 ≤ c2Cy , (2.29)

for some constant c2 (Candes et al., 2006). The bound (2.28) stands in contrast to non-sparse
signals, which require O(N) measurements for a low-error reconstruction. The experimental re-
alization of this observation scheme is presently a very active area of research, see e.g. (Nikolenko
et al., 2008; Studer et al., 2012).

In our case, we can implement the compressed sensing scheme by choosing, at each t, a ma-
trix Dt whose entries are i.i.d. samples from a positive Gaussian distribution, and an observa-
tion matrix

Bt = DtF
−1
t . (2.30)

A potential numerical problem arises for an extended set of times without external stimulus Ut.
Suppose Ut = 0 for t = t1 + 1, . . . , t2. Then, as follows from (2.27),

Ft2 = At2−t1Ft1 , (2.31)

and since the matrix A is stable (i.e., its eigenvalues are < 1), the matrix Ft2 is ill-conditioned,
leading to a numerical instability in the computation of (2.30). So this observation scheme
is better applied to measurements performed at those times t in which a stimulus Ut 6= 0 is
present.

3 Results

We illustrate our methods using simulated data in a toy model and in a real neuronal geometry. In
each case, we started with a known matrix A (based on the known dendritic geometery), and chose
values for σ2, dt, Cy, Ut and Bt. We sampled values for the dynamic noise εt and obtained values
for Vt by simulating eq.(2.1) forward in time. We next sampled values for the observation noise
ηt and used eq.(2.2) to obtain yt. In all the cases we initialized the Vt dynamics so that Vt was a
time-stationary process, ensuring the validity of the approximations discussed in Appendix C. All
the algorithms were implemented in MATLAB.
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Toy neuron

The toy model neuron, shown in Figure 2, has N = 35 compartments and one branching point, and
we assumed three positive synaptic weights, indicated by circles in Figure 2. Figures 3 to 9 show
results corresponding to one presynaptic input (K = 1), with a stimulus Ut shown in the upper panel
of Figure 4. For the scan observation scheme, we used Bt as in (2.24), with S = 7 observations at
each instant and column spacing p = 5.

Figure 3 illustrates the inferred weights as a function of λ for both the LARS and LARS+
algorithms with scan observation, for a simulation with low noise covariance Cy = 0.05, where
in a slight abuse of notation we abbreviate Cy = [Cy]11 (recall that the observation noise Cy is
proportional to the identity here). As described above, the weights are zero for λ =∞ and become
active at breakpoints as λ becomes smaller. In this Figure (as in Figures 5, 6, 8 and 9), the colors of
the weights correspond to their location in Figure 2. In the upper panel, corresponding to the LARS
algorithm, all the weights are active at λ = 0. On the other hand, for LARS+ in the lower panel,
some weights never become active because that would violate the W ≥ 0 restriction. The vertical
lines show the weights selected by the Cp and 2-fold cross validation criteria.

An estimate of the signal power for V can be obtained as

Ps = Meani (VartVt(i)) ' 0.012, (3.1)

where Vt(i) is the voltage at compartment i and time t. Using this value we can estimate the
signal-to-noise ratio (SNR) for Figure 3 as

SNR = Ps/Cy ' 0.24 (3.2)

Figure 4 shows, along with the presynaptic signal, the true, observed and estimated voltages for
a similar simulation with scan observations, but higher noise covariance Cy = 8 and SNR estimated
as

SNR = Ps/Cy ' 0.0015 . (3.3)

Figure 4 also shows the voltages estimated at the end of the LARS path, the OLS point. These
estimates, shown in the fifth panel, are of poor quality compared with those at the point selected
by the Cp criterion, shown in the last panel. This highlights the importance of the l1 prior in the

model. The higher observation noise in this case translates into a solution path Ŵ ij(λ) in Figure 5
in which the weights at locations with zero true weights grow as λ→ 0 to values comparable to the
non-zero true weights (i.e., overfitting).

The weights inferred at the LARS+/Cp point are shown in more detail in Figure 6. An interesting
phenomenon in this noisier case is that the inferred weights are locally spread around their true
locations. This is due to the matrix A in the dynamical equation (2.1), whose inverse, as mentioned
in Section 2, has a non-zero off-diagonal entry A−1n1n2

if compartments n1 and n2 are first neighbors.
Figure 7 shows Cp and cross-validation statistics for these data as a function of the degrees of

freedom d, for LARS. Note that the minima for both model selection curves are at close-by points.
Figure 8 presents a comparison of scan observations and compressed sensing. Across 20 simula-

tions, the synaptic weights were Cp-estimated as a function of the experiment time. For each neuron
compartments the median and .25/.75 quantiles of the estimated weights are indicated. In each
simulation, the observations for both observation schemes were made on the same data. The figure
shows, as expected, that the compressed sensing results are superior, having a smaller dispersion
and converging faster to the true values.

In Figure 9, we examine a population summary of the results of 100 simulations with the same
parameters as in Figures 4 and 5. As expected, the LARS/LARS+ results are (downward) biased
and have low variance, and the OLS results are unbiased but have high variance. This illustrates the
bias-variance trade-off involved in the l1 regularization (Geman et al., 1992). Note that for LARS+
the values above the median are less dispersed than for LARS.
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Figure 2: Toy neuron with 35 compartments used for the data of Figures 3-10. The three compartments with
non-zero synaptic weights for the simulations with one presynaptic signal are indicated by a circle. We colored
the compartments to ease the visualization of the corresponding inferred weights in Figures 3, 5, 6, 8 and 9.

Figure 10 shows the stimuli and voltages for a simulation in the toy neuron with Cy = 8 and two
presynaptic signals (K = 2). There were three non-zero weights for each presynaptic signal, located
at different compartments. The signal-to-noise ratio is estimated as

SNR = Ps/Cy ' 0.0016 (3.4)

While the quality of the voltages estimated in Figure 10 is good, note that in general we expect the
inferred weights and voltages to lose accuracy as K grows, since we have to estimate more weights,
KN , given the same number of observations yt. Thus our focus here is on modest values of K.

Real neuron geometry

Figures 11 to 13 show simulated results on a real neuronal geometry with N = 2133 compartments,
taken from the THINSTAR file1, corresponding to a rabbit starburst amacrine cell (Bloomfield and
Miller, 1986). In all the cases we considered one presynaptic input signal (K = 1) and estimated the
weights with the Cp criterion. We chose 28 compartments with non-zero weights (Fig. 12, top left
panel). In all the figures we had

SNR = Ps/Cy ' 0.0034 , (3.5)

and the observation matrices Bt had S = 40 rows and N = 2133 columns. Inference required < 10
minutes to process 700 timesteps of data, with k = 140, on a laptop (Linux; Core 2 Duo processor,
2.53GHz).

