
NESTEROV’S SMOOTHING TECHNIQUE AND MINIMIZING

DIFFERENCES OF CONVEX FUNCTIONS FOR HIERARCHICAL

CLUSTERING

N. M. NAM1, W. GEREMEW2, S. REYNOLDS3 and T. TRAN4.

Abstract. A bilevel hierarchical clustering model is commonly used in designing optimal multicast

networks. In this paper, we consider two different formulations of the bilevel hierarchical clustering

problem, a discrete optimization problem which can be shown to be NP-hard. Our approach is to

reformulate the problem as a continuous optimization problem by making some relaxations on the

discreteness conditions. Then Nesterov’s smoothing technique and a numerical algorithm for mini-

mizing differences of convex functions called the DCA are applied to cope with the nonsmoothness

and nonconvexity of the problem. Numerical examples are provided to illustrate our method.

Key words. DC programming, Nesterov’s smoothing technique, hierarchical clustering, subgradi-

ent, Fenchel conjugate.

AMS subject classifications. 49J52, 49J53, 90C31

1 Introduction

Although convex optimization techniques and numerical algorithms have been the topics

of extensive research for more than 50 years, solving large-scale optimization problems

without the presence of convexity remains a challenge. This is a motivation to search for

new optimization methods that are capable of handling broader classes of functions and

sets where convexity is not assumed. One of the most successful approaches to go beyond

convexity is to consider the class of functions representable as differences of two convex

functions. Functions of this type are called DC functions, where DC stands for difference

of convex. It was recognized early by P. Hartman [10] that the class of DC functions has

many nice algebraic properties. For instance, this class of functions is closed under many

operations usually considered in optimization such as taking linear combination, maximum,

or product of a finite number of DC functions.

Given a linear space X, a DC program is an optimization problem in which the objective

function f : X → R can be represented as f = g−h, where g, h : X → R are convex functions.

This extension of convex programming enables us to take advantage of the available tools

from convex analysis and optimization. At the same time, DC programming is sufficiently

broad to use in solving many nonconvex optimization problems faced in recent applications.

Another feature of DC programming is that it possesses a very nice duality theory; see [3]

and the references therein. Although DC programming had been known to be important

for many applications much earlier, the first algorithm for minimizing differences of convex

1Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (mau.nam.nguyen@pdx.edu). Research of this author was partly supported by the National

Science Foundation under grant #1411817.
2School of General Studies, Stockton University, Galloway, NJ 08205, USA

(wondi.geremew@stockton.edu)
3Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (ser6@pdx.edu).
4Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (tuyen2@pdx.edu).

1

ar
X

iv
:1

70
1.

04
46

4v
2

 [
m

at
h.

O
C

]
 6

 M
ar

 2
01

7

functions called the DCA was introduced by Tao and An in [3, 9]. The DCA is a simple but

effective optimization scheme used extensively in DC programming and its applications.

Cluster analysis or clustering is one of the most important problems in many fields such

as machine learning, pattern recognition, image analysis, data compression, and computer

graphics. Given a finite number of data points in a metric space, a centroid-based cluster-

ing problem seeks a finite number of cluster centers with each data point assigned to the

nearest cluster center in a way that a certain distance, a measure of dissimilarity among

data points, is minimized. Since many kinds of data encountered in practical applications

have nested structures, they are required to use multilevel hierarchical clustering which

involves grouping a data set into a hierarchy of clusters. In this paper, we apply the mathe-

matical optimization approach to the bilevel hierarchical clustering problem. In fact, using

mathematical optimization in clustering is a very promising approach to overcome many

disadvantages of the k−mean algorithm commonly used in clustering; see [1, 2, 5, 15] and

the references therein. In particular, the DCA was successfully applied in [2] to a bilevel

hierarchical clustering problem in which the distance measurement is defined by the squared

Euclidean distance. Although the DCA in [2] provides an effective way to solve the bilevel

hierarchical clustering in high dimensions, it has not been used to solve the original model

defined by the Euclidean distance measurement proposed in [5] which is not suitable for the

resulting DCA according to the authors of [2]. By applying Nesterov’s smoothing technique

and the DCA, we are able to solve the original model proposed in [5] in high dimensions.

The paper is organized as follows. In Section 2, we present basic definitions and tools of

optimization that are used throughout the paper. In section 3, we study two models of

bilevel hierarchical clustering problems, along with two new algorithms based on Nesterov’s

smoothing technique and the DCA. Numerical examples and conclusions are presented in

Section 4 and Section 5, respectively.

2 Basic Definitions and Tools of Optimization

In this section, we present two main tools of optimization used to solve the bilevel hierar-

chical crusting problem: the DCA introduced by Pham Dinh Tao and Nesterov’s smoothing

technique.

