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Abstract Since the classic forgery attacks on COPA, AES-COPA and Mar-
ble authenticated encryption algorithms need to query about 2n/2 times and
their success probability are not high. To solve this problem, the correspond-
ing quantum forgery attacks on COPA, AES-COPA and Marble authenticated
encryption algorithms are presented. In the quantum forgery attacks on COPA
and AES-COPA, we use Simon’s algorithm to find the period of the tag gen-
eration function in COPA and AES-COPA by querying in superposition, and
then generate a forged tag for a new message. While in the quantum forgery
attack on Marble, Simon’s algorithm is used to recover the secret parameter
L, and the forged tag can be computed with L. Compared with classic forgery
attacks on COPA, AES-COPA and Marble, our attack can reduce the num-
ber of queries from O(2n/2) to O(n) and improve success probability close to
100%.
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1 Introduction

In symmetric cryptography, an authenticated encryption algorithm is an al-
gorithm that transforms an arbitrary-length data stream, called a message or
plaintext, into another data stream of the same length, called a ciphertext, and
generates an authentication tag for the message at the same time, under the
control of a secret key [1]. The purpose of authenticated encryption algorithms
is to provide data privacy and integrity. In 2013, the CAESAR competition [2]
was launched to provide good authenticated encryption schemes as better al-
ternatives to current options such as AES-GCM [3], which have received 57
submissions in first round.

The COPA authenticated encryption algorithm [4] is designed by Andreeva
et al., which combines OCB’s offsets with an internal dependency chain in or-
der to achieve some security in the case of nonce repetition. Since its birth
is earlier than the CAESAR competition, it did not participate in the com-
petition. But, its instantiation with the AES [7] block cipher under 128 key
bits (called AES-COPA [5, 6]) has been a CAESAR candidate. The Marble
authenticated encryption algorithm (v1.0/1.1/1.2) [8–10] is also a CAESAR
submission by Jian Guo inspired by COPA, which uses two internal chains to
prevent birthday attacks on the internal chain and uses reduced-round AES
as building blocks. So far, only AES-COPA is a CAESAR candidate.

Although the COPA designers proved that it has a birthday-bound secu-
rity on integrity (which is mainly associated with existential forgery) under
the assumption that the underlying block cipher is a strong pseudorandom
permutation. And the Marble designer claimed that Marble achieved a full se-
curity beyond the birthday-bound due to the choice of TRANS function (see
Table 1). However, Nandi [11] presented an existential forgery attack on the
case of COPA that processes fractional messages, which produce the correct
ciphertext and tag for an unspecified message whose ciphertext and tag are
not given. Later, Lu [12] also proposed an almost universal forgery attack on
the COPA and Marble, which produce the correct ciphertext and tag for any
specified message whose ciphertext and tag are not given. Note that almost
universal forgery attack allows the forger to make a minimal change from the
given message M to a modified one M ′ by replacing some of its blocks before
producing its tag [13]. Both of Nandi’s and Lu’s forgery attack on the COPA
indicate that the probability of a forgery is much larger than 2/2n when the
number of queries q is close to birthday-bound 2n/2 and even smaller than
2n/2.

Moreover, Lu’s forgery attack on the marble also indicates that the Marble
(v1.0/1.1/1.2) are incorrectly far overestimated in the sense of full security.
The probability of a forgery would be 32% when the number of queries q is
close to birthday-bound 2n/2. Due to that Lu’s forgery attack on the Marble
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do not use associated data, Fuhr et al.’s forgery attack [14] make up for this
consideration. Finally, for AES-COPA with nonce, Lu’s forgery attack requires
slightly less than 263 encryption queries and its success probability is about
6%.

On the other hand, in the quantum world, many quantum algorithms are
constantly being used in cryptanalysis [15, 24, 25], machine learning [16–18],
blockchain [19,20] and so on. Since Shor’s algorithm [15] was proposed, it has
been announced that quantum computers would be a severe threat for public
key cryptography. More and more researchers have began to use quantum
algorithms to break symmetric cryptosystems, such as Simon’s algorithm [21,
24–27], Grover algorithm [22, 31], Bernstein-Vazirani algorithm [23, 32] and
so on. In addition, they also have proposed some new quantum algorithms
[30,33,34], and even extended classical cryptanalysis methods to the quantum
field [35, 36]. Among them, Simon’s algorithm was first used to break the
3-round Feistel construction [24] and then to prove that the Even-Mansour
construction [25] is insecure with superposition queries. Inspired from them,
Kaplan et al. [26] show that several classical attacks based on finding collisions
can be dramatically sped up using Simon’s algorithm. And Shi et al. [27] also
use analogous way to implement collision attacks on authenticated encryption
AEZ from CAESAR competition. To improve the efficiency of classic forgery
attack on COPA, AES-COPA and Marble, we present quantum forgery attacks
based on Simon’s algorithm. Note that, the attack of Ref. [23–27, 30–36] and
our forgery attack all belong to the Q2 model proposed by Kaplan [29]. In Q2
model, the adversary is allowed to perform quantum superposition queries to
a remote quantum cryptographic oracle [30]. The opposite of Q2 model is Q1
model, i.e., the adversary can query a quantum random oracle with arbitrary
superpositions of the inputs, but is only able to make classical queries to
a classical encryption oracle. Therefore, this model is not considered in this
article.