Figure 11 shows clearly that with the noisy and subsampled voltages of the third panel (‘Noisy
Observations’), obtained with scan observations, we can reconstruct with good quality the full spa-
tiotemporal voltages in the last panel.

Figure 12 shows the true and inferred synaptic weights in the THINSTAR neuron geometry
for 20 simulations of scan observations. The lower left panel, showing the median of the inferred

1Available at http://neuromorpho.org.
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weights, shows that our method is able to infer the locations of almost all the synaptic locations,
with a strength slightly biased toward lower values. To measure the variability of the results across
the 20 simulations, we computed for each compartment, the quartiles w.75 and w.25 of the .75
and .25 percentiles, respectively, of the weights inferred at each location over the 20 simulations.
The dispersion, shown in the lower right panel, is the difference ∆ = w.75 − w.25, computed at each
compartment. Comparing the dispersion pattern with the true weights shows that there is some
variability across the 20 simulations in the strength of the inferred weights, but minimal variability
in the location of the inferred synaptic connections.

Finally, Figure 13 compares the median of the inferred weights for 10 simulations, in scan obser-
vations and compressed sensing, for both a short experiment of T = 200 ms. and a long experiment
of T = 720 ms. Again, the compressed sensing scheme gives better results, already in the short
experiment, while the scan observations results, while not optimal, improve from the short to the
long experiment.

Some additional comments are in order. Firstly, in situations with high noise, some small non-
zero weights tend to grow along the LARS path, as is clear in Figure 5. In these cases, an additional
thresholding of the final inferred weights is recommended. Secondly, the geometry of the neuron,
encoded in the matrix A in the dynamic equation (2.1), is not always known with full precision.
In our simulations, we have noted that the imposition of the positivity constraint in the LARS+
algorithm improves significantly the robustness of the inferred weights under perturbations of the
neuron geometry. Finally, note that our derivation of the compressed sensing observation matrices
assumed zero noise in the hidden sector, but our results show the superiority of this observation
scheme even when some amount of noise is present.

Bayesian approach

For the fully Bayesian approach with a spike-and-slab prior, Figures 14 and 15 show results from
samples of the posterior distribution (2.23). We considered an experiment in the THINSTAR neuron
with scan observations and T = 400. The rest of the parameters were similar to the LARS/Cp results
reported above. We used the hyper-priors (2.20) and (2.21), with parameters αa = 5, βa = 30, ατ =
20, βτ = 0. Figures 14 and 15 show results from 1200 samples, after discarding 300 as burn-in.

A point estimate for the synaptic weights can be obtained from the mean of the posterior samples
of Wi, which allows comparison with the LARS/Cp results for the same dataset. In particular, we
found that the mean squared error (MSE) (compared with the true weights) was 8.48 for the Bayesian
mean and 9.89 for the LARS/Cp estimates.
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Figure 3: Toy neuron with low noise. Active weights as a function of λ along the LARS and LARS+
paths for the toy neuron model of Figure 2 with SNR ' 0.24, 7−dimensional observations and one pre-synaptic
signal (K = 1). The simulation was run for T = 500 ms; The λ axis has logarithmic scale and the three true
non-zero weights are indicated by horizontal dashed lines. The colors of the weights correspond to their location
in Figure 2. The models selected by 2-fold cross validation are indicated by a vertical dashed line and by the
Cp criterion by a straight line. The ticks in the horizontal axis indicate the value of λ at every five successive
breakpoints. The high quality of the inferred weights is due to the relatively high SNR.
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Figure 4: Toy neuron with high noise. Tracking voltages and observations for the toy neuron model of
Figure 2 with SNR ' 0.0015, 7−dimensional observations and one pre-synaptic signal (K = 1). The simulation
was run for T = 500 ms; only the last 200 ms are displayed. Top panel: presynaptic signal Ut, formed by
exponentially filtering the (periodic) presynaptic spike trains. Second panel: true voltages evolving according to
the cable equation (2.1). Third panel: noiseless observations, given by BtVt, that would have been observed had
there been no noise term ηt in the observation equation (2.2). Compartments where no observations are taken at
a given time t are left at zero. Fourth panel: true, noisy observations from the observation equation (2.2). Fifth
panel: voltage estimates at the end of the LARS path, the OLS point. Bottom panel: inferred voltages V̂ (λ) (see
eq. 2.12) estimated using the sparse LARS+ weights selected by the Cp criterion. The poor quality of the OLS
voltage estimates highlights the importance of the l1 prior in the model.
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Figure 5: Toy neuron with high noise. Active weights as a function of λ along the LARS and LARS+
paths for the data shown in Figure 4 for the toy model neuron of Figure 2. Conventions as in Fig. 3. Note that
inference is significantly more challenging here. The LARS solutions select weights which are biased downwards
and somewhat locally spread around the corresponding true weights, as indicated by active weights with similar
colors. Note that the OLS solution, at the λ = 0 point of the upper panel, performs relatively badly here.
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Figure 6: Toy neuron with high noise. True and Cp-selected inferred weights for the data described in
Figures 4 and 5. Due to the local nature of the dynamic matrix A, there are non-zero inferred weights in the
vicinity of the original weights. Note the noisy nature of the OLS results compared with the penalized results.
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Figure 7: Cross-validation and Cp curves. Model selection curves for the low SNR data described in
Figures 4 and 5 using LARS inference. The upper panel shows the average negative log-likelihood of the held-
out data as a function of the number of active weights. The lower panel shows the values of the Cp criterion
(eq.(2.16)) as a function of the number of active weights. The Cp criterion estimates the out-of-sample error and
expresses a trade-off between a better fit to the observed data and the simplicity of the model. The minima for
both model selection curves are indicated by circles.
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Figure 8: Compressed Sensing vs. Scan Observations. LARS+/Cp-estimated synaptic weights in
20 simulations of the toy neuron as a function of the experiment time. For each of the 35 compartments the
median and .25/.75 quantiles are indicated. The average SNR was 2.18 and the dashed lines indicate the true
weights. In each simulation, the observations for both observation schemes were made on the same data and at
the same times. Note that the compressed sensing estimates reach the true weight values in shorter experiments,
as expected.
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Figure 9: Toy neuron with high noise. Distribution of LARS/Cp and LARS+/Cp inferred weights for
100 simulations of the toy neuron described in 4 and 5. The filled rectangles extend from the 25th to the 75th
percentile and the horizontal lines denote the median. Both the LARS and the LARS+ results are downward
biased and have low variance, and the OLS results are unbiased but have high variance. Note that for LARS+
the values above the median are slightly less dispersed than for LARS.
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Figure 10: Toy neuron with high noise and two presynaptic inputs. Tracking voltages and observations
for the toy neuron of Figure 2 with Cy = 8, 7−dimensional observations, two pre-synaptic signals (K = 2)
and SNR ' 0.0016. Conventions and length of the experiment are as in Figure 4, except top panel shows two
presynaptic input signals (one red and one blue). In general we expect the quality of the inferred weights and
voltages to be worse as K grows.
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Figure 11: Big neuron with scan observations. Tracking voltages and observations for the THINSTAR
neuron with 2133 compartments. Note that for space reasons the axes of the voltage panels are inverted compared
to the previous figures. The simulation was run for T=700 ms and the presynaptic neuron spiked every 6 ms.
Since the full N x T voltage matrix is too large to examine directly, we only show 250 compartments for the last
60ms. At each time point 40 voltage observations were made.
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Figure 12: Big neuron with scan observations. True and inferred synaptic weights in the THINSTAR
neuron for 20 simulations, with the parameters indicated in Figure 11. Note that the proposed method is able to
infer the locations of almost all the synaptic locations, again with a slight downward bias. Upper right: results of
a single experiment. Lower left: median results over all 20 experiments. Lower-right: dispersion of results across
all 20 experiments (see main text for details). Comparing the dispersion pattern with the true weights shows
that there is some variability across the 20 simulations in terms of the strength of the inferred weights, but the
variability in terms of the location of the inferred synapses is small.
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Scan observations, 200 ms Scan observations, 720 ms 