We consider throughout the paper DC programming:

minimize f(x) := g(x)− h(x), x ∈ Rn, (2.1)

where g : Rn → R and h : Rn → R are convex functions. The function f in (2.1) is called a

DC function and g − h is called a DC decomposition of f .

Given a convex function g : Rn → R, the Fenchel conjugate of g is defined by

g∗(y) := sup{〈y, x〉 − g(x) | x ∈ Rn}, y ∈ Rn.

Note that g∗ : Rn → (−∞,∞] is also a convex function. In addition, x ∈ ∂g∗(y) if and only

if y ∈ ∂g(x), where ∂ denotes the subdifferential operator in the sense of convex analysis;

see, e.g., [19-21]

2

Let us present below the DCA introduced by Tao and An [3, 9] as applied to (2.1). Although

the algorithm is used for nonconvex optimization problems, the convexity of the functions

involved still plays a crucial role.

The DCA

INPUT: x0 ∈ Rn, N ∈ N.

for k = 1, . . . , N do

Find yk ∈ ∂h(xk−1).

Find xk ∈ ∂g∗(yk).
end for

OUTPUT: xN .

Let us discuss below a convergence result of DC programming. A function h : Rn → R is

called γ-convex (γ ≥ 0) if the function defined by k(x) := h(x)− γ
2‖x‖

2, x ∈ Rn, is convex.

If there exists γ > 0 such that h is γ−convex, then h is called strongly convex. We say that

an element x̄ ∈ Rn is a critical point of the function f defined by (2.1) if

∂g(x̄) ∩ ∂h(x̄) 6= ∅.

Obviously, in the case where both g and h are differentiable, x̄ is a critical point of f if and

only if x̄ satisfies the Fermat rule ∇f(x̄) = 0. The theorem below provides a convergence

result for the DCA. It can be derived directly from [9, Theorem 3.7].

Theorem 2.1 Consider the function f defined by (2.1) and the sequence {xk} generated

by the DCA. The following properties are valid:

(i) If g is γ1-convex and h is γ2-convex, then

f(xk)− f(xk+1) ≥
γ1 + γ2

2
‖xk+1 − xk‖2 for all k ∈ N.

(ii) The sequence {f(xk)} is monotone decreasing.

(iii) If f is bounded from below, g is γ1-convex and h is γ2-convex with γ1 + γ2 > 0, and

{xk} is bounded, then every subsequential limit of the sequence {xk} is a critical point of f .

Now we present a direct consequence of Nesterov’s smoothing technique given in [16]. In

the proposition below, d(x; Ω) denotes the Euclidean distance and P (x; Ω) denotes the

Euclidean projection from a point x to a nonempty closed convex set Ω in Rn.

Proposition 2.2 Given any a ∈ Rn and µ > 0, a Nesterov smoothing approximation of

ϕ(x) := ‖x− a‖ defined in Rn has the representation

ϕµ(x) :=
1

2µ
‖x− a‖2 − µ

2

[
d(
x− a
µ

;B)
]2
. (2.2)

Moreover, ∇ϕµ(x) = P (x−aµ ;B) and

ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) +
µ

2
,

where B is the closed unit ball of Rn.

3

3 The Bilevel Hierarchical Clustering Problem

Given a set of m points (nodes) a1, a2, . . . , am in Rn, our goal is to decompose this set into

k clusters. In each cluster, we would like to find a point xi among the nodes and assign it

as the center for this cluster with all points in the cluster connected to this center. Then

we will find a total center x∗ among the given points a1, a2, . . . , am, and all centers are

connected to this total center. The goal is to minimize the total transportation cost in this

tree computed by the sum of the distances from the total center to each center and from

each center to the nodes in each cluster. This is a discrete optimization problem which

can be shown to be NP-hard. We will solve this problem based on continuous optimization

techniques.

3.1 The Bilevel Hierarchical Clustering: Model I

The difficulty in solving this hierarchical clustering problem lies in the fact that the centers

and total center have to be among the nodes. We first relax this condition with the use

of artificial centers x1, x2, . . . , xk that could be anywhere in Rn. Then we define the total

center as the centroid of x1, x2, . . . , xk given by

x∗ :=
1

k
(x1 + x2 + · · ·+ xk).

The total cost of the tree is given by

ϕ(x1, . . . , xk) :=
m∑
i=1

min
`=1,...,k

‖x` − ai‖+
k∑
`=1

‖x` − x∗‖.

Note that here each ai is assigned to its closest center. However, what we expect are the

real centers, which can be approximated by trying to minimize the difference between the

artificial centers and the real centers. To achieve this goal, define the function

φ(x1, . . . , xk) :=

k∑
`=1

min
i=1,...,m

‖x` − ai‖, x1, . . . , xk ∈ Rn.

