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Abstract
This paper is the first to consider online algorithms to schedule a proportionate flexible flow shop of batching machines
(PFFB). The scheduling model is motivated by manufacturing processes of individualized medicaments, which are used in
modern medicine to treat some serious illnesses. We provide two different online algorithms, proving also lower bounds for
the offline problem to compute their competitive ratios. The first algorithm is an easy-to-implement, general local scheduling
heuristic. It is 2-competitive for PFFBs with an arbitrary number of stages and for several natural scheduling objectives. We
also show that for total/average flow time, no deterministic algorithm with better competitive ratio exists. For the special case
with two stages and the makespan or total completion time objective, we describe an improved algorithm that achieves the

best possible competitive ratio ϕ = 1+√
5

2 , the golden ratio. All our results also hold for proportionate (non-flexible) flow
shops of batching machines (PFB) for which this is also the first paper to study online algorithms.

Keywords Planning of pharmaceutical production · Proportionate flow shop · Flexible flow shop · Batching machines ·
Online algorithms · Competitive analysis

1 Introduction

In modern pharmacy, in order to treat various serious ill-
nesses, individualized medicaments are produced to order
for a specific patient. These production processes often take
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place in a complex production line, consisting of many dif-
ferent steps.

As long as each step of the process is still performed man-
ually, for example by a laboratoryworker, usually at each step
only one patient can be handled at a time. However, once the
process is scaled to industrial production levels, instead, for
some steps, machines, like pipetting robots, are used. Indeed,
at that point, in order to scale up production, usually several
machines are used in parallel at each step. What is more,
these types of machines can often handle multiple patients
simultaneously. If scheduled efficiently, this special feature
can drastically increase the throughput of the production line.
Clearly, in such an environment efficient operative planning
is crucial in order to optimize the performance of the man-
ufacturing process and treat as many patients as possible as
quickly as possible.

In a practical setting, the producer of the individualized
drug knows nothing about the patient until the medicine is
actually ordered. This naturally creates an online scheduling
scenario, for which efficient, computable and, if possible,
easy-to-understand scheduling rules are needed. Therefore,
in this paper, we specifically deal with the online version of
the problem, although some of our findings are interesting in
terms of offline scheduling as well.
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Formally, the manufacturing process studied in this paper
is structured in a flexible flow shopmanner (also called hybrid
flow shop in the literature). A job J j , j = 1, 2, . . . , n, rep-
resenting the production of a drug for a specific patient, has
to be processed in s stages S1, S2, . . . , Ss in order of their
numbering. At each stage Si there are available mi identi-
cal, parallel machines M (1)

i , M (2)
i , . . . , M (mi )

i to process the
jobs. If each stage consists of only onemachine, wemay drop
the machine index and instead identify each stage Si with its
single machine Mi .

Each job J j has a release date r j ≥ 0, denoting the time at
which the job J j is available for processing at the first stage
S1. We assume that jobs are indexed in earliest release date
order. Furthermore, a job is only available for processing at
stage Si , i = 2, 3, . . . , s, when it has finished processing at
the previous stage Si−1.

Processing times are only dependent on the stage, not on
the job or the specific machine where the job is processed
(recall that machines at each stage are identical). This means
that each stage Si , i = 1, 2, . . . , s, is associated with a fixed
processing time pi , which is the same for every job when
processed at that stage on any machine. In the literature, a
(flexible) flow shop with such job-independent processing
times is sometimes called a proportionate flow shop, see,
e.g., Panwalkar et al. (2013).

Recall that, as a special feature from our application, each
machine in the flexible flow shop can potentially handle mul-
tiple jobs at the same time. These kind of machines are called
(parallel) batching machines, and a set of jobs processed at
the same time on some machine is called a batch on that
machine (Brucker, 2007, Chapter 8). All jobs in one batch
on some machine M (k)

i of stage Si have to start processing

on M (k)
i at the same time. In particular, all jobs in one batch

at stage Si have to be available for processing at Si , before
the batch can be started. The processing time of a batch on
M (k)

i remains pi , no matter how many jobs are included in
this batch. At each stage Si , i = 1, 2, . . . , s, machines have
a commonmaximum batch size (or batch capacity) bi , which
is the maximum number of jobs a batch on machines of stage
Si may contain.

Given a feasible schedule ς , we denote by ci j (ς) the com-
pletion time of job J j at stage Si . For the completion time of
job J j on the last machine we also write C j (ς) = cs j (ς). If
there is no confusion which schedule is considered, we may
omit the reference to the schedule and simply write ci j and
C j .

As optimization criteria, we study the four objective func-
tions makespan Cmax = max{C j | j = 1, 2, . . . , n}, total
completion time

∑
C j = ∑n

j=1 C j , maximum flow time
Fmax = max{Fj | j = 1, 2, . . . , n} and total flow time∑

Fj = ∑n
j=1 Fj , where Fj = C j − r j . Note that the

total flow time (or average flow time, if divided by the num-

ber of jobs) measures the average time a patient has to wait
for his or her medicament, after the production is ordered.
As short waiting times are essential in the treatment of life
threatening illnesses, this objective is particularly relevant in
practice. For more considerations about meaningful perfor-
mance measures in applications, we refer to Ackermann et
al. (2020).

Using the standard three-field notation for scheduling
problems (Graham et al., 1979; Pinedo, 2012), our problem
is denoted as

FFs | r j , pi j = pi , p-batch, bi | f ,

where f is one of the four objective functions from above.
We refer to the described scheduling model as proportion-
ate flexible flow shop of batching machines and abbreviate it
by PFFB. If we consider the special case where each stage
consists of only one machine, we call this the usual propor-
tionate flow shop of batching machines and abbreviate it by
PFB.

In this paper we deal with the online problem to schedule
a PFFB where each job is unknown until its release date. In
particular, this means that the total number n of jobs remains
unknown until the end of the scheduling process.

Throughout this paper, we write ϕ = 1+√
5

2 ≈ 1.618 for
the golden ratio.

Next, we provide an (offline) example in order to illustrate
the problem setting.

Example 1 Consider an instance of PFFB with s = 2 stages,
m1 = 1 machine at stage S1 and m2 = 2 machines at S2,
maximum batch sizes b1 = 3 and b2 = 2, processing times
p1 = 3 and p2 = 4, as well as, n = 5 jobs with release dates
r1 = r2 = 0, r3 = 1, and r4 = r5 = 3. Fig. 1 illustrates a
feasible schedule for the instance as job-oriented Gantt chart.

Each rectangle labeled by a machine represents a batch
of jobs processed together on this machine. The black area
indicates that the respective jobs have not been released at
this time yet. Note that in this example none of the batches
can be started earlier, since either a job of the batch has just
arrived when the batch is started, or the machine is occupied
before. Still, the schedule does not minimize the makespan,
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Fig. 1 A feasible example schedule
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Fig. 2 An example schedule minimizing the makespan

since the schedule shown in Fig. 2 is feasible as well and has
a makespan of 11 instead of 12.

The improvement in themakespanwas achieved by reduc-
ing the size of the first batch onM (1)

1 from three to two, which
allows to start it one time step earlier. Observe that no job
can arrive at S2 before time step 3. Moreover, one of the two
machines at S2 has to process at least two batches in order to
complete all five jobs. This takes at least 8 time units. Thus,
11 is the optimal makespan and no further improvement is
possible.

