
ar
X

iv
:1

41
1.

42
66

v1
 [

cs
.D

B
]

 1
6

N
ov

 2
01

4

Front. Comput. Sci, 201X, X(X)
DOI

REVIEW ARTICLE

Big Graph Search : Challenges and Techniques

Shuai Ma, Jia Li, Chunming Hu, Xuelian Lin, Jinpeng Huai

State Key Laboratory of Software Development Environment
School of Computer Science and Engineering
Beihang University, Beijing 100191, China

c© Higher Education Press and Springer-Verlag 201X

Abstract On one hand, compared with traditional
relational and XML models, graphs have more expres-
sive power and are widely used today. On the other
hand, various applications of social computing trigger
the pressing need of a new search paradigm. In this arti-
cle, we argue that big graph search is the one filling this
gap. To show this, we first introduce the application
of graph search in various scenarios. We then formalize
the graph search problem, and give an analysis of graph
search from an evolutionary point of view, followed by
the evidences from both the industry and academia. Af-
ter that, we analyze the difficulties and challenges of big
graph search. Finally, we present three classes of tech-
niques towards big graph search: query techniques, data
techniques and distributed computing techniques.

Keywords Graph Search; Big Data; Query Tech-
niques; Data Techniques; Distributed Computing

———————

1 Introduction

With the rapid development of social computing, Inter-
net and various applications have brought about expo-
nentially growing data. According to the recent report
of the UN’s International Telecommunications Union
(ITU), Internet users will hit 3 billion globally by the end
of 2014 [1]; The total number of monthly active Facebook
users has reached over 1.3 billion, and the increment of

Received month dd.yyyy; accepted month dd.yyyy

E-mail: {mashuai, lijia, hucm, linxl, huaijp}@buaa.edu.cn

its users from 2012 to 2013 is about 22% [2]. All these in-
dicate the coming of an era of big data. Indeed, “data are
becoming the new raw material of business: an economic
input almost on a par with capital and labour.” [14]. How
to filter unnecessary data and find the desired informa-
tion so that one could easily make timely and accurate
decisions? This has become one of the most pressing
needs in such a big data era.

Compared with traditional relational and XML mod-
els, graphs have more expressive power, and play an im-
portant role in many applications, such as social net-
works, biological data analyses, recommender systems,
complex object identification and software plagiarism de-
tection. Essentially, this is because the core data in-
volved in these applications can be conveniently repre-
sented as graphs. For instance, a social network (e.g.,
Facebook [3], Twitter [4] and Weibo [5]) constitutes all
kinds of social users/activities, which is essentially a
graph, whose nodes denote users/activities and edges de-
note their relationships, such as friendships, respectively.

The wide use of graphs has brought about the emer-
gence of big graph search, i.e., retrieving information
from big graphs in a timely and accurate manner, which
has drawn more and more attention from both the in-
dustry and academia [58–60]. We first give an overview
of the application scenarios of graph search.

(1) Social networks and the Web. Nowadays, the
rapid development of the Web and social networks has
made significant influences on people’s social and per-
sonal behaviors. Take for instance, Facebook: (a) the
total number of its users is very large: there are more

http://arxiv.org/abs/1411.4266v1

2
Frontiers of Computer Science

Figure 1 A recommendation network

than 1.3 billion monthly active users and 0.68 billion mo-
bile users till June 2014; (b) the relations among users
and other objects are tight: a user has 130 friends and
likes 80 pages on average; (c) there is a large amount of
information dissemination on Facebook: more than 4.75
billion pieces of content are shared daily; (d) the site
visit of Facebook is quite frequent: 23% of users check
Facebook 5 times or more daily, and a user spends 20
minutes on the site per visit on average [2].

As mentioned earlier, social networks can be easily
represented by graphs, which comes with all kinds of
graph search techniques [19, 31, 37, 79], including neigh-
bor query and social network compression [62]. Similar
to social networks, the Web can be expressed as a big
graph as well, whose nodes denote Web pages, and edges
indicate hyperlink relationships between Web pages. In
fact, the Web site classification and Web mirror detection
problems can be treated as the graph classification [76]
and graph matching problems [34], respectively.

(2) Recommender systems. Recommendation has
found its usage in many applications, such as social
matching systems, and graph search is a useful tool for
recommendation [78]. Consider the example that a head-
hunter wants to find a biologist (Bio) to help a group of
software engineers (SEs) analyze genetic data [55, 56].
To do this, she uses an expertise recommendation net-
work G, as depicted in Fig. 1, in which nodes denote
persons labeled with their expertise, and edges indicate
recommendations, e.g. HR1 recommends Bio1, and AI1
recommends DM1. The biologist Bio needed is specified
with a pattern graph Q, also shown in Fig.1. We could
find that Bio has to be recommended by: (a) an HR,
an SE and a data mining expert (DM) together, as data
mining knowledge is required for the job, (b) the SE is
also recommended by the HR, and (c) there is an arti-
ficial intelligence expert (AI) who recommends the DM

Figure 2 A route planning example

and is recommended by the DM. Based on the pattern
graph Q and data graph G, the headhunter could find
the suitable biologist in G who meets the requirements,
by utilizing graph search techniques developed in [55,56].

