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Abstract

On the verge of superpixel methods exploiting saliency information, the Superpixels through Iterative
CLEarcutting (SICLE) framework has reported fast and accurate superpixel delineation. It is com-
posed of three steps: (i) seed oversampling; (ii) superpixel generation; and (iii) seed removal. It starts
from (i) and applies several iterations of (ii) and (iii) until reaching the desired superpixel quantity. In
this work, we improve SICLE such that it can now generate compact superpixels with accurate delin-
eation. We exploit differential computation and propose several novel functions for steps (ii) and (iii)
for proper saliency incorporation, compact superpixel generation, and improvement in speed and delin-
eation. Results show that, with our proposals, SICLE achieves state-of-the-art performance in delin-
eation and speed whenever saliency is absent with on-par compacity. When an accurate saliency map
is provided, its performance improves significantly and requires only two iterations for segmentation.

Keywords: Superpixel,Saliency,Multiscale,Segmentation

1 Introduction

In order to minimize workload and handle more
meaningful data than simple pixels, medical appli-
cations [1–3], semantic segmentation methods [4],
and video segmentation algorithms [5] often recur
to superpixel segmentation. In brief, superpixels
are disjoint groups of connected pixels that present
similar characteristics, like color. Consequently,
superpixel segmentation methods aim to represent
any object by its comprising parts.

Despite the diversity of the superpixel litera-
ture, it is possible to list a set of crucial properties
for any algorithm [6]: (i) boundary adherence;
(ii) compactness; and (iii) efficiency. However,
achieving simultaneously all three is a challenging
task [6]. For instance, the popular Simple Linear
Iterative Clustering (SLIC) [7] and the Iterative
Boundary Implicit Identification (IBIS) [8] are
two fast approaches for generating highly compact
superpixels, but with moderate delineation perfor-
mance. On the other hand, Superpixel Hierarchy
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Fig. 1 Segmentation requiring 100 superpixels. The object boundaries and the superpixel borders are depicted in red and
cyan, respectively. Yellow circles indicate regions where SICLE best approximates the object borders in contrast with the
baselines.

(SH) [9] and Dynamic and Iterative Spanning
Forest (DISF) [10] efficiently produce superpix-
els with high boundary adherence, but highly
irregular as well. One may perceive such irregu-
larity as an overfitting behavior [11]. Either way,
these methods, by aiming the delineation of every
possible border, are unaware of the user’s desire
to segment a specific object, nor might they be
adaptable to do such a task.

By acknowledging the complex problem of
detecting all borders, several recent methods
exploit deep-learning strategies for learning a pat-
tern (e.g., relevant borders) for superpixel gener-
ation. Still, such algorithms often present moder-
ate delineation performance and moderate com-
pactness, demanding high computational power.
Moreover, both supervised [12, 13] and unsuper-
vised [14, 15] approaches are dependable on data,
specially annotated for the former.

Using a different strategy, new algorithms
exploit the probable object location, usually com-
puted through deep learning and termed saliency,
for adapting the segmentation to the user’s needs.
Thus, by maximizing the delineation of a specific
object, these saliency-based approaches dismiss
the segmentation of the remaining ones. To the
best of our knowledge, the Saliency-based Super-
pixels (SS) [16] is the first method to adopt
this paradigm, generating superpixels through a
saliency-driven bottom-up merging process. The

Object-based Iterative Spanning Forest (OISF) [17,
18], another example, can alter the superpixel
morphology with respect to the given information,
but is highly dependable on its quality. Conversely,
the Object-based DISF (ODISF) [19] offers a less-
dependable strategy with higher efficiency and
more accurate delineation performance. However,
ODISF is unable to produce compact superpixels
and cannot further improve its segmentation for
more accurate object information.

Another saliency-based framework, named
Superpixels through Iterative CLEarcutting
(SICLE) [20], generalizes both DISF and ODISF
for computing superpixels more efficiently. SICLE
is composed of three independent steps: (i) seed
oversampling; (ii) path-based superpixel genera-
tion; and (iii) seed removal. Briefly, it starts from
(i) and, for several iterations, applies (ii) and
(iii) until obtaining a desired number of super-
pixels. Even though it inherits the drawbacks of
both DISF and ODISF, like their irregularity, its
architecture with separated and self-contained
steps favors modifications and improvements
with reduced effort while maintaining its
state-of-the-art efficiency and efficacy.

In this work, we propose several functions for
the SICLE framework for effective object delin-
eation through compact or irregular superpixels,
exploiting the quality of the saliency estimation.
That is, we introduce two novel arc-cost functions



Springer Nature 2021 LATEX template

Article Title 3

for step (ii), which provides a twofold property: for
poor-quality saliency information (e.g., inaccurate
object boundary definition), our proposals sustain
the effective delineation of ODISF; for state-of-
the-art quality, the novel functions improve the
border detection significantly without reinforcing
erroneous estimations in the segmentation, dif-
ferently from OISF. For step (iii), we present
a novel seed criterion for spreading superpixels
and three new penalizations for a more accu-
rate seed removal by focusing on the object’s
salient borders. Furthermore, we performed an
extensive study for building both irregular and
compact SICLE variants which, as shown by the
experimental results, have surpassed several state-
of-the-art methods in delineation (see Figure 1)
and speed. For the latter, SICLE variants require
only two iterations for segmentation due to our
proposed functions. Finally, since saliency usually
depicts a single object, we debate the challenges
of saliency-based superpixel segmentation using
SICLE and, thus, using our proposals with multi-
ple objects of interest.

In brief, we can list the following contributions:

• novel arc-cost functions which incorporate prior
object information and produce compact and
irregular superpixels robust to saliency errors;

• novel seed relevance criterion for superpixel
spreading and three novel seed relevance
saliency-based penalization for improving delin-
eation and assuring overall compactness;

• thorough optimization of SICLE and an exten-
sive performance evaluation in five datasets,
considering well-known metrics and seven state-
of-the-art methods as baselines, resulting in two
SICLE variants for effective delineation and
compact superpixel generation;

• debate over multiobject handling in SICLE.

This article extends and completes a previous
work published at a conference [21]. Differently
from it, the saliency importance in our arc-cost
functions is not a binary parameter (thus, may be
optimized), and the seed penalization is no longer
associated with such importance, being indepen-
dently defined. The remaining contributions are
original and do not appear in [21].