1.1 Our results

This is the first study of P(F)FBs from an online perspective.
Weconcentrate our researchon the four practically highly rel-
evant objective functions makespan, total completion time,
maximum flow time and total flow time. An overview of our
results can be found in Table 1.

Concerning lower bounds on the competitive ratio, we
observe that previously known bounds of ϕ for one-stage
PFFBs to minimize makespan or maximum flow time by
Zhang et al. (2003) and Jiao et al. (2014), respectively, carry
over to arbitrarily many stages by introducing stages with
negligible processing times. In addition, we show that ϕ is
also a lower bound with respect to total completion time,
while for total flow time even a lower bound of 2 can be
achieved.

Concerning upper bounds on the competitive ratio, we
provide two algorithms. We first introduce the Never-Wait
strategy, where machines are only idle if not enough patients
are available for processing (see Sect. 6 for details). This
strategy is easy to implement and applicable for all four
considered objective functions and very general machine
environments, even with large number of stages and/or large
numbers of machines per stage. We prove that the Never-
Wait strategy achieves a competitive ratio of 2 for any such
instance and all four considered objectives. In particular, this
is best-possible with respect to total flow time. We also show
that the “opposite” strategy, where we always wait until a
full batch can be started, is not an α-approximation algo-
rithm (and, in particular, not α-competitive) for any α > 1.
For the specific scenario of s = 2 stages, we also introduce
the t-Switch strategy, where the first stage is scheduled in
such a way, that as many jobs as possible are available at the
second stage at some time t ; at the second stage, waiting is
allowed until time t and afterward the stage is scheduled as
in the Never-Wait strategy (see Sect. 7 for details). Choosing
t correctly yields an improved competitive ratio with respect
to makespan and total completion time from 2 to ϕ, which is
also best possible for these problems.

1.2 Overview of this paper

The remainder of this paper is structured as follows. In
Sect. 2, we give an overview of related literature. In Sect. 3
we provide lower bounds for the competitive ratio in PFFBs
for the four objective functions we consider. Sections 4 and 5
are dedicated to establishing the structural results needed in
order to prove competitiveness of the online algorithms we
provide in the subsequent sections: in Sect. 4 we prove that
permutation schedules with jobs ordered by release dates are
optimal for all of our four objective functions, and in Sect. 5
we show lower bounds for completion times of jobs in such
permutation schedules. The latter are needed to prove com-
petitiveness of our algorithms. Sections 6 and 7 deal with the

Table 1 Known bounds for the competitive ratio of deterministic online algorithms to schedule a PFFB. Note that lower bounds for a single stage
(s = 1) carry over to arbitrary many stages by introducing stages with negligible processing times

Objective function Number of stages Lower bound Upper bound Reference lower bound Reference upper bound

Cmax 1 ϕ ϕ Zhang et al. (2003) Zhang et al. (2003)

2 ϕ ϕ Zhang et al. (2003) Theorem 23

≥ 3 ϕ 2 Zhang et al. (2003) Corollary 12
∑

C j 1, 2 ϕ ϕ Theorem 3 Theorem 23

≥ 3 ϕ 2 Theorem 3 Corollary 12

Fmax 1 ϕ ϕ Jiao et al. (2014) Jiao et al. (2014)

≥ 2 ϕ 2 Jiao et al. (2014) Corollary 12
∑

Fj ≥ 1 2 2 Theorem 4 Corollary 12
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general Never-Wait and the more specialized t-Switch algo-
rithm, respectively. Finally, in Sect. 8 we present conclusions
and some further thoughts.

2 Literature

To the best of our knowledge, neither the online PFFB prob-
lem, nor its special case, the online PFB problem, have been
studied before. A practical study specific to the application
introduced in the beginning can be found in Ackermann et
al. (2020). Some of the concepts investigated in this paper
in general have already been introduced in an application
specific sense in that paper.

Even for the offline PFFB problem, little is known. Pre-
vious work has been focused on (usually non-proportionate)
NP-hard generalizations motivated by applications in vari-
ous manufacturing industries. Common techniques include
mixed-integer programming models or application-specific
heuristics. See, e.g., Amin-Naseri and Beheshti-Nia (2009),
Luo et al. (2011), Li et al. (2015), Tan et al. (2018).

In the special case of offline PFBs, with only one machine
per stage, proportionate versions have been studied explicitly.
Sung et al. (2000) propose heuristic approaches to minimize
the makespan and the total completion time in a PFB. How-
ever, they do not establish any complexity result. For the
special case of two stages, Ahmadi et al. (1992), as well
as Sung and Yoon (1997) present polynomial time algo-
rithms. In a previous paper (Hertrich et al., 2020), we present
a dynamic program that can be used to minimize several
traditional objective functions (including the four objectives
studied in this paper) in polynomial time for any fixed num-
ber s of stages. For the case of s being part of the input,
the complexity status of offline PFBs is open. Significant
hardness results have, to the best of our knowledge, not been
achieved at all. See also (Hertrich et al., 2020), for an in-depth
literature review for offline PFBs.

Although the PFFB problem itself has not been inves-
tigated from an online or offline perspective before, there
are several helpful results for related online problems in the
literature. For our purposes, the most interesting family of
related problems is online scheduling of single and parallel
batching machines. With job-independent processing times,
these problems can be viewed as the one-stage versions of
P(F)FBs. We refer to Tian et al. (2014) for a survey.

Concerning online makespan minimization for a single
batching machine with identical processing times, Zhang et
al. (2001) and Deng et al. (2003) show that no deterministic
online algorithm can achieve a competitive ratio better than
the golden ratio ϕ. Fang et al. (2011) provide a deterministic
online algorithmmatching this bound, even in a slightlymore
general setting, where processing times are not assumed to
be identical, but only grouped, that is, differing by a fac-

tor of at most ϕ from each other. Moreover, Zhang et al.
(2003) show that ϕ is also the precise competitive ratio for
makespan minimization on parallel batching machines with
identical processing times, that is, a one-stage PFFB. Li and
Chai (2018) extend this result to minimizing the maximum
weighted completion time.

Concerning the total completion time objective, Cao et al.
(2011) present a 2-competitive online algorithm for parallel
batching machines with identical processing times, which
even works in the presence of precedence constraints. For
the generalization where jobs are allowed to have unequal
processing times and the total weighted completion time
objective, (4 + ε)-competitive algorithms are known (Chen
et al., 2004; Ma et al., 2014).

Research on scheduling parallel batching machines to
minimize maximum flow time started with the case where
batches may have unbounded size (Li &Yuan, 2011). For the
bounded batch model, as we consider it in this paper, Jiao et
al. (2014) provide a ϕ-competitive deterministic online algo-
rithm to minimize maximum flow time on parallel batching
machines with identical processing times, i.e., a one-stage
PFFB, and prove that this is best possible. Hence, the compet-
itive ratio for makespan minimization by Zhang et al. (2003)
carries over to maximum flow time. Recently, it has been
shown that the competitive ratio of ϕ for maximum flow time
remains also valid for maximum weighted flow time (Chai
et al., 2019) or maximum flow time with delivery times (Lin
et al., 2019).

Although total flow time seems to be a very reason-
able objective function from a practical perspective, we are
not aware of any previous research about competitive algo-
rithms for bounded p-batching problems on single or parallel
machines to minimize total flow time.

3 Lower bounds for the competitive ratio

In this section we provide lower bounds on the competitive-
ness of deterministic online algorithms for PFFB problems
with our considered objective functions Cmax,

∑
C j , Fmax,

and
∑

Fj .
Before we start, note that lower bounds on PFFBs with

only one stage naturally extend to PFFBs with arbitrarily
many stages by choosing negligible processing times for all
stages but the first one. Therefore, in the following, we focus
on such instances with s = 1.