Observe that φ(x1, . . . , xk) = 0 if and only if for every ` = 1, . . . , k, there exists i ∈
{1, . . . ,m} such that x` = ai, which means that x` is a real node. Therefore, we consider

the constrained minimization problem:

minimize ϕ(x1, . . . , xk) subject to φ(x1, . . . , xk) = 0.

This problem can be converted to an unconstrained minimization problem:

minimize fλ(x1, . . . , xk) := ϕ(x1, . . . , xk) + λφ(x1, . . . , xk), x1, . . . , xk ∈ Rn, (3.1)

where λ > 0 is a penalty parameter. Similar to the situation with the clustering prob-

lem, this new problem is nonsmooth and nonconvex, which can be solved by smoothing

techniques and the DCA. Note that a particular case of this model in two dimensions was

4

considered in [5] where the problem was solved using the derivative-free discrete gradient

method established in [4], but this method is not suitable for large-scale settings in high

dimensions. The DCA was used in [2] to solve a similar model with the squared Euclidean

distance function used as the distance measurement. In this paper, the authors also ad-

dressed the difficulty of dealing with (3.1) using the DCA as not suitable for the resulting

DCA. Nevertheless, we will show in what follows that the DCA is applicable to this model

when combined with Nesterov’s smoothing technique.

Note that the functions ϕ and φ in (3.1) belong to the class of DC functions with the

following DC decompositions:

ϕ(x1, . . . , xk) =
m∑
i=1

[k∑
`=1

‖x` − ai‖ − max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖
]

+
k∑
`=1

‖x` − x∗‖

=
[m∑
i=1

k∑
`=1

‖x` − ai‖+
k∑
`=1

‖x` − x∗‖
]
−

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖,

φ(x1, . . . , xk) =
k∑
`=1

m∑
i=1

‖x` − ai‖ −
k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

It follows that the objective function fλ in (3.1) has the DC decomposition:

fλ(x1, . . . , xk) =
[
(1 + λ)

k∑
`=1

m∑
i=1

‖x` − ai‖+
k∑
`=1

‖x` − x∗‖
]

−
[m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖+ λ
k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖
]
.

This DC decomposition is not suitable for applying the DCA because there is no closed

form for a subgradient of the function g∗ involved.

In the next step, we apply Nesterov’s smoothing technique from Proposition 2.2 to approx-

imate the objective function fλ by a new DC function favorable for applying the DCA. To

accomplish this goal, we simply replace each term of the form ‖x − a‖ from the first part

of fλ(x1, . . . , xk) (the positive part) by the smooth approximation (2.2), while keeping the

second part (the negative part) the same. As a result, we obtain

fλµ(x1, . . . , xk) :=
(1 + λ)µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

+
µ

2

k∑
`=1

∥∥∥∥∥x` − x∗µ

∥∥∥∥∥
2

− (1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2
− µ

2

k∑
`=1

[
d

(
x` − x∗

µ
;B
)]2

−
m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖ − λ
k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

The original bilevel hierarchical clustering problem now can be solved using a DC program:

minimize fλµ(x1, . . . , xk) = gλµ(x1, . . . , xk)− hλµ(x1, . . . , xk), x1, . . . , xk ∈ Rn.

5

In this formulation, gλµ and hλµ are convex functions on (Rn)k defined by

gλµ(x1, . . . , xk) := g1λµ(x1, . . . , xk) + g2λµ(x1, . . . , xk),

hλµ(x1, . . . , xk) := h1λµ(x1, . . . , xk) + h2λµ(x1, . . . , xk) + h3λµ(x1, . . . , xk) + h4λµ(x1, . . . , xk),

with their respective components defined as

g1λµ(x1, . . . , xk) :=
1 + λ

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2, g2λµ(x1, . . . , xk) :=
1

2µ

k∑
`=1

‖x` − x∗‖2,

h1λµ(x1, . . . , xk) :=
(1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

, h2λµ(x1, . . . , xk) :=
µ

2

k∑
`=1

[
d

(
x` − x∗

µ
;B
)]2

,

h3λµ(x1, . . . , xk) :=

m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖, h4λµ(x1, . . . , xk) := λ

k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

To facilitate the gradient and subgradient calculations for the DCA, we introduce a data

matrix A and a variable matrix X. The data A is formed by putting each ai, i = 1, . . . ,m,

in the ith row, i.e.,

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

...

am1 am2 am3 . . . amn

 .

Similarly, if x1, . . . , xk are the k cluster centers, then the variable X is formed by putting

each x`, ` = 1, . . . , k, in the `th row, i.e.,

X =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n

...
...