This work is organized as follows. In Section 2,
we present a brief overview of state-of-the-
art superpixel segmentation algorithms. Subse-
quently, in Section 3, we introduce the theoretical

framework necessary for describing our proposed
functions in Section 4. Then, the experimental
results and a debate over multiobject handling are
presented in Sections 5 and 6. Finally, we conclude
this work in Section 7 drawing possible future
work.

2 Related Works

In this section, we present and debate the most
notable state-of-the-art superpixel segmentation
algorithms. We can broadly classify them based
on their behavior towards prior object informa-
tion: (i) classical; (ii) deep-learning-based; and
(iii) saliency-based. Unfortunately, most surveys
do not encompass (ii) and (iii), being recently
developed strategies. Still, for a more detailed
discussion on this topic, we recommend several
distinguished works [6, 22, 23].

The majority of superpixel methods are clas-
sical and can be further divided into three sub-
groups based on their strategy: (i) clustering-
based; (ii) graph-based; and (iii) path-based. As
the label suggests, the algorithms in (i) model
the segmentation task as a pixel-clustering prob-
lem, and the most well-known work is the Simple
Linear Iterative Clustering (SLIC) [7]. In SLIC,
superpixels are generated through an adapted
K-means in a 5-dimensional feature space com-
prising the pixels’ color and spatial coordinates.
Given its simplicity and efficiency, several works
extended or were inspired by SLIC, producing
highly effective and efficient algorithms. One of
such is the Linear Spectral Clustering (LSC) [24],
which produces superpixels using a weighted K-
means in a 10-dimensional feature space. Another
example is the Iterative Boundaries Implicit Iden-
tification (IBIS) [8], an efficient approach for
generating highly compact superpixels by mini-
mizing the number of pixel operations without any
performance degradation. Although certain meth-
ods classify themselves as content-sensitive [25],
content-adaptive [26], or even texture aware [27],
they often rely on clustering techniques, spe-
cially K-means. However, such approaches, includ-
ing those that use Gaussian Mixture Models
(GMM) [28] and Density-based Spatial Cluster-
ing of Applications with Noise (DBSCAN) [29] for
clustering, tend not to ensure the desired num-
ber of superpixels [30]. Moreover, although they
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generate compact superpixels, their delineation
performance is usually moderate.

Those termed as graph-based usually generate
superpixels through edge operations in the image
graph. For instance, the Entropy Rate Superpixels
(ERS) [31] performs such task by optimizing the
entropy of a random walk in the graph’s topology.
However, ERS tends to present high computa-
tional time. On the other hand, the Superpixel
Hierarchy (SH) [9] builds a hierarchical super-
pixel segmentation through the Bor̊uvka algo-
rithms, achieving linear time complexity. In con-
trast to clustering-based approaches, both ERS
and SH provides accurate object delineation at
the expense of generating highly irregular super-
pixels. Furthermore, for SH, such delineation may
be compromised by errors propagated from lower
levels to upper ones in the hierarchy.

Similarly to SLIC and K-means, most path-
based approaches base themselves on the Image
Foresting Transform (IFT) framework for gener-
ating superpixels. In such category, superpixels
are built by path searching from a subset of ver-
tices (i.e., seeds) to the remaining ones based
on a similarity criterion. Aside from guarantee-
ing the desired number of superpixels, IFT-based
methods often achieve top delineation perfor-
mance. We may cite state-of-the-art methods,
such as the Iterative Spanning Forest (ISF) [32]
framework, which inspired later and more effec-
tive approaches. The Recursive ISF (RISF) [33]
method, for instance, produces a sparse hierarchi-
cal superpixel segmentation by executing several
ISFs at each level. As a different example, the
Dynamic ISF (DISF) [10] uses a strategy of seed
oversampling and iterative seed removal for com-
puting a superpixel segmentation using a dynamic
arc-cost estimation. Lastly, although the most
common drawback of such category is the diffi-
culty in producing compact superpixels [6], the
Waterpixels [30] algorithm manages to produce
compact superpixels using the watershed transfor-
mation.

Classical methods usually produce accurate
object delineation but are unaware of the user’s
expectations towards the objects. On the other
hand, in recent years, several novel approaches
have tried to overcome such difficulty by exploiting
deep-learning techniques to generate superpix-
els. One possible approach is to extend exist-
ing methods for incorporating features learned

through deep-learning, such as the one proposed
in [34]. However, the authors in [35] argue that
directly incorporating deep features is insuffi-
cient for proper delineation. Thus, they propose
the construction of pixel-affinities maps through
deep learning using a new loss function, named
SEgmentation Aware Loss (SEAL), and mod-
ify preexistent superpixel algorithms (e.g., ERS)
for considering such information, resulting in
the SEAL-ERS approach. Similarly, the Deep
Affinity Learning for Hierarchical ERS (DAL-
HERS) [36] also computes pixel-affinity maps
and generates superpixels hierarchically through
the Bor̊uvka method considering the entropy of
the graph. Another strategy consists of building
end-to-end supervised [12, 13, 37] or unsuper-
vised [14, 15] networks for superpixel generation.
However, although promising, both approaches
demand more research [20, 35] since they present:
(a) high data dependency; (b) moderate delin-
eation; and (c) high computational cost.

In order to achieve the best of both strate-
gies (i.e., effectiveness and incorporating object
information), current saliency-based algorithms,
apart from [16], generalize classical algorithms
for incorporating saliency information, often esti-
mated through deep-learning. As an example, the
Object-based ISF (OISF) [17, 18] is a general-
ization of ISF that allows user control over the
superpixel’s morphology and displacement with
respect to an object saliency map. However, given
that OISF is slow and highly dependable on the
map’s quality, the authors in [19] propose Object-
based DISF (ODISF), a faster and more robust
method for achieving accurate object delineation.
Still, for both DISF and ODISF, it is difficult to
establish the number of iterations for segmenta-
tion, and they do not produce compact super-
pixels. Moreover, although robust, they cannot
improve their delineation for better saliency maps.
Finally, in order to solve the iteration problem,
the authors in [20] proposed Superpixels through
Iterative CLEarcutting (SICLE), a generalization
of both DISF and ODISF, in which the user can
define a maximum number of iterations, producing
a saliency-based multiscale segmentation.

3 Theoretical Background

In this section, we present the theoreti-
cal background of our proposed framework.
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While Section 3.1 introduces basic concepts
on images, saliency maps, and image digraphs,
Section 3.2 presents the Image Foresting Trans-
form (IFT) [38], the core algorithm for object
delineation for the Superpixels through Iterative
CLEarcutting (SICLE) [20] framework (described
in Section 3.3).