For the makespan objective, Zhang et al. (2003) prove
that the golden ratio ϕ is a lower bound on parallel batching
machines with identical processing times, i.e., a one-stage
PFFB. Furthermore, Jiao et al. (2014) prove the same bound
of ϕ for the maximum flow time objective.
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Theorem 2 (Zhang et al., 2003; Jiao et al., 2014) There are
no deterministic online algorithms to minimize the makespan
or maximum flow time in a PFFB with a competitive ratio
less than ϕ. This result holds even if no stage has maximum
batch size larger than 2.

By using constructions similar to Zhang et al. (2003) and
Jiao et al. (2014), we also obtain lower bounds on the compet-
itive ratio for the total completion and flow time objectives.
We first show that the golden ratio ϕ is also a lower bound for
the competitiveness for the total completion time objective.

Theorem 3 There are no deterministic online algorithms to
minimize the total completion time in a PFFB with a com-
petitive ratio less than ϕ.

Proof Consider a PFFB instancewith s = 1,m1 = 1, p1 = 1
and a fixed batch size b1. Suppose the first job J1 is released
at time r1 = 0. We distinguish two possible behaviors of a
deterministic online algorithm.

Case 1: The algorithm starts a batch consisting of only J1
at a point in time t ≤ ϕ − 1. In this case, suppose b1 − 1
further jobs are released at time t + ε for some small ε > 0.
Since these jobs can only be started after J1 is finished, the
schedule produced by the algorithm has a total completion
time of at least (t +1)+ (b1 −1)(t +2) = b1t +2b1 −1. An
optimal schedule would instead process all jobs in a single
batch, resulting in a total completion time of b1(t + ε + 1).
If ε tends to zero, this results in a competitive ratio of at least
b1t+2b1−1
b1(t+1)

b1→∞−−−−→ t+2
t+1 ≥ ϕ+1

ϕ
= ϕ.

Case 2: The algorithm does not start a batch before time
ϕ − 1. In this case, suppose no further job is released and J1
is the only job of the whole instance. The schedule produced
by the algorithm has a total completion time of at least ϕ. An
optimal schedule would start processing J1 immediately at
time r1 = 0, resulting in a total completion time of 1. Hence,
also in this case, the competitive ratio is at least ϕ. �	

Finally, for the total flow time, we can obtain a lower
bound of 2. The construction is very similar to the last proof,
but instead of using t = ϕ − 1 as the border between the two
cases, this time we use t = 1.

Theorem 4 There are no deterministic online algorithms to
minimize the total flow time in a PFFBwith competitive ratio
less than 2.

Proof As in the proof of Theorem 3, consider a PFFB
instance with s = 1, m1 = 1, p1 = 1 and a fixed batch
size b1. Again, we distinguish two cases, dependent on the
start time of the first batch.

Case 1: The algorithm starts a batch consisting of only J1
at a point in time t ≤ 1. In this case, suppose b1 − 1 further
jobs are released at time t + ε for some small ε > 0. Since
these jobs can only be started after J1 is finished, the schedule

produced by the algorithm has a total flow time of at least
(t+1)+(b1−1)(t+2− t−ε) = t+1+(b1−1)(2−ε). An
optimal schedule would instead process all jobs in a single
batch, resulting in a total flow time of (t + ε +1)+b1 −1. If
ε tends to zero, this results in a competitive ratio of at least
t+1+2(b1−1)

t+b1

b1→∞−−−−→ 2.
Case 2: The algorithm does not start a batch before time

1. In this case, suppose no further job is released and J1 is the
only job of the whole instance. The schedule produced by the
algorithm has a total flow time of at least 2, while an optimal
schedule could have started processing J1 immediately at
time r1 = 0, resulting in a total flow time of 1. Hence, also
in this case, the competitive ratio is at least 2. �	

4 Optimality of permutation schedules

In a permutation schedule the order of the jobs is the same on
all stages of the flexible flow shop. This means there exists a
permutation π of the job indices such that ciπ(1) ≤ ciπ(2) ≤
. . . ≤ ciπ(n), for all i = 1, . . . , s. Since the processing times
only depend on the stage and no preemption is possible,
clearly the same then also holds for starting times instead
of completion times. Note that this definition is not depen-
dent on the specificmachinewhere a job is scheduled. If there
exists an optimal schedule which is a permutation schedule
with a certain ordering π of the jobs, we say that permutation
schedules are optimal. A job ordering π which gives rise to
an optimal permutation schedule is then called an optimal
job ordering. Finally, an ordering π of the jobs is called an
earliest release date ordering, if rπ(1) ≤ rπ(2) ≤ . . . ≤ rπ(n).

Using the techniques in the proofs of Lemma 2 and The-
orem 3 from (Hertrich et al., 2020), we obtain the following
theorem. For the interested reader, details of the proof are
available in the appendix.

Theorem 5 For a PFFBwith objective function Cmax,
∑

C j ,
Fmax, or

∑
Fj , permutation schedules are optimal. More-

over, any earliest release date order is an optimal ordering
of the jobs.

From now on, we assume that jobs are indexed in earliest
release date order and restrict our attention to permutation
schedules where the job order is given by the indices. We
therefore drop the notation of π . It remains to decide, for
each stage, how the job set should be divided into batches on
the individual machines and when to process these batches.
In other words, every time a machine becomes idle and at
least one job is available for processing, we have to decide
how long to wait for the arrival of more jobs before starting
the next batch. Waiting for additional jobs incurs the cost of
delaying the already available jobs.
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5 Lower bounds for the completion times at
each stage

When analyzing approximation or online algorithms, one
typically compares the quality of the solution produced by
the algorithm with the optimal offline solution. However, for
many problems, including PFFBs, it is difficult tomake a pre-
cise statement about the quality of such an optimal solution
in the offline scenario. In these cases, a common approach
is to use a lower bound for comparison instead. Therefore,
in the first part of this section we develop a lower bound c∗

i j
for the completion time ci j of each job J j at each stage Si .
No feasible permutation schedule with job order given by the
indices can yield smaller completion times.

In the second part of this section, we show how this lower
bound can be interpreted as a solution of a proportionate
flexible flow shop problem without batching machines.

Finally, we conclude the section by comparing our bound
to another one given by Sung et al. (2000).

5.1 Recursive formula for the lower bounds

We start by observing two properties that hold for the com-
pletion times of any permutation schedule with job order
J1, J2 . . . , Jn .

Firstly, since a job needs to finish stage Si−1 before it can
be started at stage Si , we have

ci j ≥ c(i−1) j + pi (1)

for all i ∈ {2, 3, . . . , s} and j ∈ [n].
Secondly, for a stage index i and a job index j , consider

the two jobs J j and J j−mibi . Suppose there exists a point in
time t at which both jobs are simultaneously processed at
stage Si . Due to the fixed job permutation, this would imply
that all themibi+1 jobs J j−mibi , J j−mibi+1, . . . , J j would be
processed at stage Si at this time t . However, this contradicts
the batch capacity restriction bi of the mi machines. Hence,
such a point in time t cannot exist and we may conclude

ci j ≥ ci( j−mibi ) + pi (2)

for all i ∈ [s] and all j = mibi + 1,mibi + 2, . . . , n.
Now we construct the desired lower bound via recursion,

using the right-hand sides of the two properties above. As
starting values, we define c∗

0 j = r j for all j ∈ [n] and c∗
i j =

−∞ for i ∈ [s] and j ≤ 0. Then, we define

c∗
i j = max{c∗

(i−1) j , c
∗
i( j−mibi )} + pi . (3)

Clearly, by inductive application of the two properties (1)
and (2), the values c∗

i j defined this way are a lower bound for
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Fig. 3 Thefirst twofigures show the twooptimal permutation schedules
(ordered by their indices) in Example 7; the third figure shows the
infeasible schedule implied by lower bound (3), where machine M2 is
allowed to start a new batch while another is still running

the completion times of a permutation schedule for a PFFB,
as stated in the following lemma.

