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Abstract

The constant growth of social media, unconventional web technologies, mobile
applications, and Internet of Things (IoT) devices create challenges for cloud data
systems in order to support huge datasets and very high request rates. NoSQL data-
bases, such as Cassandra and HBase, and relational SQL databases with replication,
such as Citus/PostgreSQL, have been used to increase horizontal scalability and
high availability of data store systems. In this paper, we evaluated three distributed
databases on a low-power low-cost cluster of commodity Single-Board Computers
(SBC): relational Citus/PostgreSQL and NoSQL databases Cassandra and HBase.
The cluster has 15 Raspberry Pi 3 nodes with Docker Swarm orchestration tool for
service deployment and ingress load balancing over SBCs. We believe that a low-
cost SBC cluster can support cloud serving goals such as scale-out, elasticity, and
high availability. Experimental results clearly demonstrated that there is a trade-off
between performance and replication, which provides availability and partition tol-
erance. Besides, both properties are essential in the context of distributed systems
with low-power boards. Cassandra attained better results with its consistency levels
specified by the client. Both Citus and HBase enable consistency but it penalizes
performance as the number of replicas increases.
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1 Introduction

Technological advances, the mobility of devices and the popularization of concepts
such as IoT (Internet of Things), have caused a growth of the volume of data gener-
ated every day in proportions never seen before. The variety of digital data from the
most diverse sources, combined with its large and growing quantity, represents Big
Data, a term that has been gaining more and more importance both in the scientific
and industry community. The survey carried out by IDC in 2018 [1] predicts that the
global data volume will reach 175 ZB by the year 2025. In addition, it is estimated
that 33% of this total will be data that require real-time processing.

In this scenario, with the increase in the volume of data, the demand for tools and
technologies more powerful and adaptable to this new paradigm also grows. Several
problems began to arise in traditional RDBMS as they were not designed to easily
deal with the exponential data volume growth characteristic of Big Data. New stor-
age technologies such as NoSQL databases appear as an option more adaptable to
the Big Data scenario. Features such as capability to manage large amounts of data,
easy horizontal scalability, and schema-free data model are essential requirements in
cloud data systems. However, the scalability of storage and processing requires more
hardware infrastructures and data centers, leading to increased investment, space
and energy consumption of the infrastructure as a whole.

Several studies have proposed the adoption of commodity Single-Board Com-
puter (SBC) clusters as a promising alternative to conventional data centers. The
authors in [2] sustain that the use of low consumption devices such as SBC’s can be
an option to minimize the infrastructure problems of data centers. A single board
can encapsulate all the resources of a functional computer and with relatively good
processing power that, when interconnected as a cluster, can replicate characteris-
tics of large data centers. In [3], the authors report that these devices can deliver a
good relationship between computing power and energy consumption with compact
hardware, low-power consumption, and low cost. To the knowledge of the authors,
there is no related work comparing distributed databases on such devices in order to
analyze the trade-off between performance and replication.

This paper evaluates three distributed databases on a low-power low-cost clus-
ter of commodity Single-Board Computers (SBC): relational Citus/PostgreSQL and
NoSQL databases Cassandra and HBase. The cluster has 15 Raspberry Pi 3 nodes
with Docker Swarm orchestration tool for service deployment and ingress load bal-
ancing over SBCs. We believe that a low-cost SBC cluster can support cloud serving
goals such as scale-out, elasticity, and high availability. Experimental results dem-
onstrated that there is a trade-off between performance and replication that provides
availability and partition tolerance. The two properties are essential in the context of
distributed systems with low-power boards. Cassandra attained better results with its
consistency levels specified by the client. Both Citus and HBase enable consistency
but it penalizes performance as the number of replicas increases.

The remainder of the paper is organized as follows. Section 2 presents the
related works on SBC devices and distributed databases. Section 3 describes the
background on CAP theorem, Citus/PostgreSQL, Cassandra, HBase, the YCSB
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benchmark, and Docker Swarm. Section 4 presents the SBC cluster platform and
methodology used. Our experimental results are presented in Sect. 5. Finally, Sect. 6
and Sect. 7, respectively, present the discussion and conclude the paper.

2 Related work

Performance of NoSQL databases has been subjected of study from several research
papers. In [4], the authors provide techniques and guidelines for migration from
relational databases to NoSQL, and compare MySQL with HBase using Apache
Phoenix as SQL layer. A detailed survey on NoSQL stores based on four design
aspects is described in [5] including a CAP theorem discussion. In [6], the study
compared horizontal and vertical scale of Cassandra, MongoDB, and HBase for IoT
datasets where Cassandra outperformed the others on distributed scenarios. Yao
and Wang [7] proposed a dynamic quorum decision for Cassandra that takes into
account unavailable replicas to rescale up or down the quorum size. Antas et al. [8]
used SQL and NoSQL database systems to evaluate data mining algorithms to cre-
ate a COVID-19 predictive model. Other papers evaluated NoSQL databases with
benchmarks such as YCSB [9-12] or NDBench [13] benchmark tools.