Figure 13: Comparison of observation schemes. True and median of Cp-selected inferred synaptic weights
for 10 simulations in the THINSTAR neuron. The scan observation results improve from the short T = 200 to the
long T = 720 experiment. The compressed sensing scheme gives optimal results already in the short experiment.
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Figure 14: Bayesian Inference with spike-and-slab prior. Inferred weights for a synthetic experiment
in the THINSTAR neuron with scan observations and T = 400. The Bayesian approach with a spike-and-slab
prior quantifies the uncertainty of the inferred weights, both through the posterior variance of the weights (lower
left panel) and through the posterior inclusion probability (lower right panel). The latter is defined as p(si|Y )
for each weight Wi, with si the binary variable from the spike-and-slab prior (see (2.18)-(2.19)). The results
correspond to 1200 samples, after discarding 300 as burn-in. In the three panels with Bayesian results, we set
to zero all weights with a posterior inclusion probability lower than 0.1. The color scale of all the panels is the
same, except for the lower right panel.
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Figure 15: Samples from the Spike-and-Slab posterior distribution. Samples from the posterior distri-
bution (2.23) for the data shown in Figure 14. Show are 1200 samples, after discarding 300 as burn-in. Upper
panel: posterior samples from the sparsity parameter a. Middle panel: posterior samples from the slab parame-
ter τ2. Lower panel: posterior samples from one of the N = 2133 synaptic weights. Note that many samples in
the lower panel are zero, since the posterior inclusion probability for this weight was p(s|Y ) ' 0.48.

4 Conclusion and Extensions

Our simulations on both toy and real neuronal geometries demonstrate the potential utility of our
techniques for inferring the location and strength of synaptic connections when using both scan and
compressed sensing observations. Numerical simulations indicate that LARS+ performs better than
LARS or OLS and is able to learn the synaptic weights even under low SNR conditions. We close
by noting that the basic model we have considered here can accommodate several possible extensions.

Robust observation model. We have considered so far only Gaussian noise, for both the
dynamics and the observations. However, it is known that estimates based on a quadratic objective
function can be very non-robust (i.e., sensitive to outliers). The standard generalization is to use
a log-likelihood that does not grow quadratically, but instead flattens out towards linear growth as
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the errors become large, as in the Huber loss function (Huber, 1964)

f(x) =

{
x2/2 for |x| < t ,
t|x| − t2/2 for |x| > t .

(4.1)

Note that this loss function is convex; therefore, log-likelihoods chosen to be proportional to the
negative of this loss function will be concave. More generally, if the observation log-likelihood is
concave, then the inference method we have introduced remains tractable. To compute the optimal
voltage path,

V̂ (W ) = arg max
V

log p(V |Y,W ) , (4.2)

we can use Newton’s method, where each step requires one call to the Low-Rank Block-Thomas
algorithm discussed in Pnevmatikakis and Paninski (2012), which generalizes the method outlined
in Appendix C. To estimate the weights, we can use a Laplace approximation to log p(Y |W ), so for
each λ we want to solve

Ŵ = arg max
W

log p(Y |W ) + log p(W |λ) (4.3)

' arg max
W

log p(V̂ (W )|W ) + log p(Y |V̂ (W ))− 1

2
log |−HV V |+ log p(W |λ) , (4.4)

where the Hessian HV V , defined in (A.6), is evaluated at V̂ . In the Gaussian case, the first two
terms are quadratic in W, and HV V is constant; see Huggins and Paninski (2012) for further details
on the evaluation of the log | −HV V | term. For most reasonable concave observation log-likelihoods,
the solution Ŵ (λ) is continuous in λ, and therefore we use the same path-following idea exploited
by LARS to efficiently compute the solution path Ŵ (λ). The coordinate-wise descent algorithm
of Friedman et al. (2007) provides one efficient solution for finding an optimal W at a given λ value,
given a previous solution at a nearby value of λ.