(3) Complex object identification. Data quality
problem costs U.S. business more than $600 billion a
year [28], and data cleaning techniques can help miti-
gate the losses to a large extent, e.g., it delivers an overall
business value of more than “600 million GBP” each year
at BT by adopting data cleaning tools [64]. Data clean-
ing typically contains two central issues: record matching
and data repairing [32]. Complex object identification is
the most difficult issue in record matching, which is to
identify complex objects referring to the same entity in
a physical world. One possible solution is to represent
complex objects as graphs, and then to identify the same
ones by utilizing graph search techniques, such as sub-
graph isomorphism and graph homomorphism [34,80].

(4) Software plagiarism detection. With the pop-
ularity of open-source software, it gets much easier for
a less self-disciplined developer to use (part of) other
software without giving proper credits. Traditional pla-
giarism detection tools are not adequate for finding se-
rious software plagiarism cases. A novel plagiarism de-
tection tool has been developed based on graph search
techniques [52]. Firstly, it transforms the source and
target programs into program dependence graphs [38].
Secondly, it tests the similarity of the two program de-
pendence graphs with subgraph isomorphism [80]. Fi-
nally, if the graph similarity is high enough, it concludes
the plagiarism. The rational behind this is that the core
structure and control flow of programs, reflected by their
program dependence graphs, are hardly to be modified.

Front. Comput. Sci.
3

(5) Traffic route planning. Graph search is a common
practice in transportation networks, due to the wide ap-
plication of location-based services. Consider an example
taken from [73]. Mark is a driver in the U.S. who wants to
travel from Irvine to Riverside in California. (a) If Mark
wants to reach Riverside by his car in the shortest time,
this can be treated as the classical shortest path prob-
lem [26], based on which Mark can figure out his best
solution from Irvine to Riverside is by traveling along
State Route 261, as illustrated by Fig. 2. (b) However, if
Mark drives a truck carrying with hazardous materials,
which may not be allowed to cross over some bridges or
railroad crossings, then a pattern graph approach speci-
fying route constraints with regular expressions may be
needed to find an optimal transport route [23].

In addition, graph search techniques have also been
adopted in virtual networks [24], pattern recognition [25]
and VLSI design [47], among other things.

Organization. In the rest of this article, we first give
a formal definition of graph search and explain why it is
important in Section 2. Then we introduce the challenges
of big graph search in Section 3, followed by techniques
towards big graph search in Section 4. Finally, we con-
clude in Section 5.

2 Graph Search, Why Bother?

In this section, we first give a try of formalizing the con-
cept of graph search. Then we give an analysis of graph
search from an evolutionary point of view and point out
its urgent need, followed by the evidences from both the
industry and academia.

2.1 What is Graph Search

We first formalize the concept of graph search.

Graph search. Given two graphs Gp, also referred to
as the pattern graph and Gd, also referred to as the
data graph, graph search is (1) to decide whether Gp

“matches” Gd, or (2) to identify the subgraphs of Gd

that Gp “matches”.
Here graphs consist of nodes and edges, both of which

are often attached with labels indicating all kinds of in-
formation. Pattern graphs are usually small, e.g., with
several or dozens of nodes/edges, while data graphs are
often big, e.g., with billions of nodes/edges.

Graph search covers two classes of queries: (1) the first
class is boolean queries, i.e., to answer “yes” or “no”, and
(2) the second one is functional queries, i.e., to identify

and return the matching subgraphs. It is obvious that
functional queries may need the aid of boolean queries.

Remarks. The above definition of graph search is quite
general, as different semantics of “match” lead to differ-
ent graph search queries [58, 60]. Most, if not all, com-
mon graph queries belong to graph search queries, such
as node queries (e.g., neighbor query [62]), path queries
(e.g., reachability [30] and shortest path [26]) and sub-
graph queries (e.g., graph homomorphism [34], subgraph
isomorphism [80], graph simulation [31] and its extension
strong simulation [55]).

2.2 An Evolutionary Point of View

A serious question arises naturally: why do we need an-
other search paradigm – graph search? We next answer
this question from an evolutionary point of view.

Consider the evolution roadmap of information search
shown in Fig. 3. The emphasis of information search
has undergone a serious shift, i.e., from file systems, to
database systems, to the World Wide Web, and to the
most recent social networks:

• File systems. Since the 1960s, computers have been
equipped with modern operating systems [42]. The
file system in an operating system is an abstraction
to store and organize a set of computer files, and it
usually supports users to look for specific files, i.e.,

simple searching functionalities.
• Database systems. In the mid-1960s, database sys-

tems began being applied in business, and, sub-
sequently, relational databases played a dominant
role. Since the late 1970s, the invention of struc-
tured query language (SQL) has significantly pro-
moted the use of databases [70].

• The Web. In the 1990s, search engines, such as
Google, Bing and Yahoo!, are widely used due to
the blossom of the World Wide Web. These search
engines unanimously adopted the simple but very
useful approach – keyword search, which provides
people with a convenient and easy way to search
specific information on the Web.

• Social networks. From the end of last century, with
the rising of Web 2.0, social networks have made sig-
nificant influences on the society. However, a domi-
nant search paradigm seems missing in such an era
of social computing and big data.