A number of research papers report experiments on SBC devices for distributed
computing in low-power devices. [14] used the Himeno benchmark on a Raspberry
Pi 1 cluster, while [15] reported HPL results over a Raspberry Pi 2 cluster. These
studies concluded that a low-power cluster may achieve performance and energy effi-
ciency despite hardware limitations. In addition, a number of works reported perfor-
mance of container-based solutions for HPC applications such as Singularity [16],
LXC [17], and Docker with orchestration [18-20]. In [21], the authors compared
two orchestration tools and showed that Docker Swarm outperformed Kubernetes in
resource usage and performance efficiency on a Raspberry Pi 3 cluster. In [22], they
compared container-based Cassandra instances over virtual machines. The authors
in [23] used YCSB to evaluate the Cassandra database on a Raspberry Pi 2 cluster.

The previous works show NoSQL database evaluations either on high-end serv-
ers or single database experiments. But none of the previous works focus on the
impact of replication factor over low-power cluster devices. In our previous work,
we presented preliminary performance results of Cassandra with a fixed replication
factor over a low-power cluster of Raspberry Pi 3 boards [24]. Thus, to the knowl-
edge of the authors, there is no related work comparing distributed databases on
such devices in order to analyze the trade-off between performance and replication.

3 Background
3.1 CAP theorem

The CAP theorem, or Brewer theorem, was first proposed by Eric Brewer in
2000 [25] and formalized in 2002 [26]. The theorem introduced a fundamental
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trade-off that at most two of the three desirable properties can be achieved simulta-
neously by any distributed data store:

e Consistency (C) A read receives the same response on any cluster node and the
most recent write version of data or an error.

e Availability (A) Every request gets a response within a finite time even if the sys-
tem has failures.

e Partition tolerance (P) Partition refers to a communication failure across distrib-
uted nodes by interruption or response time. Therefore, partition tolerance means
that the distributed system works even after communication failures on the clus-
ter.

Distributed databases can be classified in three categories considering the CAP
properties: CP, AP, and CA.

CP databases provide consistency and partition tolerance at the expense of availa-
bility. When a partition occurs on any node, the system has to shut down the unavail-
able node until the partition is solved. The system may deny requests during the par-
tition and may compromise the correct execution of its consensus protocol. Hence,
the system cannot guarantee availability. HBase [27] and Redis [28] are examples of
CP systems.

AP databases trade-off consistency for availability and partition tolerance. All
nodes remain available when a partition occurs but not all of them have an up-to-
date version of the data. A synchronization strategy is necessary to update nodes
unavailable due to the partition. Many AP systems have eventual consistency that
allows updates during partition events and delays data synchronization. Eventually
all updates reach all replicas when the partition is solved [29]. The system cannot
guarantee consistency on the period between new updates and data synchronization.
Cassandra [30] and Amazon’s Dynamo [31] are examples of AP databases.

CA databases provide consistency and availability without partition tolerance
guarantee. In theory, such systems do not provide fault tolerance strategies and
become unavailable until the partition is solved. Consequently, CA combination
seems impossible since partitions are inevitable in distributed systems [5]. Still, a
distributed CA database is possible with replication strategies across multiple nodes.
Relational databases such as PostgreSQL [32] and MySQL [33] are examples of CA
databases.

3.2 Citus/PostgreSQL

Citus [34] is a PostgreSQL extension that integrates data sharding and distributed
query planner for horizontal scaling oblivious to the application. It maintains com-
patibility with the latest PostgreSQL features with full compatibility with the single-
server version.

A Citus cluster has two node types: coordinator and worker. The cluster may have
one or many coordinators, and zero or many workers. The coordinator stores the
metadata of distributed tables and workers connect to the coordinator. Worker nodes
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Fig. 1 Citus architecture with one coordinator and three workers. Worker may have more than one data
shards

store data shards of distributed tables and execute queries. Figure 1 shows an exam-
ple of a Citus cluster with one coordinator and three workers.

Citus adds to PostgreSQL the concept of distributed tables. They are hash-parti-
tioned over a column into multiple logical shards with each shard containing a con-
tiguous range of hash values. Each worker can have multiple logical shards placed in
a round-robin fashion.

The distributed query planner handles queries to Citus tables and executes at the
coordinator node. The planner produces a distributed query plan optimized to dif-
ferent workloads, and it consists of a set of tasks to run on workers. The distrib-
uted query executor calls the generated distributed plan. If the query targets a single
worker node, it delegates the execution to the worker node for execution. Queries
with shards on multiple workers generate tasks that Citus runs in parallel through
multiple connections per node. If the query requires a merge step on the coordinator,
the command is internally executed as a distributed SELECT and copy to the destina-
tion table.

3.3 HBase

Apache HBase is a distributed, column-oriented, NoSQL storage for huge data-
sets based on Google Bigtable [35]. Its architecture is a master—slave type with the
master node called HMaster and slave nodes HRegionServer. The HMaster server
manages and monitors the cluster operations as well as load balancing across slaves.
The HRegionServer can serve many regions that are shards of a distributed table.
HBase has autosharding by splitting and moving regions on servers. Data storage
is natively handled by HDFS [36] which allows data processing integration with
Hadoop [27]. HBase uses Apache ZooKeeper as distributed coordination service to
establish communication between clients and HRegionServers, to keep information
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Fig.2 HBase architecture with one HMaster and three HRegionServers

about cluster configuration and topology, and cluster monitoring. Figure 2 shows an
example of a HBase cluster with one HMaster and three HRegionServers.
Each HRegionServer has the following components:

HFiles persistent store files as ordered maps from keys to values.