...
...

xk1 xk2 xk3 . . . xkn

 .

Then the variable matrix X of the optimization problem belongs to Rk×n, the linear space

of k by n real matrices equipped with the inner product 〈X,Y〉 := trace(XTY). The

Frobenius norm on Rk×n is defined by

∥∥X∥∥
F

:=

√〈
X,X

〉
=

√√√√ k∑
`=1

〈x`, x`〉 =

√√√√ k∑
`=1

‖x`‖2.

Finally, we represent the average of the k cluster centers by x∗, i.e., x∗ := 1
k

∑k
j=1 x

j .

Gradient and Subgradient Calculations for the DCA

Let us start by computing the gradient of

gλµ(X) = g1λµ(X) + g2λµ(X).

6

Using the Frobenius norm, the function g1λµ can equivalently be written as

g1λµ(X) =
1 + λ

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2

=
1 + λ

2µ

m∑
i=1

k∑
`=1

[
‖x`‖2 − 2〈x`, ai〉+ ‖ai‖2

]
=

1 + λ

2µ

[
m
∥∥X∥∥2

F
− 2
〈
X,EkmA

〉
+ k
∥∥A∥∥2

F

]
,

where Ekm is a k × m matrix whose entries are all ones. Hence, one can see that g1λµ is

differentiable and its gradient is given by

∇g1λµ(X) =
1 + λ

µ
[mX−EkmA] .

Similarly, g2λµ can equivalently be written as

g2λµ(X) =
1

2µ

k∑
`=1

‖x` − x∗‖2

=
1

2µ

k∑
`=1

[
‖x`‖2 − 2〈x`, x∗〉+ ‖x∗‖2

]
=

1

2µ

[∥∥X∥∥2
F
− 2

k

〈
X,EkkX

〉
+

1

k

〈
X,EkkX

〉]
=

1

2µ

[∥∥X∥∥2
F
− 1

k

〈
X,EkkX

〉]
,

where Ekk is a k × k matrix whose entries are all ones. Hence, g2λµ is differentiable and its

gradient is given by

∇g2λµ(X) =
1

µ

[
X− 1

k
EkkX

]
.

Since gλµ(X) = g1λµ(X) + g2λµ(X), its gradient can be computed by

∇gλµ(X) = ∇g1λµ(X) +∇g2λµ(X)

=
1 + λ

µ
[mX−EkmA] +

1

µ

[
X− 1

k
EkkX

]
=

1

µ

[
(1 + λ)mX− (1 + λ)EkmA + X− 1

k
EkkX

]
=

1

µ

[[
[(1 + λ)m+ 1] Ikk −

1

k
Ekk

]
X− (1 + λ)EkmA

]
.

Therefore,

∇gλµ(X) =
1

µ

[(
((1 + λ)m+ 1)Ikk − J

)
X− (1 + λ)S

]
, where J =

1

k
Ekk, and S = EkmA.

7

Our goal now is to compute ∇g∗(Y), which can be accomplished by the relation

X = ∇g∗(Y) if and only if Y = ∇g(X).

The latter can equivalently be written as

[[1 + (1 + λ)m] Ikk − J] X = [(1 + λ)S + µY] .

Then with some algebraic manipulation we can show that

∇g∗(Y) = X =

[
1

1 + (1 + λ)m
Ikk +

1

[1 + (1 + λ)m](1 + λ)m
J

]
[(1 + λ)S + µY] .

Next, we will demonstrate in more detail the techniques we used in finding a subgradient

for the convex function hλµ. Recall that hλµ is defined by

hλµ(X) =

4∑
i=1

hiλµ(X).

We will start with the function h1λµ given by

h1λµ(X) =
(1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

.

From its representation, one can see that h1λµ is differentiable, and hence its subgradient

coincides with its gradient, that can be computed by the partial derivatives with respect to

x1, · · · , xk, i.e.,

∂h1λµ
∂x`

(X) = (1 + λ)
m∑
i=1

[
x` − ai

µ
− P

(
x` − ai

µ
;B
)]

.

Thus, for ` = 1, 2, . . . , k, ∇h1λµ(X) is the k × n matrix U whose `th row is
∂h1λµ
∂x`

(X).

Similarly, one can see that the function h2λµ given by

h2λµ(X) =
µ

2

k∑
`=1

[
d

(
x` − x∗

µ
;B
)]2

is differentiable with its partial derivatives computed by

∂h2µ
∂x`

(X) =

[
x` − x∗

µ
− P

(
x` − x∗

µ
;B
)]
− 1

k

k∑
j=1

[
xj − x∗

µ
− P

(
xj − x∗

µ
;B
)]

.