As the above analysis shows, an important IT in-
vention, e.g., file systems, database systems and the
Web, usually triggers the emergence of a novel search

4
Frontiers of Computer Science

Figure 3 The evolution of information search

paradigm. We are essentially in a situation to look for
one for social computing and social networks, and we
believe that graph search is the one filling the gap. The
“graph search” [6] and “knowledge graph” [7] released by
Facebook and Google, respectively, shed light on this.
However, another question arises: why could not we sim-
ply use SQL or keyword based search?

(1) Graph search vs. SQL search. SQL search
is a very strong supporting tool for searching informa-
tion from relational database systems. However, it is
not appropriate for searching information from graphs
even though graphs could be stored using relations,
due to its disability and inconvenience for answering re-
cursive queries such as graph reachability and shortest
paths [15]. Indeed, for simple graph queries that SQL
search would do, graph search could do even better. We
next illustrate this with an example taken from [74], a
simple searching case of “finding the names of all of Al-
berto Pepe’s friends in a social network”.
Case 1: Social networks are stored using relations.

There are two relations: person(identifier, name) for stor-
ing a person’s unified identifier and its name, and
friend(person_a, person_b) for storing the friendship of
persons with identifiers person_a and person_b. In addi-
tion, two B+–tree indexes are built on each column of the
person relation: the person.identifier and person.name
indexes, and one index is built on the person_a column
of the friend relation: the friend.person_a index. We as-
sume that there are in total n persons and m friendships.
The relational representation is presented in Fig.4.

To get the names of Alberto Pepe’s friends, three steps
are necessary, as shown in the following.

(a) Find the unique identifer of “Alberto Pepe” from
relation person, which takes O(log2 n) time using the
person.name index.

(b) Find all the k identifiers of the friends of “Alberto
Pepe” from relation friend with the identifer found
in (a), which takes O(log2 n + k) time using the
friend.person_a index.

(c) Find the k friends’ names from relation person with
the k identifiers found in (b), which takes O(k log2 n)

Figure 4 Relational representation

time using the person.identifier index.

Case 2: Social networks are stored using naive graphs.
The person and friendship information can be stored as
a graph as shown in Fig. 5. Each person can be rep-
resented as a node labeled with the person’s name and
unified identifier, and the friendship between two persons
can be represented as an edge between the two corre-
sponding nodes. A B+–tree index is built on the graph,
vertex.name index, to quickly locate the position of a
node in the graph with a person’s name.

To get the names of Alberto Pepe’s friends, two steps
are needed, as shown below.

(a) Identify the node with name “Alberto Pepe”, which
takes O(log2 n) time using the vertex.name index.

(b) Find the k friend nodes of the node found in (a)
by traversing its adjacent neighboring nodes and get
the friend names directly in the k node labels, which
takes O(k + y) time such that k + y is the total
number of the neighboring nodes.

It is obvious that the searching speed is improved from
O((k+2) log2 n) to O(log2 n) when using the graph rep-
resentation, instead of the relational representation. The
improvement is crucial when n is really large, e.g., when
there are billions of users. Of course, one could add re-
dundant information to speed up its efficiency, which re-
sults in extra space cost in turn. Hence, for big graph
search, the graph search approach is much superior to
the SQL search approach.

Front. Comput. Sci.
5

Figure 5 Graph representation

(2) Graph search vs. keyword search. The tra-
ditional keyword based searching approach is mainly
for retrieving information from the Web, which is not
appropriate for searching information from social net-
works. The information on the Web is usually isolated
and object–object weak tied from each other, and mainly
about “historical and existing” information, i.e., what
happened and happening. Social computing generally
takes the social factors into consideration, such as the
social structure, organization and activity, which makes
relations a dominant role in social search. Besides, social
data are usually person–person strong related or person–

object strong related. This makes the future and relation

information particularly important for social search. Un-
der these circumstances, the keyword based searching ap-
proaches cannot meet the requirements raised by social
computing and social networks nowadays.

Hence we argue that graph search is a new searching
paradigm for social computing in the big data era. In-
deed, Facebook has provided a new searching technique
named “Graph Search” [6], which allows users to search
for information using simple natural language sentences,
e.g., “Restaurants in New York that my friends like”,
“Photos taken in Hawaii of my friends” and “National
parks where my friends have been to”. Besides, the devel-
opment of social networks has also promoted the urgent
need of a new search engine in turn.

2.3 Joint Efforts of the Industry and Academia

Recently, we have conducted a survey on the number
of papers on graphs published in the top three influen-
tial database system conferences (SIGMOD, VLDB and
ICDE) ever since 2000. The result is shown in Fig. 6,
from which we have found that: (a) from around 2000
(the emergence of Web 2.0), researchers began to focus
on the study of graphs, (b) the number of papers on
graphs has been increasing continuously since then, (c)

0

10

20

30

40

50

60

70

80

90

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

SIGMOD + VLDB + ICDE

Figure 6 Statistics of papers on graphs

from 2008, graphs have been a hot topic in the field of
database research, and (d) there is a significant incre-
ment of the number of papers on graphs in 2014.