Slow synapses. A slow synapse corresponds in our model to the filtered arrival of the presynaptic
signal Ut at several delayed times. We can incorporate such a scenario by modifying the dynamic
equation (2.1) as

Vt+dt = AVt +

D∑
p=0

WpUt−p + εt, εt ∼ N (0, σ2dtI) (4.5)

where each Wp is a N ×K synaptic weights matrix for the stimuli arriving with a delay of p time
units. (Equivalently, it is possible to expand Ut in a different basis set of filter functions.) For this
case, it is natural to modify the prior p(W |λ) to require that all D weights at a given compartment
be zero or non-zero jointly. This can be enforced with the grouped lasso prior (Lin and Zhang, 2006;
Yuan and Lin, 2006),

log p(W |λ) = −λ
∑
i,j

‖W i,j‖2 (4.6)

with ‖W i,j‖2 =
√∑D

p=0(W i,j
p )2, which is known to encourage solutions for which the “group” of

elements W i,j
p are held at zero (for a given i, j). Again, the coordinate-wise descent algorithm

of Friedman et al. (2007) is applicable here.
More generally, it is worth noting that the l1 (or group-l1) prior we have used here is rather sim-

ple, and could be generalized considerably. In many cases we may have additional prior information
that can be exploited statistically: for example, we may know from previous anatomical studies that
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a given presynaptic cell type might prefer to synapse on the postsynaptic neuron at perisomatic but
not distal dendritic locations. This can easily be incorporated here by varying the weight of the l1
penalty in a compartment- and cell-type-dependent manner. See Mishchenko and Paninski (2012)
for further discussion.

Other observation models. We can also incorporate more general observation models; for
example, some voltage indicators have their own intrinsic dynamics (this is particularly relevant in
the case of genetically-encoded indicators (Knopfel et al., 2006)), which can be incorporated into
either the dynamics model (as an additional dynamical variable) or the observation model p(Y |V );
see Paninski (2010) for details. Another important direction for future work is to incorporate cal-
cium measurements, which provide higher-SNR information about a nonlinearly-thresholded version
of the voltage signal (Gobel and Helmchen, 2007; Larkum et al., 2008; Takahashi et al., 2012; Pnev-
matikakis, Kelleher, Chen, Saggau, Josić and Paninski, 2012).

Non-linear effects. It will also be important to generalize our methods to increase their robust-
ness to nonlinearities and other departures from the basic model (2.1)-(2.2). In particular, shunting
effects may play a role for large synchronous inputs to nearby compartments, so it would be desirable
to have conductance terms attached to each compartment (Paninski et al., 2012). Other important
effects include synaptic depression and probabilistic release; these random, spike-history dependent
terms can be handled in principle using Expectation-Maximization methods (Huys and Paninski,
2009), but further work will be necessary to ascertain the effectiveness of these methods in the con-
text of the type of experimental data considered here.
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A The quadratic function and the LARS+ algorithm

In this appendix we provide the details of the algorithm used to obtain the solution Ŵ ij(λ) for all
λ, where i = 1 . . . N indicates the neuron compartment and j = 1 . . .K the presynaptic stimulus
associated with the weight. To simplify the notation, define

Q(W ) ≡ log p(Y |W ) , (A.1)

Q(W,V ) ≡ log p(Y, V |W ) , (A.2)

where these expressions are related by

p(Y |W ) =

∫
p(Y, V |W ) dV . (A.3)

Let us first obtain an explicit expression for Q(W ). Recall from Section 2 that

Q(W,V ) = −1

2

T∑
t=1

(yt −BtVt)TC−1y (yt −BtVt) (A.4)

−1

2

T∑
t=2

(Vt −AVt−1 −WUt−1)TC−1V (Vt −AVt−1 −WUt−1)

−1

2
V T1 C

−1
0 V1 + const. .

Since Q(W,V ) is quadratic and concave in V, we can expand it around its maximum V̂ (W ) as

Q(W,V ) = Q(W, V̂ ) +
1

2
(V − V̂ (W ))THV V (V − V̂ (W )) , (A.5)

where the NT ×NT Hessian

HV V =
∂2Q(W,V )

∂V ∂V
, (A.6)

does not depend on Y or W, as is clear from (A.4). Inserting the expansion (A.5) in the integral (A.3)
and taking the log, we get

Q(W ) = Q(W, V̂ (W )) + c (A.7)

= log p(Y |V̂ (W )) + log p(V̂ (W )|W ) + c (A.8)

where c = − 1
2 log |−HV V |+ TN

2 log 2π is independent of W .

Since V̂ (W ) is the maximum of Q(W,V ), its value is the solution of ∇VQ(W,V ) = 0, given by

V̂ (W ) = −H−1V V Z(W ) (A.9)

where

Z(W ) = ∇VQ(W,V )|V=0 =


BT1 C

−1
y y1 −ATC−1V WU1

BT2 C
−1
y y2 −ATC−1V WU2 + C−1V WU1

BT3 C
−1
y y3 −ATC−1V WU3 + C−1V WU2

...

 ∈ RNT , (A.10)

as follows from (A.4). It is useful to expand Z(W ) as

Z(W ) = Z0 +
∑
i,j

ZijW
ij (A.11)
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where the coefficients Z0, Zij ∈ RNT can be read out from (A.10) and are independent of W . This

in turn gives an expansion for V̂ in (A.9) as

V̂ (W ) = V̂0 +
∑
i,j

V̂ijW
ij ∈ RNT (A.12)

where

V̂0 = −H−1V V Z0 ∈ RNT (A.13)

V̂ij = −H−1V V Zij ∈ RNT (A.14)

are independent of W . Note that V̂0 has components

V̂0 =

(V̂0)1
...

(V̂0)T

 (A.15)

where each (V̂0)t is an N-vector, and similarly for each V̂ij .

To obtain the explicit form of Q(W ) one can insert the expansion (A.12) for V̂ (W ) in (A.8). But
it is easier to notice first, using the chain rule, that

dQ(W, V̂ (W ))

dW
=

∂Q(W, V̂ (W ))

∂W
+
∂Q(W, V̂ (W ))

∂V̂

∂V̂ (W )

∂W
(A.16)

=
∂Q(W, V̂ (W ))

∂W
(A.17)

= C−1V

T∑
t=2

(V̂t −AV̂t−1 −WUt−1)UTt−1 (A.18)

where the second term in (A.16) is zero since V̂ (W ) is the maximum for any W . Thus once V̂ is
available, the gradient of Q w.r.t. W is easy to compute, since multiplication by the sparse cable
dynamics matrix A is fast. We can now insert (A.12) into the much simpler expression (A.18) to get

dQ(W, V̂ (W ))

dW ij
= rij +Mij,i′j′W

i′j′ (A.19)

with i, i′ = 1 . . . N and j, j′ = 1 . . .K and coefficients

rij =
1

σ2dt

T∑
t=2

(
(V̂0)t −A(V̂0)t−1

)
i
(Ut−1)j (A.20)