Hence, for ` = 1, 2, . . . , k, ∇h2µ(X) is the k × n matrix V whose `th row is
∂h2µ
∂x`

(X).

Unlike h1λµ and h2λµ, the convex functions h3λµ and h4λµ are not differentiable, but both can

be written as a finite sum of the maximum of a finite number of convex functions. Let us

compute a subgradient of h3λµ as an example. We have

h3λµ(X) =

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖ =

m∑
i=1

γi(X),

8

where, for i = 1, . . . ,m,

γi(X) := max

γir(X) =
k∑

`=1,` 6=r
‖x` − ai‖, r = 1, . . . , k

 .

Then, for each i = 1, . . . ,m, we find Wi ∈ ∂γi(X) according to the subdifferential rule for

the maximum of convex functions. Then define W :=
∑m

i=1 Wi to get a subgradient of the

function h3λµ at X by the subdifferential sum rule. To accomplish this goal, we first choose

an index r∗ from the index set {1, . . . , k} such that

γi(X) = γir∗(X) =
k∑

`=1,`6=r∗
‖x` − ai‖.

Using the familiar subdifferential formula of the Euclidean norm function, the `th row w`i
for ` 6= r∗ of the matrix Wi is determined as follows

w`i :=

 x`−ai
‖x`−ai‖2

if x` 6= ai,

u ∈ B if x` = ai.

The r∗th row of the matrix Wi is wr
∗
i := 0.

The procedure for calculating a subgradient of the function h4λµ given by

h4λµ(x1, . . . , xk) = λ

k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖,

is very similar to what we just demonstrated for h3λµ.

At this point, we are ready to give a new DCA based algorithm for Model I.

Algorithm 1.

INPUT: X0, λ0, µ0, N ∈ N.

while stopping criteria (λ, µ) = false do

for k = 1, 2, 3, · · · , N do

Find Yk ∈ ∂h1λµ(Xk−1).

Find Xk ∈ ∂g∗1λµ(Yk).

end for

update λ and µ.

end while

OUTPUT: XN .

3.2 The Bilevel Hierarchical Clustering: Model II

In this section, we introduce the second model to solve the bilevel hierarchical clustering

problem. In this model, we use an additional variable xk+1 to denote the total center. At

9

first we allow the total center xk+1 to be a free point in Rn, the same as the k cluster

centers. Then the total cost of the tree is given by

ϕ(x1, . . . , xk+1) :=

m∑
i=1

min
`=1,...,k

‖x` − ai‖+

k∑
`=1

‖x` − xk+1‖, x1, . . . , xk+1 ∈ Rn.

To force the k + 1 centers to be chosen from the given nodes (or to make them as close to

the nodes as possible), we set the constraint

φ(x1, . . . , xk+1) :=

k+1∑
`=1

min
i=1,...,m

‖x` − ai‖ = 0.

Our goal is to solve the optimization problem

minimize ϕ(x1, . . . , xk+1)

subject to φ(x1, . . . , xk+1), x1, . . . , xk+1 ∈ Rn.

Similar to the first model, this problem formulation can be converted to an unconstrained

minimization problem involving a penalty parameter λ > 0:

minimize fλ(x1, . . . , xk+1) := ϕ(x1, . . . , xk+1) + λφ(x1, . . . , xk+1), x1, . . . , xk+1 ∈ Rn. (3.2)

Next, we apply Nesterov’s smoothing technique to get an approximation of the objective

function f given in (3.2) which involves two parameter λ > 0 and µ > 0:

fλµ(X) :=
1 + λ

2µ

m∑
i=1

k+1∑
`=1

‖x` − ai‖2 +
1

2µ

k∑
`=1

‖x` − xk+1‖2 − 1

2µ

m∑
i=1

‖xk+1 − ai‖2

− λµ

2

m∑
i=1

[
d

(
xk+1 − ai

µ
;B
)]2
− (1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

− µ

2

k∑
`=1

[
d

(
x` − xk+1

µ
;B
)]2

−
m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖ − λ

k+1∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

As we will show in what follows, it is convenient to apply the DCA to minimize the function

fλµ. This function can be represented as the differences of two convex functions defined on

R(k+1)×n using a variable X whose ith row is xi for i = 1, . . . , k + 1:

fλµ(X) = gλµ(X)− hλµ(X), X ∈ R(k+1)×n.