Our contributions. In this paper, we use Simon’s algorithm to find the
period of the function of tag generation in COPA firstly. When we get the
period, we can compute the forged message for the same tag. Since the length
of the associated data block and the message block will affect the period value,
there will be a small difference in the process of applying Simon’s algorithm
(see Sect. 3). Secondly, the encryption of AES-COPA is analogous to COPA,
an additional (public) input parameter called nonce is appended to associ-
ated data (if any), and then the resulting value is treated as associated data
in COPA. Therefore, our quantum forgery attack on AES-COPA is similar
on COPA. Moreover, due to the tag generation has 3-round encryption with
different keys and the function TRANS, it is difficult to find the period of
tag by Simon’s algorithm. But, we use Simon’s algorithm to find the period
of internal state S1, and then obtain the secret parameter L through the got
period. Finally, we can use the secret parameter L to compute forged tag and
message pairs. In summary, the query times and the success probability of
our quantum forgery attack are mainly reflected in the number of executing
Simon’s algorithm and the success probability of finding period. That is, our
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quantum forgery attack only needs O(n) queries with high success probability
(the probability is close to 1).

This paper is organized as follows. Sect. 2 provides a brief description
of the COPA, AES-COPA, Marble authenticated encryption algorithms and
Simon’s algorithm. And our quantum forgery attacks on COPA, AES-COPA
and Marble authenticated encryption algorithms are shown in Sects. 3, 4 and
5, respectively. Then, the comparison with other forgery attacks on COPA,
AES-COPA and Marble is analyzed in Sect. 6, followed by a discussion and
conclusion in Sect. 7.

2 Preliminaries

In this section, we would briefly describe the COPA, AES-COPA, Marble
authenticated encryption algorithms and Simon’s algorithm.

2.1 COPA, AES-COPA and Marble Authenticated Encryption Algorithms

For the sake of clarity, we list some explanations for variables and notations
in Table 1, which are frequently used in COPA and Marble authenticated en-
cryption algorithms. The COPA authenticated encryption algorithm [4] was
published in 2013. Its internal state, key and tag have the same length. There-
fore, in order to facilitate following analysis, we default the length of them
to 128 bits. To generate ciphertexts and tag, it has three phases: processing
associated data, message encryption, and tag generation, which is shown in
Fig. 1. During the process of processing associated data, if there is no associ-

ated data, then we set V
def
= 0. Besides, if the last block A[a] or M [d] are not

a multiple of n bits, they need to be padded by a one and as many zeroes as
necessary to obtain a multiple of the block size n, i.e., A[a]10∗ and M [d]10∗.
Finally, decryption is the inverse of encryption, and tag verification is identical
to tag generation. Please refer to [4] for the specification of COPA.

AES-COPA authenticated encryption algorithm is an extended version of
COPA, with some differences. First, a public message number N called nonce
is appended to associated data, like A[1]||A[2]|| · · · ||A[a]||N , and as part of
associated data. Besides, AES-COPA can accept ”fractional” messages M ,
i.e., the length |M | is not necessarily a positive multiple of the block size n.
And AES-COPA has two versions v.1 [5] and v.2 [6], where the process of
fractional message encryption in v.1 is slightly different from v.2 (as shown in
Table 2). For simplicity, we roughly introduce the encryption process of these
two versions. Note that XLSd() is invertible in v.1.

The Marble authenticated encryption algorithms [8–10] are like COPA,
which has four phases: initialization, processing associate data, message en-
cryption, and tag generation. Fig. 2 illustrates the message encryption and tag
generation phase of newest version (i.e. v1.2) of Marble. Its decryption is the
inverse of encryption, and tag verification is identical to tag generation. Please
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Table 1: Variables and notations

Variables and nota-
tions

Explanations

A[1]||A[2]|| · · · ||A[a],
M [1]||M [2]|| · · · ||M [d]

A[1]||A[2]|| · · · ||A[a] and M [1]||M [2]|| · · · ||M [d] are repre-
sented as associated data of a n-bit blocks and messages of
d n-bit blocks, respectively, where ”||” is bit connection and
n generally defaults to 128.

C[1], C[2], · · · , C[d]; T C[1], C[2], · · · , C[d] and T are the ciphertext and the tag for
M [1]||M [2]||· · · ||M [d], repestively.

|A| |A| represents the number of bits in A.
S, S1, S2 S, S1 and S2 are n-bit (n = 128) internal states.
Ek(), L Ek() is an n-bit block cipher, i.e., E : k × {0, 1}n → {0, 1}n,

where the key k generally consists of 128 bit. And L
def
= Ek(0)

in COPA.
+, ⊕ ”+” or ”⊕” are bitwise logical exclusive (XOR) operation.
· ”·” represents polynomial multiplication modulo the polyno-

mial x128 + x7 + x2 + x + 1 in GF(2128). We can abbreviate
A ·B as AB.

E1, E2, E3 Each of the operations E1, E2 and E3 is a 4-round reduced
version of the AES [29] block cipher, with four fixed round
subkeys chosen from the eleven round subkeys of the AES
with 128 key bits.

(see Fig. 2) represents a function TRANS(x, y) = (x +
y, 3x+ y), where x and y are 128-bit inputs.

Const0, Const1,
Const2

Const0, Const1 and Const2 are three 128-bit constants.

τ τ is 128-bit secret parameters.

refer to [8–10] for the specification of Marble. The main differences between
the newest version of Marble and the other two versions are as follows: In the
second version (i.e. v1.1 [9]), the mask parameter before E1 is 2a−1 · 32 ·L for
the last block of associated data; and in the initial version (i.e. v1.0 [8]), the
mask parameter before E1 is 2a−1 · 33 · L for the last block of associated data
if it is full, and is 2a−1 ·34 ·L if it is not full. Thus, the latest version of Marble
is identical to the initial version when the last block of associated data is full.