Mij,i′j′ =
1

σ2dt

T∑
t=2

[(
(V̂i′j′)t −A(V̂i′j′)t−1

)
i
(Ut−1)j − (Ut−1)j(Ut−1)j′δii′

]
(A.21)

where δii′ is Kronecker’s delta. The desired expression for Q(W ) follows by a simple integration
of (A.19) and gives the quadratic expression

Q(W ) =
∑
i,j

rijW
ij +

1

2
W ijMij,i′j′W

i′j′ + const. (A.22)

where i = 1 . . . N , j = 1 . . .K. Note that the costly step, computationally, is the linear matrix solve
involving HV V in (A.13)-(A.14) to obtain the components of V̂ , which are then used in (A.20)-(A.21)
to obtain pij and Mij,i′j′ in O(T ) time. Note that we do not need the explicit form of H−1V V , only its
action on the vectors Z0, Zij .
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Matrix form of coefficients

For just one presynaptic signal (K = 1), we can express the coefficients of the log-likelihood (A.22)
in a compact form by defining the matrices

P =


−A IN

−A IN

−A IN
0

 ∈ RNT×NT (A.23)

U =
(
U1IN · · · UT−1IN 0

)
∈ RN×NT (A.24)

B =


B1

B2

.
.
BT

 ∈ RST×NT (A.25)

and C−1yT = C−1y IST , where IN and IST are identity matrices of the indicated dimensions. Using
these matrices, the expansion (A.12) for the estimated voltages is

V̂ (W ) = V0 + V̂ W (A.26)

with

V0 = −H−1V VB
TC−1yT Y ∈ RNT (A.27)

V̂ =
(
V̂1 · · · V̂N

)
(A.28)

= −H−1V V P
TUTC−1V ∈ RNT×N . (A.29)

where Y in (A.27) is

Y =

y1...
yT

 (A.30)

The coefficients of the quadratic log-likelihood in (A.22) can now be expressed as

r = C−1V UPV̂0 (A.31)

= −C−1V UPH−1V VB
TC−1yT Y ∈ RN (A.32)

and

M = C−1V UPV̂ − ||U ||2C−1V (A.33)

= −C−1V UPH−1V V P
TUTC−1V − ||U ||

2C−1V ∈ RN×N (A.34)

where we defined ||U ||2 =
∑T−1
t=1 U2

t . Note that this form makes evident that M is symmetric and
negative semidefinite, which is not obvious in (A.21). In matrix form, the OLS solution is given by

Ŵ = arg max
W

WT r +
1

2
WTMW (A.35)

= −M−1r (A.36)

= −
(
C−1V UUT + C−1V UPH−1V V P

TUTC−1V
)−1

C−1V UPH−1V VB
TC−1yT Y (A.37)

= − UP

||U ||2

(
PTUTC−1V UP

||U ||2
+HV V

)−1
BTC−1yT Y , (A.38)
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where in the last line we used the identity

(A−1 + BTC−1B)−1BTC−1 = ABT (BABT + C)−1 . (A.39)

A.1 LARS-lasso

We will restate here the LARS-lasso algorithm from Efron et al. (2004) for a generic concave quadratic
function Q(W ). We are interested in solving2

Ŵ (λ) = arg max
W

L(W,λ) (A.40)

where

L(W,λ) = Q(W )− λ
N∑
i=1

|W i| . (A.41)

As we saw in eq.(2.11), the solution for Ŵ is a piecewise linear function of λ, with components
becoming zero or non-zero at the breakpoints.

As a function of W i, L(W,λ) is differentiable everywhere except at W i = 0. Therefore, if W i is
non-zero at the maximum of L(W,λ), it follows that

dL(W,λ)

dW i
= 0 for W i 6= 0 , (A.42)

or equivalently

∇iQ(W ) = ri +Mi,i′W
i′ = λ sign(W i) for W i 6= 0 , (A.43)

which implies
|∇iQ(W )| = λ for W i 6= 0 . (A.44)

For λ =∞, one can ignore the first term in (A.41), so the solution to (A.40) is clearly W i = 0. One
can show that this holds for all λ > λ1, where

λ1 = max
i
|∇iQ|W=0 = max

i
|ri| (A.45)

Suppose, without loss of generality, that the maximum in (A.45) occurs for i = 1. The condition
(A.43) will now be satisfied for non-zero W 1, so we decrease λ and let W 1 change as

λ = λ1 − γ (A.46)

W 1(γ) = γa1 γ ∈ [0, λ1] (A.47)

while the other W is are kept to zero. To find a1, insert (A.47) in (A.43),

r1 +M11γa
1 = (λ1 − γ) sign(a1) , (A.48)

from which we get a1 = −r1/(λ1M11). Proceeding in this way, and denoting by Wp(γ) the vector of
weights after the p-th breakpoint, in general we will have, after p steps

λ = λp − γ (A.49)

Wp(γ) = linear in γ with k ≤ p non-zero components, (A.50)

|∇iQ(Wp(γ
′))| = λp − γ i = 1 . . . k non-zero directions, (A.51)

|∇i′Q(Wp(γ
′))| < λp − γ i′ > k zero directions, (A.52)

and we let γ grow until either of these conditions occurs:

2We omit from here on the indices j, j′ in W ij and Mij,i′j′ to simplify the notation.
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1.
At γ = γ′ the gradient along a zero direction, say W k+1, satisfies

|∇k+1Q(Wp(γ
′))| = λp − γ′ . (A.53)

If this happens we let W k+1 become active. Define

Wp ≡ Wp(γ
′) , (A.54)

λp+1 = λp − γ′ , (A.55)

and continue with k + 1 components as:

Wp+1(γ) ≡ Wp + γa =


W 1
p

...
W k
p

0

+ γ


a1

...
ak

ak+1

 γ ∈ [0, λp+1] (A.56)

λ = λp+1 − γ (A.57)

To find the new velocity a, insert Wp+1(γ) into (A.43) to get
M11 . . .M1(k+1)

...