In this formulation, gλµ and hλµ are convex functions defined on R(k+1)×n by

gλµ(X) := g1λµ(X) + g2λµ(X)

and

hλµ(X) := h1λµ(X) + h2λµ(X) + h3λµ(X) + h4λµ(X) + h5λµ(X) + h6λµ(X),

10

with their respective components given by

g1λµ(X) :=
1 + λ

2µ

m∑
i=1

k+1∑
`=1

‖x` − ai‖2, g2λµ(X) :=
1

2µ

k∑
`=1

‖x` − xk+1‖2,

h1λµ(X) :=
1

2µ

m∑
i=1

‖xk+1 − ai‖2, h2λµ(X) :=
λµ

2

m∑
i=1

[
d

(
xk+1 − ai

µ
;B
)]2

,

h3λµ(X) :=
(1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

, h4λµ(X) :=
µ

2

k∑
`=1

[
d

(
x` − xk+1

µ
;B
)]2

,

h5λµ(X) :=
m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖, h6λµ(X) := λ
k+1∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

Gradient and Subgradient Calculations for the DCA

Let us start by computing the gradient of the first part of the DC decomposition, i.e.,

gλµ(X) = g1λµ(X) + g2λµ(X).

By applying similar techniques used in computing gradients/subgradients for Model I,

∇g1λµ(X) can be written as

∇g1λµ(X) =
1 + λ

µ
[mX−EA] ,

where E is the (k + 1)×m matrix whose entries are all ones. Similarly, ∇g2λµ(X) can also

be written as

∇g2λµ(X) =
1

µ
[I + T] X,

where I is the (k+ 1)× (k+ 1) identity matrix, and T is the (k+ 1)× (k+ 1) matrix whose

entries are all zeros except its (k + 1)th row and (k + 1)th column, which both are filled by

the vector (−1,−1,−1, . . . ,−1, k − 1).

It follows that

∇gλµ(X) = ∇g1λµ(X) + ∇g2λµ(X)

=
1 + λ

µ
[mX − EA] +

1

µ
[I + T] X

=
1

µ
[c1I + T] X − 1 + λ

µ
EA,

where c1 = 1+(1+λ)m. Our goal now is to compute ∇g∗λµ(Y), which can be accomplished

by the relation

X = ∇g∗λµ(Y) if and only if Y = ∇gλµ(X).

The latter can be equivalently written as

[c1I + T] X = (1 + λ)EA + µY,

11

whose solutions can be explicitly computed by its `th row for ` = 1, . . . , k + 1:

x` =
[(1 + λ)EA + µY]` + xk+1

c1
for ` = 1, . . . , k,

xk+1 =
c1 [(1 + λ)EA + µY]k+1 +

∑k
`=1 [(1 + λ)EA + µY]`

(c1 + k)(c1 − 1)
.

In the representation

hλµ(X) = h1λµ(X) + h2λµ(X) + h3λµ(X) + h4λµ(X) + h5λµ(X) + h6λµ(X),

the convex functions h1λµ, h
2
λµ, h

3
λµ, andh4λµ are differentiable. The partial derivatives of

h1λµ are given by

∂h1λµ
∂x`

(X) = 0 for ` = 1, . . . , k,

∂h1λµ
∂xk+1

(X) =
1

µ

m∑
i=1

(xk+1 − ai) =
1

µ

[
mxk+1 −

m∑
i=1

Ai

]
.

Then ∇h1λµ(X) is the (k + 1) × n matrix L whose `th row is
∂h1λµ
∂x`

(X) for ` = 1, . . . , k + 1.

Similarly, the partial derivatives of h2λµ are given by

∂h2λµ
∂x`

(X) = 0 for ` = 1, . . . , k,

∂h2λµ
∂xk+1

(X) = λ
m∑
i=1

[
xk+1 − ai

µ
− P

(
xk+1 − ai

µ
;B
)]

.

Then ∇h2λµ(X) is the (k + 1)× n matrix M whose `th row is
∂h2λµ
∂x`

(X), for ` = 1, . . . , k + 1.

Now we compute the gradient of h3λµ. We have

∂h3λµ
∂x`

(X) = (1 + λ)
m∑
i=1

[
x` − ai

µ
− P

(
x` − ai

µ
;B
)]

for ` = 1, . . . , k,

∂h3λµ
∂xk+1

(X) = 0.

Thus, ∇h3λµ(X) is the (k + 1)× n matrix U whose lth row is
∂h3λµ
∂x`

(X) for ` = 1, . . . , , k + 1.

Let us compute the gradient of h4λµ. We have

∂h4λµ
∂x`

(X) =

[
x` − xk+1

µ
− P

(
x` − xk+1

µ
;B
)]

for ` = 1, . . . , k,

∂h4λµ
∂xk+1

(X) = −
k∑
`=1

[
x` − xk+1

µ
− P

(
x` − xk+1

µ
;B
)]

.

12

Similarly, ∇h4λµ(X) is the (k + 1) × n matrix V whose `th row is filled with
∂h4λµ
∂x`

(X), for

` = 1, . . . , k + 1.