2.2 Simon’s Algorithm

Simon’s algorithm was proposed by Daniel R. Simon [21] in 1997, which is
a quantum algorithm to solve Simon’s problem (also proposed by Daniel R.
Simon). The definition of Simon’s problem is presented as below.

Simon’s Problem: Given a Boolean function f : {0, 1}n → {0, 1}n and
the promise that there exists s ∈ {0, 1}n such that for any (x, y) ∈ {0, 1}n,
[f(x) = f(y)] ⇔ [x⊕ y ∈ {0n, s}], the goal is to find s.

This problem can be solved classically by searching for collisions. The op-
timal time to solve it is therefore Θ(2n/2). On the other hand, Simon’s algo-
rithm solves this problem with quantum complexity O(n). Note that to run
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Table 2: Two versions of AES-COPA

AES-COPA v.1-ENCRYPT: AES-COPA v.2-ENCRYPT:

if d ⩾ 2 and 1 ⩽ |M [d]| ⩽ n− 1 then M = M [1]||M [2]|| · · · ||M ′[d]
V ← Processing associated data

A||N (see Fig. 1)
M [d] ← M ′[d] if |M ′[d]| = n else
M ′[d]|10∗

(C′, S′) ← Message encryption
(V,M [1]||M [2]|| · · · ||M [d − 1]) (see
Fig. 1)

P ← 0 if |M ′[d]| = n else 1

Σ′ ← M [1]⊕M [2]⊕ · · · ⊕M [d− 1] V ← Processing associated data A||N
(see Fig. 1)

T ′ ← Ek(Ek(Σ
′⊕ 2d−232L)⊕S′)⊕

2d−27L
(C, S) ← Message encryption
(V,M [1]||M [2]|| · · · ||M [d], P ) (see
Fig. 1)

C[d]T ← XLSd(M [d]T ′) Σ ← M [1]⊕M [2]⊕ · · · ⊕M [d]
C ← C′C[d] T ← Ek(Ek(Σ ⊕ 2d−1327PL) ⊕ S) ⊕

2d7L
Output (C,T ) Output (C,T )

end if

Simon’s algorithm, it is required that the function f can be queried quantum-
mechanically.

In Simon’s algorithm (as shown in Fig. 3), we need to prepare a 2n-
qubit state |0⟩⊗n|0⟩⊗n

and apply Hadamard transform H⊗n to the first n
qubits to obtain the quantum superposition 1√

2n

∑
x∈{0,1}n

|x⟩ |0⟩⊗n
. Then, the

quantum superposition would be input into the function f to get the state
1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩. After that, we apply Hadamard transform H⊗n to the

first n qubits again to get 1
2n

∑
x∈{0,1}n

∑
y∈{0,1}n

(−1)
x·y |y⟩ |f(x)⟩. Finally, we

perform measurements on all qubits, where the vector y (measured from the
first n qubits) be orthogonal to s, i.e., y · s = 0. By repeating this subroutine
O(n) times, one obtains n− 1 independent vectors orthogonal to s with high
probability, and s can be recovered using basic linear algebra.

3 Quantum Forgery Attacks on COPA by Simon’s Algorithm

3.1 Attack Strategy

Due to that our forgery attack belongs to Q2 model, the adversary can be able
to access the quantum cryptographic oracle and queries in superposition. To
execute Simon’s algorithm, the quantum cryptographic oracle would be used as
quantum oracle Qf (also as the function f in Simon’s problem) in the circuit of
Simon’s algorithm. According to the specific situation, we select the associated
data or message as the input of Simon’s algorithm, and select the tag or other
data (like S1 in Marble) as the algorithm’s output. By repeatedly executing
Simon’s algorithm O(n) times, we can obtain the corresponding period value.



Title Suppressed Due to Excessive Length 7

Fig. 1: The process of processing associated data, message encryption and tag
generation in COPA.

Finally, we can get the collision of the tag with different associated data or
messages by the period value. The entire attack process is called as a quantum
forgery attack.

Since COPA can set the associated data to 0, we conduct quantum forgery
attacks from two cases: without associated data and with associated data,
which is demonstrated as below.

3.2 Quantum Forgery Attacks on COPA without Associated Data

Since there is no associated data, so V = 0 and T = Ek(Ek(Σ ⊕ 2d−132L) ⊕
S) ⊕ 2d−17L, where Σ = M [1] ⊕ · · · ⊕M [d]. We can see that the size of the
message length d affects the period value s of the function T . Therefore, we
will calculate the period s of T from 2 cases: d = 1 and d ⩾ 2.

Case 1: When d = 1, i.e., message M = M [1]. Then,

T = Ek(Ek(M [1]⊕ 32L)⊕ S)⊕ 7L, (1)
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Fig. 2: The process of initialization, processing associated data, message en-
cryption and tag generation in Marble.
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Fig. 3: The circuit of Simon’s algorithm.

where S = Ek(M [1] ⊕ 3L) ⊕ V ⊕ L = Ek(M [1] ⊕ 3L) ⊕ L and 32 = 3 · 3 =
(x+1)(x+1) = (x2+x+x+1)mod(x128+x7+x2+x+1) = x2+1 = 5. Note
that, the multiplication and addition operations in this paper are the addition
and multiplication operations in GF(2128). So,

T = Ek(Ek(M [1]⊕ 5L)⊕ Ek(M [1]⊕ 3L)⊕ L)⊕ 7L. (2)

Firstly, we define the following function:

f : {0, 1}n → {0, 1}n

x → Tag COPA(x) = Ek(Ek(x⊕ 5L)⊕ Ek(x⊕ 3L)⊕ L)⊕ 7L.