3.1 Image Digraph

We may define an image I as a pair ⟨I,F⟩ such
that every p ∈ I ⊂ Z2 denotes a picture element
(i.e., pixel) whose feature vector (e.g., CIELAB
color in this work) is represented by F(p) ∈ Rm,
for m ∈ N>0. Thus, I is a grayscale or a color
image whenever m = 1 or m > 1, respectively.
For example, an object saliency map O = ⟨I,O⟩
is a grayscale image in which O(p) ∈ [0, 1] defines
a proportional object likelihood, often referred as
(object) saliency, ∀p ∈ I. Intuitively, brighter is
the intensity O(p) of p, higher is its probability of
belonging to the object of interest.

From I, we can build an image digraph G =
⟨V,A⟩ in which V ⊆ I is the vertex set and
A ⊂ V2 is the arc set. A popular approach
for establishing the arcs of G is through Ar =
{⟨x, y⟩ : ∥x− y∥2 ≤ r}, given x, y ∈ V and r ∈
R≥0. One may note that A√

2 represents the 8-
adjacency relation. If ∃ ⟨x, y⟩ ∈ A then we term
x as adjacent of y. Finally, in this work, every
⟨x, y⟩ ∈ A is unique and x ̸= y (i.e., G is simple).

A (directed) path ρ = ⟨v1, . . . , vk⟩ is a sequence
of distinct vertices such that ⟨vi, vi+1⟩ ∈ A, for
i, k ∈ N>0 and i < k, and it is trivial when
k = 1. Whenever ρ is non-trivial, we name vi
as predecessor of vi+1 and vi+1 as sucessor of vi
in ρ. Moreover, v1 is the root of ρ while vk is
its terminus, and we may explicitly present both
by ρv1⇝vk . However, for simplicity, we may omit
the root from such notation. For instance, ρs⇝x⊙
⟨x, y⟩ = ρx ⊙ ⟨x, y⟩ = ⟨v1 = s, . . . , vk = x, y⟩
denotes the concatenation of the path ρx, irrespec-
tive of its origin s ∈ V, with an arc ⟨x, y⟩, merging
the two instances of x into one.

3.2 Image Foresting Transform

In [38], the authors proposed the Image Foresting
Transform (IFT), a framework highly effective for
object delineation [39, 40]. Briefly, the IFT, in this
work, finds a path with optimum cost from a seed

s ∈ S to every non-seed vertex v ∈ V \ S, being
S ⊂ V the seed set.

We can compute the path-cost f∗(ρ) ∈ R≥0 of
any path ρ ∈ P, where P is the set of all pos-
sible ones in G, through a path-cost function f∗.
For instance, Equation 1 illustrates two different
path-functions fmax, fsum effective for superpixel
segmentation [10, 17, 19, 32]:

f∗(⟨x⟩) =

{
0, if x ∈ S
∞, otherwise

fmax(ρx ⊙ ⟨x, y⟩) = max {fmax(ρx),w∗(x, y)}
fsum(ρx ⊙ ⟨x, y⟩) = fsum(ρx) +w∗(x, y)

(1)

in whichw∗(x, y) ∈ R≥0 denotes the arc-cost func-
tion of ⟨x, y⟩ ∈ A. A path ρx is said to be optimum
if, for any other ϱx ∈ P, f∗(ρx) ≤ f∗(ϱx).

Thus, by exploiting a generalization of the
Dijkstra’s algorithm, the IFT assigns an opti-
mum path ρx, ∀x ∈ V, while minimizing a cost
map C(x) = minρx∈P {f∗(ρx)}. Concomitantly, it
builds a predecessor map P that maps x to its pre-
decessor in ρx or to a unique marker when x is
its root (i.e., x ∈ S). Furthermore, one can recur-
sively map, through P, x to its root s = R(x) ∈ S
and, consequently, to its tree Ts = {y : R(y) = s}.
Note that, in this work, every tree is a super-
pixel. Lastly, if f∗ satisfy certain conditions [41],
∀s ∈ S, Ts is an optimum-path tree, resulting in an
optimum-path forest. Otherwise, Ts still exhibits
important properties for segmentation [42].

3.3 Superpixels through Iterative
CLEarcutting

Figure 2 presents the SICLE framework for super-
pixel generation. Therefore, the construction of
a SICLE variant involves selecting: (i) a seed
oversampling strategy; (ii) a path-cost and an arc-
cost function (for the IFT); and for estimating
the importance of a seed, (iii) a seed preser-
vation curve, a seed relevance criterion, and a
object penalization. Differently from most meth-
ods [7, 24, 25, 32], SICLE starts by selecting a
number ofN0 of seeds significantly higher than the
final number Nf of superpixels (i.e., N0 ≫ Nf ),
given N0, Nf ∈ N>0. The motivation is based
on the seed redundancy premise: if two seeds are
similar (i.e., spatial position and features), then
they are similarly relevant (i.e., promote accurate
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Fig. 2 The top image shows the SICLE framework for generating 100 superpixels using a deep-learning saliency estima-
tor [43]. Superpixel borders and seeds are depicted by cyan lines and dots, respectively. Whereas the bottom image explicit
the inputs and outputs of each process in the pipeline.

object delineation). This premise can be empiri-
cally perceived since different approaches achieve
equivalent delineation [20] and, consequently, one
may opt for a simple random sampling, especially
given the reported loss of efficiency of saliency-
based samplings [44].

In the subsequent step, superpixels are gener-
ated using the seed-restricted version of the IFT
and, so far, it has been implemented consider-
ing the fmax path-cost function. For estimating
the arc-cost ⟨x, y⟩ ∈ A, SICLE considered a
dynamic arc-cost estimation [39] wdyn(x, y) =∥∥F(Ts)− F(y)

∥∥
2
, given that s = R(x), which con-

siders the mean features of the tree Ts growing
during the IFT execution. Due its instability [20],
the wroot(x, y) = ∥F(R(x))− F(y)∥2 was also
evaluated in which uses the immutable features of
the seed s, being preferred over wdyn.