WAL (Write-Ahead Log) commit log to store data before flushed to HFile.
BlockCache is a cache to keep in memory most frequently read from HFiles.
MemStore memory buffer to keep written data in memory before flushed to the
disk.

Updated data are first written to the WAL, which resides on HDFS, and then in the
memory memstore. Data are flushed as a HFile to disk once data in memory exceeds
a threshold value. Reading data depend on what is stored in the memstore, which
has not been written to disk, and on-disk store files. WAL commit log is never used
for data retrieval and only for recovery purposes.

3.4 Cassandra

Cassandra [30] is an open-source, distributed, and decentralized database that bases
its distribution design on Amazon’s Dynamo [31] and its data model on Google’s
Bigtable [35].

A Cassandra cluster has horizontal scalability which means that it can scale up
and scale down seamlessly. Its eventual consistency is tunable by setting the consist-
ency level and replication factor. The replication factor configures the number of
nodes that updates will be propagated. The consistency level sets how many replicas
must acknowledge a write or respond to a read operation in order to be considered
successful. The clients must specify this level at each operation.
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Fig.3 Token distribution in a Tokens:
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Communication between the nodes of the Cassandra cluster is carried out through
the Gossip protocol. It uses peer-to-peer communication that allows the nodes to
exchange information periodically about their state and the state of the other nodes
within the cluster, thus ensuring that possible failures are identified [37].

Data partitioning between the nodes of the cluster is performed dynamically through
a consistent hash algorithm, which makes each node responsible for a portion of the
data, according to the interval established by the token generated for the node. If there
is a new node joining the cluster, the token values will be automatically adjusted so
that each node has a portion of data proportional to the other nodes. Figure 3 shows
an example of the distribution of a range from 0 to 255 tokens in a 4-node Cassandra
cluster.

3.5 YCSB benchmark suite

The Yahoo Cloud Serving Benchmark (YCSB) [9] is a cloud database benchmark
to analyze several workloads. YCSB is an open-source project, and it has support to
many distributed NoSQL and relational databases such as Cassandra and PostgreSQL,
respectively.

It includes a set of pre-defined workloads in order to evaluate different aspects of
systems’ performance. In this paper, we consider four of six basic workloads available:

Workload A—heavy update with 50% read and 50% update;
Workload B—heavy read with 95% read and 5% update;
Workload C—100% reads;

Workload D—read latest update with 95% read and 5% insert.

3.6 Docker swarm

Docker is an open-source platform that allows the creation of customized images
used as a definition base for containers. According to [38], a container is a standard
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unit of software that packages the code and all of its dependencies allowing the
application to run quickly and reliably regardless of the runtime environment.
Unlike virtual machines, which are based on the hardware abstraction of the host
machine through a hypervisor, container virtualization is performed at the operating
system level. Therefore, it allows the resources of the physical machine to be parti-
tioned, creating isolated user spaces running on the same operating system kernel as
the host machine.

Docker Swarm is a container orchestration tool incorporated natively on the
Docker platform through the SwarmKit library. Docker Swarm enables the crea-
tion and management of a cluster composed of machines running the Docker
engine, which interact with each other through the Docker API [39]. Each of these
machines, or Docker nodes, can play the role of manager, worker, or perform both
functions. The managing node is responsible for performing the cluster orchestration
and management functions, being responsible for the distribution of the work units
(called tasks) among the other nodes in the cluster, and can also execute tasks like a
worker node. On the other hand, worker nodes do not have responsibilities linked to
the maintenance of the cluster, and their function is related to the execution of tasks;
however, worker nodes can also be promoted to manager nodes [40].

The definition of the tasks to be performed on the Swarm cluster nodes is called
Service. When structuring a service for a Swarm cluster, details of each of the tasks
to be performed are specified, being possible to define the Docker image to be used,
which commands will be executed, network configurations and volumes definition,
among other configurations.

4 Methodology

Maintenance and configuration of distributed systems presents some challenges in
managing and deploying an application. Given the heterogeneous hardware charac-
teristics of devices, there may be different libraries and software dependencies for
each architecture, in addition to the individual monitoring and maintenance of each
cluster node.

In order to minimize these problems, the Docker Swarm was used to manage and
orchestrate the resources of the low-power devices, as it allows the abstraction of
some management tasks of the cluster nodes, besides facilitating the installation,
configuration, and dimensioning of resources. Both YCSB and Databases nodes are
running inside Docker containers distributed among the 15 SBCs in the cluster plus
an additional node used as monitoring server.

4.1 Hardware and software specifications
Our low-power SBC cluster consists of 15 Raspberry Pi 3 B devices interconnected

via Ethernet on a Gigabit speed switch. Each board has a USB 2.0 stick of 32 GB
attached exclusively for database storage. An additional Raspberry Pi 3 B board was
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Table 1 Raspberry Pi3 B

specifications SoC Broadcom BCM2837
CPU Cortex-AS53 64-bit
1.2 GHz quad-core
Architecture ARMV7
RAM size 1 GB
Ethernet speed 300 Mbps

used exclusively as a monitoring server. Table 1 summarizes the Raspberry Pi hard-
ware configurations.