(3)

The function f can be computed with a single call to the cryptographic
oracle, and we can build a quantum circuit for f given a quantum oracle for
COPA (as shown in Fig. 4). Moreover, f satisfies the requirement of Simon’s
problem with the period s = 6L:

f(x) = Ek(Ek(x⊕ 5L)⊕ Ek(x⊕ 3L)⊕ L)⊕ 7L,

f(x⊕ s) = Ek(Ek(x⊕ s⊕ 5L)⊕ Ek(x⊕ s⊕ 3L)⊕ L)⊕ 7L

= Ek(Ek(x⊕ 6L⊕ 5L)⊕ Ek(x⊕ 6L⊕ 3L)⊕ L)⊕ 7L

= Ek(Ek(x⊕ 3L)⊕ Ek(x⊕ 5L)⊕ L)⊕ 7L

= f(x).

where 6L ⊕ 5L = (6 ⊕ 5) · L = (x2 + x + x2 + 1) · L = (x + 1) · L = 3L and
6L⊕ 3L = 5L.

Therefore, the tag of an arbitrary block M [1] is valid for M [1]⊕ 6L.
Case 2. When d ⩾ 2, i.e., message M = M [1]||M [2]|| · · · ||M [d]. Then,

T = Ek(Ek(M [1]⊕M [2]⊕ · · · ⊕M [d]⊕ 2d−132)⊕ S)⊕ 2d−17L, (4)

where

S = Ek(M [d]⊕ 2d−13L)⊕ · · · ⊕ Ek(M [2]⊕ 6L)⊕ Ek(M [1]⊕ 3L)⊕ L. (5)
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Fig. 4: The circuit of quantum forgery attack on COPA without associated
data (d = 1).

By observing Eqs. (4) and (5), we find that if we find the period s which
meets M [1] ⊕ s ⊕ 3L = M [2] ⊕ 6L, then the tag will not change for different
messages M = M [1]||M [2]|| · · · ||M [d] and M ′ = M [1]⊕s||M [2]⊕s|| · · · ||M [d],
i.e.,

S′ = Ek(M [d]⊕ 2d−13L)⊕ · · · ⊕ Ek(M [2]⊕ s⊕ 6L)⊕ Ek(M [1]⊕ s⊕ 3L)

⊕ L

= Ek(M [d]⊕ 2d−13L)⊕ · · · ⊕ Ek(M [1]⊕ 3L)⊕ Ek(M [2]⊕ 6L)⊕ L

= S,

T ′ = Ek(Ek(M [1]⊕ s⊕M [2]⊕ s⊕ · · · ⊕M [d]⊕ 2d−132)⊕ S′)⊕ 2d−17L

= Ek(Ek(M [1]⊕M [2]⊕ · · · ⊕M [d]⊕ 2d−132)⊕ S)⊕ 2d−17L

= T.

Therefore, we only need to intercept the first two message blocksM [1]||M [2]
as input to the function f , and define the function as below:

f : {0, 1}n → {0, 1}n

x → Tag COPA(x||x⊕ σ) =

Ek(Ek(σ ⊕ 10L)⊕ Ek(x⊕ σ ⊕ 6L)⊕ Ek(x⊕ 3L)⊕ L)⊕ 14L,

(6)

where 10 = 2d−1 · 32 = 2 · 32, σ = M [1] ⊕ M [2] and σ can be viewed as an
arbitrary constant. It is obvious to see that f(x) = f(x⊕ s) with s = σ ⊕ 5L:

f(x) = Ek(Ek(σ ⊕ 10L)⊕ Ek(x⊕ σ ⊕ 6L)⊕ Ek(x⊕ 3L)⊕ L)⊕ 14L

f(x⊕ s) = Ek(Ek(σ ⊕ 10L)⊕ Ek(x⊕ s⊕ σ ⊕ 6L)⊕ Ek(x⊕ s⊕ 3L)⊕ L)

⊕ 14L

= Ek(Ek(σ ⊕ 10L)⊕ Ek(x⊕ σ ⊕ 5L⊕ σ ⊕ 6L)⊕ Ek(x⊕ σ ⊕ 5L

⊕ 3L)⊕ L)⊕ 14L

= Ek(Ek(σ ⊕ 10L)⊕ Ek(x⊕ 3L)⊕ Ek(x⊕ σ ⊕ 6L)⊕ L)⊕ 14L

= f(x)
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Fig. 5: The circuit of quantum forgery attack on COPA without associated
data (d = 2).

Therefore, we can apply Simon algorithm on this function f (i.e., the COPA
cryptographic oracle), to get period s = σ ⊕ 5L (as shown in Fig. 5). Finally,
we query the tag of M = M [1]||M [2]|| · · · ||M [d], and the same tag is valid for
M ′ = M [2]⊕ 5L||M [1]⊕ 5L|| · · · ||M [d].