Due to oversampling, it is necessary to remove
a total of N0 − Nf seeds from S in at most Ω ∈
N>0 > 1 iterations to ensure Nf superpixels. For
that, a portion of the most irrelevant are removed

per iteration i ∈ N>0 < Ω. Or, conversely, the
M(i) = max

{
(N0)

1−i/(Ω−1), Nf

}
most relevant

seeds are maintained for the subsequent iteration
i + 1 while the remaining ones are discarded. As
one may note, exactly

⌈
(Ω− 1)(1− logN0

Nf )
⌉
+

1 iterations are required for reaching the desired
quantity of superpixels, being ideally two.

We can estimate the relevance of a seed
s based on certain information (or attributes)
extracted from its respective tree Ts, like color-
based (e.g., mean color, color histograms, pat-
tern spectra) or shape-based (e.g., size, circu-
larity, compactness) ones. First, in terms of
particular features, we can compute its mean
features F(Ts) =

∑
v∈Ts

F(v)/ |Ts|, its mean

saliency O(Ts) =
∑

v∈Ts
O(v)/ |Ts|, and its cen-

troid c(Ts) =
∑

v∈Ts
v/ |Ts|. From that, we can

compute the color gradient between two trees
Ts and Tt by ∇F(Ts, Tt) =

∥∥F(Ts)− F(Tt)
∥∥
2
.

Similarly, we may compute the saliency gra-
dient and the distance between centroids by
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∇O(Ts, Tt) =
∥∥O(Ts)−O(Tt)

∥∥
1
and ∇c(Ts, Tt) =

∥c(Ts)− c(Tt)∥2, respectively.
Also, given a seed s ∈ S, we can establish the

(immediate) adjacents of its tree Ts from A(Ts) =
{Tt : ∃ ⟨x, y⟩ ∈ A} given x ∈ Ts, y ∈ Tt, and s ̸= t.
Consequently, we can compute the maximum and
minimum color contrast of Ts amongst its neigh-
bors through∇+

F
(Ts) = maxTt∈A(Ts)

{
∇F(Ts, Tt)

}
and ∇−

F
(Ts) = minTt∈A(Ts)

{
∇F(Ts, Tt)

}
, respec-

tively. Furthermore, we can indirectly estimate
the proximity of the tree Ts to an object
through its maximum saliency contrast ∇+

O
(Ts) =

maxTt∈A(Ts)

{
∇O(Ts, Tt)

}
. Lastly, the shortest

adjacent distance of Ts, with respect to c, can be
calculated by ∇−

c (Ts) = minTt∈A(Ts)
{∇c(Ts, Tt)}.

Therefore, given the previous definitions, the
relevance V∗(s) ∈ R≥0 of any seed s ∈ S
can be computed through a criterion v∗(s) ∈
R≥0 based on the characteristics of its tree Ts.
For instance, in IFT, trees grow by minimizing
the path-costs to vertices, making the size-based
criterion vsize(s) = |Ts| / |V| a straightforward
option. However, considering that it may favor
background seeds [20], contrast is vital in accu-
rate relevance estimation. For improving delin-
eation, one could exploit either the minimum
contrast or maximum contrast as indicatives of
object borders through a size- and minimum-
contrast-based vminsc(s) = vsize(s)∇−

F
(Ts) and a

size- and maximum-contrast-based vmaxsc(s) =
vsize(s)∇+

F
(Ts) criteria, respectively.

Still, any criterion v∗ is subjected to the exis-
tence of an object of interest [19, 20]. For example,
a seed that lies far from the object is intrin-
sically irrelevant for delineation. Consequently,
the relevance computation of a seed s ∈ S can
be then defined as V∗(s) = v∗(s)p∗(s), where
p∗(s) ∈ [0, 1] denotes an object-based penaliza-
tion. Whenever an object saliency map is absent,
pnone(s) = 1 is applied ∀s ∈ S. For concentrat-
ing seeds within and nearby the objects, one may
exploit the mean saliency O(Ts) and the maxi-
mum saliency gradient ∇O(Ts) of the tree Ts, as
considered in the object penalization pobj(s) =

max
{
O(Ts),∇+

O
(Ts)

}
.

4 Compact and Accurate
Superpixel Generation

In this section, we present our proposals for
producing compact and accurate superpixels in
the SICLE framework. Thus, our contributions
are related to the Superpixel Generation and
Seed Removal steps (Figure 2) for creating
more efficient and effective SICLE variants. In
Section 4.1, we define two novel saliency-based
arc-cost functions and compare them with previ-
ous approaches, saliency-based or not, for super-
pixel segmentation. Similarly, Section 4.2 presents
one novel seed relevance criterion and three new
seed penalizations, contrasting with those pro-
posed in SICLE.

4.1 Arc-cost Estimation

The arc-cost function wroot =
∥F(R(x))− F(y)∥2, considered in [19, 20], led
to effective superpixel delineation whenever a
saliency map is absent. Moreover, its performance
is equivalent to a dynamic arc-cost function [39],
whose results surpass state-of-the-art methods
whenever such map is absent. Also, since it is
based on immutable features (i.e., the seed’s fea-
ture vector), wroot exhibits more stability than
the aforementioned function [20]. Finally, the use
of wroot allows differential computation of the
IFT [45] throughout the iterations. However, both
functions are unable to improve their delineation
for superior saliency maps.

A key idea of our proposals is to exploit a
function o(x, y) ∈ R≥0 that indicates, for a given
vertex y ∈ V, if it is likely to be concatenated
to an optimal path ρx ∈ P ending at a vertex
v ∈ V, with respect to the object saliency O.
This likelihood value o(x, y) is weighted by a con-
stant parameter α ∈ R≥0 that intuitively indicates
the degree of trust we have towards the saliency
variation between the root of x and y. More
precisely, we define such function as o(x, y) =
α ∥O(R(x))−O(y)∥1. Given that, we propose a
generalization of wroot, as shown in Equation 2:

wα
root(x, y) = (wroot(x, y))

1+o(x,y)
(2)
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Note that, by disregarding any saliency variation,
thus wα=0

root = wroot, our proposal does not incor-
porate incorrect estimations and, therefore, main-
tains the effective delineation provided by wroot

(i.e., robustness). Conversely, by setting α > 0,
the arc costs that cross a saliency border increase
significantly, promoting a higher adherence to it
and preventing superpixel leaking.