The procedure for computing subgradients of the last two nondifferentiable components,

h5λµ and h6λµ, is similar to the procedure we described for computing subgradients of h3λµ in

Model I.

The following is a DCA based algorithm for Model II.

Algorithm 2.

INPUT: X0, λ0, µ0, N ∈ N.

while stopping criteria (λ, µ) = false do

for k = 1, 2, 3, · · · , N do

Find Yk ∈ ∂hλµ(Xk−1).

Find Xk ∈ ∂g∗λµ(Yk).

end for

update λ and µ.

end while

OUTPUT: XN .

4 Numerical Experiments

We use MATLAB to code our algorithms and perform numerical experiments on a MacBook

Pro with 2.2 GHz Intel Core i7 Processor, and 16 GB 1600 MHz DDR3 Memory. For our

numerical experiments, we use three data sets: one artificial data set with 18 data points

in R2 (see Figure 1a), the EIL76 and the PR1002 from [17] (see Figure 1b and Figure 1c),

respectively.

(a) 18 Data Points, 2 Centers (b) 76 Data Points, 3 Centers (c) 1002 Data Points, 6 Centers

Figure 1: Plots of the three test data sets

The two MATLAB codes used to implement our two algorithms have two major parts:

an outer loop for updating the penalty and the smoothing parameters and an inner loop

for updating the cluster centers. The penalty parameter λ and the smoothing parameter

µ are updated as follows. Choosing µ0 > 0, λ0 > 0 and σ1 > 1, σ2 ∈ (0, 1), we update

λi+1 = σ1λi and µi+1 = σ2µi for i ≥ 0 after each outer loop. To choose σ1 and σ2, we first

13

let N be the number of outer iterations and choose λ0, λmax as the initial and final values of

λ, respectively, and similarly for µ0, µmin. Then choose growth/decay parameters according

to σ1 = (λmax/λ0)
1/N and σ2 = (µmin/µ0)

1/N .

By trial and error we find that the values chosen for λ0, λmax, µ0, and µmin in large part

determine the performance of the two algorithms for each data set. Intuitively, we see that

very large values of λ will over-penalize the distance between an artificial center and its

nearest data node and may prevent the algorithm from clustering properly. We therefore

use λ0 ≤ 1� λmax so that the algorithm has a chance to cluster the data before the penalty

parameter takes effect. Similarly, we choose µmin � 1 ≤ µ0.

We select the starting center X0 at a certain radius, γ rad(A), from the median point,

median(A), of the entire data set, i.e.,

X0 = median(A) + γ rad(A) U,

where rad(A) := max{‖ai − median(A)‖ | ai ∈ A}, γ is a randomly chosen real number

from the standard uniform distribution on the open interval (0,1), U is a k×n matrix whose

k rows are randomly generated unit vectors in Rn, and the sum is in the sense of adding a

vector to each row of a matrix.

As showed in Tables 1, 2, and 3, both algorithms identify the optimal solutions with rea-

sonable amount of time for both DS18 and EIL76 with two and three cluster centers,

respectively. To get a good starting point which yields a better estimate of the optimal

value for bigger data sets such as PR1002, we use a method called radial search described

as follows. Given initial radius r0 > 0 and m ∈ N, set γ = ir0 for i = 1, . . . ,m. Then we test

the algorithm with different starting points given by X0(i) = median(A) + ir0(rad(A)U)

for i = 1, . . . ,m. Figure 2 shows the result of the method applied to PR1002 with six clus-

ter centers, where the y-axis represents the optimal value returned by ALG1 with different

starting points X0(i), as represented on the x-axis.

µ0 = 5.70, λ0 = 0.001, σ1 = 7500, σ2 = 0.5

Cost1 Cost2 Time1 Time2 Iter1 Iter2 k m n

ADS18 22.4853 22.4853 0.0690125 0.0853712 124 124 2 18 2

ADS18 22.4853 22.4853 0.0678142 0.0902829 124 124 2 18 2

ADS18 22.4853 22.4853 0.0694841 0.0970158 124 124 2 18 2

Table 1: Results for the 18 points artificial data set.

µ0 = 100, λ0 = 10−6, σ1 = 1, σ2 = 0.5

Cost1 Cost2 Time1 Time2 Iter1 Iter2 k m n

EIL76 1125.48 1107.47 1.6126 1.86261 540 540 3 76 2

EIL76 1099.36 1099.36 1.52001 1.81243 540 540 3 76 2

EIL76 1099.36 1099.36 1.52914 1.86536 540 540 3 76 2

Table 2: Results for EIL76 data set.