3.3 Quantum Forgery Attacks on COPA with Associated Data

Due to the existence of associated data, V = V (A[1]||A[2]|| · · · ||A[a]) and
T = Ek(Ek(Σ ⊕ 2d−132L)⊕Ek(M [d]⊕ 2d−13L)⊕ · · · ⊕Ek(M [1]⊕ 3L)⊕ V ⊕
L)⊕2d−17L. Through the control variable method, we can find that as long as
the values of V and V ′ calculated from two different associated data (A and
A′, A ̸= A′) are equal, i.e., V = V ′, the corresponding tags T and T ′ with two
same constant messages are also equal to each other. So, we can calculate the
period s of the function T with the constant message and variable associated
data, which is also the period of the function V . And by observing the process
of processing associated data, we find that whether |A| is a multiple of n will
affect the process of calculating V , and a, d ⩾ 2. Therefore, We would consider
the following three cases: 1) |A[a]|%n = 0, a = d = 2; 2) |A[a]|%n ̸= 0,
a = d = 2; 3) a, b > 2.
Case 1: When |A[a]|%n = 0 and a = d = 2, i.e., A = A[1]||A[2] and M =
M [1]||M [2]. Then,

T =Ek(Ek(M [1]⊕M [2]⊕ 10L)⊕ Ek(M [2]⊕ 6L)⊕ Ek(M [1]⊕ 3L)

⊕ Ek(Ek(A[1]⊕ 33L)⊕A[2]⊕ 2 · 34L)⊕ L)⊕ 14L.
(7)

In order to prevent the message M [1]||M [2] from affecting the period s of
the function T (which is also the period of function V ), we set the value of
M [1]||M [2] to an arbitrary constant m||m. Ek(M [1]⊕M [2]⊕10L)⊕Ek(M [2]⊕
6L)⊕Ek(M [1]⊕3L) would be a constant, which is abbreviated as cm||m. And
Eq. (7) can be abbreviated as below.

T = Ek(Ek(Ek(A[1]⊕ 33L)⊕A[2]⊕ 2 · 34L)⊕ cm||m ⊕ L)⊕ 14L. (8)
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Fig. 6: The circuit of quantum forgery attack on COPA with associated data
(|A[a]|%n = 0, a = d = 2).

We firstly fix two arbitrary associated data blocks α0 and α1 (one of them
is A[1] and α0 ̸= α1), and define the following function:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x → Tag COPA(αb||x,m||m) =

Ek(Ek(Ek(αb ⊕ 33L)⊕ x⊕ 2 · 34L)⊕ cm||m ⊕ L)⊕ 14L,

(9)

where 33 = (x+ 1)3mod(x128+x7+x2+x+1) = (x3+x2+x+1)mod(x128+
x7 + x2 + x+ 1) = 15.

Then, we apply Simon’s algorithm on function f (as shown in Fig. 6). The
function f has the period s = 1||Ek(α0 ⊕ 15L)⊕ Ek(α1 ⊕ 15L):

f(1, x⊕ s) =Ek(Ek(Ek(α1 ⊕ 15L)⊕ x⊕ Ek(α0 ⊕ 15L)

⊕ Ek(α1 ⊕ 15L)⊕ 2 · 34L)⊕ cm||m ⊕ L)⊕ 14L

=Ek(Ek(x⊕ Ek(α0 ⊕ 15L)⊕ 2 · 34L)⊕ cm||m ⊕ L)⊕ 14L

=f(0, x).

When we have got the period of function V (which is also the period of T
and f in Eqs. (8) and (9)) with variable associated data and constant message,
we can repeat the attack process in Case 2 of Sect. 3.2 to get another period
with different message and no associated data. Finally, the tag of α0||A[2]
and M [1]||M [2] is as same as α1||A[2] ⊕ Ek(α0 ⊕ 15L) ⊕ Ek(α1 ⊕ 15L) and
M [2]⊕ 5L||M [1]⊕ 5L’s.
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Case 2: |A[a]|%n ̸= 0 and a = d = 2, i.e., A = A[1]||A[2]|10∗ and M =
M [1]||M [2]. Similar to Case 1 of Sect. 3.3, we set the value of M [1]||M [2] to
an arbitrary constant m||m. Then,

T = Ek(Ek(Ek(A[1]⊕ 33L)⊕A[2]|10∗ ⊕ 2 · 35L)⊕ cm||m ⊕ L)⊕ 14L. (10)

And we define the following function:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x → Tag COPA(αb||x,m||m) =

Ek(Ek(Ek(αb ⊕ 33L)⊕ x⊕ 2 · 35L)⊕ cm||m ⊕ L)⊕ 14L.

(11)

Then, we perform Simon’s algorithm with this function f (as same as the
circuit in Fig. 6). Its period is as same as the one in Case 1 of Sect. 3.2,
i.e., s = 1||Ek(α0 ⊕ 15L) ⊕ Ek(α1 ⊕ 15L). Finally, the tag of α0||A[2]|10∗
and M [1]||M [2] is equal to α1||A[2]|10∗ ⊕ Ek(α0 ⊕ 15L) ⊕ Ek(α1 ⊕ 15L) and
M [2]⊕ 5L||M [1]⊕ 5L’s.
Case 3: When a, d > 2, i.e.,A = A[1]||A[2]|| · · · ||A[a] orA[1]||A[2]|| · · · ||A[a]|10∗,
and M = M [1]||M [2]|| · · · ||M [d]. Then,

T =Ek(Ek(Σ ⊕ 2d−132L)⊕ S ⊕ Ek(Ek(A[1]⊕ 33L)⊕A[2]⊕ · · · ⊕A[a]

⊕ 2 · 34L)⊕ L)⊕ 14L,

or,

=Ek(Ek(Σ ⊕ 2d−132L)⊕ S ⊕ Ek(Ek(A[1]⊕ 33L)⊕A[2]⊕ · · · ⊕A[a]|10∗

⊕ 2 · 35L)⊕ L)⊕ 14L.