However, even with wα
root, such SICLE config-

uration is still unable to produce compact super-
pixels. For that, one may suggest using the fsum
and the wsum (Equation 3) functions as proposed
in [32]:

wsum(x, y) = (ι ∥F(R(x))− F(y)∥2)
β

+ ∥x− y∥2
(3)

in which ι ∈ R≥0 and β ∈ R≥0 control the
superpixels’ irregularity and boundary adherence,
respectively. Clearly, this function is unaware of
any object information, and consequently, one
could recur to the generalization proposed in [17,
18]. Nevertheless, although it presents high effec-
tiveness in delineation, especially with few super-
pixels, incorrect saliency estimations may deterio-
rate its performance significantly [19].

Therefore, we aim to develop an arc-cost
function that maximizes object delineation, but
with compact superpixels, while minimizing errors
derived from inaccurate saliency estimation.
For that, we propose a novel generalization
(Equation 4) in which the saliency information
only impacts the irregularity factor:

wα
sum(x, y) = ((ι+ o(x, y)) ∥F(R(x))− F(y)∥2)

β

+ ∥x− y∥2
(4)

As one can see, similarly with wα
root, wα=0

sum =
wsum neglects the saliency information while, for
α > 0, the irregularity factor changes substan-
cially whenever the arc crosses the saliency border.
That is, for the former, wα

sum promotes incorrect
saliency robustness whereas, for the latter, pro-
motes adherence to saliency borders and prevents
leakings.

4.2 Seed Criteria and Penalization

When regularity is not desired, the criteria vsize,
vmaxsc, and vminsc promote accurate seed rele-
vance estimation. On the other hand, they often

lead to a higher superpixel concentration in dif-
ferent regions of the image (e.g., background and
near object borders), which may favor irregular-
ity. Therefore, in this work, we introduce a novel
criterion vspread(s) = vsize(s)∇−

c (Ts) for spreading
superpixels across the image (i.e., favoring regu-
larity) by exploiting the shortest adjacent distance
∇−

c (Ts) of each tree Ts.
In terms of seed penalization, pobj, as

expected, promotes a high superpixel concentra-
tion within and near the objects. Still, as one may
note, it favors internal superpixels which exert
limited influence on delineation. Thus, when irreg-
ularity and delineation are of utmost importance,
we propose favoring only trees Ts which are near
a saliency border, increasing competition near the
objects. More formally, the object border criterion
is based on the tree’s maximum saliency contrast
such that pbord(s) = ∇+

O
(Ts).

Clearly, by focusing on delineation, the previ-
ous penalizations pobj and pbord favor irregularity
(e.g., near object borders), which compromises
compactness when it is desired. Conversely, if
saliency is provided, it is expected to favor the
object delineation to the detriment of the oth-
ers. Thus, it is essential to provide a penalization
that minimizes the impacts on compactness whilst
improving the object delineation.

One possible approach is to exploit the quan-
tity of seeds in each region. That is, for those
majorly in the object, a higher concentration and,
thus, a higher competition can suppress eventual
leakings, which produce irregularity. Conversely,
for those mainly in the background, we argue
in favor of spreading instead of selecting near
the object. That is, we propose favoring those
trees located within the object, indicated by their
mean saliency, and spreading those in the back-
ground, with respect to their shortest adjacent dis-
tance. Simply put, such penalization is defined by
posb(s) = max

{
O(Ts), (1−O(Ts))∇−

c (Ts)/d
}
,

considering d ∈ R>0 as the maximum distance
between any two vertices.

By the same assumption presented for pbord,
we may infer that superpixels within the object,
due to their size, also present limited influence
on the overall compactness, such that prioritizing
them may not favor delineation nor compactness.
Therefore, we may focus on those near the object
borders to improve delineation while, for those at
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the background, spreading for promoting regular-
ity and compactness. We argue that such selection
tends to impact the compactness slightly since
the major influence lies on the superpixels in the
background. Finally, by using the tree’s Ts maxi-
mum saliency contrast ∇+

O
(Ts) instead of its mean

saliency O(Ts), the new penalization differs from
posb and can be formally defined as pbobs(s) =

max
{
∇+

O
(Ts), (1−O(Ts))∇−

c (Ts)/d
}
.

5 Experimental Results

In this section, we describe the experimen-
tal framework for evaluating SICLE with our
proposals against state-of-the-art approaches. In
Section 5.1, we present the experimental setup,
including datasets, metrics, and baselines. Then,
in Sections 5.2 and 5.3, we provide a quantita-
tive and qualitative analysis whenever an object
saliency map is absent or not, respectively. Finally,
we discuss, analyze and exemplify some limita-
tions of our proposals in Section 5.4.

5.1 Experimental Setup

In order to provide a wide-ranging analysis of
the methods’ performance in generating super-
pixels, we have selected five distinct medical and
natural image datasets. First, we considered the
Berkeley Segmentation Dataset (BSDS500) [46], a
popular segmentation dataset containing 500 nat-
ural images. However, since it is contour-driven,
such dataset is not applicable whenever a single
object is desired. To cope with this drawback,
we chose the well-known Extended Complex Scene
Saliency (ECSSD) [47] dataset, which contains
1000 natural images with complex objects and
backgrounds. Third, we selected the Insects [42]
dataset (130 images), given the challenge of delin-
eating the thin legs of various bugs. In terms of
medical images, the Liver [32] dataset (40 images)
imposes a major difficulty in segmenting CT slices
of the human liver, given its monochromaticity
and smooth borders. Finally, the fifth dataset,
named Parasites [17] is composed of 72 images
of human intestinal parasite eggs which, although
colored, are often attached to impurities and also
exhibit smooth borders. We randomly selected
30% for optimization and 70% for testing for each
dataset, except for BSDS500, which already estab-
lishes such division. For producing the saliency

maps, we opted for the U2-Net estimator [43], fine-
tuned using the same training set and its default
parameters.

For measuring the performance of all methods,
we selected popular evaluation metrics. First, let
the two partitions R = {R1, . . . ,Rn} ∈ P(V) and
O = {O1, . . . ,Ok} ∈ P(V) denote, respectively,
the set of all superpixels and the set of all objects,
considering n, k ∈ N≥1 and P to be the power set.
The Boundary Recall (BR) [6] evaluates the ratio
between object boundaries and superpixel borders
and it is defined by Equation 5:

BR(R,O) =
|tpr(R,O)|

|tpr(R,O)|+ |fnr(R,O)|
(5)

in which tpr(R,O) ∈ N (resp. fnr(R,O) ∈ N)
computes the number of true positive (resp. false
negatives) boundary pixels of the segmentation
R with respect to O, considering a tolerance
radius of r ∈ N≥1 pixels. Similarly to [6], we set
r = 0.0025d

√
2, being d the image’s diagonal size.