The operating system was Hypriot OS' (version 1.11), a system based on the
Debian Linux distribution, but with optimizations for running the Docker platform
on devices with ARM processors. The running Docker Engine version was the
19.03. The database versions were 3.11.4 for Cassandra, 2.2.6 for HBase, and 13.2
for PostgreSQL with Citus 10.1.2.

4.2 Cassandra configuration

The testbed topology shown in Fig. 4 consists of 15 SBCs running a single Cas-
sandra container each, with 1 seed node and the other 14 as common Cassandra
nodes. We had to adapt some Cassandra configurations due to the hardware limita-
tions of the Raspberry Pi SBCs. It was necessary to set JVM heap limitation values
according to the amount of memory available on the devices in order to avoid out of
memory exceptions. The maximum heap size was set to 430 MB and the size of the
heap new generation to 142 MB. Each container has a volume that maps the Cassan-
dra storage directory (/var/lib/cassandra) to the USB stick on the host SBC.

Because they run as a stack on the Docker Swarm, all Cassandra containers are
interconnected through an overlay network called cassandra-net. It allows the
internal network of the Swarm stack to be isolated from the external host devices
network. We chose to run YCSB from a container connected to the cassandra-
net overlay network to avoid the need to add another proxy service to the stack.

Another problem with multiple nodes and hardware limitations is the write and
read timeout exceptions. They are usually triggered when one or more nodes are
unable to respond to the request within an established time limit. Therefore, to avoid
this problem, the solution adopted was to define a timeout large enough that all
nodes in the cluster can handle it. In this case, the value of 60,000 milliseconds was
established for the writing and reading timeouts.

The replication strategy of our experiments was SimpleStrategy since there is one
single cluster as a Cassandra datacenter. The replication factor is configured at table
creation. In addition, we configured YCSB consistency levels to oNE that means that
a write must be written to the commit log and memtable of at least one replica node.

! HypriotOS, https://blog.hypriot.com/.
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Fig.4 Cassandra tested topology of our low-power low-cost SBC cluster

4.3 Citus configuration

The testbed topology shown in Fig. 5 consists of 15 SBCs running a single Citus
container each, with 1 coordinator node and the other 14 as workers nodes. In a
Citus cluster, all YCSB queries run on the coordinator node that is responsible to
generate the query plan. Each Citus container has a volume that maps the Post-
greSQL storage directory (/var/postgresqgl/data) to the USB stick on the
host SBC.

The Citus tested topology has an additional Docker container on the coordinator
node to execute the membership-manager service. This service monitors the net-
work ingress and egress of cluster nodes since PostgreSQL does not have a native
mechanism for horizontal scaling. The membership-manager of our experiments
was modified in order to support the active monitoring of a Docker Swarm cluster.
It actively checks the status of Swarm containers over an Unix Socket file mapped
to /var/run/docker.sock on the host node. The replication factor in Citus is
configured at table creation.

4.4 HBase configuration
The testbed topology shown in Fig. 6 consists of 15 SBCs running a single HMas-

ter container, which does not storage data, and the other 14 as HRegionServer
nodes. Besides, the cluster has 3 nodes running Zookeeper for coordination
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Fig. 6 HBase tested topology of our low-power low-cost SBC cluster

service. Each HBase container has a volume that maps the HRegionServer stor-
age directory (/hadoop-data/hdfs/datanode) to the USB stick on the
host SBC. The replication factor in HBase is configured at table creation.
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4.5 Monitoring

We used the Prometheus” monitoring and alerting toolkit to monitor the use of the
hardware and system resources of each SBC in the cluster. The data scraping is done
through the Exporters who capture the metrics and expose them so that the Pro-
metheus server can collect and store them in a time-series database. The Prometheus
server runs in a Docker container on the Monitoring Server host, and the Export-
ers are executed in each of the SBCs as a background process directly on the host
system. Unlike other containers, the Prometheus server does not run as a Docker
Swarm service and is not part of the overlay network, allowing access to Exporters
by the Prometheus server for data collection.

A Node Exporter3 was installed in each SBC, which collects data from the met-
rics every 5s and exposes them to be consumed by Prometheus Server via HTTP
queries to the device. Although the Node Exporter obtains information on several
system metrics, we only focus on monitoring RAM consumption in this work.

4.6 Methodology

All YCSB executions were composed of two steps: The first generates records to
load into the database; the second executes a number of operations. The initializa-
tion phase loads data records of 10 columns where each column has 100 bytes or
1 KB per record. Data are randomly generated, and each record has a unique pri-
mary key. The data volume load was fixed on 1 million records or 1 GB in disk
space. We ran a load phase for each workload type and data size followed by 30
repetitions of its workload operations. Each workload execution performs 10,000
operations on the database. The replication factor was tested from one to three nodes
at each workload execution.

The analysis of variance was computed on statistically significant differences
based on the appropriate F' — fests. Each result is a mean of 30 executions, and the
95% confidence interval is represented by a vertical line around the mean values.
The mean differences were compared using the Tukey’s honest significantly differ-
ence (HSD) test (P < 0.05) [41] in order to indicate significant difference groups in
each workload represented by lowercase letters in each workload. The results were
subjected to analysis of variance (ANOVA) P < 0.05. Results with the same lower-
case letter mean that there is no evidence of a difference between them, and results
with more than one letter show a overlap of samples within the confidence interval.