(12)

Similar to the Case 2 in Sect. 3.2, we only need to consider the case of a = 3 to
find the period of the function V , so V (A[1]||A[2]||A[3]|| · · · ||A[a]) = V ′(A[1]⊕
s||A[2]⊕ s||A[3]|| · · · ||A[a]).

We firstly need to calculate the period of T with variable associated data
and constant message like Case 1 in Sect. 3.2, and define the following function:

f : {0, 1}n → {0, 1}n

x → Tag COPA(x||x⊕ σ||A[3]orx||x⊕ σ||A[3]|10∗,m||m||m)

= Ek(cm||m||m ⊕ Ek(Ek(x⊕ 33L)⊕ Ek(x⊕ σ ⊕ 2 · 33L)⊕A[3]

⊕ 22 · 34L)⊕ L)⊕ 14L

or,

= Ek(cm||m||m ⊕ Ek(Ek(x⊕ 33L)⊕ Ek(x⊕ σ ⊕ 2 · 33L)⊕
A[3]|10∗ ⊕ 22 · 35L)⊕ L)⊕ 14L.

(13)

where cm||m||m = Ek(Σ⊕2d−132L)⊕S and σ = A[1]⊕A[2]. The circuit of quan-
tum forgery attack is shown in Fig. 7. We can find that its period is s = σ⊕17L.
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Fig. 7: The circuit of quantum forgery attack on COPA with associated data
(a, b > 2).

Finally, the tag of A[1]||A[2]|| · · · ||A[a] or A[a] |10∗ and M [1]||M [2]|| · · · ||M [d]
is identical toA[2]⊕17L||A[1]⊕17L|| · · · ||A[a] or A[a]|10∗ andM [2]⊕5L||M [2]⊕
5L|| · · · ||M [d]’s.

From the above quantum forgery attacks on COPA, we found that a quan-
tum superposition query on encrypted Oracle can get all the tags generated
by the input plaintext, and then get the orthogonal value of the hidden period
through Simon’s algorithm. In order to completely compute the hidden period,
it is necessary to repeat Simon’s algorithm O(n) times. And each time Simon’s
algorithm is executed, the quantum superposition query needs to be performed
again. Therefore, the number of queries for the entire quantum forgery attack
is the number of repeated executions of Simon’s algorithm. And the success
probability of quantum forgery attacks is equivalent to the probability of suc-
cessfully finding the hidden period through Simon’s algorithm.

4 Quantum Forgery Attacks on AES-COPA by Simon’s Algorithm

Compared with COPA, AES-COPA has more Nonce (a public message num-
ber N) as input. And it would participate in the process of processing as-
sociated data as part of the associated data, i.e., X[1]||X[2]|| · · · ||X[x] =
A[1]||A[2]|| · · · ||A[a]||N . The rule of processingX[1]||X[2]|| · · · ||X[x] is as same
as the process of processing associated data in COPA. Therefore, the quan-
tum forgery attacks on COPA can also be applied on AES-COPA. Moreover,
AES-COPA can accept ”fractional” messages M , i.e., the length |M | is not
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Fig. 8: The circuit of quantum forgery attack on AES-COPA v.1 (d = 2,
|M [2]|%n ̸= 0).

necessarily a positive multiple of the block size n. Therefore, we focus on how
to implement quantum forgery attack on AES-COPA (v.1 and v.2) with frac-
tional messages in different cases.

4.1 Quantum Forgery Attacks on AES-COPA v.1

Firstly, assume that we have d ⩾ 2 and 1 ⩽ |M [d]| ⩽ n − 1. Since XLSd()
is invertible, XLSd(M [d]T ′) ̸= XLSd(M [d]∗T ′∗) for any M [d] ̸= M [d]∗ and
T ′ ̸= T ′∗. Therefore, we only to find the period of T ′ for different messages
M [1]||M [2]|| · · · ||M [d− 1].

For the sake of simplicity, we temporarily set the associated data and Nonce
as fixed constants. So, V is a fixed constant, too. And we consider two cases:
1) d = 2, 2) d > 2.
Case 1: When d = 2, |M [2]|%n ̸= 0. Then,

T ′ = Ek(Ek(M [1]⊕ 5L)⊕ S′)⊕ 7L (14)

where S′ = Ek(M [1]⊕ 3L)⊕ V ⊕ L. So,

T ′ = Ek(Ek(M [1]⊕ 5L)⊕ Ek(M [1]⊕ 3L)⊕ L⊕ V )⊕ 7L (15)

We can define the following function:

f : {0, 1}n → {0, 1}n

x → Tag AES − COPA v.1(x) = XLSd(Ek(Ek(x⊕ 5L)⊕ Ek(x⊕ 3L)

⊕ L⊕ V )⊕ 7L).

(16)

Through this function, the circuit of our attack on this case is similar to Case 1
in Sect. 3.2 (as shown in Fig. 8). The period of this function is s = 6L. Finally,
the tag of M [1]||M [2] is as same as M [1]⊕6L||M [2] with same associated data
and Nonce. If you want to find two different associated data and Nonce, you
can refer to Sect. 3.3.
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Fig. 9: The circuit of quantum forgery attack on AES-COPA v.1 (d > 2,
|M [2]|%n ̸= 0).