Lemma 6 Any feasible permutation schedule with job order
J1, J2, . . . , Jn satisfies ci j ≥ c∗

i j for all i ∈ [s] and j ∈ [n].
Before we proceed to the next part, we give an example

to show that the lower bound cannot always be achieved by
a feasible schedule. Hence, it is not tight in general.

Example 7 Consider a PFFB instance without release dates,
consisting of three stageswith onemachine each and two jobs
(i.e., s = 3, m1 = m2 = m3 = 1, n = 2). Processing times
and batch capacities at each stage are given by p1 = b1 =
p3 = b3 = 1 and p2 = b2 = 2. The only batching decision
to make is whether to batch both jobs together at stage S2
or not. The two corresponding permutation schedules are
illustrated in Fig. 3. For ease of notation, we identify each
stage Si with its single associated machine Mi . In both cases
we have c32 = 6. However, recursively applying (3) yields
c∗
32 = 5, illustrated in the third part of Fig. 3.

5.2 The lower bounds as completion times of a
proportionate flexible flow shop

Given an instance of PFFB, consider the following instance
of a proportionate flexible flow shop (PFF) problem: at each
stage, instead of mi parallel batching machines with max-
imum batch size bi , there are mibi parallel machines with
maximumbatch size 1. In other words, any batchingmachine
with batch size bi at stage Si is replaced by bi identical paral-
lel machines without batching. All other data of the instance
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remain the same. Considering the original PFFB instance,
we call the instance of PFF constructed this way the corre-
sponding instance without batching.

The main difference between the PFFB instance and its
corresponding instance without batching is that the mibi
machines in the instancewithout batching can start jobs inde-
pendently from one another, whereas in the PFFB instance,
jobs in the same batch have to be started at the same time. So
the corresponding instance without batching allows formibi
independent starts, while the PFFB setting only allows for
mi many.

Clearly, any feasible schedule for the PFFB instance
implies a feasible schedule in the corresponding instance
without batching, by keeping all start and finish times the
same and only splitting up batches across machines such that
one job runs on each machine. The reverse does not work.
Indeed, considering again Example 7, we can see that the
third part of Fig. 3 shows a solution to the corresponding
instance without batching which cannot be transformed into
a solution for the PFFB instance.

The next theorem shows that an optimal schedule for the
PFF instance is determined by the values c∗

i j , i ∈ [s], j ∈ [n],
from (3).

Theorem 8 Consider a PFFB instance with a regular objec-
tive function for which permutation schedules are optimal.
Then the values c∗

i j , i ∈ [s], j ∈ [n], are the completion times
of an optimal schedule of the corresponding PFF instance
without batching.

Proof Since there are no batching machines involved in a
PFF, there is no need to wait for the arrival of other jobs in
order to achieve a fuller batch. Therefore, an optimal per-
mutation schedule for the PFF can be achieved by starting
each job J j at each stage Si as soon as the following two
conditions are satisfied:

– The job J j has finished stage Si−1 (or has been released,
if i = 1).

– There is a machine available for processing job J j at
stage Si and all jobs J1, J2, . . . , J j−1 have already been
started at that stage. Due to the fixed permutation and the
number mibi of machines at stage Si , this is the case as
soon as job J j−mibi has finished stage Si (or immediately,
if j ≤ mibi ).

Putting these conditions together, the completion time of job
J j at stage Si in an optimal permutation schedule can be
calculated recursively by

ci j = max{c(i−1) j , ci( j−mibi )} + pi .

This is exactly the same formula as in the definition (3) of
the values c∗

i j , i ∈ [s], j ∈ [n]. �	

5.3 Comparison with the bound of Sung et al. (2000)

As mentioned in the literature review, Sung et al. (2000)
propose heuristic algorithms to schedule a PFB, that is, a
PFFB with only one machine at each stage, without release
dates. In order to evaluate their experiments, they provide a
lower bound for the makespan. Transferred to our notation,
it reads as follows:

max

{⌈
j

b1

⌉

p1 +
k−1∑

i=2

pi +
⌈
n − j + 1

bk

⌉

pk

+
s∑

i=k+1

pi

∣
∣
∣
∣
∣
j ∈ [n], k ∈ [s]

}

.

(4)

We show that our bound is an improvement, i.e., that c∗
sn

is at least as large as the bound given by (4) and that for at
least one instance, our bound is strictly larger.

Fix j ∈ [n] and k ∈ [s] as the maximizers in (4). Apply-
ing the recursive definition (3) with mi = 1 for all i ∈ [s]
and r j = 0 for all j ∈ [n], we obtain the following four
inequalities.

c∗
1 j ≥

⌈
j

b1

⌉

p1,

c∗
k j ≥ c∗

1 j +
k∑

i=2

pi ,

c∗
kn ≥ c∗

k j +
⌊
n − j

bk

⌋

pk

= c∗
k j +

(⌈
n − j + 1

bk

⌉

− 1

)

pk,

c∗
sn ≥ c∗

kn +
s∑

i=k+1

pi .

Summing up these four inequalities yields that c∗
sn is at least

as large as the bound (4) by Sung et al. (2000). Moreover,
the following example shows that c∗

sn can be strictly larger
than (4). Consider a PFB (i.e., only one machine per stage)
instance with s = 3 stages. Let n = 6 be the number of jobs
and let p1 = b1 = 1, p2 = 3, b2 = 2, p3 = 5, and b3 = 3.
One can easily check that for this instance the maximum in
(4) is 16, which is attained either for j = 2 and k = 2 or for
j = 3 and k = 3. However, for our bound it holds that

c∗
36 ≥ 5 + c∗

33 ≥ 10 + c∗
23 ≥ 13 + c∗

21 ≥ 16 + c∗
11 ≥ 17.

Hence, c∗
sn is a strict improvement upon the bound (4) of

Sung et al. (2000).
We can compute c∗

sn in time O(ns) by recursively using
(3). Since the computation of (4) takes the same asymptotic
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runtime, our improvement of the bound incurs no increase in
computational cost.

6 The Never-Wait algorithm

This section is devoted to establishing a simple, yet reason-
ably effective online scheduling rule for a PFFB. Again we
focus onpermutation scheduleswith joborder J1, J2, . . . , Jn .
Hence, on each stage, when a machine is idle and jobs
are available, the main scheduling decision is how long to
wait until starting a new batch. One obvious strategy is to
always immediately start a batch when jobs are present and
a machine is idle. We call this strategy the Never-Wait algo-
rithm. Another strategy, in some ways the opposite to the
Never-Wait algorithm, is to always wait until a full batch can
be started. This strategy is called the Full-Batch algorithm.
In this section, we show that the Never-Wait algorithm is a
2-approximation with respect to various objective functions
and, hence, 2-competitive when seen as an online algorithm.
Furthermore, we show that the Full-Batch algorithm admits
no constant approximation guarantee at all.