2 Prometheus, https:/prometheus.io/.
3 Node Exporter, https://github.com/prometheus/node_exporter.

@ Springer


https://prometheus.io/
https://github.com/prometheus/node_exporter

13414 L.F. daSilva, J.V.F. Lima

RF 1 RF 2 RF3

7.66
7.49 719

7.5+

DB

. cassandra
. citus
. hbase

I
o

247

2.48

Time (hours)

1.84

0.0+ . -

T T T T T T T T T
cassandra citus hbase cassandra citus hbase cassandra citus hbase
Database

g
2

Fig.7 YCSB load time in hours grouped by replication factor (RF)

5 Experimental results

The goal of our experiments is to evaluate three distributed databases over a cluster
of low-power Raspberry Pi boards. Our objectives are:

¢ Evaluate the three databases over our cluster in terms of YCSB throughput oper-
ations and read/write latency;
Analyze the impact of different workloads;
Identify strengths and weaknesses of SQL and NoSQL distributed databases in
low-power cluster board.

Figure 7 shows the load time of records in hours before workload executions. Citus
had the lowest load time with 1.8 h, followed by Cassandra and HBase. In addi-
tion, replication factor increased Citus load time in an almost directly proportional
ratio. Cassandra and HBase did not show significant impact related to the replication
factor.

Figure 8 shows the throughput results in our experiments. Cassandra out-
performed HBase for workloads A and D on all replication factor values. HBase
showed better throughput for workload C and replication factors 2 and 3. A replica-
tion factor greater than one reduced throughput of Cassandra, but it did not have
significant impact for HBase with one letter on B and D, and two letters on A and C.
Citus had the lowest throughput results on all four workload, and replication factor
had no significant difference except for workload A with replication factor 1.

Figure 9 shows the read latency results in our experiments. Cassandra and HBase
did not show significant differences on most workloads and replication factors with
the exception of workload D. Replication factor did not have a significant difference
on all workloads for both databases. Citus had the highest read latency results on all
four workloads, and replication factor did increase latency significantly.

Figure 10 shows the write/update latency results in our experiments. Citus
showed high latency results on workloads A and B which correspond to update
operations. Nonetheless, Citus showed an execution error on the three replication
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Fig.9 Read latency results of YCSB measured with Cassandra, Citus, and HBase on our 15 Raspberry
Pi 3 cluster. Lower is better for latency. Statistics as shown in Fig. 8

factor values of D workload. This error was due to a failure to read results after
the batched insert operations. Replication factor did not have significant difference
for Cassandra and HBase on A and B workloads. Cassandra had the lowest write
latency results on workloads A and B.

Table 2 summarizes minimum and maximum median values on each workload.
Replication factor increased read latency on all workloads of our experiments since
Cassandra had lower latencies with one replica. However, write latency decreased
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Fig. 10 Write/update latency results of YCSB measured with Cassandra, Citus, and HBase on our 15
Raspberry Pi 3 cluster. Lower is better for latency. Statistics as shown in Fig. 8

Table2' Summary of r(?ad, Workload  Read latency (ms) Update/write latency (ms)
update (A and B), and insert (D)
latency operations per workload Min Max Min Max
in milliseconds
A 17.2 119.9 144 404.8
(cassandra/l)  (citus/3)  (cassandra/3)  (citus/3)
B 16.4 88.2 13.9 475.0
(cassandra/l)  (citus/3)  (cassandra/3)  (citus/3)
C 16.5 85.1 - -
(cassandra/l)  (citus/3) — -
D 154 90.3 0.22 154.2
(cassandra/1)  (citus/3)  (citus/2) (hbase/2)

Values are the median followed by the database and replication fac-
tor measured

as the number of replicas was greater than one on all four workloads. Cassandra
was better on all other workloads for read (one replica) and update (three replicas)
latencies.

6 Discussion

Our experimental results showed that Cassandra attained better results on write and
update workloads, while HBase performed better on heavy read workload C with more
than 2 replicas. It seems that eventual consistency and integrated storage structure of
Cassandra are the main reasons for better results. These findings are expected for a
database classified as AP by the CAP theorem. Besides, HBase results suggest that its
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write overhead for consistency affected performance as expected by a CP database. The
first step on a HBase data update is a new entry on the WAL commit log that resides
on HDFS and is replicated. Consequently, each data update implies disk operations on
each data replica.

Experimental results with Citus reported high latency values for read and write
workloads, but a lower load time for one replica on Fig. 7. Its load time results on one
replica are due to batched operations with copy instead of insertion operations for each
data entry. However, the replication factor impacted Citus significantly on all results.
One explanation could be that Citus replicates each operation on distributed tables by
the number of shards causing additional costs. Despite the additional overhead costs,
Citus enables a distributed database with CA properties through replication of logical
shards and distributed queries.

Throughput results had a significant impact due to Raspberry Pi 3 hardware limita-
tions. We believe that one of the main limitations is RAM memory since it was the
only saturated resource in our Prometheus monitoring observations. Related works also
reported Cassandra experiments under 2 GB for virtualized environments [10, 12, 23].
Other authors attained significant throughput results for on smaller datasets [6, 1012,
42] or low-power devices [23]. On the other hand, we had latency results comparable to
related papers running Cassandra on virtualized and native high-end platforms [43—45].