...
M(k+1)1 . . .M(k+1)(k+1)




a1

...
ak

ak+1

 = −


sign(W 1

p )
...

sign(W k
p )

sign(ak+1)

 (A.58)

In this equation we need sign(ak+1), which, as we show in Section A.3, coincides with that of
the derivative computed in (A.53),

sign(ak+1) = sign(∇k+1Q(Wp(γ
′))) . (A.59)

2.
A component of Wp(γ), say W k, becomes zero at γ = γ′. (A.60)

If this happens, W k must drop from the active set because the path of Wp(γ) was obtained
assuming a definite sign for W k in (A.43). So we define

Wp = Wp(γ
′) , (A.61)

λp+1 = λp − γ′ , (A.62)

drop W k from the active set and continue with k − 1 active components as:

Wp+1(γ) ≡ Wp + γa =

 W 1
p

...
W k−1
p

+ γ

 a1

...
ak−1

 γ ∈ [0, λp+1] (A.63)

λ = λp+1 − γ (A.64)

To find the new a, inserting Wp+1(γ) into (A.43) gives M11 . . .M1(k−1)
...

M(k−1)1 . . .M(k−1)(k−1)


 a1

...
ak−1

 = −

 sign(W 1
p )

...
sign(W k−1

p )

 (A.65)

from which a can be solved.
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As each a is found, we decrease λ by increasing γ, and check again for either cases 1 or 2 until we
reach λ = 0, at which point all directions will be active and the weights will correspond to the global
maximum of Q(W ).

Having presented the algorithm, let us discuss its computational cost. To obtain pi we need
to act with H−1V V on Z0 (see (A.13) and (A.20)). Similarly, for each new active weight W k+1 the
(k+ 1)-th column of M is needed in (A.58), which comes from acting with H−1V V on Zk+1 (see (A.14)
and (A.21)). The action of H−1V V has a runtime of O(TN3), but in Appendix C we show how to
reduce it to O(TNS2) with a low-rank approximation. For the total computational cost, we have
to add the runtime of solving (A.58). Since at each breakpoint the matrix in the left-hand side
of (A.58) only changes by the addition of the (k + 1)th row and column, the solution takes O(k2)
instead of O(k3) (Efron et al., 2004). Running the LARS algorithm through k steps, the total cost
is then O(kTNS2 + k3) time.

A.2 Enforcing a sign for the inferred weights

We can enforce a definite sign for the non-zero weights by a simple modification of the LARS-lasso.
Assuming for concreteness an excitatory synapse, the solution to (A.40) for all λ and subject to

W i ≥ 0

can be obtained by allowing a weight to become active only if its value along the new direction is
positive. The enforcement of this condition for the linear regression case was discussed in Efron et al.
(2004). In our formulation of the LARS-lasso algorithm, the positivity can be enforced by requiring
that the first weight becomes active when

λ1 = max
i
ri ri > 0 (A.66)

and by replacing the condition that triggers the introduction of new active weights, denoted above
as condition 1, by

1.
At γ = γ′ the gradient along a zero direction, say W k+1, satisfies

∇k+1Q(Wp(γ
′)) = +(λp − γ′) . γ′ ∈ [0, λp] (A.67)

By requiring the derivative along W k+1 to be positive at the moment of joining the active set, we
guarantee that W k+1 will be positive due to the result of Section A.3.

When λ reaches zero, the weights, some of which may be zero, are the solution to the quadratic
program

Ŵ = arg max
W

Q(W ) , W i ≥ 0 . (A.68)

We will refer to the LARS-lasso algorithm with the modification (A.67) as LARS+. In practice, the
measurements can be so noisy that the algorithm may have to be run assuming both non-negative and
non-positive weights, and the nature of the synapse can be established by comparing the likelihood
of both results at their respective maxima. More generally, if K > 1 we have to estimate the sign of
each presynaptic neuron; this can be done by computing the likelihoods for each of the 2K possible
sign configurations. This exhaustive approach is tractable since we are focusing here on the small-K
setting; for larger values of K, approximate greedy approaches may be necessary Mishchenko et al.
(2011).
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A.3 The sign of a new active variable

Property: the sign of a new variable W k+1 which joins the active group is the sign of ∇k+1Q(W )
at the moment of joining.

Proof :3 Remember that the matrix Mii′ is negative definite and, in particular, its diagonal elements
are negative

Mii < 0 , i = 1 . . . N (A.69)

As we saw in Section A.1, if the first variable to become active is

W1(γ) = γa1 γ ∈ [0, λ1] (A.70)

with

λ1 = max
i
|∇iQ|W=0 = |r1| , (A.71)

we have
a1 = − r1

λ1M11
(A.72)

and using (A.69) and λ1 > 0 we get
sgn(a1) = sgn(r1) (A.73)

as claimed. Suppose now that there are k active coordinates and our solution is

Wp(γ) =


W 1
p (γ)
.
.

W k
p (γ)

 γ ∈ [0, λp] (A.74)

Define
cj(γ) = ∇jQ(Wp(γ)) , (A.75)

and note that
|cj(γ)| = λp − γ j = 1 . . . k . (A.76)

Suppose a new variable W k+1 enters the active set at γ = γ′ such that

|ck+1(γ′)| = λp − γ′ (A.77)

It is easy to see that when taking γ all the way to λp, the sign of ck+1(γ) does not change

sgn(ck+1(γ′)) = sgn(ck+1(λp)) (A.78)

since the cj(γ) (j = 1, . . . k) go faster towards zero than ck+1(γ). To make the variable W k+1 active,
define

λp+1 = λp − γ′ , (A.79)

Wp ≡ Wp(γ
′) , (A.80)

and continue with k + 1 components as:

3This is a recasting of Lemma 4 in Efron et al. (2004).
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Wp+1(γ) ≡ Wp + γa =


W 1
p

...
W k
p

0

+ γ


a1

...
ak

ak+1

 γ ∈ [0, λp+1] (A.81)

λ = λp+1 − γ (A.82)

To find a, impose on (A.81) the conditions (A.43) that give

p + M(k+1,k+1)Wp+1(γ) = (λp+1 − γ)s (A.83)

where p = (p1, . . . , pk+1)T , M(k+1,k+1) is the (k + 1)× (k + 1) submatrix of Mij , and

s =


sgn(W 1

p )
.
.

sgn(W k
p )

sgn(ak+1)

 (A.84)

Since (A.83) holds for any γ, we get the two equations

p + M(k+1,k)Wp = λp+1s (A.85)

and
M(k+1,k+1)a = −s . (A.86)

where M(k+1,k) is obtained from M(k+1,k+1) by eliminating the last column. Inserting (A.85)
into (A.86) we get

a = − 1

λp+1
M−1

(k+1,k+1)(p + M(k+1,k)Wp) (A.87)

= − 1

λp+1
M−1

(k+1,k+1)

