
QuickSquad: A new single-machine graph
computing framework for detecting fake accounts
in large-scale social networks

言語: English

出版者: SPRINGER

公開日: 2020-11-18

キーワード (Ja):

キーワード (En): Security of online social networks,

Fake accounts, Sybil detection, Graph computing,

Distributed system

作成者: JIANG, Xinyang, LI, Qiang, MA, Zhen, 董, 冕雄,

WU, Jun, GUO, Dong

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00010315URL

QuickSquad: A New Single-machine Graph
Computing Framework for Detecting Fake Accounts
in Large-scale Social Networks

Xinyang Jiang1 · Qiang Li1,4 ·
Zhen Ma1 · Mianxiong Dong2 ·
Jun Wu3,4 · Dong Guo1,4

Received: date / Accepted: date

Abstract Graph-based approaches for fake account detection is one of the im-
portant means to fight against fake accounts’ attacks on social networks. With
the growth of the scale of social networks, more and more researchers begin
to use the graph computing framework to boost their detection algorithms.

We make detailed analyses of social networks’ graph data and state-of-the-
art graph computing frameworks, and find that some techniques of the current
graph computing systems are overgeneralized and suboptimal, which means
they only focus on how to design a graph processing framework on general
graphs but miss the optimization of social networks graphs. So, in this paper
we propose QuickSquad, a graph computing system on a single server which is
specific to the optimization of social networks graph structures. QuickSquad
uses the method of ”divide and rule” instead of overgeneralization. First, we
divide the graph structure data into the heavy set and the light set according
to the out-degree of vertices. Then, we 1) store them with different formats, 2)
process them with edge-based updating and vertex-based updating appropri-
ately in a two-phase processing model, 3) apply two selective scheduler strate-
gies of different level, i.e. vertex-level and file-level, and 4) provide four cache
priorities when the memory is not enough to cache all data. Finally, we imple-
ment two detection methods, dSybilRank and dCOLOR, on our system, and
the experiments demonstrate that our system can increase the performance up
to 5.91X (from 1.14X) compared with the performance of the current graph
computing systems, like GridGraph.

1.College of Computer Science and Technology, Jilin University, Changchun, China;
2.Department of Information and Electronic Engineering, Muroran Institute of Technology,
Japan;
3.School of Cyber Security, Shanghai Jiao Tong University, Shanghai, China;
4.Symbol Computation and Knowledge Engineer of Ministry of Education, Jilin University,
Changchun Jilin, China.

Corresponding Author: Dong Guo(guodong@jlu.edu.cn).

Manuscript

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/ppna/download.aspx?id=101031&guid=6c47b3cb-3df6-4c4d-af36-c19600c1e10b&scheme=1
http://www.editorialmanager.com/ppna/download.aspx?id=101031&guid=6c47b3cb-3df6-4c4d-af36-c19600c1e10b&scheme=1

2 Xinyang Jiang1 et al.

Keywords: security of online social networks, fake accounts, sybil detec-
tion, graph computing, distributed system.

1 Introduction

With the development of the Internet and various mobile intelligent termi-
nals, Online Social Network (OSN) platform develops rapidly[42][29][18][19].
According to the statistics, by January, 2017, the monthly active users of Face-
book (the largest social network in the world) have reached 1.871 billion and
there have been over 20 social network platforms with over 100 million monthly
active users1. Online social networks have gradually substituted the traditional
methods of social networks, such as email, to become a widespread method for
making friends, working, living and entertaining. With the continuous increase
of the number of social network users, enormous commercial opportunities are
brought to the industry of media, advertisement, entertainment[62].

While social networks bring convenience to people’s life and benefits to
businessmen, they also have new and enormous potential safety hazards. To
seek profit in social networks, attackers create fake accounts which do not
correspond with any real users and/or embezzle compromised accounts which
are overtaken by perpetrators. And, then they use these accounts to start some
attacking behavior, such as sending spams or malicious URLs [6], conducting
click fraud to obtain charged click of advertisements, spreading malware and
even illegally obtaining users’ private information [7,31], etc.

To reduce the potential safety hazard brought by attackers who use fake ac-
counts, researchers have proposed various detection approaches [7,8,60,56,4,
38,20,55,58,15,52,61,47] in recent years, which are mainly divided into three
kinds that are respectively based on users’ behavior features, information con-
tent of users and the graph structure of social networks.

The first type of methods are based on behavior features. Those methods
establish the behavior patterns that can distinguish different users based on the
malicious attacking modes of fake accounts. Since normal users and fake users
have different behavior patterns in social networks, users’ behavior patterns
can be used to detect fake accounts [54]. The second type of methods are based
on content features [5]. Those methods try to find out the features of the users’
information or interactive information between the users, such as machine
learning algorithm training [26]. The above two types of methods both need a
large amount of ground truth data to strengthen the detection models or need
constant training of detection systems to improve the detection performance
[60]. In addition, the above two kinds of methods have comparatively high
false negative rates and false positive rates [2]. Compared with the above
two methods, graph-based detection approaches have the advantages of good
detection performance and simple feature capturing.

1 https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-
of-users/ 2017.02.20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 3

Attackers can imitate the behavior of normal users. However, it is very dif-
ficult for them to establish good social relationship with normal users, because
normal users will refuse to establish relationship with fake accounts. Such fea-
tures make it difficult for attackers to imitate normal users’ behavior to evade
detection [54]. To sum up, graph-based approaches are widely applied.

However, with the growth of social networks, existing complicated graph-
based detection approaches are hard to be scaled and applied to the detection
of large-scale social networks in the real world. In addition, it is hard to use
traditional big-data processing framework, such as MapReduce, to process un-
structured graph data [24]. Hence, some researchers [8,4,56] try to apply the
method of Pregel [44]/Giraph [22], which is a vertex-centric graph computing
system to implement the detection of large-scale social networks. However, the
design of existing graph computing systems is overgeneralized. Furthermore,
these systems implement the optimization that is specific to a common graph,
but not embrace any specific social networks. For example, GraphChi [34] and
X-stream [50] adopt edge-based updating, while GridGraph [66] and Venus [12]
adopt vertex-based updating. Through our analysis, the edge-based updating
perform well in dealing with low-degree vertices, while the vertex-based up-
dating performs well in dealing with high-degree vertices.