Furthermore, it is clear that there is a trade-off between performance and replica-
tion. Database applications have to consider a twofold decision concerning applica-
tion requirements and hardware specifications. CP databases suit applications that
demand consistency and ACID operations, while AP databases provide availabil-
ity for high data volume applications. AP is essential in the context of a low-power
board cluster due to its low mean time between failures (MTBF) compared to high-
end servers. Therefore, Cassandra can be an option for production systems with low-
power boards using its tunable consistency levels by the client. Citus and HBase
enable consistency but it penalizes performance with the increase in replicas.

Our experimental results provide evidence that a SBC cluster can support cloud
serving goals [9] such as scale-out supporting 15 boards and balancing load across
them. Moreover, it appears that our cluster architecture has elasticity and high avail-
ability goals due to the Docker Swarm orchestration. New nodes can be added or
removed at runtime on the cluster for elasticity, while high availability comes from
distributed databases and ingress load balancing of Docker Swarm.

We estimate that the total power usage on our cluster may be 108 kJ per hour at
maximum load assuming that 400 mA and a Raspberry Pi 3 B consumption at 5 V.
A typical high-end server may consume 720 kJ per hour at 200 W without consid-
ering air cooling. These metrics support out arguments for the usage of distributed
databases on low-power boards due to low-energy consumption and low budget cost.

7 Conclusion
In this paper, we evaluated three distributed databases on a low-power Raspberry

Pi 3 cluster of 15 nodes. The cluster had the Docker Swarm orchestration tool for
service deployment and ingress load balancing between SBCs. We believe that a
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low-cost SBC cluster can support cloud serving goals such as scale-out, elasticity,
and high availability. Experimental results clearly demonstrated that there is a trade-
off between performance and replication, which provides availability and partition
tolerance. Besides, both properties are essential in the context of distributed systems
with low-power boards.

Cassandra attained better results with its tunable consistency levels by the client.
Besides, read and write latencies were comparable to results from other work on
high-end or virtualized platforms. Both Citus and HBase enable strong consistency
that penalizes performance as the number of replicas increases.

Future works include a comparison of consistency levels with Cassandra, an in-
deep energy consumption analysis, and the impact of node failures on low-power
devices.

Acknowledgements This work was fully supported by CNPq. This research received funding from
CAPES (Brazil)—Finance Code 001, UFSM/FATEC through Project Number 041250-9.07.0025
(100548), and by the project "GREEN-CLOUD" (#16/2551-0000 488-9) from FAPERGS and CNPq Bra-
zil, program PRONEX 12/2014.

Authors’ contributions L.F.S. implemented the configuration files, configured the experimental testbed,
ran the experimental results, prepared all figures, and wrote a draft version in portuguese. J.V.F.L. con-
tributed to the statistical analysis of experimental results and wrote the main manuscript text. All authors
reviewed the manuscript.

Funding This research received funding from: Conselho Nacional de Desenvolvimento Cientifico e
Tecnoldgico (CNPq)—Brazil Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior—Brazil
(CAPES)—Finance Code 001. FAPERGS and CNPq Brazil, program PRONEX 12/2014, by the project
“GREEN-CLOUD” (#16/2551-0000 488-9). UFSM/FATEC through Project Number 041250-9.07.0025
(100548).

Availability of data and materials The referenced data and materials are available at: Scripts to run our
experiments at: https://bitbucket.org/jvlima/supe2022-ycsb_benchmark docker Modified YCSB source
code at: https://bitbucket.org/jvlima/supe2022-ycsb Docker files for Citus at: https://bitbucket.org/jvlima/
supe2022-postgres-citus-pi Docker files for HBase at: https://bitbucket.org/jvlima/supe2022-hbaseswarm
rpi Docker files for Cassandra at: https://bitbucket.org/jvlima/supe2022-cassandra-armhf All experimen-
tal results at: https://bitbucket.org/jvlima/supe2022-ycsb-prom-metrics.

Declarations
Conflict of interest The authors declare that they have no competing interests.
Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

References

1. David Reinsel JR, Gantz J (2018) The digitization of the world from edge to core. https://www.
seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

2. Johnston SJ, Basford PJ, Perkins CS, Herry H, Tso FP, Pezaros D, Mullins RD, Yoneki E, Cox SJ,
Singer J (2018) Commodity single board computer clusters and their applications. Future Gener
Comput Syst 89:201-212. https://doi.org/10.1016/j.future.2018.06.048

@ Springer


https://bitbucket.org/jvlima/supe2022-ycsb_benchmark_docker
https://bitbucket.org/jvlima/supe2022-ycsb
https://bitbucket.org/jvlima/supe2022-postgres-citus-pi
https://bitbucket.org/jvlima/supe2022-postgres-citus-pi
https://bitbucket.org/jvlima/supe2022-hbaseswarmrpi
https://bitbucket.org/jvlima/supe2022-hbaseswarmrpi
https://bitbucket.org/jvlima/supe2022-cassandra-armhf
https://bitbucket.org/jvlima/supe2022-ycsb-prom-metrics
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1016/j.future.2018.06.048

An evaluation of relational and NoSQL distributed databases. .. 13419

10.

11.

12.

13.

15.

16.

17.

19.

20.

21.

22.

23.