(
p + M(k+1,k)Wp(λp)−M(k+1,k)Wp(λp) + M(k+1,k)Wp

)
(A.88)

= − 1

λp+1
M−1

(k+1,k+1)

(
0

ck+1(λp)

)
− 1

λp+1
(Wp −Wp(λp)) (A.89)

where 0 has k elements. Since the (k + 1)-th element of the second term in (A.89) is zero, we get

ak+1 = −

(
M−1

(k+1,k+1)

)
(k+1)(k+1)

λp+1
ck+1(λp) . (A.90)

Since M−1
(k+1,k+1) is negative definite, we have (M−1

(k+1,k+1))(k+1)(k+1) < 0, so using (A.78), the result

sgn(ak+1) = sgn(ck+1(γ′)) (A.91)

follows. �

B The Cp criterion for low SNR

In the limit of very low signal-to-noise ratio, we can ignore the dynamic noise term in eq. (2.1) and
consider

Vt+dt = AVt +WUt (B.1)

yt = BtVt + ηt, ηt ∼ N (0, CyI). (B.2)

34



Let us assume that the number of presynaptic neurons is K = 1 to simplify the formulas. The results
can be easily extended to the general case. We can combine the above equations as

Y = XW + η , (B.3)

where we defined

Y =

y1...
yT

 η =

η1...
ηT

 (B.4)

and the matrix X is given by the product

X = BC ∈ RST×N , (B.5)

where B was defined in (A.25) and

C =



0
U1

AU1 + U2

A2U1 +AU2 + U3

.

.
AT−2U1 + · · ·+ UT−1


∈ RNT×N . (B.6)

Equation (B.3) corresponds to a standard linear regression problem and the l1-penalized posterior
log-likelihood to maximize is now

log p(W |Y, λ) = −1

2
||Y −XW ||2 − λ

N∑
i=1

|W i| . (B.7)

The solution Ŵ (λ) that maximizes (B.7) is obtained, as in the general case, using the LARS/LARS+
algorithm, and the fitted observations are given by

Ŷ (λ) = BCŴ (λ) . (B.8)

One can show that each row in CŴ (λ) corresponds to the CV → 0 limit of the expected voltage V̂t(λ)
defined in (2.12). Given an experiment (Y,U), consider the training error

err(λ) = ||Y − Ŷ (λ)||2 (B.9)

and the in-sample error

Errin(λ) = EỸ
[
||Ỹ − Ŷ (λ)||2

]
. (B.10)

In Errin(λ), we compute the expectation over new observations Ỹ for the same stimuli Ut and compare
them to the predictions Ŷ (λ) obtained with the initial experiment (Y, U). Thus, Errin(λ) gives a
measure of the generalization error of our results. Errin(λ) itself cannot be computed directly, but
we can compute its expectation with respect to the original observations Y . For this, let us consider
first the difference between Errin and err, called the optimism (Friedman et al., 2008). Denoting the
components of Y with an index i, it is easy to verify that the expected optimism with respect to Y
is

ω(λ) ≡ 〈Errin(λ)− err(λ)〉 (B.11)

= 2

ST∑
i=1

〈YiŶi(λ)〉 − 〈Yi〉〈Ŷi(λ)〉 (B.12)

= 2

ST∑
i=1

Cov(Yi, Ŷi(λ)) . (B.13)
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For the general case K ≥ 1, we will have X ∈ RST×NK . Let us assume that ST > NK and that
X is full rank, that is, rank(X) = NK. Then in (Zou et al., 2007) it was shown that if we define
d(λ) = ||Ŵ (λ)||0 as the number of non-zero components in Ŵ (λ), we have4

ω(λ) = 2〈d(λ)〉Cy. (B.14)

Thus 2d(λ)Cy is an unbiased estimate of ω(λ), and is also consistent (Zou et al., 2007). With this
result, and using err(λ) as an estimate of 〈err(λ)〉, we obtain an estimate of the average generalization
error 〈Errin(λ)〉 as

Cp(λ) = ||Y − Ŷ (λ)||2 + 2d(λ)Cy . (B.15)

This quantity can be used to select the best λ as that value that minimizes Cp(λ). Since the first
term is a non-decreasing function of λ (Zou et al., 2007), it is enough to evaluate Cp(λ) for each d at
the smallest value of λ at which there are d active weights in W (λ). With a slight abuse of notation,
the resulting set of discrete values of (B.15) will be denoted as Cp(d).

C The low-rank block-Thomas algorithm

In this appendix we will present a fast approximation technique to perform multiplications by the
inverse Hessian H−1V V . The NT ×NT Hessian HV V in (A.6) takes the block-tridiagonal form

HV V =


−C−10 −ATA AT 0 . . .

A −I −ATA AT 0 . . .
0 A −I −ATA AT 0
...

...
...

. . .

. . . A −I

 (C.1)

−


BT1 C

−1
y B1

BT2 C
−1
y B2

BTTC
−1
y BT


where we have set CV = I to simplify the notation. We will restore it below to a generic value.

It will be convenient, following Paninski (2010), to adopt for C0, the covariance of the initial
voltage V1, the value

C0 =

∞∑
i=0

(AAT )i = (I −AAT )−1 (C.2)

(note that the dynamics matrix A is stable here, ensuring the convergence of this infinite sum). This
is the stationary prior covariance of the voltages Vt in the absence of observations yt, and with this
value for C0, the top left entry in the first matrix in (C.1) simplifies to −C−10 −ATA = −I.

We want to calculate

H−1V V b = H−1V V


b1
b2
...
bT

 =


x1
x2
...
xT

 = x, (C.3)

where b can be an arbitrary NT -dimensional vector and each bi and xi is a column vector with
length N . We can calculate this using the block Thomas algorithm for tridiagonal systems of
equations (Press et al., 1992), which in general requires O(N3T ) time and O(N2T ) space, as shown
in Algorithm 1.