Through the observation of social networks’ graph data, this paper pro-
poses QuickSquad, a vertex-centric graph computing system on single servers,
which is specific to the optimization of social networks’ graph. QuickSquad also
makes use of Scatter and Apply interfaces [23]. It follows the GAS(Gather, Ap-
ply, Scatter) model and can implement most of the current applications of de-
tection on social network. QuickSquad implements the optimization specific to
the power law features of social networks. QuickSquad divides the graphs into
two non-intersecting sets according to the degree of vertices, which are light
set and heavy set, and different strategies are applied to these two sets. First,
different storage formats are applied which are light shard format and heavy
shard format (§4.1.1). Second, edge-based updating and vertex-based updat-
ing are both applied in our processing models. Moreover, we divide the graph
processing into two phases, that is streaming light phase(SLP) and streaming
heavy phase(SHP). The vertex-based updating is only processed in SHP, while
edge-based updating is divided into two parts which are executed respectively
in SLP and SHP (§4.1.2). Third, different selective scheduler strategies are ap-
plied to optimize the graph system, which are selective scheduler strategies of
file granularity and selective scheduler strategies of vertex granularity (§4.1.3).
Finally, different priorities of cache are provided (§4.1.4).

The main contribution of our work are summarized as follows:

1. The state-of-the-art graph system on single machines is analyzed (§2.1)
and some key techniques in optimizing out-of-core computing are summa-
rized (§3.2 and §4.1.5). Based on our observation, these key techniques are
overgeneralized when being applied.

2. The power-law distribution of social network graphs is taken into consid-
eration. We have implemented QuickSquad which divides the graph into

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Xinyang Jiang1 et al.

two parts, so different strategies are applied in light set and heavy set
to decrease the I/O amount of the system and to improve the system’s
performance (§4 and §5).

3. The existing graph-based fake account detection algorithms are analyzed
and the related graph algorithms are roughly divided into two types. One
is power iteration algorithms based on random walk, such as SybilRank
[7]; the other is traversal algorithms based on community findings, such
as COLOR/COLOR+ [63]. We put forward dSybilRank and dCOLOR
algorithms, which improve the efficiency by transforming the original algo-
rithms, SybilRank and COLOR, to vertex-centric parallel iterative graph
algorithms (§5.3).

4. The performance of the above two types of detection algorithms in Quick-
Squad are evaluated. Experiment results show that QuickSquad performs
well. For example, it takes QuickSquad 459s to process the network of 50
million vertices on a single server, showing better performance than Sybil-
Rank which requires 33 hours to process the data of 160 million vertices
by using eleven m1.large clusters. Moreover, we also compare QuickSquad
with existing graph computing systems, such as GridGraph, and the com-
parison results show that the performance of QuickSquad can be increased
by 1.14 - 5.91 times in social networks’ graph. (§6)

2 Related Work

2.1 Graph computing system

When distributed computation is processing structured data and flattened
data, MapReduce model is widely used.

However, most iterative graph algorithms have multiple iterations, such as
BFS, pagerank, label propagation and so on. It is pretty hard to implement
them using MapReduce [16] Model directly, since they usually need a large
number of complex operations (like map, reduce and join). Moreover, the iter-
ative graph has the characteristic of repeatedly access and poor locality when
accessing the partition of graph. Furthermore, MapReduce model needs a dis-
tributed file system to store the partition of graph data, which also makes the
implementation perform poorly. In addition, graph data itself has the feature
of being unstructured and presents poor locality of access and strong depen-
dence among data, which makes MapReduce model that needs distributed file
system to exchange data in iterations have poor performance. BSP(Bulk Syn-
chronous Parallel) model proposed by Valiant (a Turing Award winner) [53], is
a model that is more suitable for iterative graph processing. Most distributed
graph computing systems at present such as [24,43,23,67] refer to the thought
of BSP model and suggest thinking like a vertex (TLaV) [45], which is also
called vertex-centric parallel iterative graph computing system.

There are many vertex-centric computing frames. They can be divided into
distributed graph computing system and single server graph computing sys-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 5

tems according to the difference of low-leveled hardware frames. While in a
single server graph computing system, storage needs to be used in processing
large graphs, such as disks for improving the scalability of a single server. Com-
pared with distributed graph computing system, graph computing systems on
single servers have low consumption without depending on the Network, so
that it’s easier to be managed and maintained. Therefore, we give priority to
graph computing systems, when data sets do not exceed the single server’s pro-
cessing capacity. In this paper, we optimize and use graph computing systems
on single servers to process the graph data of social networks. Plus, there are
some paper focus on the GPU, such as [46,32,39,51]. But this paper is focus
on CPU.

However, we find that most of state-of-the-art graph systems[34,50,66,65,
14,40] are overgeneralized, which means they don’t get the optimal through
the power law graph distribution. A social network’s graph in the real world
is subject to power-law distribution in the application. PowerLyra [11] system
proposed by Shanghai Jiaotong University takes the characteristics of power-
law distribution into consideration. PowerLyra finds that some systems [22,
43] distribute vertices evenly among machines and all the edges related to one
vertex should be put in the machine in which the vertices exist. However, when
partitioning the power-law distribution graphs, the above operation which only
considers the locality of access will lead to the imbalance of computing and
communication, since some vertices are of high degree. If edges are partitioned
evenly to every machine [24,23], those vertices with low degrees (that are not
supposed to be partitioned) will be partitioned, which will decrease the locality
of access and lead to extra cost of communication. Therefore, PowerLyra treats
the vertices of low degrees through distributing vertices evenly in order to avoid
the extra cost of communication, while it treats the vertices of high degrees
through distributing edges to avoid load imbalance.