Many well-known research institutions and companies
have been concentrating on the research and applications
of graphs. For example, Microsoft’s Trinity [8] project
and “Horton - Querying Large Distributed Graphs” [9]
project for data center; large-scale graph processing sys-
tem Pregel [61] of Google; “Knowledge Acquisition and
Management” [10] project of Yahoo!; Neo4j’s open-source
graph database [11]; “Graph Search” of Facebook [6]; and
the research teams from academia such as the University
of California Santa Barbara, University of Edinburgh,
University of New South Wales, Chinese University of
Hong Kong, and Beihang University.

The joint interests and efforts from both the industry
and academia provide more evidences on the power and
importance of graph search.

3 Challenges of Big Graph Search

In this section, we first introduce the FAE rule that is
important for a search engine, and we then point out its
difficulties and challenges for big graph search.

3.1 The FAE Rule

The FAE rule says that the quality of search engines in-
volves with three key factors: friendliness, accuracy and
efficiency, as illustrated in Fig. 7, and that a good search
engine must provide the users with a friendly query in-
terface and highly accurate answers in a fast way.

(1) Friendliness. It is necessary for a search engine
to provide the users with a friendly query interface such
that the users could conveniently specify their searching
conditions with small efforts.

6
Frontiers of Computer Science

Figure 7 The FAE rule

Generally speaking, the keyword search on the Web
only requires users to enter several keywords, which is
very user-friendly. However, it cannot allow users to
specify complex search conditions like graphs (such as
relationships among keywords), and it only returns the
Web hyperlinks that might contain answers to users.
Hence, this simpleness also brings the gap between what
the users want and what the users get. In contrast, the
results of graph search are much more accurate as it al-
lows users to further specify structural constraints by
designing various pattern graphs. However, it is defi-
nitely inconvenient for users to enter pattern graphs as
inputs even for small pattern graphs, as it is hard for non-
professional users who are not familiar with the complex
data graphs to specify precise pattern graphs.

People are already making an effort for designing
friendly graph search interfaces. The technique devel-
oped by Facebook allows users to specify pattern graphs
with simple natural language sentences, as we mentioned
earlier. And Yang et al. [83] have recently proposed
a novel graph search system enabling schemaless and
structureless graph querying, which (a) provides a user-
friendly interface where users can give rough descriptive
pattern graphs as queries, and (b) supports various kinds
of transformations such as synonym, abbreviation, and
ontology. However, a completely friendly interface that
can meet the requirements of practical applications is
still on its road for big graph search.

(2) Accuracy. It is necessary for a search engine to
provide the users with accurate answers.

When a user submits a query to a search engine, which
represents the user’s searching goal, the search engine an-
alyzes the user’s input and tries to understand what the
user wants. Hence, to reach high searching accuracy, it
is indispensable to understand the users’ real intents for
search engines. However, it is pretty common that there
is a gap between what a user wants and what she/he
gets back from a search engine. This is because it is
a very challenging task to understand and specify the

users’ intents in a way such that a machine could easily
understand. For example, when a user submits “apple”
to a search engine, it is hard to distinguish the fruit apple
from the products of Apple Inc..

Common approaches [20, 77] focus on query classifi-
cation. Given a query, these approaches try to classify
the query to some predefined classes. Recently, some
researchers take into account of the difference of individ-
uals and attempt to analyze the intents of users by incor-
porating their search behaviors and preferences [44, 82].

Knowledge also plays an important role to understand
the user intent and to improve the searching accuracy.
For example, knowledge graph makes Google search en-
gine more intelligent to understand the searching intents
of users. When having the keyword “apple” into Google
search engine, it will provide two extra panels in addi-
tion to a list of Web hyperlinks, one for Apple Inc. and
the other for the apple fruit. Then users can click one
to enlarge and get detailed information based on their
intents, which allows users to get more relevant results
without having to visit other Web sites to judge whether
the information are relevant by themselves. This is be-
cause Google now is able to understand the difference
among these entities, and the nuance in their meanings,
with the aid of Knowledge Graph [12].

(3) Efficiency. How to search information in a fast way
is a key for the success of a search engine. It is also a fun-
damental problem in database and information retrieval
areas, especially when we are dealing with big graphs to-
day. We will introduce several searching techniques for
big graphs in detail in the coming Section 4.

3.2 The Challenges

The expressiveness of graphs naturally comes with more
difficulties, and the emerging social applications raise
more challenges to search and manage big graphs.

According to statistics, for Facebook, there are over
1.3 billion monthly active users; for every 20 minutes,
there are 1 million links shared, 2 million friend requests
generated, and 3 million messages sent [2]; similarly for
Twitter, there are over 0.6 billion users; every second
there are 9100 tweets happened; and people query twitter
search engine 2.1 billion times every day [13].

These statistics show the following. (a) Graph data
have reached hundred millions orders of magnitude [40];
(b) Graph data are updated all the time, and the update
amount daily reaches hundred thousands orders of mag-
nitude [63]; And, even worse, (c) Similar to traditional

Front. Comput. Sci.
7

relational data [33, 69], graph data have the data un-
certainty problem due to the external reason caused by
data sampling and data missing and the internal reason
caused by the dynamic changes in graph data. In sum-
mary, graph data have three significant features: big,

dynamic and uncertain [58]. The first feature requires
that graph search needs to strike a balance between its
time and space cost. When the graph is too large to
be processed on single machines, it is also necessary to
design efficient and effective distributed algorithms. The
second feature requires that graph search should take dy-
namic changes and temporal factors into consideration.
The last feature requires that graph search should de-
sign reasonable models to capture uncertainties in graph
data, and design highly efficient algorithms to answer
graph search queries on uncertain graphs.