Definition 9 The Never-Wait algorithm for scheduling a
PFFB is defined as follows: A batch is started at a stage
whenever at least one job is available for processing at that
stage and at least one machine is idle at that stage. The size
of the new batch is chosen as large as possible, i.e., the min-
imum of the batch capacity at the stage and the number of
available jobs at the stage when the batch is started.

Note that, if at stage Si several machines are idle but there
are not more than bi jobs available, only one machine is
started. On the other hand, if there are more than bi jobs
available at stage Si , then more than one machine can be
started at the same time.

In the following, let ci j , i ∈ [s], j ∈ [n], be the completion
times resulting from the Never-Wait algorithm and c∗

i j be the
bound defined in Sect. 5. We also write c0 j = c∗

0 j = r j for
the time at which J j becomes available at S1.

Since the Never-Wait algorithm greedily starts as many
available jobs as possible, the following property holds.

Lemma 10 Suppose that, for some j ∈ [n] and some i ∈
[s], it holds that ci j > c(i−1) j + 2pi . Then j > mibi and
ci( j−mibi ) ≥ ci j − pi .

Proof Notice that ci j > c(i−1) j +2pi implies that J j is avail-
able but not started at stage Si during the complete interval
λ = [

ci j − 2pi , ci j − pi
[
. Since interval λ has length pi and

at least one job is available during all of interval λ, each of
the mi machines starts processing exactly one batch during
λ. Moreover, since J j is already available, but not included
in one of these batches, all these batches must be full batches.

Hence, we obtain that at least mibi jobs complete stage Si in
the time interval

[
ci j − pi , ci j

[
. In particular, using the fixed

job permutation, this implies that j > mibi and that J j−mibi
is completed not before time ci j − pi . �	

Now we are ready to show that the completion times pro-
duced by the Never-Wait algorithm can be bounded from
above in terms of the lower bound c∗

i j of the previous sec-
tion.

Theorem 11 For all i ∈ [s] and j ∈ [n], the completion time
ci j in the Never-Wait algorithm satisfies

ci j ≤ c∗
i j +

i∑

i ′=1

pi ′ .

Proof We use a simultaneous induction on i and j . Using
c0 j = r j = c∗

0 j , the following arguments settle induction
start (i = 1) and induction step (i > 1) at the same time.

Let i ∈ [s] be a stage index and let j ∈ [n] be a job index.
Suppose the claim is already proven for all pairs of indices
i ′ ≤ i and j ′ ≤ j with either i ′ < i or j ′ < j . We distinguish
two cases.

Case 1: J j waits for at most pi time units at stage Si , i.e.,
ci j ≤ 2pi + c(i−1) j . In particular, by Lemma 10, this always
holds if j ≤ mibi . We obtain

ci j ≤ 2pi + c(i−1) j

ind.≤ pi + pi + c∗
(i−1) j +

i−1∑

i ′=1

pi ′

(3)≤ c∗
i j +

i∑

i ′=1

pi ′ .

Case 2: J j waits for more than pi time units at stage Si ,
i.e., ci j > c(i−1) j + 2pi . By Lemma 10, this implies that
j > mibi and that J j−mibi is completed not before time
ci j − pi . Then we conclude

ci j ≤ ci( j−mibi ) + pi

ind.≤ c∗
i( j−mibi ) + pi +

i∑

i ′=1

pi ′

(3)≤ c∗
i j +

i∑

i ′=1

pi ′ .

�	
Using this, we obtain the desired competitiveness result.
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Corollary 12 With respect to makespan, total completion
time, maximum flow time and total flow time, the Never-Wait
algorithm to schedule a PFFB is a 2-competitive online algo-
rithm.

Proof Using Theorem 5, we obtain that there exists an opti-
mal schedule ς∗ that is a permutation schedule with job order
J1, J2, . . . , Jn . Let ς be the schedule produced by the Never-
Wait algorithm. Using Theorem 11 and Lemma 6, it follows
for a fixed job index j ∈ [n] that

C j (ς) ≤ c∗
s j +

s∑

i=1

pi

≤ C j (ς
∗) + C j (ς

∗) − r j = 2C j (ς
∗) − r j ,

where the term −r j stems from C j (ς
∗) ≥ c∗

s j ≥ r j +
∑s

i=1 pi . Thus, we have C j (ς) ≤ 2C j (ς
∗)− r j ≤ 2C j (ς

∗)
and Fj (ς) = C j (ς) − r j ≤ 2C j (ς

∗) − 2r j = 2Fj (ς
∗),

which proves the desired statement. �	
Corollary 12 andTheorem4 imply the following corollary.

Corollary 13 For the total flow time objective, there is no
deterministic online algorithmwhich, in general, has a better
competitive ratio than the Never-Wait algorithm.

Next, we show by an example that the competitive ratio of
the Never-Wait algorithm is not smaller than 2 with respect
to any of the considered objectives.

Example 14 Consider the PFFB instance with only a single
stage, with a fixed number m1 ≥ 1 of machines, a batch
capacity b1 ≥ 1 to be chosen later, and processing time p1 =
1. For some small ε > 0, suppose further there are n = m1b1
jobs, with release dates r j = ( j − 1)ε for j ≤ m1 and
r j = m1ε for j ≥ m1 + 1.

The Never-Wait algorithm schedules the first m1 jobs as
singleton batches as soon as they arrive, filling all machines.
All other jobs are not started before time 1, when the first
machine becomes idle again. Thus, none of the n − m1 jobs
J j , j ≥ m1 + 1, can be finished before time 2. Hence, for
the schedule ς produced by the Never-Wait algorithm, we
obtain

Cmax(ς) ≥ 2,
∑

C j (ς) ≥ 2n − m1 = 2m1b1 − m1,

Fmax(ς) ≥ 2 − m1ε,
∑

Fj (ς) ≥ 2n − m1 − nm1ε = 2m1b1 − m1 − m2
1b1ε.

In contrast, consider the feasible schedule in which all
machines remain idle until time m1ε, when the last job
becomes available. At this point in time, all the n = m1b1

jobs are partitioned intom1 batches and started. For the result-
ing schedule ς ′, it follows that

Cmax(ς
′) ≤ 1 + m1ε,

∑
C j (ς

′) ≤ n + nm1ε = m1b1 + m2
1b1ε,

Fmax(ς
′) ≤ 1 + m1ε,

∑
Fj (ς

′) ≤ n + nm1ε = m1b1 + m2
1b1ε.

Now, given any α > 0, we show that ε and b1 can be
chosen such that the ratio of the objective values is at least
2 − α. Without loss of generality, assume that 4−α

α
is an

integer. If this is not the case, make α continuously smaller,
until it is. Let b1 = 4−α

α
and ε = 1

m1b1
. We obtain

Cmax(ς)

Cmax(ς ′)
≥ 2

1 + m1ε
= 2

1 + 1
b1

= 2b1
b1 + 1

= 8 − 2α

4
= 2 − 1

2
α > 2 − α;

∑
C j (ς)

∑
C j (ς ′)

≥ 2b1 − 1

b1 + m1b1ε
= 2b1 − 1

b1 + 1
= 8 − 3α

4
> 2 − α;

Fmax(ς)

Fmax(ς ′)
≥ 2 − m1ε

1 + m1ε
= 2 − 1

b1

1 + 1
b1

= 2b1 − 1

b1 + 1
> 2 − α;

∑
Fj (ς)

∑
Fj (ς ′)

≥ 2b1 − 1 − m1b1ε

b1 + m1b1ε
= 2b1 − 2

b1 + 1

= 8 − 4α

4
= 2 − α.