Moreover, we observe that the cut technique of vertices is not only applied
to different environment in an actual distributed graph computing system,
but also applied to some techniques of single servers which use the out-of-core
computing. Some of these techniques support dense graphs well, and some
perform better on sparse graphs. Just as what is shown in §3.1, some real world
graphs, especially most social networks are subject to power-law distribution.
Therefore, we make reference to the thought of ”divide and rule” of PowerLyra
for reference in our system and combine these technologies together. We will
introduce the details in the next section.

2.2 Graph-based detection algorithm

The analysis method based on social network graphs deems a social network as
an entire graph. Through analyzing the graph features, an effective detection
algorithm is established. Although attackers can imitate the random behavior
of normal users, it is difficult to establish a lot of good social relationships
[54] with normal users and change the topology features of the whole social

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Xinyang Jiang1 et al.

network. Hence, a lot of researchers use graph analysis algorithm to identify
fake accounts. Some works, such as [15,52,54,61,47], is based on graphs, but
their designs have low detection rate, or high algorithm complexity, which can
only work in smaller social networks [59]. As a result, it is difficult to really
apply them to fake account detection in large scale social networks [7].

After SybilRank [7], there are many insightful works. Using the million-
user-scaled data from millions of users, integro [4] trains a classifier based on
the features of accounts to separate the fake accounts from large scaled social
networks through the advanced random walk algorithm to rank the accounts
and then to predict the fake accounts. Transductive Sybil Ranking(TSR) [28]
proposes a TSR approach capable of adjusting edge weights based on the
spread of sampled trust leaks, which shows good performance in defending real
attacks. SmartWalk [41], an adaptive-random-walk method, predicts the req-
uisite length of random-walk-length through supervised learning tools. Sybil-
Radar [48] is a Sybil detection mechanism based on graph-based structural
features of OSNs to detect nodes with weak trust relationships against Sybil
attacks. In contrast to SybilRank, SybilRadar assumes an OSN with weak
trust and with graphs of a lot of attacking edges. Therefore, SybilRadar com-
putes similarity values between a pair of nodes to predict the attacking edge.
Moreover, to predict the community, SybilRadar uses a module optimization
method called Louvain Method [3]. Lastly, to rank the suspicious nodes, each
node in the OSN is assigned a degree-normalized landing probability of a mod-
ified short random walk. Hence, SybilRadar shows much better detection ac-
curacy than other competitors. And they all focus on improving the detection
performance and to some extent look down upon on detection effectiveness.

Some researchers have implemented some of the above algorithms on big-
data distributed systems, including the traditional big data processing frame-
work MapReduce. For example, SybilRank is implemented in MapReduce.
SynchroTrap [8] is implemented in MapReduce and Giraph [22]. integro [4] is
implemented in MapReduce and Pregel [44]. VoteTrust [56] is implemented in
Giraph. But they simply implement those algorithms in open source systems
without considering the optimization of the system.

3 Background and Motivation

This section discusses the motivation of QuickSquad from the perspective of
data, algorithm and system, that is, features of the social networks’ graph
data, graph-based fake account detection algorithms, and graph computing
frameworks.

3.1 Features of graph structure on social networks

Graph is a very important kind of data structure and it can be used to represent
the complicated relationship among entries of the same kind. Graph data is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 7

0 1 2 3 4 5 6

x 10
7

0

1

2

3

4

5

6

7

8

9

10
x 10

4 power−law distribution on twitter graph

degree

n
u
m

b
er

 o
f

v
er

ti
ce

s
w

it
h
 t

h
at

 d
eg

re
e

Fig. 1 Power-law distribution on
Twitter

0 1 2 3 4 5 6
log(out-degree)

−2

0

2

4

6

8

lo
g(
co
un

t-v
er
te
x)

Log-Log Plot
cout-vertex:the number of vertex

Fig. 2 The log-log plot of Twitter

unstructured so that its access is uncertain and its memory access suffers poor
locality [24]; Moreover, graphs of social networks are diversified, some are
based on unidirectional following, such as Twitter and Sina Weibo which are
represented by directed graphs [54], and the others are based on bi-directional
social relationship, such as Facebook and Friendster [57] which are expressed
by undirected graphs [7,56]. In addition, these graphs are under continuous
evolution. For example, graphs will be denser, for the growth of edges in the
graph is superlinear compared with the growth of vertices, and the average
distance between vertices will decrease continuously with graph evolution [36].
Graph will be subject to power-law distribution [21]. For example, a Twitter
graph [33], shown in fig.1, plots the number of the vertices with a specific
out-degree in twitter graph and those vertices are arranged from small to
large according to their out-degree. The neighbors of most vertices account
for only a small part of the graph, while a small number of vertices have
many neighbors. Fig. 2 is the log-log plot of Twitter graph. According to the
relationship of following among twitter users, the relationship between the
following (out-degree) number of users and the number of users related with
the number of followings (count-vertex) is calculated. Then logarithms of both
out-degree and count-vertex are calculated, and a line is formed after fitting the
logarithms. Graphs of some social networks will also present the small-world
effect, transitivity, clustering, community structure [17] or other features [49].
These diversified graph data features bring more opportunities and challenges
for the design of graph-based social network detection algorithms and also
bring challenges for the design of big-data graph processing systems [24,37,
11,65]. For example, graph partition irrespective of power-law distribution
features of the graph will cause load imbalance [11] and the partition being
irrespective of graph’s community structure will cause excessive network cost
[37], etc. with the update value being k.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Xinyang Jiang1 et al.

3.2 Optimization techniques for graph computing

A graph structure data can be considered as a kind of graph G = (V,E) , where
V represents a set of users and E represents the relationship between the two
users. In directed graphs, an edge e(i, j) suggests that the user vi follows the
user vj , while in undirected graphs, e(i, j) and e(j, i) are used simultaneously
to show that vi and vj are bi-directional friends. There are n = |V | vertices
and m = |E| edges, where, the edge number in an undirected graphs m is
twice that in the actual graphs (as it is represented by two directed edges).
The vertex-centric computing model is composed of a series of iterations which
are called supersteps S. In a superstep, each vertex v ∈ V will execute a self-
defined compute function F (v) and then F (v) will be executed independently
and parallelly. The compute function can be summarized into three phases:
gather, apply and scatter stage, also called GAS model [24]. In the gather
stage, current vertex v will collect the data updated in the previous superstep
S − 1 from adjacent vertices and itself; in the apply stage, the vertex value
will be computed and updated; in the last stage of scatter, the vertex will
update the data on the edge and send them to the adjacent vertices for the
next superstep S + 1.