These together make it an extremely challenging task
to develop a big graph search engine with a friendly query
interface, accurate answers and high efficiency.

4 Techniques Towards Big Graph Search

A fundamental issue in the big data era is the efficiency.
In this section, we present three classes of techniques for
big graph search: query techniques, data techniques and
distributed computing techniques.

4.1 Query Techniques

We first introduce two query techniques: query approxi-
mation and incremental computation.

(1) Query approximation. The core idea of query
approximation is to transform a class of queries Q with
higher computational complexity into another class of
queries Q′ with lower computational complexity and sat-
isfiable approximate answers, as depicted in Fig. 8 in
which Q, Q′ and D denote the original query, approxi-
mate query and data, respectively. The major challenge
comes from the need of a balance between the query ef-
ficiency and answer accuracy.

Figure 8 Query approximation

We next explain the query approximation technique
using strong simulation, a new graph pattern matching
model proposed in [55, 56]. Graph pattern matching is
to find all matched subgraphs in a data graph for a given

pattern graph, and it is often defined in terms of subgraph

isomorphism. The goodness of subgraph isomorphism is
that all matched subgraphs are exactly the same as the
pattern graph, i.e., completely preserving the topology
structure between the pattern graph and data graph.

Subgraph isomorphism is, however, np-complete [80],
and may return exponential many matched subgraphs.
Recent evidences have shown that subgraph isomorphism
is too restrictive to find sensible matches in certain sce-
narios [31]. These hinder the usability of graph pattern
matching in emerging applications.

To lower the high complexity of subgraph isomor-
phism, various extensions of graph simulation [43] have
been considered instead in [30, 31]. These extensions al-
low graph pattern matching to be conducted in cubic-
time. However, they fall short of capturing the topology
of data graphs, i.e., graphs may have a structure drasti-
cally different from pattern graphs they match, and the
matches found are often too large to analyze.

To rectify these problems, strong simulation, a revi-
sion of graph simulation, was proposed for graph pattern
matching, such that strong simulation (a) preserves the
topology of pattern graphs and finds a bounded number
of matches, (b) retains the same complexity as earlier
extensions of graph simulation [30, 31], by providing a
cubic-time algorithm for computing strong simulation,
and (c) has the locality property that allows us to de-
velop an effective distributed algorithm to conduct graph
pattern matching on distributed graphs [55, 56].

(2) Incremental computation. When there are data
updates, query answers typically need to be re-computed
to reflect the changes. In practice, big data graphs are
frequently modified, as we pointed out in Section 2, and
it is too costly to recompute matches from scratch every
time when the data graphs are updated. Incremental
computation is a technique that attempts to reduce time
by reusing previous computing efforts and only comput-
ing those answers that “depend on” the changed data,
and it is depicted in Fig. 9, in which Q, D and ∆ denote
the query, original data and its updates, respectively.

Figure 9 Incremental computation

It is worth mentioning that incremental algorithms
have been developed for various applications (see [72] for
a survey). Thomas W. Reps has done pioneering work

8
Frontiers of Computer Science

on the study of incremental computation [71,72], and he
observed in [71] that the complexity of an incremental
algorithm is more accurately characterized in terms of
the size of the area affected by the updates, rather than
the size of the entire input.

Next let’s take the indexing of Google search as an ex-
ample. It is known that the Web documents are crawled
and stored in a large repository, and are pre-indexed to
speed up the search efficiency and improve the user expe-
riences. The indexing process incurs a heavy workload,
and Google initially adopted some batch-processing ap-
proaches such as MapReduce [27] to improve the effi-
ciency, which is not satisfactory when facing with con-
stant changes. Google later on developed Percolator [67],
a system incrementally processing updates on large data
sets. That is, Google has converted its batch-based in-
dexing system into an incremental indexing system. It
was reported that compared with MapReduce, Percola-
tor (a) reduced the average document processing latency
by a factor of 100, and (b) reduced the average age of
resulting documents of Google search by 50% when pro-
cessing the same amount of documents per day [67].

4.2 Data Techniques

One key feature of big data graphs is the large volume,
and, hence, the space complexity [65] of graph search
starts raising more troubles. Here we introduce five tech-
niques to boost the search efficiency from the data point
of view: data approximation, data sampling, data parti-
tioning, data compression and data indexing.

(1) Data approximation. The core idea of data ap-
proximation is that given a class of queries Q and a data
set D, it transforms D into a smaller data set D′ such
that Q on D′ returns a satisfiable approximate answer
in a more efficient way, as depicted in Fig. 10. Similar
to query approximation, the major challenge of data ap-
proximation comes from the need of a balance between
the query efficiency and answer accuracy.