Under-segmentation Error (UE) [48] measures the
error (Equation 6) from object overlap with either
internal or external superpixel (i.e.“leaking”):

UE(R,O) =
1

|V|
∑

Oj∈O

∑
Ri∈R

min{|Ri∩Oj |, |Ri\Oj |}

(6)
considering that Ri ∩ Oj ̸= ∅. Compactness
(CO) [6] is also a famous metric, but it differs
from both previous ones by evaluating whether the
superpixels present a compact shape (being max-
imum when it is a circle). Thus, it is defined by
Equation 7:

CO(R) =
1

|V|
∑

Ri∈R

4π|Ri|
℘(R)2

(7)

in which ℘(R) ∈ N>0 denotes the perimeter of
Ri. Finally, we estimated the elapsed time of each
method in a 64-bit Intel(R) Core(TM) i7-4790S
PC with a CPU Speed of 3.20GHz.

In this work, our goal is to provide SICLE vari-
ants for generating effective delineation with irreg-
ular and compact superpixels (hereafter named
SICLE-IRREG and SICLE-COMP, respectively).
Moreover, differently from [20, 21], these novel ver-
sions of SICLE exploit differential computations
of the IFT (DIFTs) [45] for improving speed. For
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comparison, we selected the following state-of-the-
art algorithms as baselines based on their reported
performance: (i) ERS [31] 1; (ii) SLIC [7] 2; (iii)
SH [9] 3; (iv) IBIS [8] 4; (v) LSC [24] 5; (vi)
GMM [28] 6; (vii) OISF [17, 18] 7; and (viii)
DAL-HERS [36] 8. For all of the aforementioned
methods, we used their default parameter set-
ting. Regarding CO, SLIC, IBIS, and GMM offer
highly compact superpixels. Conversely, SH, LSC,
OISF, and ERS present highly irregular ones but
with accurate object delineation (i.e., BR and
UE). Finally, we included the recent DAL-HERS
algorithm for comparison.

5.2 Non-object-based Analysis

We first optimized SICLE-IRREG and SICLE-
COMP through grid-search under the situation of
not having any object information (i.e., α = 0 and
pnone). For all variants, we optimized considering
N0 ∈ {2000, 3000, 5000, 8000}, Ω ∈ {2, 3, 5, 7, 10},
f∗ = {fmax, fsum}, w∗ = {wroot,wsum}, ι ∈
{0.05, 0.10, 0.12, 0.15, 0.20, 0.25, 0.50, 0.75, 1.00},
and v∗ ∈ {vsize,vminsc,vmaxsc,vspread}. For
SICLE-IRREG, we found the following values:
(i) N0 = 3000; (ii) Ω = 5; (iii) f∗ = fmax and
w∗ = wα

root; and (iv) v∗ = vminsc. These values
converge to those found in [10, 19, 20]. For the
novel compact variant SICLE-COMP, we fixed
β = 12 as suggested in [32], and we obtained the
following optimized configuration: (i) N0 = 3000;
(ii) Ω = 7; (iii) f∗ = fsum and w∗ = wα

sum; (iv)
ι = 0.12; and (v) v∗ = vmaxsc. The optimization
of ι prioritized delineation, crucial in segmen-
tation, at the expense of on-par compactness
performance. From Ω, we can infer that compact-
ness is sensible to the quantity of seeds removed
per iteration, requiring slightly more than SICLE-
IRREG. Also, from vmaxsc, we may assume that
seeds positioned near high contrast boundaries
favor the generation of compact superpixels with-
out compromising delineation. We believe that,
due to the proximity, such border is assured at

1https://github.com/mingyuliutw/EntropyRateSuperpixel
2https://www.epfl.ch/labs/ivrl/research/slic-superpixels/
3https://github.com/semiquark1/boruvka-superpixel
4https://github.com/xapha/IBIS
5https://jschenthu.weebly.com/projects.html
6https://github.com/ahban/GMMSP-superpixel
7https://github.com/LIDS-UNICAMP/OISF
8https://github.com/hankuipeng/DAL-HERS

first by competition while possible leakings, often
in low contrast regions, are prevented by the
spatial limitation imposed by wsum.

The quantitative results of all methods are
shown in Figure 3. It is possible to see that
SICLE-IRREG achieves superior delineation in
all datasets for BR, except for Insects. It is
important to notice that, although ERS excels
on such dataset, its performance is fair for both
medical image datasets. For BSDS500 and Par-
asites, DAL-HERS achieves on-par performance
with our proposal but presents a poor delineation
for Liver and Insects, which shares similarities
with BSDS500. In fact, apart from SICLE-IRREG
and SH, the remaining irregular methods do not
present a consistent performance throughout the
baselines, indicating a tendency to be best suited
for specific conditions rather than a general solu-
tion for superpixel segmentation. Regarding UE,
we can see that SICLE is continuously on pair with
the best methods on each dataset.

We can also notice such effective performance
and stability in SICLE-COMP for all metrics con-
sidered. For BR and UE, our proposal achieves on-
par performance with GMM and LSC in BSDS500
and Insects while surpassing them in Liver and
Parasites by a significant margin. For CO, we
can see that SICLE-COMP consistently achieves
a similar absolute performance irrespective of the
dataset. Under the same perspective, IBIS con-
sistently produces the most compact superpixels
in all datasets considered. On the other hand,
similarly to the irregular baselines, the remain-
ing methods, such as SLIC, GMM, and LSC,
are unable to exhibit the same behavior seen on
BSDS500 and Insects, considering all metrics on
Liver and Parasites.

Regarding speed, Table 1 compares the per-
formance of the fastest methods in the BSDS500
dataset. It is important to notice that, although
SICLE is O(|V| log |V|), bounded by the IFT, and
the other referred methods are O(|V|), our pro-
posal executes fewer iterations as Nf increases.
As a result, it becomes faster for usual superpixel
quantities, whereas SLIC and LSC, for instance,
perform a strict number of 10 iterations indepen-
dently of Nf . Also, in a single execution, SICLE
generates the exact number of scales in a multi-
scale segmentation, while SH may unnecessarily
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Fig. 3 Quantitative results on the test set of each dataset when no object information is provided.