Wolf W, Jerraya AA, Martin G (2008) Multiprocessor system-on-chip (MPSoC) technology. Trans
Comput Aided Des Integr Circuits Syst 27(10):1701-1713. https://doi.org/10.1109/TCAD.2008.
923415

Kim H-J, Ko E-J, Jeon Y-H, Lee K-H (2020) Techniques and guidelines for effective migration from
RDBMS to NoSQL. J Supercomput 76(10):7936-7950. https://doi.org/10.1007/s11227-018-2361-2
Davoudian A, Chen L, Liu M (2018) A survey on NoSQL stores. ACM Comput Surv. https://doi.
org/10.1145/3158661

Hendawi A, Gupta J, Liu J, Teredesai A, Ramakrishnan N, Shah M, El-Sappagh S, Kwak K-S,
Ali M (2019) Benchmarking large-scale data management for Internet of Things. J Supercomput
75(12):8207-8230. https://doi.org/10.1007/s11227-019-02984-6

Yao X, Wang C-L (2020) Probabilistic consistency guarantee in partial quorum-based data store.
IEEE Trans Parallel Distrib Syst 31(8):1815-1827. https://doi.org/10.1109/TPDS.2020.2973619
Antas J, Rocha Silva R, Bernardino J (2022) Assessment of SQL and NoSQL systems to store and
mine Covid-19 data. Computers. https://doi.org/10.3390/computers11020029

Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud serving
systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC *10.
ACM, New York, pp 143-154. https://doi.org/10.1145/1807128.1807152

Abramova V, Bernardino J, Furtado P (2014) Evaluating cassandra scalability with YCSB. In:
Decker H, Lhotska L, Link S, Spies M, Wagner RR (eds) Database and expert systems applications.
Springer, Cham, pp 199-207

Swaminathan SN, Elmasri R (2016) Quantitative analysis of scalable NoSQL databases. In: 2016
IEEE International Congress on Big Data (BigData Congress), pp 323-326. https://doi.org/10.1109/
BigDataCongress.2016.49

Abramova V, Bernardino J (2013) NoSQL databases: Mongodb vs cassandra. In: Proceedings of the
International C* Conference on Computer Science and Software Engineering. C3S2E ’13. ACM,
New York, pp 14-22. https://doi.org/10.1145/2494444.2494447

Papapanagiotou I, Chella V (2018) NDBench: benchmarking microservices at scale

Ashari A, Riasetiawan M (2015) High performance computing on cluster and multicore architec-
ture. Telkomnika (Telecommun Comput Electron Control) 13(4):1408-1413

Priyambodo TK, Lisan AW, Riasetiawan M (2018) Inexpensive green mini supercomputer based on
single board computer cluster. J Telecommun Electron Comput Eng 10(1-6):141-145

Sande Veiga V, Simon M, Azab A, Fernandez C, Muscianisi G, Fiameni G, Marocchi S (2019)
Evaluation and benchmarking of singularity MPI containers on EU research e-infrastructure. In:
2019 IEEE/ACM International Workshop on Containers and New Orchestration Paradigms for Iso-
lated Environments in HPC (CANOPIE-HPC), pp 1-10. https://doi.org/10.1109/CANOPIE-HPC49
598.2019.00006

Beserra D, Moreno ED, Endo PT, Barreto J, Sadok D, Fernandes S (2015) Performance analysis of
LXC for HPC environments. In: 2015 Ninth International Conference on Complex, Intelligent, and
Software Intensive Systems, pp 358-363. https://doi.org/10.1109/CISIS.2015.53

Zhang J, Lu X, Panda DK (2016) High performance MPI library for container-based HPC cloud
on InfiniBand clusters. In: 2016 45th International Conference on Parallel Processing (ICPP), pp
268-277. https://doi.org/10.1109/ICPP.2016.38

Steffenel LA, Chardo AS, da Silva Alves B (2019) A containerized tool to deploy scientific applica-
tions over SoC-based systems: the case of meteorological forecasting with WREF. In: Proceedings
of the 9th International Conference on Cloud Computing and Services Science (CLOSER). SciTe-
Press, Heraklion, Crete, pp 561-568. https://doi.org/10.5220/0007799705610568. INSTICC
Steffenel LA, Charfo AS, Alves B, de Araujo LR, da Silva LF (2020) MPI to go: container clusters
for MPI applications. In: Ferguson D, Méndez Muiioz V, Pahl C, Helfert M (eds) Cloud computing
and service science. Springer, Cham, pp 199-222

Fayos-Jordan R, Felici-Castell S, Segura-Garcia J, Pastor-Aparicio A, Lopez-Ballester J (2019)
Elastic computing in the fog on Internet of Things to improve the performance of low cost nodes.
Electronics 8(12):1489

Shirinbab S, Lundberg L, Casalicchio E (2020) Performance evaluation of containers and virtual
machines when running cassandra workload concurrently. Concurr Comput Pract Exp 32(17):5693.
https://doi.org/10.1002/cpe.5693

Richardson DP, Lin AC, Pecarina JM (2017) Hosting distributed databases on internet of things-
scale devices. In: 2017 IEEE Conference on Dependable and Secure Computing, pp 352-357

@ Springer


https://doi.org/10.1109/TCAD.2008.923415
https://doi.org/10.1109/TCAD.2008.923415
https://doi.org/10.1007/s11227-018-2361-2
https://doi.org/10.1145/3158661
https://doi.org/10.1145/3158661
https://doi.org/10.1007/s11227-019-02984-6
https://doi.org/10.1109/TPDS.2020.2973619
https://doi.org/10.3390/computers11020029
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1109/BigDataCongress.2016.49
https://doi.org/10.1109/BigDataCongress.2016.49
https://doi.org/10.1145/2494444.2494447
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00006
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00006
https://doi.org/10.1109/CISIS.2015.53
https://doi.org/10.1109/ICPP.2016.38
https://doi.org/10.5220/0007799705610568
https://doi.org/10.1002/cpe.5693

13420 L. F.daSilva, J.V. F. Lima

24.