At present, there are many general graph computing systems and there is
also some work to implement the optimization according to the characteristics
of graphs, such as PowerLyra [11], which optimizes distributed graph com-
puting system PowerGraph [23] through the characteristics of the power-law
distribution, using different computing and partitioning strategies through the
vertices of different degrees, using the vertex-cut of multiple copies on vertices
of low degrees. M-Flash [25] and Gemini [67] also try to use different strategies
for vertices of different degrees, but they do not make full use of the power-law
distribution of the graph to improve the system performance.

Some key optimization techniques that are applicable to vertex-centric
graph computing systems on single servers. Unfortunately, most of them are
”one size fits all” design, but we find that some of them are substitutable
for each other. For example, fine-granularity selective scheduling and coarse-
granularity selective scheduling are two overgeneralized approaches and they
can be used as alternative method in different situations.

Here, we discuss two pairs of techniques in detail and demonstrate why
they can be combined to improve the performance for power-law distribution
graph:

3.2.1 Edge-based Updating and Vertex-based Updating

When processing the compute function, QuickSquad will read data from disk
at the gather phase and then write the data back to disk at the scatter phase.
The amount of data of one vertex (which are read and written back) is related
to the number of edges adjacent to it. Therefore, in the procedure of one
iteration, system will read and write back the graph structure data whose
total amount is related to |E|. So, we call this kind of updating model as

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 9

edge-based updating model in this paper. In edge-based updating model,
the system will maintain a vertex value table and an edge value table in the
whole implementation of algorithms, and the data will be exchanged between
iterations through the edge value table. In scatter phase, the system produces
the corresponding update for each adjacent edge of a vertex according to the
vertex value, and writes it back to the storage. While in gather phase, the
system will read the information of the related adjacent edges in the storage
and recomputes the current vertex value according the updates. Such a way is
adopted to update the system in GraphChi [34], X-stream [50] and NXGraph
[14].

According to the work flow of edge-based updating, edge value table will
generate the data whose amount is proportional to edges in every iteration.
There are a large number of edges in a natural graph which will exert a strong
impact on system performance by reading and writing repeatedly. Vertex-
based updating (also called on-the-fly vertex updating) [66,12] is proposed,
which directly writes the update into the accumulated value table of a ver-
tex and then exchanges the data between iterations through the vertex value.
When the updating of an algorithm satisfies Abelian law, namely the operation
of updating is associative and commutative, the updating produced by every
adjacent edge can be updated to the destination vertex by using the cumula-
tive sum directly without the need to bring in edge value table additionally,
thereby edge-related I/O is reduced in large amount. Though vertex-based
updating needs to load and synchronize the vertex value table additionally,
which also incurs additional vertex-related I/O, and the cost of this part is
hidden because the number of most graph edges we process is much greater
than the amount of vertices. Venus [12], GridGraph [66] and FlashGraph [65]
all use the implementation strategy of vertex-based updating.

3.2.2 Partition Granularity and Vertex Granularity Selective Scheduling

One of the main steps in all iterations of an iterative graph computing al-
gorithm is accessing graph structure data. Algorithms have different access
patterns [65] and sometimes one iteration only needs to access parts of the
graph data, so selective scheduling strategy is needed to load the needed data
and skip those useless data. Theoretically, selective scheduling strategy can
visually bring the following three kinds of benefits during graph computing:

1. Reduce the I/O amount of reading-in edges;
2. Reduce the number of edges in graph building (if graph building is needed);
3. Reduce the number of traversal edges when computing.

Selective scheduler with partition granularity, also known as coarse granu-
larity, is implemented in some systems. It uses a subgraph as a scheduling unit
and each subgraph has an activity state which decides whether the subgraph
is necessary to be visited in this iteration. To implement the coarse granularity
selective scheduler, they only need to record the active state of each vertex in
a global scheduler [34]. And they divide the vertex table into several disjoint

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Xinyang Jiang1 et al.

intervals (represent subgraphs) and the corresponding edges of each vertex
congregate in some disjoint intervals. Finally, whether the edge set related to
the interval is scheduled will be determined by interval states.

It is simple to implement the selective scheduling of coarse granularity, but
it also has limitations. For example, in some extreme cases, even there is only
one active vertex in an interval, all corresponding edge sets shall be scheduled
in the whole interval. FlashGraph[65] and Graphene[40] use the scheduling
method of vertex-granularity to effectively reduce I/O by observing the ac-
tive state of every vertex rather than the active state of the whole interval.
The scheduling of vertex-granularity will lead to a great amount of random
I/O which decays the performance of storage, so FlashGraph and Graphene
both work on SSD(solid state disk) and use some techniques to merge these
I/O requests. In details, FlashGraph uses file system SAFS(set-associative file
system)[64] and Graphene uses the I/O merging and I/O deduplication.

3.3 Graph-based detection approaches for fake accounts

Finally, we will discuss two different types of typical detection approaches
based on graph structures used in this paper.