Figure 10 Data approximation

We have adopted the idea in the process of dealing
with large graphs in the study of anomaly detection in
graph streams, when dealing with the matrix represen-
tation of a social graph, and we have both theoretically
and experimentally shown that simplifying the matrix by

replacing a part of small entry values with zero has few
affects on the computation of eigenvectors [85].

(2) Data sampling. Sampling is concerned with the
selection of a subset of data from a large data set. Instead
of dealing with the entire data set D for a query Q, the
data sampling technique reduces the size of the data set
D by sampling, with a permission of loss of accuracy
to some extent in the query result [17]. In a sampling
process, it must be ensured that the sampled data ∆
obtained must reflect the characteristics and information
of the original data D, as depicted in Fig. 11.

Figure 11 Data sampling

It is worth mentioning that Michael I. Jordan and
his colleagues have proposed a new sampling approach
–bootstrap– to dealing with big data [45, 51].

(3) Data partitioning. Data partitioning is an effec-
tive method to execute queries on large-scale data sets
in a divide-and-conquer way. It partitions a data set
D into a set of relatively small data sets D1, · · · , Dn

such that D = D1 ∪ · · · ∪ Dn. Ideally, the final query
answer is assembled using the n answers on the set of
small data sets, and the analysis speed can be improved
significantly. The entire process is depicted in Fig. 12.

Figure 12 Data partitioning

It is worth mentioning that graph partitioning has
been extensively studied since the 1970’s [48,49,84], and
has been successfully used in various applications, e.g.,

circuit placement, parallel computing and scientific simu-
lation [84]. The graph partitioning problem is in general
a hard problem and is often np-complete [48].

(4) Data compression. The principle of data compres-
sion is that compressing by removing redundancies also
answers the same question. There are many known data
compression methods that are suitable for different types
of data, and produce different answers, but they are all
based on the principle, namely compressing data by re-
moving redundancies from the original data (see [75] for
a complete reference). The benefits of data compression

Front. Comput. Sci.
9

lie in that it provides more possibilities to work in main
memory and potentials to work efficiently.

Figure 13 Data compression

Different from data sampling, data compression gen-
erates a small data set D′ from the original data set
D by removing redundancies and preserving the infor-
mation only relevant to queries, as depicted in Fig. 13.
In addition, there are usually no restrictions on the for-
mats of the compressed data, while data sampling nor-
mally keeps the original data formats. There is a whole
bunch of work on (lossy or lossless) graph compres-
sion [16, 21, 22, 62]. As [35, 36, 46] show, some graph al-
gorithms can be speeded up by operating on compressed
graphs directly, which can be treated as query oriented
compression, and needs to invest more efforts to study.

(5) Data indexing. An index is a data structure
that improves the speed of queries by reducing search
space, at the cost of update maintenance and extra stor-
age. Indexes are commonly used for querying relational
databases [70] and information retrieval of search en-
gines [18].

When data graphs are relatively large, graph indexing
technique can quickly prune data graphs that obviously
mismatch the pattern graph [50]. There already exist
indexing methods for (various kinds of) graph pattern
matching [17]. There are mainly three metrics for mea-
suring whether an established index is appropriate: the
space cost, building time and query time. The smaller
the space of an index is, the less additional storage bur-
den incurred. The building time represents the time cost
of creating the index, and the query time indicates the
time cost for the query process. When data graphs are
changed over time, the index refreshing speed represents
its ability to adapt to dynamic changes.

4.3 Distributed Computing Techniques

We now introduce the distributed computing techinque
that utilizes the query and data techniques and beyond.

Distributed computing refers to the use of distributed
systems to solve problems such that a problem is divided
into many tasks, each of which is computed on one or
more machines, and which communicate with each other
by message passing [54,66]. Distributed computing typi-
cally needs to partition a data set D into relatively small

data sets D1, · · · , Dn, and distributes them on multiple
computing machines, as depicted in Fig. 14.

Figure 14 Distributed computing

It is known that real-life graphs are typically way too
large, e.g., the Web graph of Yahoo! has about 14 billion
nodes, and there are over 1.3 billion users on Facebook.
Hence, it is not practical to handle large graphs on sin-
gle machines. Moreover, real-life graphs are naturally
distributed, e.g., Google, Yahoo! and Facebook have
large-scale distributed data centers. This says that dis-
tributed computing is inevitable facing with big graphs.

We have developed a computation model for a large
class of distributed algorithms for graph simulation [57].
The model consists of a cluster of identical machines, in
which one acts as a coordinator. Each machine can di-
rectly send an arbitrary number of messages to another,
and all machines co-work with each other by local com-
putations and message-passing. Further, we also identify
three complexity measures on the performance of dis-
tributed algorithms related to the computation model
above: (a) visit times, which is the maximum visiting
times of a machine, indicates the complexity of interac-
tions; (b) makespan, which is the evaluation of the total
computation time, is a measure of efficiency; (c) data
shipment, which is the size of the total messages shipped
among distinct machines during the computation, indi-
cates the network bandwidth consumption. However,
these three measures are typically controversial with each
other, and how to achieve a balanced strategy is a great
challenge for designing distributed algorithms.

Recently, many distributed graph processing systems
have been developed, which basically fall into two cate-
gories: one makes use of MapReduce [27] or Spark [86]
to speed-up big graph processing [39, 68, 81], and the
other uses different distributed computing models, such
as Pregel [61], GraphLab [53] and PowerGraph [41].