Hence, the Never-Wait algorithm does not have a compet-
itive ratio less than 2 with respect to any of the considered
objectives. Note that, while this example uses only a single
stage, it can easily be extended to arbitrary many stages by
using negligible processing times on all stages but the first
one. Moreover, this example works for arbitrary values of
m1, which implies that the competitive ratio of the Never-
Wait algorithm cannot be better than 2, no matter how many
parallel machines per stage there are.

Remark 15 Even though the Never-Wait algorithm is in gen-
eral not better than 2-competitive, concerning the makespan
and total completion time objectives, Theorem 11 actually
delivers a much stronger result than 2-competitiveness if the
number of jobs is large.

To see this, we first show that for any i ∈ [s], we have
c∗
i j ≥ 
 j

mi bi
�pi =: LBi, j . Indeed, with k := 
 j

mi bi
� − 1 and

j ′ := j − kmibi ≥ 1, recursive application of (3) yields

c∗
i j

(3)≥ kpi + c∗
i j ′

(3)≥ 
 j
mi bi

�pi + c∗
(i−1) j ′ ≥ LBi, j ,

where the last inequality follows from c∗
(i−1) j ′ ≥ 0.
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Furthermore, LBi, j tends to infinity for j → ∞. Thus,
in particular, if n tends to infinity, also c∗

sn tends to infinity,
which is a lower bound for the makespan.

In contrast, note that the difference between the makespan
of the schedule produced by the Never-Wait algorithm and
the optimal makespan is at most

∑s
i=1 pi by Theorem 11.

This difference stays constant if n tends to infinity.
Putting these things together, we obtain that, with respect

to the makespan, the competitive ratio of the Never-Wait
algorithm tends to 1, if n tends to infinity.

The same holds for the total completion time objective, as
we argue now. Note that, with the same arguments as before,
the total completion time of any feasible schedule is lower
bounded by

n∑

j=1

c∗
s j ≥

n∑

j=1

LBs, j ≥
n∑

j=1

⌈
j

msbs

⌉

ps ∈ �(n2).

On the other hand, the difference between the total com-
pletion time of the schedule produced by the Never-Wait
algorithm and the objective value of any optimal schedule
is at most n

∑s
i ′=1 pi ′ ∈ O(n) by Theorem 11. Thus, also

for the total completion time, we obtain that the competitive
ratio of the Never-Wait algorithm tends to 1, if n tends to
infinity.

However, a similar result cannot be achieved for our two
flow time related objectives. To see this, note that Example 14
can be kind of “copied” arbitrarily often: given an instance
with n jobs for which the Never-Wait algorithm achieves a
competitive ratio of at least 2−α for someα > 0, introduce n
more jobs Jn+1 to J2n with release dates r j = r j−n+M , j =
n+1, n+2, . . . , 2n, for some large constant M . Then, both,
the Never-Wait algorithm and an optimal offline algorithm,
process the jobs Jn+1 to J2n in exactly the same way as they
did process jobs J1 to Jn , just shifted by M time steps. By the
definition of flow times (in contrast to completion times), this
keeps the maximum flow time constant, while the total flow
time is doubled for both algorithms. Thus, with respect to
these twoobjectives, the competitive ratio is still at least 2−α.
This procedure can be repeated arbitrarily often. Hence, the
competitive ratio of the Never-Wait algorithm does not tend
to 1 for n → ∞ with respect to flow time related objectives.

6.1 The Full-Batch algorithm

The Never-Wait algorithm can be seen as an extreme strat-
egy, where all waiting time other than what is mandated by
the scheduling constraints is avoided. Note that, for regular
objective functions, it makes no sense to wait with starting a
batch at stage Si if a machine is available and already bi jobs
are waiting at stage Si . Thus, it can be viewed as the opposite
extreme to always wait until a full batch can be started.

time0 1 2 3 4 5 6 7 8 9 10 11 12 13

J1

J2

J3

J4

J5

M1

M2

M2

M2

M2

M2

M3

M4

M4

M4

M4

M4

· · ·

Fig. 4 Schedule ς up to stage S4 produced by the Full-Batch algorithm
for the case n = 5

Definition 16 The Full-Batch algorithm for scheduling a
PFFB is defined by the following rule: At each stage, use
only full batches (the last batch at stage Si may be less than
full, if the batch capacity bi is not a divisor of the total number
of jobs n).

Note that the Full-Batch algorithm is not actually an online
algorithm in the strict sense, because in order to know when
to start the last batch one needs to know the number of jobs
in advance. This is not the case in the standard online setting.
Therefore, we view the Full-Batch algorithm primarily as
an offline approximation algorithm. It can also be seen as an
online algorithm in a relaxed online setting, where the sched-
uler receives the information that no more jobs are coming
when the last job is released.

Theorem 17 There exists no α ≥ 1 such that the Full-
Batch algorithm is an α-approximation for minimizing the
makespan in a PFFB.

Proof The statement already holds for usual PFBs, i.e.,
PFFBs where at each stage there is only one machine. There-
fore, in the following, we assume mi = 1 for all stages Si ,
i ∈ [s]. For ease of notation, we identify each stage Si with
its single associated machine Mi .

Without loss of generality letα ≥ 1 be integer. Construct a
PFB instance without release dates as follows. Set s = 10α,
n = 5α, p2i = b2i = 1, p2i−1 = 2 and b2i−1 = n for
i ∈ [5α].

Let ς be the schedule produced by the Full-Batch algo-
rithm. Fig. 4 illustrates ς on the first four machines for
the case n = 5. An odd machine waits until all jobs have
been finished on the previous even machine, before it pro-
cesses all of them in a single batch. This way, we obtain
Cmax(ς) = 10α + 5αn = 10α + 25α2, where the first term
stems from the 5α odd machines and the second term from
the 5α even machines.

In contrast, let ς ′ be the schedule where all batches consist
of a single job only. On the first machine, each job is started
two time steps after the previous job, i.e., J j is started at
time 2 j − 2. On all remaining machines, jobs can be started
immediately upon arrival, since no processing time is larger
than two. Fig. 5 illustrates ς ′ on the first four machines for

123



Journal of Scheduling (2022) 25:643–657 653

time0 1 2 3 4 5 6 7 8 9 10 11 12 13

J1

J2

J3

J4

J5

M1

M1

M1

M1

M1

M2

M2

M2

M2

M2

M3

M3

M3

M3

M3

M4

M4

M4

M4

M4

· · ·

Fig. 5 Schedule ς ′ up to stage S4 produced by using only batches of
size one for the case n = 5

the case n = 5. We obtain

Cmax(ς
′) = 2n − 2 + 15α = 25α − 2

because it takes 2n − 2 time steps until the last job is started
on the first machine, and 15α more time steps for processing
the last job on all machines.

Hence, in total, we obtain

Cmax(ς)

Cmax(ς ′)
= 10α + 25α2

25α − 2
>

25α2

25α
= α.

Therefore, the Full-Batch algorithm cannot be an α-
approximation for any constant α ≥ 1. �	
Remark 18 Note that Hertrich (2018) shows for the case of
PFBs that the example in the proof of Theorem17 is no longer
valid if either the number of jobs n or the number of stages s
is fixed and no longer depends on α. In these cases, the Full-
Batch algorithm becomes a constant factor approximation.
Analyzing the proofs of Hertrich (2018), one can see that
these results carry over to PFFBs.