SybilRank [7] uses an early-terminal random walk algorithm to detect
the sybil attacks effectively on social networks of bilateral relationship. Firstly,
SybilRank assumes that normal users in social networks compose a well con-
nected (or fast mixing) graph. Hence, a random walk algorithm can be deemed
as an irreducible and aperiodic Markov chain [17] in the whole network, Like
TrustRank [27] and SybilRadar [48], which also uses power iteration [35]. Be-
fore the algorithm starting, some identified normal users are assigned with a
positive number as a trust value and these normal users are called trust seeds,
and others are users to be detected and initialized to be 0. In each round of
iteration, each user propagates its current trust value to its neighbors. Sec-
ondly, it is assumed that fake accounts have fewer opportunities to keep bi-
lateral relationship with normal users (different from the unilateral followings
of digraphs) and the relationship established is usually dispersed. Hence, we
apply early-terminal technology before converging, which will lead to better
results than that in the state of stationary distribution. The results got above
form a ranklist, based on which suspicious accounts are identified. In addition,
early-termination also improves the efficiency of the algorithm and reduces
algorithm’s iterations. Hence, SybilRank has higher efficiency and Cao et al.
implemented it in Hadoop MapReduce [16] platform. On the other hand, Sybil-
Rank is also the foundation of a lot of subsequent work. However, experiment
shows that SybilRank still needs more than one day to process a large-scale
graph. For example, it takes 33 hours to process an artificially generated 160
Million network graph, which indicates that there is still a large gap between
the effective detection efficiency and the actual use of SybilRank.

COLOR [63] algorithm is a traverse-based single-vertex detection algo-
rithm which is subject to the following two assumptions. Firstly, to widely

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 11

spread malicious information, fake accounts will establish relationship with
more users and these users interact rarely. Namely, malicious accounts will
attempt to establish relationship with users in different social groups, while
social relationship between normal users will be concentrated on specific so-
cial groups. Secondly, normal users will not usually or deliberately interact
with malicious accounts. Therefore, COLOR algorithm identifies suspicious
accounts through scanning neighboring vertices of each detected user and
through observing the interactive relationship between neighboring vertices.
COLOR algorithm firstly traverses each neighboring vertex of the vertex to
be detected, colors each neighboring vertex with a different color, and then
begins recursive coloring from each neighboring vertex. To improve coloring
efficiency, COLOR algorithm only colors vertices in the a distance within k
from the vertex to be detected (k is the coloring distance). When colors of all
vertices do not change any more or the colored distance of each color exceeds
a certain limit, coloring is stopped. Finally, coloring is summarized by the al-
gorithm and the reliability evaluation of detected users is provided according
to the statistical structure.

Since this paper attempts to increase the efficiency of graph-based detect-
ing algorithms by graph computing systems, but not to attempts discuss the
algorithm performance in fake accounts detection, we choose SybilRank for
that it is based on community detection algorithm and random walk algo-
rithm. Much of the following work (such as TrustRank [27], VoteTrust [56],
SmartWalk [41], SybilRadar [48]) can be seen as the improved version of Sybil-
Rank, and they are improved from the perspective of trust seed selection [48],
assignment operations [48] on trust seed [27] or changing the mode of trust
value propagation [56,41]. Other detection methods that were conducted at the
same time with SybilRank, such as SybilInfer [15], SybilGuard [61], SybilLimit
[60] are all based on the random walk algorithm. In addition, SybilRank was
implemented on the big data processing framework, MapReduce [16], which
has been applied on a social network in the real world, that is, detecting the
fake accounts on Tuenti (the largest OSN in Spain). Among this kind of algo-
rithms, we choose the SybilRank algorithm finally.

Furthermore, COLOR is a single-vertex algorithm based on traversal, which
uses the graph computing method which is different from that of SybilRank.
Therefore, we choose it as another optimization method to prove the versatility
of our system.

In conclusion, the above two types of algorithms are used as examples and
are modified to be parallel vertex-centric algorithms. Note that, in this paper,
we assume that all detection algorithms are applied to the vertex, that is to
say, the computing result (excluding the intermediate result) is the specific
attribute value of each node, and its calculation characteristic is in line with
Abelian group [12].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Xinyang Jiang1 et al.

>

File System

IO scheduler IO scheduler

Graph System

Vertex-level selective scheduler

Vertices Vl,Vh)

APIs(scatter, apply)

Application of graph-based detection algorithms for fake account

(e.g dSybilRank, dCOLOR)

Partition-level selective scheduler

El1
Eh1U1

PageCache

U El Eh

Fig. 3 Architecture of QuickSquad

4 Overview

In this section we will introduce QuickSquad which, just like other graph com-
puting systems, is based on the idea of vertex-centric parallel graph comput-
ing and uses the out-of-core graph processing technology to expand its ability
to process large-scale social network data. Unlike other systems, QuickSquad
takes the features, like power-law distribution, of social network graphs into
consideration.

4.1 Optimizing of power-law distribution graph

When designing our system, characteristics like power law distribution are
considered to optimize the existing system. According to the out-degree of the
vertices, the social network graph is divided into 2 disjointed sets, namely,
heavy vertex set Vh and light vertex set Vl. These two represent the vertex set
with high out-degrees and the vertex set with low out-degrees, respectively.
Eh is the heavy edge set, which is the set of all outgoing edges related to
Vh, i.e. the source vertex vi of every e(i, j) ∈ Eh belongs to Vh. Similarly, we
define El as the light edge set, which is the set of all incidence edges related
to Vl. Thus, two disjointed partitions named Gh(Vh, Eh) and Gl(Vl, El) can be
obtained. By using different strategies on Gh and Gl, to processing of social
network graphs can be accelerated including the graph storage format, graph
processing model, selective scheduling strategy and cache policy. The overall
structure of our system is shown in Fig.3.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 13

4.1.1 storage format

The original edge data is pre-processed, and divided into Eh and El, which
use different storage formats residing on disk. To store El on disk, we divide
the vertex set evenly into P disjointed sets which are known as source vertex
subintervals. And, then all edges in El fall in P light shards which are related to
the P source vertex subintervals. An edge will be put into a shard if and only if
the source of the edge is in the corresponding subinterval. Please note that we
need sorted-edges only when selective scheduling requires vertex-level(§4.1.3),
so we don’t need sorted-edges in light shard, thus increasing the speed of
pre-processing and decreasing the time of edge sorting. For Eh, the vertex
ID values are also divided into Q equal disjointed sets which are called the
destination vertex subintervals. Edges whose destination vertices are in the
same destination subinterval are placed in the same file and sorted by the
source vertex ID and the file is known as the heavy shard. Note that, when
selecting the best value of Q, M(the size of internal memory) should be greater
than |V l| + |V h|/Q, because the memory should cache all Vhs and at least
one Vl to ensure the performance of the system. As for the interval division,
consecutive ID values are segmented into P or Q equal parts, so as to improve
the locality of access.