Remarks. There exist no single techniques that could
fit all for big graph search. That is, it is often necessary
to combine different techniques to obtain satisfiable so-
lutions. We also encourage interested readers to read a
very recent article [29] for discussions on the theory and
techniques of big data, a complement of this article.

10
Frontiers of Computer Science

5 Conclusions

In this article we have investigated big graph search, a
novel promising search paradigm for social computing
in the big data era. First, we have analyzed the need
of big graph search with various applications, industrial
and academic developments, and the evolution history
of information searching paradigms. Second, we have
pointed out the challenges and opportunities of big graph
search. Finally, we have introduced three types of tech-
niques towards big graph search: query techniques, data
techniques and distributed computing techniques.

Being a new paradigm for social computing, big graph
search has received extensive attentions. However, there
is obviously a long way to go for a big graph search engine
that meets various needs in practice.

Acknowledgments. This work is supported in part by
973 program (No. 2014CB340300), NSFC (No. 61322207)
and the Fundamental Research Funds for the Central
Universities.

References

1. http://www.itu.int/en/ITU-D/statistics.
2. http://www.statisticbrain.com/facebook-statistics/.
3. http://www.facebook.com.
4. http://twitter.com.
5. http://weibo.com/.
6. https://www.facebook.com/about/graphsearch.
7. http://www.google.com/insidesearch/features/search/knowledge.html.
8. http://research.microsoft.com/en-us/projects/trinity.
9. http://research.microsoft.com/en-us/projects/ldg.

10. http://research.yahoo.com/project/.
11. http://neo4j.org.
12. http://googleblog.blogspot.com/2012/05/introducing-

knowledge-graph-things-not.html.
13. http://www.statisticbrain.com/twitter-statistics.
14. Data, data everywhere. The Economist, Feb 27th, 2010.
15. S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
16. M. Adler and M. Mitzenmacher. Towards compressing

Web graphs. In DCC, 2001.
17. C. C. Aggarwal and H. Wang. Managing and Mining

Graph Data. Springer, 2010.
18. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern In-

formation Retrieval - the concepts and technology behind
search, Second edition. Pearson Education Ltd., Harlow,
England, 2011.

19. P. Barcelo, C. A. Hurtado, L. Libkin, and P. T.
Wood. Expressive languages for path queries over graph-
structured data. In PODS, 2010.

20. S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis,
A. Chowdhury, and A. Kolcz. Improving automatic

query classification via semi-supervised learning. In
ICDM, 2005.

21. P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW, 2004.

22. G. Buehrer and K. Chellapilla. A scalable pattern mining
approach to Web graph compression with communities.
In WSDM, 2008.

23. Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu. Monitoring
path nearest neighbor in road networks. In SIGMOD,
2009.

24. N. M. M. K. Chowdhury, M. R. Rahman, and
R. Boutaba. Virtual network embedding with coordi-
nated node and link mapping. In INFOCOM, 2009.

25. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty
years of graph matching in pattern recognition. IJPRAI,
18(3):265–298, 2004.

26. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2001.

27. J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

28. W. W. Eckerson. Data quality and the bottom line:
Achieving business success through a commitment to
high quality data. In The Data Warehousing Institute,
2002.

29. W. Fan and J. Huai. Querying big data: Bridging theory
and practice. J. Comput. Sci. Technol., 29(5):849–869,
2014.

30. W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regu-
lar expressions to graph reachability and pattern queries.
In ICDE, 2011.

31. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph
pattern matching: From intractable to polynomial time.
PVLDB, 3(1), 2010.

32. W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction
between record matching and data repairing. In SIG-
MOD, 2011.

33. W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards
certain fixes with editing rules and master data. VLDB
J., 21(2):213–238, 2012.

34. W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph
homomorphism revisited for graph matching. PVLDB,
3(1), 2010.

35. W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving
graph compression. In SIGMOD, 2012.

36. T. Feder and R. Motwani. Clique partitions, graph com-
pression and speeding-up algorithms. J. Comput. Syst.
Sci., 51(2):261–272, 1995.

37. K. Feng, G. Cong, S. S. Bhowmick, and S. Ma. In search
of influential event organizers in online social networks.
In SIGMOD, 2014.

38. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

Front. Comput. Sci.
11

39. J. Gao, J. Zhou, C. Zhou, and J. X. Yu. Glog: A high
level graph analysis system using mapreduce. In ICDE,
2014.

40. M. Giatsoglou, S. Papadopoulos, and A. Vakali. Massive
graph management for the web and web 2.0. In New
Directions in Web Data Management 1. Springer, 2011.

41. J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, 2012.

42. Hansen and P. Brinch. Classic Operating Systems.
Springer, 2001.

43. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Computing simulations on finite and infinite graphs. In
FOCS, 1995.

44. B. Hu, Y. Zhang, W. Chen, G. Wang, , and Q. Yang.
Characterizing search intent diversity into click models.
In WWW, 2011.