4We have verified, through Monte Carlo simulations similar to those in (Zou et al., 2007), that this result also holds in
the positive constrained case.
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Algorithm 1 Standard Block Thomas Algorithm for calculating H−1V V b

α1 ← −(I +BT
1 C
−1
y B1)

γ1 ← α−11 AT

y1 ← α−11 b1
for i = 2 to T − 1 do
αi ← −(I +ATA+BT

i C
−1
y Bi +Aγi−1)

γi ← α−1i AT

yi ← α−1i (bi −Ayi−1)
end for
αT ← −(I +BT

TC
−1
y BT +AγT−1)

xT ← α−1T (bT −AyT−1)
for i = T − 1 to 1 do
xi ← yi − γixi+1

end for

We can adapt this algorithm to yield an approximate solution to (C.3) in O(TNS2) time by using
low-rank perturbation techniques similar to those used in Paninski (2010); Huggins and Paninski
(2012); Pnevmatikakis, Paninski, Rad and Huggins (2012). The first task is to calculate α−11 . Using
the Woodbury matrix lemma, we get

α−11 = −(I +BT1 C
−1
y B1)−1 (C.4)

= −I +BT1 (Cy +B1B
T
1 )−1B1 (C.5)

= −I + L1D1L
T
1 ∈ RN×N (C.6)

where
L1 = BT1 ∈ RN×S (C.7)

and
D1 = (Cy +B1B

T
1 )−1 ∈ RS×S . (C.8)

Note that the simple expression (C.6) for α−11 follows from the form we chose in (C.2) for C0.
Plugging α−11 into the Algorithm 1’s expression for γ1 gives

γ1 = α−11 AT (C.9)

= −AT + L1D1L
T
1 A

T ∈ RN×N . (C.10)

To continue the recursion for the other α−1i s, the idea is to approximate these matrices as low-rank
perturbations to −I,

α−1i ≈ −I + LiDiL
T
i ∈ RN×N , (C.11)

where Di is a small di×di matrix with di � N and Li ∈ RN×di . This in turn leads to a form similar
to (C.10) for γi,

γi ≈ −AT + LiDiL
T
i A

T . (C.12)

Therefore we can write

α−1i = −(I +ATA+BTi C
−1
y Bi +Aγi−1)−1 (C.13)

≈ −(I +ATA+BTi C
−1
y Bi −AAT +ALi−1Di−1L

T
i−1A

T )−1 (C.14)

≈ −(I +BTi C
−1
y Bi +ALi−1Di−1L

T
i−1A

T )−1. (C.15)
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This expression justifies our approximation of α−1i s as a low rank perturbation to −I: the term
BTi C

−1
y Bi is low rank because the number of measurements is S � N , and the second term is low

rank because the condition eigs(A) < 1 tends to suppress at step i the contribution of the previous
step encoded in Li−1Di−1L

T
i−1. See Pnevmatikakis, Paninski, Rad and Huggins (2012) for details.

To apply Woodbury we choose a basis for the two non-identity matrices,

Oi = [ALi−1 BTi ] ∈ RN×(S+di−1) (C.16)

and write
BTi C

−1
y Bi +ALi−1Di−1L

T
i−1A

T = OiMiO
T
i , (C.17)

where

Mi =

(
Di−1

C−1y

)
∈ R(S+di−1)×(S+di−1)

Applying Woodbury gives

α−1i = −(I +OiMiO
T
i )−1 (C.18)

= −I +Oi(M
−1
i +OTi Oi)

−1OTi . (C.19)

We obtain Li and Di by truncating the SVD of the expression on the right-hand side: in Matlab,
for example, do

[L′, D′] = svd(Oi(M
−1
i +OTi Oi)

−1/2, ‘econ’ ), (C.20)

then choose Li as the first di columns of L′ and Di as the square of the first di diagonal elements
D′, where di is chosen to be large enough (for accuracy) and small enough (for computational
tractability).

We must handle α−1T slightly differently because of the boundary condition. Making use of the
fact that C−10 = I −AAT and the Woodbury identity, we get

α−1T = −(I +BTTC
−1
y BT +AγT−1)−1 (C.21)

= −(I +BTTC
−1
y BT −AAT +ALT−1DT−1L

T
T−1A

T )−1 (C.22)

= −(C−10 +OTMTO
T
T )−1 (C.23)

= −C0 + C0OT (M−1T +OTTC0OT )−1OTTC0 (C.24)

= −C0 + LTDTL
T
T , (C.25)

where
LT = C0OT (C.26)

and
DT = (M−1T +OTTC0OT )−1. (C.27)

Multiplications by α−1T are efficient since we can multiply by C0 in O(N) time, expoiting the
sparse structure of A (see (Paninski, 2010) for details). It is unnecessary to control the rank because
we will only be performing one multiplication with α−1T and calculating the SVD is a relatively
expensive operation.
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The updates for calculating yi and xi are straightforward:

y1 = α−11 b1 (C.28)

= −b1 + L1D1L
T
1 b1 (C.29)

yi = α−1i (bi − C−1V Ayi−1) (C.30)

= (−I + LiDiL
T
i )(bi −Ayi−1) (C.31)

xT = α−1T (bT − C−1V AyT−1) (C.32)

= (−C0 + LTDTL
T
T )(bT −AyT−1) (C.33)

xi = yi − γixi+1 (C.34)

= yi +ATxi+1 − LiDiL
T
i A

Txi+1. (C.35)

Algorithm 2 summarizes the full procedure. One can verify that the total computational cost scales
like O(TNS2) (see Pnevmatikakis, Paninski, Rad and Huggins (2012) for details).

Finally, note that for repeated calls to H−1V V b, we can compute the matrices Li, Di once and
store them. For the case when CV is not the identity we can apply a linear whitening change of

variables V ′t = C
−1/2
V Vt. We solve as above except we make the substitution Bt → BtC

1/2
V and our

final solution now has the form

x =
(
IT ⊗ C1/2

V

)
H−1V V

(
IT ⊗ C1/2

V

)T
b.

Algorithm 2 Low Rank Block Thomas Algorithm for calculating H−1V V b

L1 ← BT
1

D1 ← (Cy +B1B
T
1 )−1

y1 ← −b1 + L1D1L
T
1 b1

for i = 2 to T do
Oi ← [ALi−1 BT

i ]
Mi ← diag(Di−1, C

−1
y )

if i 6= T then
[L′i, D

′
i]← svd(Oi(M

−1
i +OT

i Oi)
−1/2, ‘econ’ )

yi ← (−I + L′iD
′
iL
′T
i )(bi −Ayi−1)

control rank of L′i and D′i to obtain Li and Di

else
Li ← C0Oi

Di ← (M−1i +OT
i C0Oi)

−1

end if
end for
xT ← (−C0 + LTDTL

T
T )(bT −AyT−1)

for i = T − 1 to 1 do
xi ← yi +ATxi+1 − LiDiL

T
i A

Txi+1

end for
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