4.1.2 processing model

In this paper, we introduce two updating modes (§3.2.1), which are fit for
graphs of different density respectively. Edge-based updating(EUP) performs
better in sparse graph, by which QuickSquad processes Gl. While vertex-based
updating(VUP) performs better in dense graphs by which QuickSquad pro-
cesses Gh. So we put forward a two-phase processing strategy by combining
EUP and VUP to process the network graph with power-law. This strategy
does not process Gl and Gh sequentially or vice versa directly. In fact, we
firstly execute the scatter stage of EUP on all edge e in Gl, which is called
streaming light phase (SLP). Then in streaming heavy phase (SHP),
all target vertex subintervals are processed one by one, and VUP and gather
stage of EUP are executed on every target vertex at the same time. Processing
VUP and gather stage of EUP at the same time on one subinterval can elimi-
nate the cost of repeated data loading, and it will also increase the locality of
visits.

The system executes this two-phase processing model in each iteration. In
SLP, the edge-based update strategy is adopted to handle P El and generate
updates. As is shown in Fig.4(a), the affiliated attribute of each light shard
and its corresponding vertex is read in order. Each edge e is traversed and the
corresponding update value u is calculated through the user-defined vertex
function. There are Q Ul files which is classified by destination vertex subin-
tervals and according to the destination vertex value of e, update value u is
written into the corresponding file Ul. File Ul can be seen as the intermediate

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Xinyang Jiang1 et al.

algorithm 1 Main procedure of our system
Require: Vh, Vl, D, Eh, El

Ensure: D of the results
1: for i = 1 to iterations do
2: Map D to Vh and Vl

3: // SLP
4: for i = 1 to P do
5: load V

(i)
l , E

(i)
l in SourceInterval[i]

6: for each e ∈ E
(i)
l do

7: compute u from scatter(e)
8: append the u to corresponding Ul

9: if memory is full then save all Ul buffers
10: end if
11: end for
12: end for
13: // SHP
14: load Vh

15: for i = 1 to Q do
16: // step 1

17: load D(i), U
(i)
l in DestinationInterval[i]

18: for each u ∈ U
(i)
l do

19: apply(u) to D(i)

20: end for
21: // step 2

22: load E
(i)
h in DestinationInterval[i]

23: for each e ∈ E
(i)
h do

24: direct apply(e) to D(i)

25: end for
26: save D(i)

27: end for
28: end for

result between the first phase and the second phase. SLP can be seen as the
first half phase of edge-based updating (§3.2.1).

In SHP, as is shown in Fig.4(b), is mainly composed of two tasks. One is to
accumulate all update u in the Q update file Ul (which is generated in SLP) to
the destination vertex subinterval. The other is to generate the update u of Eh

and directly write the update u on the destination vertex subinterval (without
introducing update files) In detail, QuickSquad will process the destination
vertex subintervals (whose number is Q) one by one. First, the subinterval
to be processed should be loaded from disks to memory. Then the loaded
subinterval should be updated, which is divided into two steps:

1) Step 1: to process Ul (generated in SLP), by updating each update u in
Ul to the destination vertex subinterval.

2) Step 2: to process each edge e in Eh by using the vertex-based updating
strategy to update the data from the source vertex in Vh (which is already
cached in the memory) of the edge directly to the destination vertex.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 15

Vh

El1Vl1

Vl2

Vl3

Fig. 4 The flow chart of processing model. Vl and El represent the vertices and edges in light
shard respectively. Vh and Eh represent the vertices and edges in heavy shard respectively.
U represents the update Ul.

Finally, after SLP and SHP, the updated V data will be mapped to Vl and
Vh for the next round of iteration. The pseudo-code of the main streaming is
provided in Algorithm 1.

I/O analysis: This paper adopts the analytical approach similar to I/O
complexity [1] to analyze the I/O complexity of scanned data in the first
iteration. In SLP, as is shown in Fig.4(a), Vl and El are loaded sequentially to
generate the corresponding update u and then written in the corresponding Ul

in sequence, where Vl is generated by mapping loaded V . As V and El are both
read in order, and more than one file is written in Ul orderly at the same time,
the total I/O number of SLP will be |V |+ |El|+ |Ul|. SHP mainly includes two
steps, as is shown in Fig.4(b). To enhance the locality of data, two steps are
applied continuously to Q V -intervals. In step 1, V and Ul of corresponding
intervals (Ul in the light phase) need to be loaded. In step 2, all Vh and Eh

of corresponding intervals need to be loaded. When finishing the two steps,
the calculated result V is written to the storage again. As we assume that the
system memory can cache Vh and V of one interval at the same time, and that
step 1 and step 2 are executed continuously when handling each interval, the
system merely needs to load Vh and the corresponding V only once. Therefore,
the read amount in the streaming heavy phase is |V |+ |Ul|+ |Vh|+ |Eh|, the
written amount is V , the total amount of I/O is 2 ∗ |V | + |U | + |Vh| + |Eh|.
In summary, the amount of all loaded I/O in an iteration by the system is
3 ∗ |V |+ |E|+ 2 ∗ |Ul|+ |Vh|, in which, |E| = |El|+ |Eh|, |V | = |Vl|+ |Vh|.