Case 2: When d > 2, |M [d]|%n ̸= 0. Then,

T ′ = Ek(Ek(M [1]⊕M [2]⊕ · · · ⊕M [d− 1]⊕ 2d−232L)⊕ S′)⊕ 2d−27L, (17)

where

S′ = Ek(M [d−1]⊕2d−23L)⊕· · ·⊕Ek(M [2]⊕6L)⊕Ek(M [1]⊕3L)⊕L⊕V. (18)

We can see that this case is similar to Case 2 in Sect. 3.2. The function can
be defined as below:

f : {0, 1}n → {0, 1}n

x → Tag AES − COPA v.1(x||x⊕ σ) =

XLSd(Ek(Ek(σ ⊕ 10L)⊕ Ek(x⊕ σ ⊕ 6L)⊕ Ek(x⊕ 3L)⊕ L)⊕ 14L)

(19)

whereM [1]⊕M [2] = σ. Finally, we can apply Simon algorithm on this function
f to get period s = σ⊕5L (as shown in Fig. 9). The tag ofM [1]||M [2]|| · · · ||M [d]
is valid for M [2]⊕ 5L||M [1]⊕ 5L|| · · · ||M [d].

In addition to the above two cases, there is a special case, i.e., d = 1 and
|M [1]|%n ̸= 0. Due to space limitations, we do not introduce the encryption
process of AES-COPA v.1 in this case ( the entire process can be referred to
Ref. [5]). And the positions of bits in tag need to be moved in the encryption
process, which is not suitable for using the Simon algorithm to implement
quantum forgery attacks. Therefore, we do not discuss this case.

4.2 Quantum Forgery Attacks on AES-COPA v.2

From the entire encryption process of AES-COPA v.2, we can find that the
encryption of AES-COPA v.2 for fractional messages is a little different from
COPA and AES-COPA v.1. To implement forgery attack, we consider three
cases: 1)d = 1, |M [1]|%n ̸= 0; 2)d = 2, |M [2]|%n ̸= 0; 3) d > 2, |M [d]|%n ̸= 0.
Assume that the associated data and Nonce are fixed constants.
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Case 1: When d = 1, |M [1]|%n ̸= 0, then,

T = Ek(Ek(M [1]|10∗ ⊕ 327L)⊕ Ek(M [1]|10∗ ⊕ 3L)⊕ V ⊕ L)⊕ 14L (20)

The function can be defined:

f : {0, 1}n → {0, 1}n

x → Tag AES − COPA v.2(x) = Ek(Ek(x⊕ 27L)⊕ Ek(x⊕ 3L)

⊕ L⊕ V )⊕ 14L,

(21)

where 27 = 327 = (x+ 1)2(x2+x+1)mod(x128+x7+x2+x+1) = x4+x3+x+1.

The circuit of our attack in this case is similar to Fig .4. Only the crypto-
graphic oracle is the Eq. 21 of AES-COPA v.2. The result period is s = 24L.
So, the tag of M [1] is as same as ⌊M [1]|10∗ ⊕ 24L⌋10∗ , where ⌊A⌋10∗ indicates
that the bit string ”10∗” at the end of bit string A should be removed. For
example, if the last bit in bit string A is ”1”, then the last bit of A should be
removed; if the last two bits in bit string A are ”10”, then the last two bits of
A should be removed; and so on.

Case 2:When d = 2, |M [2]|%n ̸= 0, then,

T =Ek(Ek(M [1]⊕M [2]|10∗ ⊕ 54L)⊕ Ek(M [1]

⊕ 3L)⊕ Ek(M [2]|10∗ ⊕ 18L)⊕ V ⊕ L)⊕ 28L
(22)

where 54 = 2 · 32 · 7 and 18 = 2 · 3 · 7.
The function f is defined as below:

f : {0, 1}n → {0, 1}n

x → Tag AES − COPA v.2(x||x⊕ σ) = Ek(Ek(σ ⊕ 54L)

⊕ Ek(x⊕ 3L)⊕ Ek(x⊕ σ ⊕ 18L)⊕ V ⊕ L)⊕ 28L,

(23)

where σ = M [1]⊕M [2]|10∗. Then, we apply Simon’s algorithm on this function
f , whose circuit is similar to Fig. 5, and get the period s = σ ⊕ 17L. So, the
tag of M [1]||M [2] is equal to ⌊M [2]|10∗ ⊕ 17L||M [1]⊕ 17L⌋10∗ .
Case 3: When d > 2, |M [d]|%n ̸= 0. Since our attack only requires the first
two message blocks M [1]||M [2], whether the last message block is full does not
affect implementation of forgery attacks. The process of our quantum forgery
attack is as same as Case 2 in Sect. 4.2.

Similar to the quantum forgery attacks on COPA, under the Q2 model, the
number of quantum superposition queries is the number of times that Simon’s
algorithm is executed, and the success rate of our attack is also the success
rate of the hidden period calculated.



18 Yinsong Xu et al.

Fig. 10: The circuit of quantum forgery attack on Marble.

5 Quantum Forgery Attacks on Marble by Simon’s Algorithm

By observing the entire overview of Marble v1.2, we find that the attack strat-
egy in Sect. 3 can not apply on Marble directly. But inspired by Lu’s attack
strategy [12], we can use Simon algorithm to recover the value of L firstly, and
then calculate the tag of new message by L to achieve the purpose of forgery
attack.