7 Optimal online algorithm for two stages

We have seen that the competitive ratio of the Never-Wait
algorithm is 2 with respect to all four objective functions
considered in this paper. Comparing with the lower bounds
of Sect. 3, this is best possible for the total flow time objec-
tive. However, for the other three objectives, there is a gap
between the lower bound of the golden ratio ϕ and the upper
bound of 2. In this section, we close this gap in the special
case of s ≤ 2 for makespan and total completion time by pre-
senting a specialized ϕ-competitive algorithm for this case.
This extends the result of Zhang et al. (2003), who provide
a ϕ-competitive algorithm for makespan minimization with
s = 1, i.e., on identical, parallel batching machines.

Let t = ϕ p1 + (ϕ − 1)p2. This is the latest possible time
at which the first batch must be started at the second stage if
we want that a job released at time zero is completed at time
ϕ(p1 + p2), which is the minimal completion time of such

a job multiplied with ϕ. The idea of the following algorithm
is to schedule S1 in a way such that as many jobs as possible
have completed S1 at time t , while the machines of S2 stay
idle until time t and are scheduled according to the Never-
Wait algorithm afterwards.

Definition 19 For a 2-stage PFFB the t-Switch algorithm is
defined as follows. Let the set I of starting instants consist
of those points in time τ ≥ 0, for which τ + 
p1 = t for
some integer 
 ∈ Z, i.e.,

I =
{

t −
⌊

t

p1

⌋

p1, t −
(⌊

t

p1

⌋

− 1

)

p1, . . . ,

t − p1, t, t + p1, . . .

}

.

At stage S1, jobs are started only at starting instants. At each
starting instant, as many jobs are started as possible, i.e.,
the minimum of m1b1 and the number of available jobs. The
machines of S2 stay idle until time t and are scheduled accord-
ing to the Never-Wait algorithm afterwards.

Next, we prove three lemmas that help to show ϕ-
competitiveness. In the following, let c1 j and c2 j , j ∈ [n],
be the completion times produced by the t-Switch algorithm
and let c∗

1 j , c
∗
2 j , j ∈ [n], be the lower bounds of Sect. 5.

Lemma 20 For all j ∈ [n], it holds that c1 j ≤ c∗
1 j + p1.

Proof We use induction on j . Fix a job index j ∈ [n]. Note
that J j is started at the starting instant τ = c1 j − p1. Let
τ ′ = c1 j −2p1 be the previous starting instant. First, suppose
that r j > τ ′ = c1 j − 2p1, i.e., τ is the first starting instant
after r j .Note, in particular, that sincem1b1 jobs canbe started
at each starting instant, this is always the case if j ≤ m1b1.
In this case, we directly obtain c1 j ≤ r j + 2p1 ≤ c∗

1 j + p1.
Otherwise, if r j ≤ τ ′ = c1 j − 2p1, then J j was already

released at starting instant τ ′, but has not been started at this
time. Hence, j > m1b1 and exactly m1b1 other jobs must
have been started at τ ′. This implies c1( j−m1b1) ≥ c1 j − p1
and, hence,

c1 j ≤ c1( j−m1b1) + p1
ind.≤ c∗

1( j−m1b1) + 2p1
(3.)≤ c∗

1 j + p1

�	
Lemma 21 For all j ∈ [n] with c1 j ≤ t , it holds that c2 j ≤
c∗
2 j + (ϕ − 1)(p1 + p2).

Proof We use induction on j . Suppose first that J j is started
at stage S2 exactly at time t . Note that this is always the case
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if j ≤ m2b2, as stage S2 is idle before time t and thus up to
m2b2 jobs can be started at time t (recall that it is assumed
that J j is finished at S1 before time t). We obtain

c2 j = t + p2 = ϕ(p1 + p2)

= (p1 + p2) + (ϕ − 1)(p1 + p2)

≤ c∗
2 j + (ϕ − 1)(p1 + p2).

On the other hand, consider the case in which J j is started
at stage S2 later than time t . This can only happen if all
machines of S2 continuously process full batches between
time t and time c2 j − p2. In particular, this implies j > m2b2
and c2( j−m2b2) ≥ c2 j − p2. Hence,

c2 j ≤ c2( j−m2b2) + p2
ind.≤ c∗

2( j−m2b2) + p2 + (ϕ − 1)(p1 + p2)

(3)≤ c∗
2 j + (ϕ − 1)(p1 + p2).

�	
Lemma 22 For all j ∈ [n], it holds c2 j < c∗

2 j + p1 + p2.

Proof If c1 j ≤ t , then the claim for this index j follows by
Lemma 21. If c1 j > t , then S2 is already scheduled accord-
ing to the Never-Wait algorithm when J j arrives. Hence, the
claim can be proven analogously to Theorem 11, making use
of Lemma 20. �	

Now we are ready to prove ϕ-competitiveness of the t-
Switch algorithm.

Theorem 23 For a two-stage PFFB, the t-Switch algorithm
is ϕ-competitive with respect to the two objective functions
Cmax and

∑
C j .

Proof Consider a job J j , j ∈ [n]. We distinguish two cases:
Case 1: c∗

1 j < t . Using Lemma 20, it follows that c1 j <

t + p1. Since c1 j must be a starting instant, we even obtain
c1 j ≤ t . Now Lemma 21 yields

c2 j ≤ c∗
2 j + (ϕ − 1)(p1 + p2) ≤ c∗

2 j + (ϕ − 1)c∗
2 j = ϕc∗

2 j .

Case 2: c∗
1 j ≥ t . Then it follows that c∗

2 j ≥ t + p2 =
ϕ(p1 + p2). Using Lemma 22, we obtain

c2 j ≤ c∗
2 j + p1 + p2 ≤ c∗

2 j + 1

ϕ
c∗
2 j = ϕc∗

2 j .

Having proven c2 j ≤ ϕc∗
2 j for all j ∈ [n], the ϕ-competi-

tiveness follows for Cmax and
∑

C j . �	
Theorem 23 in combination with Theorems 2 and 3

implies the following corollary.

Corollary 24 ForPFFBswith s = 2 stages and themakespan
or total completion time objective, there is no deterministic
online algorithm which, in general, has a better competitive
ratio than the t-Switch algorithm.

8 Conclusion

In this paper, we consider proportionate flexible flow shops
with batching machines (PFFBs). We put a special focus on
the online version of the problem, which is highly relevant
for applications in the production of modern, individualized
medicaments. To the best of our knowledge, the online ver-
sion has not been studied before, not even in the special
case of proportionate (non-flexible) flow shops with batching
machines (PFBs).

We describe and analyze two algorithms: the very gen-
eral Never-Wait algorithm and the more specialized t-Switch
algorithm. The Never-Wait algorithm works for an arbitrary
number of stages andmachines.What is more, its description
is relatively simple and therefore it is easy to implement in
practice. We show that, despite its simplicity, the Never-Wait
algorithm is 2-competitive for minimizing the makespan,
total completion time, maximum flow time, and total flow
time. Furthermore, we show that for the total flow time objec-
tive, no deterministic online algorithm can, in general, do
better than the Never-Wait algorithm.

Note that the total flow time, which is equivalent with
the average flow time by dividing by the constant number of
jobs, is particularly important for our application: it measures
the average time patients have to wait for their medicament
after production is ordered. Obviously, a low average waiting
time is necessary for patients to benefit from the medicine
as quickly as possible. Interestingly, studying a particular
industrial instance, Ackermann et al. (2020) have also done
some initial work to confirm that the theoretical usefulness of
the Never-Wait algorithm is also coherent with its practical
behavior.