Nf SLIC SH IBIS LSC SICLE-IRREG SICLE-COMP
50 0.610±0.027 0.856±0.026 0.762±0.027 0.774±0.026 0.808±0.065 1.031±0.047
250 0.612±0.027 0.857±0.028 0.753±0.025 0.789±0.027 0.678±0.030 0.746±0.035
500 0.615±0.027 0.853±0.026 0.752±0.025 0.787±0.029 0.567±0.024 0.718±0.030
1000 0.620±0.028 0.857±0.026 0.748±0.025 0.803±0.030 0.538±0.021 0.566±0.023

Table 1 Speed performance, in seconds, of the fastest methods on the BSDS500 dataset when no object information is
provided. The values depicted in bold, blue, and red indicate, respectively, the first, second, and third faster performances
for each Nf .

exceed such quantity by computing the whole
hierarchy [20].

From Figure 4, we can perceive the effec-
tive performance of the novel SICLE variants
by their delineation of the parasite egg. Com-
pared with irregular methods, SICLE-IRREG best
approximates the object borders and presents
minimal leaking errors. Although SH also man-
ages to present accurate object delineation, it
still presents leakings around the object, like the
segmentations from ERS and LSC. For those
approaches which aim for compactness, it is pos-
sible to see that the result from SICLE-COMP
achieves an accurate delineation of the object with

compact superpixels, while the remaining ones,
although generated highly compact and regular
superpixels, exhibit major segmentation errors.

5.3 Object-based Analysis

In this section, we further optimized the config-
uration found in the previous section for con-
sidering prior object information. First, we ana-
lyzed the impact of the saliency quality only
into delineation (i.e., p∗ = pnone) by consider-
ing three different cases based on their indirect
object delineation: (i) poor-quality, represented by
the object’s minimum bounding box (BB); (ii)
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Fig. 4 Qualitative results with an image from Parasites requiring 100 superpixels. The object boundaries and the superpixel
borders are depicted in magenta and cyan, respectively. The images were cropped for visualization purposes. Yellow circles
indicate regions where SICLE best approximates the object borders in contrast with the baselines.

Fig. 5 Quantitative results on the train set of each dataset using the ground-truth (GT), U2-Net map [43] (U2) and the
object’s minimum bounding box (BB) as saliency maps.

state-of-the-art [43] (U2); and (iii) ideal, repre-
sented by the object’s ground-truth (GT). Con-
currently, we optimized the saliency importance
α ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} with respect to
each case. We emphasize that the GT is only used
in this experiment. Coincidently, the best values
of α for each case, for both SICLE-IRREG and
SICLE-COMP, were 0, 2, and 3, respectively, and
they are represented in Figure 5. As expected, we
note that the trustiness of the information cor-
relates with its quality. For BB, α = 0 avoids
considering saliency inaccuracies and maintains an
effective delineation performance. On the other
hand, by increasing α, our method can signifi-
cantly improve its performance for better quality
estimations, as seen for U2 and GT. Moreover, we
found that such improvement does not impair the
compactness achieved by SICLE-COMP. Thus,
our approach can maximize compactness and
delineation, whereas other approaches only offer a
compromise. It is worth noticing the discrepancy
between the performances when considering U2

and GT, indicating that, although accurate, the
state-of-the-art estimation is not ideal.

Subsequently, we evaluated the best penal-
ization p∗ ∈ {pnone,pobj,posb,pbobs} for each
variant. As expected, pbord is more suited for
SICLE-IRREG by increasing the number of seeds
around the object, thus increasing competition
in crucial regions. But, for SICLE-COMP, pbobs

presented the best results without compromis-
ing compactness, indicating the importance of
spreading background superpixels to suppress the
irregularity within the object. Finally, in the last
experiment, we verified whether such final rele-
vant seed estimation is accurate by varying values
for Ω ∈ {2, 3, 5, 7, 10}. That is, the more accurate
it is, the fewer iterations are required to achieve
effective delineation (i.e., ideally two). For both
SICLE-IRREG and SICLE-COMP, Ω = 2 suffice
for achieving top performance with no significant
variation on BR, UE, and CO.

Figure 6 shows the quantitative results of all
methods. It is possible to see that, contrasting
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Fig. 6 Quantitative results on the test set of each dataset using the U2-Net map [43].

with Figure 3, SICLE variants improved their per-
formance significantly, up to surpassing ERS in
Insects. Although the saliency quality plays an
essential role in such improvement, we argue that
our proposals intelligently incorporate such infor-
mation. For instance, OISF, which uses the same
information, is unable to achieve similar perfor-
mance in all datasets, especially in Insects. Simi-
larly to SICLE-IRREG being the best amongst all
baselines in BR and UE, SICLE-COMP presents
the best performance in both metrics for all com-
pact methods, being on par with state-of-the-art
methods in delineation, such as SH. Finally, by
comparing with the non-object-based scenario,
this upgrade did not deteriorate SICLE’s perfor-
mance in CO, as previously stated. We further
argue that our object-based approaches offer a
more suitable methodology for object incorpo-
ration, especially when compared to the perfor-
mance instability of DAL-HERS in both BR and
UE, for producing either irregular or compact
superpixels.

The speed performance of the fastest methods
in ECSSD is presented in Table 2. It is important
to state that the performance of SICLE-IRREG
differs from the results shown in [21]. We argue
that the speedup achieved from exploiting DIFTs
is limited when a significantly high quantity of
seeds is removed between iterations, which is a
direct result when Ω = 2. Intuitively, removing
superpixels can generate inconsistencies during
the IFT execution, which are absent in the sequen-
tial version and must be handled in the differential
one. Thus, the higher the number to be removed,
the higher the quantity of inconsistencies to be
solved, impacting the overall performance. We
may note such behavior on the performance dis-
crepancy for Nf = 1000 and Nf = 500. Still,
differently from [21], our implementation bene-
fits from multiscale segmentation. As the number
of scales k ∈ N≥1 ≤ Ω increase, more itera-
tions are required and, consequently, M estimates
higher quantities of relevant seeds to be main-
tained per iteration. Therefore, by removing fewer
superpixels at each iteration, fewer inconsistencies
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Nf SLIC SH IBIS LSC SICLE-IRREG SICLE-COMP
50 0.576±0.029 0.813±0.028 0.710±0.027 0.702±0.036 0.501±0.055 0.514±0.046
250 0.581±0.027 0.816±0.028 0.700±0.028 0.713±0.036 0.503±0.040 0.511±0.043
500 0.583±0.028 0.813±0.028 0.694±0.026 0.714±0.039 0.507±0.039 0.517±0.042
1000 0.583±0.028 0.812±0.027 0.694±0.028 0.718±0.036 0.420±0.090 0.482±0.060

Table 2 Speed performance, in seconds, of the fastest methods on ECSSD dataset using the U2-Net map [43]. The values
depicted in bold, blue, and red indicate, respectively, the first, second, and third faster performances for each Nf .

are generated and need to be handled by DIFT.
Lastly, when comparing with the baselines, both
SICLE-IRREG and SICLE-COMP still exhibit
the fastest segmentation performances irrespective
of Nf .