4.1.3 selective scheduling

QuickSquad uses two different scheduling strategies in El and Eh, that is,
the selective scheduling strategy of partition granularity and that of vertex
granularity. As is known that the graph computing system supports various
algorithms, different accesses may be presented by different algorithms when
accessing the graph structure data [65]. For instance, in the execution process
of some traversal algorithms such as the breadth first search(BFS), only part
of the graph structure data need to be accessed sometimes, while effective
scheduling strategies can help to reduce I/O and the computing cost to some
extent [34,66]. Therefore, we use the scheduling strategy of partition granu-
larity for El. In other words, if and only if there is at least one vertex being

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Xinyang Jiang1 et al.

active in a source vertex interval, we will load all El files that are related to this
source vertex subinterval. And then, we’ll process these files even though we
know that most computation makes no contribution to the final result. In Eh,
the scheduling strategy of vertex granularity is used, so the state of each ver-
tex has to be scanned according to the sequence of source vertices on Eh. For
active vertices, statistics about the position of their adjacent edges should be
obtained before merging adjacent or close edges and then read them together
in the memory. There are some reasons for using such bimodal I/O scheduling
strategy. Edges in El are rather sparse. If the vertex granularity scheduling
strategy is applied, numerous small random reading will be caused. Moreover,
the state of corresponding vertices needs to be scanned for the scheduling
strategy of vertex granularity, the cost of which may be greater than the cost
of reducing I/O and the computing amount caused by the vertex granularity
scheduling strategy.

4.1.4 cache policy

Since the access to graph structure data is random and of poor predictability,
the actual bandwidth of storage devices access like disks will be decreased, so
data should be cached to the memory in an efficient way. In case the memory
fails to cache the entire data , frequently-used or system built-in cache strate-
gies may be used, such as LRU whose performance is poor. A simple strategy is
adopted by QuickSquad, through which different caching priorities are set for
the data, that is, data is cached according to the sequence Vh > Vl > El > Eh.
There are three reasons for setting such priority access. First, the magnitude
order of vertices is smaller than that of edges, and the vertex access is more
frequent than the edge access. Second, vertices with high out-degrees are more
frequently accessed than that with low out-degrees. Finally, it is determined
by the execution mode and scheduling mode of the system that the access
times of El (including Ul) in the first iteration is 3 times that of Eh (read
twice and write once).

4.1.5 summarize

Table 1 summarizes several typical optimization techniques used by graph
computing system on single server including the update models used in algo-
rithm processing, the total amount of I/O of each round of iteration involved
(assuming the entire graph structure data is scanned once in an iteration),
and the selective scheduling strategy. Our system is compared with other sim-
ilar work, like I/O total amount. For instance, comparing with X-Stream,
when the amount 2 ∗ |U | of the updated data related to edges is reduced to
2 ∗ |Ul| + |Vh| + |V |, |Ul| and |Vh| can be rarely controlled in the power-law
distribution graph. In §6.2.1, we are going to provide the values we measured
in an actual social network graph. It is worth noting that FlashGraph is a
semi-external model which assumes that the entire vertex data can be cached

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 17

Table 1 Comparison of the Key Techniques of other Graph Computing Systems. L repre-
sents light shard and H represents the heavy shard.

Upd. Mod. I/O Amount
GraphChi [34] Edge |V |+ 2 ∗ |E|+ |U |
X-Stream [50] Edge 2 ∗ |V |+ |E|+ 2 ∗ |U |

GridGraph [66] Vertex (2 ∗ |V |+ |E|+ P ∗ |V |)
FlashGraph [65]* Vertex |E|

QuickSquad
L:edge
H:vertex

L: |V |+ |El|+ |Ul|
H: |Vh|+ 2 ∗ |V |+ |Eh|+ |Ul|

Total:(3 ∗ |V |+ |E|+ |Vh|+ 2 ∗ |Ul|)
Selective Scheduler API Abelian Law

GraphChi [34] Partition-level GAS No
X-Stream [50] - GAS No

GridGraph [66] partition-level A Yes
FlashGraph [65]* vertex-level GAS No

QuickSquad
L:partition-level
H:vertex-level

GAS Yes

by the system, so there’s only the edge data for the I/O total amount of one
iteration.

4.2 Programming interface

Just like other graph computing systems, we provide a vertex-centric program-
ming interface. Users can implement user-defined vertex functions including
the scatter function and apply function. Each vertex is scheduled in parallel
by the system, and whether to execute the scatter function and / or apply
function will be determined in accordance with the vertex state.

scatter(e, u): scatter function can generate update u = (u.target, u.value)
by accessing edge e = (e.source, e.target) as well as the attribute of its vertex
D(e.source) and / or D(e.target). In SLP, the u generated by scatter func-
tion will be written into a buffer area associated with u.target. When SLP is
completed or the memory is full, u will be written into the corresponding file
Ul. However, in SHP, the u generated by scatter will be directly regarded as
input by apply without generating a buffer zone or file of intermediate results.

apply(u): apply function plays a role in updating the update u (generated
by scatter) to the corresponding vertex. Apply function only works in the SHP
phase, being responsible for handling the updates generated in SLP phase and
SHP phase. For SHP phase, since no additional files are needed for saving up-
dates and we provide direct apply(e) function to update the computing result
of e directly to vertices, direct apply is an optimized method of scatter and
apply function, which helps to reduce extra memory and computing expenses
caused by generating u in SHP phase.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Xinyang Jiang1 et al.

5 Implementation

We use C++ language to implement the system we designed, a total of 3700
lines including 2800 lines of graphic processing engines and about 900 lines of
preprocessing tools. We also give some examples of the real implementation of
algorithms, including dSybilRank, dCOLOR and some other basic algorithms.

5.1 Preprocessing

Before preprocessing, we need a format conversion tool to convert the input
graph structure data into a binary edge list. Each edge e is represented by a
pair of ID value < srcID, dstID > that are remapped and counted from zero.

In the preprocessing phase, we first scan the edge list once to calculate
the out-degree of each vertex and will divide the vertices into two sets: Vl

and Vh according to the vertex degree. Then, we scan the edge list once and
put the edges into P temporary El files and Q Eh files in accordance with
certain rules. If an edge’s source node srcID belongs to Vh, the edge will be
put into the corresponding temporary Eh file according to the dstID value of
the edge, otherwise it will be put into the corresponding El file according to
the srcID value of the edge. Finally, by using the external sorting algorithm,
edges inside the P temporary Eh files will be sorted according to srcID and
then be written into Eh file.