The t-Switch algorithm is specialized for PFFBswith only
two stages and the makespan or total completion time objec-
tive. For these versions of the online problem, the t-Switch

algorithm is a ϕ-competitive algorithm, with ϕ = 1+√
5

2 , the
golden ratio. By using and extending lower bounds known
from the literature,we show that no deterministic online algo-
rithm to minimize the makespan or total completion time in
PFFBs with two stages can, in general, be better than the
t-Switch algorithm.

Both results are based on the observation that for all
objectives we consider, there exists an optimal permutation
schedule with start times of jobs ordered by a non-decreasing
release date ordering on all stages. We show this as an exten-
sion to the theorem proved by Hertrich et al. (2020).
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Notice that for the offline version, our results imply that
the Never-Wait algorithm is a 2-approximation algorithm for
PFFBs to minimize the makespan, total completion time,
maximum flow time or total flow time. This is interesting
as so far, for PFFBs with arbitrarily many stages, no exact
polynomial algorithm has been found even in the case where
all stages consist of only one machine (see, e.g., Hertrich et
al. (2020)).

As this is the first study of online PFFBs, it is natural
that some open questions remain. Most importantly, there
remains a gap between the competitiveness of theNever-Wait
algorithm and the lower bound of competitiveness in the case
of three or more stages for makespan and total completion
time, and even in the case of two stages, for the maximum
flow time. Of course, it would be desirable to close this gap,
either by proving a larger lower bound of competitiveness or
by finding a better algorithm than the Never-Wait algorithm.
As we have shown in Example 14, the Never-Wait algorithm
itself cannot be better than 2-competitive in general. Oneway
to improve the Never-Wait algorithm could be to better fore-
cast what happens on the later stages of the PFFB. Observe
that, despite the online situation, we can forecast job arrivals
on later stages once the jobs become available at the first
stage. Indeed, at any time step t , the full schedule (and thus
arrival forecast) at each stage can be computed for all jobs
which become available before t . Thus, for the later stages in
the PFFB, the Never-Wait algorithm might be improved by
using this additional knowledge of future job arrivals. Note
that in the practical studymentioned above, such an improve-
ment has been successfully attempted for a specific problem
instance (see Ackermann et al. (2020)).

In addition to closing these gaps, for the total completion
time and total flow time objectives, it might be possible to
achieve better competitive ratios for special cases where a
certain minimum number of machines per stage is guaran-
teed. Observe that the lower bound constructions in Sect. 3
(Theorems 3 and 4) only use a single machine. It might be
the case that the same lower bounds do no longer hold if
each stage contains several parallel machines. Possibly, bet-
ter competitive ratios dependent on m := mini∈[s] mi could
be established. Cao et al. (2011) provide a result of this kind
for parallel machines (only one stage) with unbounded batch
capacity. For the makespan and maximum flow time objec-
tives, however, the lower bounds by Zhang et al. (2003) and
Jiao et al. (2014) involve arbitrarily many parallel machines.
Hence, for these objectives, it is not possible to achieve better
competitive ratios for high values of m.

Another open question concerns different objective func-
tions. We have shown that in a schedule computed by the
Never-Wait algorithm the finishing time of a job J j is at
most twice the least possible finishing time of J j in any per-
mutation schedule ordered by release dates. Unfortunately,
for most traditional scheduling objectives beyond those stud-

ied in this paper, permutation schedules ordered by release
dates are not, in general, optimal (see, e.g., Hertrich et al.
(Hertrich et al. (2020), Example 4)). Still, the Never-Wait
strategy may help with these objective functions, if jobs are
prioritized differently. For example, instead of scheduling
jobs in order of their release dates, each time a machine is
started in the Never-Wait algorithm, one may instead pick
the available jobs with the largest weight, if the objective
involves job weights. It is, at the moment, unclear whether
such an algorithm may be competitive and, if yes, what its
competitiveness bound would be.

On the other hand, in the online scenario, it may be valid
to restrict the study of other objectives to the case where jobs
are ordered by their release dates on all stages. In otherwords,
instead of searching for an optimal schedule amongst all pos-
sible schedules, we search for an optimal schedule amongst
all permutation schedules with jobs ordered by release dates.
Especially in the pharmacological application we consider,
such a first-in-first-out approach may be mandated due to
ethical and fairness considerations. For this type of restricted
problem, the Never-Wait algorithm may well prove to be
competitive for many objectives beyond the ones considered
in this paper, as long as these objectives are regular. For exam-
ple, using the same arguments as before, the Never-Wait
algorithm is 2-competitive w.r.t. the weighted total com-
pletion time / flow time. Indeed, as for the non-weighted
versions, the factor 2 fromTheorem 11 can bemoved in front
of the sum objectives to immediately see 2-competitiveness.
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Appendix A: proof of theorem 5

We now show how to prove Theorem 5. First, analogous to
Lemma 2 of Hertrich et al. (2020), we need the following
lemma.

Lemma 25 Let ς be a feasible schedule for a PFFB and let
π be some earliest release date ordering of the jobs. Then
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there exists a feasible permutation schedule ς̂ in which the
jobs are ordered by π and the multi-set of job completion
times in ς̂ is the same as in ς .

Proof The proof is completely analogous to the proof of
Lemma 2 from Hertrich et al. (2020). To see this, one only
needs to note that nowhere in the proof from Hertrich et al.
(2020) it is actually needed that all batches B(i)


 at stage Si
are processed on the same machine. Numbering the batches
at stage Si in any start time order, the construction of the new
schedule ς̂ as well as the proof of its feasibility work exactly
as in the proof from Hertrich et al. (2020). �	

Now we are ready to proof the main theorem.

Proof of Theorem 5 Let ς be an optimal PFFB schedule with
respect to one of our four objective functions Cmax,

∑
C j ,

Fmax, and
∑

Fj . Let π be an earliest release date ordering.
Using Lemma 25, construct a new permutation schedule ς̂ ,
with jobs ordered by π on all stages and with the samemulti-
set of job completion times.

For objective functions Cmax and
∑

C j , clearly the new
schedule ς̂ is optimal, since ς is optimal and ς̂ has the same
multi-set of job completion times. Moreover, since

∑
Fj =∑

C j − c, where c is a constant given by c = ∑n
i=1 ri , the

same argument holds for objective function
∑

Fj .
Finally, for objective function Fmax, suppose that jobs are

indexed according to the earliest release date ordering π , i.e.,
r1 ≤ r2 ≤ · · · ≤ rn and C1(ς̂) ≤ C2(ς̂) ≤ · · · ≤ Cn(ς̂).
Let j be the index of the job with maximum flow time in ς̂ ,
i.e., Fmax(ς̂) = C j (ς̂) − r j . Since ς has the same multi-set
of job completion times as ς̂ , there exist at most j − 1 jobs
with a completion time strictly less thanC j (ς̂) in the original
schedule ς . On the other hand, all the j jobs J1, J2, . . . , J j
have a release date of at most r j . Hence, by pigeon-hole
principle, there must exist a job J j ′ with C j ′(ς) ≥ C j (ς̂)

and r j ′ ≤ r j . This implies

Fmax(ς) ≥ C j ′(ς) − r j ′ ≥ C j (ς̂) − r j = Fmax(ς̂).

�	
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