25.

26.
217.
28.
29.
30.

31

32.
33.
34.

35.

43.
44.

45.

Da Silva LF, Lima JVF (2021) An evaluation of cassandra nosql database on a low-power cluster.
In: 2021 International Symposium on Computer Architecture and High Performance Computing
Workshops (SBAC-PADW), pp 9-14. https://doi.org/10.1109/SBAC-PADW53941.2021.00012
Brewer EA (2000) Towards robust distributed systems (abstract). In: Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing. PODC ’00. ACM, New York, p
7. https://doi.org/10.1145/343477.343502

Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33(2):51-59. https://doi.org/10.1145/564585.564601

Hadoop A (2022) Apache Hadoop. http://hadoop.apache.org/

Redis Ltd (2022) Redis. https://redis.io/

Brewer E (2012) Cap twelve years later: how the rules have changed. Computer 45(2):23-29.
https://doi.org/10.1109/MC.2012.37

Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. SIGOPS Oper
Syst Rev 44(2):35-40. https://doi.org/10.1145/1773912.1773922

DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian
S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly available key-value store. In: Proceed-
ings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles. SOSP *07. ACM,
New York, pp 205-220. https://doi.org/10.1145/1294261.1294281

Stonebraker M, Rowe LA, Hirohama M (1990) The implementation of postgres. IEEE Trans Knowl
Data Eng 2(1):125-142. https://doi.org/10.1109/69.50912

Oracle Corporation: MySQL (2022). https://www.mysql.com/

Cubukcu U, Erdogan O, Pathak S, Sannakkayala S, Slot M (2021) Citus: distributed postgresql for
data-intensive applications. In: Proceedings of the 2021 International Conference on Management
of Data. SIGMOD °21. ACM, New York, pp 2490-2502. https://doi.org/10.1145/3448016.3457551
Chang F, Dean J, Ghemawat S, Hsiech WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gru-
ber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst.
https://doi.org/10.1145/1365815.1365816

Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop distributed file system. In: MSST
*10. IEEE Computer Society, pp 1-10 (2010). https://doi.org/10.1109/MSST.2010.5496972
Cassandra A (2020) Dynamo. https://cassandra.apache.org/doc/latest/architecture

Docker: what is a Container? (2020). https://www.docker.com/resources/what-container

Docker: Swarm mode overview (2020). https://docs.docker.com/engine/swarm/

Docker: Swarm mode key concepts (2020). https://docs.docker.com/engine/swarm/key-concepts/
Witte RS, Witte JS (2017) Statistics, 11th edn. Wiley, Hoboken

Tang E, Fan Y (2016) Performance comparison between five NoSQL databases. In: 2016 7th Inter-
national Conference on Cloud Computing and Big Data (CCBD), pp 105-109. https://doi.org/10.
1109/CCBD.2016.030

Datastax (2015) Benchmarking top NoSQL databases. Technical report, End Point Corporation
Kuhlenkamp J, Klems M, Ross O (2014) Benchmarking scalability and elasticity of distributed
database systems. Proc VLDB Endow 7(12):1219-1230. https://doi.org/10.14778/2732977.2732995
Huang X, Wang J, Zhong Y, Song S, Yu PS (2015) Optimizing data partition for scaling out NoSQL
cluster. Concurr Comput Pract Exp 27(18):5793-5809. https://doi.org/10.1002/cpe.3643

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer


https://doi.org/10.1109/SBAC-PADW53941.2021.00012
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/564585.564601
http://hadoop.apache.org/
https://redis.io/
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1109/69.50912
https://www.mysql.com/
https://doi.org/10.1145/3448016.3457551
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/MSST.2010.5496972
https://cassandra.apache.org/doc/latest/architecture
https://www.docker.com/resources/what-container
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/key-concepts/
https://doi.org/10.1109/CCBD.2016.030
https://doi.org/10.1109/CCBD.2016.030
https://doi.org/10.14778/2732977.2732995
https://doi.org/10.1002/cpe.3643

	An evaluation of relational and NoSQL distributed databases on a low-power cluster
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 CAP theorem
	3.2 CitusPostgreSQL
	3.3 HBase
	3.4 Cassandra
	3.5 YCSB benchmark suite
	3.6 Docker swarm

	4 Methodology
	4.1 Hardware and software specifications
	4.2 Cassandra configuration
	4.3 Citus configuration
	4.4 HBase configuration
	4.5 Monitoring
	4.6 Methodology

	5 Experimental results
	6 Discussion
	7 Conclusion
	Acknowledgements 
	References