14

µ0 = 1950, λ0 = 10−6, σ1 = 7500, σ2 = 0.5

Cost1 Cost2 Time1 Time2 Iter1 Iter2 k m n

PR1002 1.63399e+06 1.63399e+06 22.1578 25.3651 330 330 6 1002 2

PR1002 1.63399e+06 1.63399e+06 22.2978 25.5373 330 330 6 1002 2

PR1002 1.63399e+06 1.63399e+06 23.5394 26.0762 330 330 6 1002 2

Table 3: Results for PR1002 data set.

For comparison purposes, both Cost1 and Cost2 are computed by the same way. First, we

systematically reassign the k cluster centers returned by the respective algorithms by k real

nodes that are close to them, i.e., for ` = 1, . . . , k

x̄` = argmin{‖x` − ai‖ | ai ∈ A}.

Then the total center x∗ will be a real node, from the remaining nodes, whose sum of

distances from the k reassigned centers is the minimal, i.e.,

x∗ := argmin
{ k∑
`=1

‖x̄` − ai‖ | ai ∈ A
}
.

The total cost is computed by adding the distance of each real node to its closest center

(including the total center), and the distances of the total center from the k cluster centers,

i.e.,

Cost :=

m∑
i=1

min
`=1,...,k+1

‖x̄` − ai‖+

k∑
`=1

‖x̄` − xk+1‖, where xk+1 = x∗.

Figure 2: PR1002, The 1002 City Problem, with 6 Cluster Centers

15

5 Conclusions

In our numerical experiments, one of the major challenge we face is how to choose optimal

parameters for our algorithms. We observe that parameter selection is the decisive factor in

terms of accuracy and speed of convergence of our proposed algorithms. The performance

of the proposed algorithms highly depends on the initial values set to the penalty and

smoothing parameters, λ0 and µ0; and their respective growth/decay factors σ1 and σ2. A

better guidance of selecting the optimal parameter than the methods we suggest in this

paper will be addressed in or future research.

References

[1] L. T. H. An, M. T. Belghiti, P. D. Tao: A new efficient algorithm based on DC programming

and DCA for clustering. J. Glob. Optim., 27, 503–608 (2007)

[2] L. T. H. An, and L. H. Minh, Optimization based DC programming and DCA for hierarchical

clustering. European J. Oper. Res. 183 (2007), 1067–1085.

[3] L. T. H. An, and P. D. Tao, Convex analysis approach to D.C. programming: Theory, algorithms

and applications. Acta Math. Vietnam. 22 (1997), 289–355.

[4] A. M. Bagirov, Derivative-free methods for unconstrained nonsmooth optimization and its

numerical analysis. Investigacao Operacional. 19 (1999), 75–93.

[5] A. Bagirov, Long Jia, I. Ouveysi, and A.M. Rubinov, Optimization based clustering algorithms

in Multicast group hierarchies, in: Proceedings of the Australian Telecommunications, Networks

and Applications Conference (ATNAC), 2003, Melbourne Australia (published on CD, ISNB

0-646-42229-4).

[6] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces Springer, New York, 2011.

[7] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization, 2nd edition,

Springer, New York, 2006.

[8] R. I. Boţ, Conjugate Duality in Convex Optimization, Springer, Berlin, 2010.

[9] T. Pham Dinh and H. A. Le Thi, A d.c. optimization algorithm for solving the trust-region

subproblem, SIAM J. Optim. 8 (1998), 476–505.

[10] P. Hartman, On functions representable as a difference of convex functions. Pacific J. Math. 9,

(1959), 707–713.

[11] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms I, II,

Springer, Berlin, 1993.

[12] J. B. Hiriart-Urruty, Generalized differentiability, duality and optimization for problems dealing

with differences of convex functions. Lecture Note in Economics and Math. Systems. 256 (1985),

37–70.

[13] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, II:

Applications, Springer, Berlin, 2006.

[14] B. S. Mordukhovich and N. M. Nam, An Easy Path to Convex Analysis and Applications,

Morgan & Claypool Publishers, San Rafael, CA, 2014.

16

[15] N. M. Nam, R.B. Rector, D. Giles: Minimizing Differences of Convex Functions with Applica-

tions to Facility Location and Clustering, submitted.

[16] Y. Nesterov: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152

(2005)

[17] G. Reinelt, TSPLIB: A Traveling Salesman Problem Library. ORSA Journal of Computing. 3

(1991), 376–384.

[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[19] R. T. Rockafellar, Conjugate Duality and Optimization, SIAM, Philadelphia, PA, 1974.

17

	1 Introduction
	2 Basic Definitions and Tools of Optimization
	3 The Bilevel Hierarchical Clustering Problem
	3.1 The Bilevel Hierarchical Clustering: Model I
	3.2 The Bilevel Hierarchical Clustering: Model II

	4 Numerical Experiments
	5 Conclusions