To recover the value of L, we can apply Simon algorithm on the process of
calculating S1 (S1 in Marble v1.2):

S1 =Const1 ⊕ E1(Const0)⊕ E1(A[1]⊕ 5L)⊕ E1(A[2]⊕ 10L)⊕ · · ·
⊕ E1(A[a]⊕ 2a−133L)⊕ E1(M [1]⊕ 2L)⊕ E1(M [2]⊕ 4L)⊕ · · ·
⊕ E1(M [d]⊕ 2dL)⊕ E1(Σ ⊕ τ ⊕ 2d · 7L),

(24)

For easy computing, we do not consider the associated data and choose an
arbitrary constant σ, and then define the following function:

f : {0, 1}n → {0, 1}n

x → S1 Marble(A = 0,M = x||x⊕ σ) =

Const1 ⊕ E1(Const0)⊕ E1(x⊕ 2L)⊕ E1(x⊕ σ ⊕ 4L)⊕ E1(σ ⊕ 14L)

(25)

where Const0 and Const1 are constants. Finally, we can use Simon algorithm
to recover the function f ’s period s = σ⊕ 6L (as shown in Fig. 10). The value
of L can be obtained by s.

When we get the value of L, we can query the Marble v1.2 encryption oracle
with d+1 block message M̃ = M [1]||M [2]|| · · · ||M [d]|| ⊕d

i=1 Mi ⊕ 2d+1L⊕ 2d ·
7L, and obtain its ciphertext C̃ = (C[1], C[2], · · · , C[d], C̃[d + 1]). Then, the
ciphertext for M = M [1]||M [2]|| · · · ||M [d] is C = (C[1], C[2], · · · , C[d]), and
the tag for M is C̃[d+1]⊕2d ·3 ·L⊕2d−1 ·3 ·7 ·L. Since the associated data is
not considered, the ciphertext and tag are also applicable to the Marble v1.1.
The specific process of generating forged tag can refer to Ref. [12].

On the other hand, if the associated data is considered, the forgery attack
can refer to Fuhr et al.’s attack strategy [14]. For any associated data A and
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message M , the adversary computes the masked value B of a chunk of 8
identical blocks of associated data after A and queries the encryption oracle
on (A||B,M). The answer (C, T ) to that query is also valid ciphertext and tag
for (A,M). The attack for Marble v1.0 is also applicable to other versions of
Marble.

Different from the quantum forgery attacks on COPA and AES-COPA,
the quantum forgery attacks here are mainly to obtain the secret parameter L
through quantum superposition query and Simon’s algorithm. But the attack
process is similar. So the number of queries and the success rate are the same.

6 Efficiency Comparison

In this section, we will compare our quantum forgery attack with other forgery
attacks (Ref. [11, 12, 14]) in terms of attack efficiency, which mainly consists
of two aspects: the number of queries and the success probability of forgery
attacks. The comparison result is shown in Table 3. In Ref. [12, 14], they use
birthday attack to find the collisions of the tag, which can recover the secret
parameter L. Then, they can compute the forgery tag by querying the oracle
once for specified message. We can see that the number of queries mainly
concentrate in recovering the secret parameter L. So, the number of queries
is close to the birthday-bound 2n/2. And Ref. [11] uses pigeonhole principle
on the case of processing fractional messages to implement forgery attack,
which only needs 2n/3 queries. Their success probability is a trade-off with the
number of queries.

In our quantum forgery attack, we rely on the Simon’s algorithm to query
collisions. Therefore, the number of queries in our attack is roughly equivalent
to the number of repeating Simon’s algorithm. And the success probability of
our attack is equal to the success probability of Simon’s algorithm. Due to
the characteristics of the queries in superposition, the number of queries can
be reduced from exponential time to polynomial time. Our attack only needs
cn queries, where c is a constant. Besides, Shi et al. [28] proved that Simon’s
algorithm returns s with cn queries, with probability at least 1−2n×(0.6454)cn.
If we choose c = 4 and n = 128, the success probability is very close to 1, which
is much greater than these classic forgery attack.

7 Discussion and Conclusion

In this paper, we have presented quantum forgery attacks on COPA, AES-
COPA and Marble authenticated encryption algorithms. Due to quantum
superposition query and Simon’s algorithm, our quantum forgery attack on
COPA, AES-COPA and Marble are more efficient than classic forgery attacks,
i.e., it only needs cn queries and its success probability is very close to 1.

However, the premise for our quantum forgery attack to be effective is in the
quantum setting. If the attacker only queries classically, we may not reduce the
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Table 3: Comparison between classic forgery attack and quantum forgery at-
tack

Ref. [12] Ref.
[11]

Ref.
[14]

Our attack

COPA
Queries 2σ +2φ

(
1 ⩽ σ, φ < n

2

)
2n/3 # cn

Success
Prob.

1− e−2σ+φ−n
25% # 1 − 2n ×

(0.6454)cn

AES-
COPA
(v.1/2)

Queries 263 # # cn
Success
Prob.

6% # # 1 − 2n ×
(0.6454)cn

Marble
(v1.0/1/2)

Queries 265 # 265 cn
Success
Prob.

32% # 32% 1 − 2n ×
(0.6454)cn

queries to only O(n) times. But we can use Grover algorithm offline to find
collisions, which can reduce the queries from O(2n/2) to O(2n/3). So, using
quantum algorithms offline to improve the efficiency of breaking symmetric
cipher will be one of our future research directions.
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