45. M. I. Jordan. Divide-and-conquer and statistical infer-
ence for big data. In KDD, 2012.

46. C. Karande, K. Chellapilla, and R. Andersen. Speeding
up algorithms on compressed Web graphs. In WSDM,
2009.

47. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: applications in vlsi
domain. IEEE Trans. VLSI Syst., 7(1):69–79, 1999.

48. G. Karypis and V. Kumar. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SISC,
20(1):359–392, 1998.

49. B. W. Kernighan and S. Lin. An efficientheuristic pro-
cedure for partitioning graphs. Bell System Technical
Journal, 49(1):13–21, 1970.

50. K. Klein, N. Kriege, and P. Mutzel. CT-Index:
Fingerprint-based graph indexing combining cycles and
trees. In ICDE, 2011.

51. A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan.
The big data bootstrap. In ICML, 2012.

52. C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: de-
tection of software plagiarism by program dependence
graph analysis. In KDD, 2006.

53. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed graphlab: A frame-
work for machine learning in the cloud. PVLDB,
5(8):716–727, 2012.

54. N. A. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

55. S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing
topology in graph pattern matching. PVLDB, 5(4):310–
321, 2011.

56. S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong sim-
ulation: Capturing topology in graph pattern matching.
ACM Trans. Database Syst., 39(1), 2014.

57. S. Ma, Y. Cao, J. Huai, and T. Wo. Distributed graph
pattern matching. In WWW, 2012.

58. S. Ma, Y. Cao, T. Wo, and J. Huai. Social networks and

graph matching. Communications of CCF, 8(4):20–24,
2012.

59. S. Ma, J. L, X. Liu, and J. Huai. Graph search in the
big data era. Information and Communications Tech-
nologies, 6:44–51, 2013.

60. S. Ma, J. Li, X. Liu, and J. Huai. Graph search: A new
searching approach to the social computing era. Com-
munications of CCF, 8(11):26–31, 2012.

61. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In SIGMOD, 2010.

62. H. Maserrat and J. Pei. Neighbor query friendly com-
pression of social networks. In KDD, 2010.

63. M. Newman, A.-L. Barabĺćsi, and D. J. Watts. The
Structure and Dynamics of Networks. Princeton Univer-
sity Press, 2006.

64. B. Otto and K. Weber. From health checks to the seven
sisters: The data quality journey at bt. In BT TR-BE
HSG/CC CDQ/8, Sept. 2009.

65. C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

66. D. Peleg. Distributed Computing A Locality-Sensitive
Approach. SIAM, 2000.

67. D. Peng and F. Dabek. Large-scale incremental process-
ing using distributed transactions and notifications. In
OSDI, 2010.

68. L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and
X. Lin. Scalable big graph processing in mapreduce. In
SIGMOD, 2014.

69. E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23(4):3–13, 2000.

70. R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill Higher Education, 2000.

71. G. Ramalingam and T. Reps. On the computational
complexity of dynamic graph problems. TCS, 158(1-2),
1996.

72. G. Ramalingam and T. W. Reps. A categorized bibliog-
raphy on incremental computation. In POPL, 1993.

73. M. N. Rice and V. J. Tsotras. Graph indexing of road
networks for shortest path queries with label restrictions.
PVLDB, 4(2):69–80, 2010.

74. S. Sakr and E. Pardede, editors. Graph Data Manage-
ment: Techniques and Applications. IGI Global, 2011.

75. D. Salomon. Data compression - The Complete Refer-
ence, 4th Edition. Springer, 2007.

76. A. Schenker, M. Last, H. Bunke, and A. Kandel. Classifi-
cation of web documents using graph matching. IJPRAI,
18(3):475–496, 2004.

77. D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building
bridges for web query classification. In SIGIR, 2006.

78. L. G. Terveen and D. W. McDonald. Social match-
ing: A framework and research agenda. In ACM Trans.
Comput.-Hum. Interact., pages 401–434, 2005.

12
Frontiers of Computer Science

79. Y. Tian and J. M. Patel. Tale: A tool for approximate
large graph matching. In ICDE, 2008.

80. J. R. Ullmann. An algorithm for subgraph isomorphism.
J. ACM, 23(1):31–42, 1976.

81. R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
Graphx: a resilient distributed graph system on spark.
In GRADES, 2013.

82. Q. Xing, Y. Liu, J.-Y. Nie, M. Z. S. Ma, and K. Zhang.
Incorporating user preferences into click models. In
CIKM, 2013.

83. S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and
structureless graph querying. PVLDB, 7(7):565–576,

2014.
84. S. Yang, X. Yan, B. Zong, and A. Khan. Towards ef-

fective partition management for large graphs. In SIG-
MOD, 2012.

85. W. Yu, C. C. Aggarwal, S. Ma, and H. Wang. On anoma-
lous hotspot discovery in graph streams. In ICDM, 2013.

86. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In NSDI, 2012.

	1 Introduction
	2 Graph Search, Why Bother?
	1 What is Graph Search
	2 An Evolutionary Point of View
	3 Joint Efforts of the Industry and Academia

	3 Challenges of Big Graph Search
	1 The FAE Rule
	2 The Challenges

	4 Techniques Towards Big Graph Search
	1 Query Techniques
	2 Data Techniques
	3 Distributed Computing Techniques

	5 Conclusions