As an example of how SICLE variants profit
from our proposals and use object information
appropriately, we may note, in Figure 7, that
OISF replicates the errors of the saliency map
in its segmentation, whereas our proposals over-
came them and provided an accurate object delin-
eation. Compared to non-object-based baselines,
the proper incorporation of object information
assisted SICLE-IRREG and SICLE-COMP in
avoiding severe leaks. Finally, it is interesting to
notice that SICLE-COMP favored the superpix-
els within the object less than SICLE-IRREG but
more than GMM and LSC, as represented by the
larger background superpixels.

5.4 Limitations

Although the performance of SICLE was improved
after considering our proposed modifications, it
still presents several limitations. From Figure 8,
one can see that, even though the saliency map
partially detects the insect’s thin parts (e.g.,
antenna and legs), SICLE cannot, at least, delin-
eate the same regions with similar accuracy. We
argue that this behavior is a drawback of seed-
based methods since far away seeds have more
difficulty to offer strongly connected paths to pix-
els in thin parts of the object, even with help
of a saliency map. That is, for small quanti-
ties of superpixels, seeds tend to be farther, and
consequently, it is more challenging to conquer
the pixels associated with its classification (i.e.,
object or background seed). In such case, one
may propose a more meticulous path-cost or arc-
cost function for improving the delineation of
thin object parts or, conversely, conceive different
seed strategies (i.e., seed sampling or removal) for
increasing the seed resolution in such regions and,

consequently, increasing competition in such cru-
cial region. Either way, knowing the peculiarities
and particularities of the object is utterly vital for
solving this difficulty.

6 Multiobject Handling

In this section, we will debate briefly over the
challenges of segmenting multiple objects of inter-
est in an image using SICLE. First, let O =
{O1, . . . ,Ok} ∈ P(I) as the set of all k ∈ N>0

objects within the image I and, equivalently, in
the digraph G. As one may see, k = 1 consists of
the usual object saliency task.

Difficulties arise when k > 1, especially
on manipulating different object informations
in SICLE. A straightforward approach could
be incorporating multiple saliencies, one dimen-
sion for each object, such that O(v) =

⟨O1(v), . . . ,Ok(v)⟩ ∈ [0, 1]
k
given v ∈ V. However,

we argue that storing k saliencies is memory inef-
ficient since background vertices are redundantly
marked as such ∀Oj , given 1 ≤ j ≤ k. Instead, we
claim that, for SICLE, a single saliency O(v) =
max1≤j≤k {Oj(v)}, for v ∈ V, is sufficient for
handling multiple objects. Aside being more mem-
ory efficient, conceptually speaking, our proposed
saliency still depicts the probable likelihood of a
vertex belonging to an object.

For such case, and without loss of generality
and abuse of notation, we analyze three situations,
as exemplified in Figure 9, considering two distinct
objects Ox,Oy ∈ O and ideal object estimation:
(i) Oy ̸∈ A(Ox) ; (ii) Oy ∈ A(Ox) ; and (iii)
Ox ∩Oy ̸= ∅. Thus, Figure 9(a) depicts (i), while
Figure 9(c) relates to (iii). Both Figures 9(b,d)
are associated with (ii) in which, for the former,
the distinction of both triangles of equal shape is
facilitated by the colors, and highly difficulted for
the latter due to the color gradient. Intuitively,
(i) presents the case of two non-adjacent objects
and, consequently, every path ρu⇝v in which u ∈
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Fig. 7 Qualitative results with an image from ECSSD requiring 100 superpixels and using the U2-Net estimator [43]. The
object boundaries and the superpixel borders are depicted in red and cyan, respectively. Yellow circles indicate regions
where SICLE best approximates the object borders in contrast with the baselines.

Ox and v ∈ Oy is ensured to cross a saliency
border, being properly penalized by o. However,
for (ii) and (iii), ρu⇝v can be composed of non-
background vertices of distinct objects, resulting
in no penalization. Nevertheless, we can verify
thatwα

root andwα
sum tend to estimate a distinction

between v, u, being v ∈ Ox and u ∈ Oy, even for
o(v, u) = 0, if they exhibit sufficient color diver-
gence. Finally, for case (iii), we argue that it is
an ill-posed problem due to the impossibility to
define and, thus, to detect the overlapped object’s
boundaries, either in F or O, in a bi-dimensional
representation.

7 Conclusion and Future
Work

This work proposes novel arc-cost functions, a new
seed relevance criterion, and three new seed rele-
vance penalizations for improving the effectiveness
and efficiency of the state-of-the-art superpixel
segmentation method Superpixels through Itera-
tive CLEarcutting (SICLE). Due to our proposals,
SICLE can now compute compact superpixels
with high adherence to object boundaries and
can exploit the accurate saliency information dur-
ing delineation. Moreover, our proposals maintain
the properties of previous SICLE variants, such

as saliency inaccuracy robustness and saliency-
based multiscale segmentation. Results show that,
with our modifications, SICLE produces accu-
rate object delineation with irregular and compact
superpixels whenever a saliency map is absent,
achieving a faster performance than several state-
of-the-art methods analyzed in this work. When
object information is provided, the novel proposals
led SICLE variants to achieve superior perfor-
mance in delineation and speed for distinct objects
of interest, requiring only two iterations for seg-
mentation. Finally, we propose a brief discussion
on the challenges and a possible solution for mul-
tiobject handling in SICLE. For future work, we
intend to extend SICLE for video supervoxel seg-
mentation and evaluate its applicability as an
interactive segmentation tool.
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[18] Belém, F., Guimarães, S., Falcão, A.: Super-
pixel generation by the iterative spanning
forest using object information. In: 33rd Con-
ference on Graphics, Patterns and Images
(SIBGRAPI), pp. 22–28 (2020). https://doi.
org/10.5753/sibgrapi.est.2020.12979. Work-
shop of Thesis and Dissertations

[19] Belém, F., Cousty, J., Perret, B., Guimarães,
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