5.2 Computing

Before computing, the system will be initialized, including the meta-data of
the processed graph. Then the system will execute the computing process in
a circular manner according to the user-defined iteration condition.

The computing process mainly consists of two execution phases, SLP and
SHP. Each round of iteration begins with SLP which loads the state set V
of vertices. V is read-only at the moment that represents the initialization
or the vertex state of the last iteration. By scanning the edge e in El, the
state belonging to Vl will be found in V through srcID of the edge to update
the state and generate update u < dstID,D(srcID) >. Since El is sorted
according to srcID, the reading of V is performed in the sequence of ID value
though it’s not continuous. After the completion of SLP, SHP begins.

In SHP, each target subinterval of V is processed one by one. As is men-
tioned in §4.1, processing of a subinterval has two phases. First, QuickSquad
loads Ul generated in the streaming light phase and processes update u <
dstID, value > in Ul to V (dstID) through a user-defined update function.
Second, QuickSquad loads the Eh file. Then each edge e < srcID, dstID >
in Eh generates a u < dstID,D(srcID) >, where D(srcID) is the related
attribute, and then directly updates the Ul to V (dstID). In each phase, by
selective scheduler (if necessary), the system issues the I/O requests to load

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 19

the needed data through the main thread. The main thread will distribute the
data to other threads to be processed respectively, so the user-defined func-
tion should guarantee the multi-thread safe, for which we provide a number
of atomic operation interfaces.

We provide the interface of the function objects of C++ language, users
can use the lambda function [30], a functor or function pointer to implement
their user-defined vertex functions so as to implement the algorithm.

Finally, after finishing the computing process, the updated vertex state set
V can synchronize Vh by remapping.

5.3 Applications

In this section, we will give two examples of graph-based accounts detection
implementation on QuickSquad, called dSybilRank and dCOLOR. Note that
we tend only to optimize the part which involves the graph processing in
the detection algorithm. dSybilRank and dCOLOR algorithms are only the
reimplementation of the distributed version of SybilRank and COLOR, whose
aim is to improve the detection efficiency but not the detection performance.
Therefore, we don’t discuss the detection accuracy in the paper, such as true
positive rate, false positive rate and even AUC if we need.

5.3.1 dSybilRank algorithm

dSybilRank is an improved algorithm of SybilRank, which make reference to
the idea of SybilRank and uses Random Walk. It is worth noting that Sybil-
Rank is the process of conducting the entire detection, including generating
the trust value through the power iteration, sorting the trust value and sepa-
rating the suspicious users from normal users through the sequence of sorted
users. We only optimize the power iteration involved in the graph structure.
Though dSybilRank also uses Random Walk, it uses vertex-centric iteration,
which can make the most of the parallelism of the iterative graph algorithm
on QuickSquad, instead of the power iteration to compute the trust-rank.

5.3.2 dCOLOR algorithm

dCOLOR algorithm is an improved algorithm of COLOR. COLOR algorithm
is a single-vertex detection algorithm through a recursive way ((§3.3). In order
to improve the efficiency, although COLOR algorithm proposes two heuristic
pruning strategies, the efficiency of recursive way is not high in parallel pro-
cessing. In order to improve the parallelism of the detection, we change it into
an iterative computing method, and use the method of vertex activation to
color. The vertex activation means that only the initialized or the activated
vertices in the last iteration will be dealt with in the current iteration, during
which vertices needed to be dealt with in the next iteration will be activated.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Xinyang Jiang1 et al.

First, at the beginning of the algorithm, we initialize the vertices to be de-
tected as active vertices, see Alg.2. In each iteration, in order to reduce the
system access to too many unnecessary vertices, we will color the destination
vertex only when the current source vertex has the color that does not exist in
the destination vertex, and we will activate the destination vertex only when
the destination vertex is within a fixed distance from the vertex to be de-
tected, that is assuming the original COLOR algorithm scanning the vertices
within a fixed distance from the vertex to be detected. We provide DCOLOR’s
programming interface about scatter and apply on QuickSquad, see Alg.3 and
Alg.4.

algorithm 2 dCOLOR’s init(startID) function
Require: startID, directneighbors,
Ensure: updated update u
1: for v in directneighbors do
2: active[v] = true
3: end for

algorithm 3 dCOLOR’s scatter(e, u) function
Require: edge e, pointer of update u
Ensure: updated update u
1: u.target = e.target
2: u.value = e.source

algorithm 4 dCOLOR’s apply(u) function
Require: update u, pointer of colors
Ensure: updated update u
1: if active[u.value] == true and (colors[u.value] ∪ colors[u.target]) \ colors[u.target] is

not nil then
2: if u.target is in direct nerghbors then next active[u.target] = active
3: end if
4: colors[u.target] = colors[u.value] ∪ colors[u.target]
5: end if

6 Evaluation

In order to test the performance of QuickSquad on some real large-scale social
network graphs, we implement different detection algorithms and detect them
on different data sets. At the same time, in order to demonstrate the scalability
of the system under different hardware conditions, we also test it under the
condition of different hardware configurations.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 21

Data set: For directed graph, we use Twitter [9] as the experimental data
set, which has 54981152 users, including more than 40000 fake accounts and
1963263832 following (unidirectional) relationships [10]. We also use the data
of Sina Weibo2 crawled by our own: 0.5 million nodes of users, 23420 fake
account in it and with the 259579862 following relationships of these users.

For undirected graph, we use Friendster [57], an on-line gaming network,
which has 65608366 nodes and 1806067135 edges.

Furthermore, we use 40 trust seeds on both Twitter graph and Friendster
graph, and use 10 trust seeds on Sina Weibo graph. We choose the trust
seeds randomly, according to the several vertices with the highest degrees and
make sure that they are the same when different algorithms(like SybilRank,
dSybilRank) are working.

Algorithms: We implement the algorithms of dSybilRank, dCOLOR and
breadth-first-search (BFS) algorithm. The dSybilRank and dCOLOR are the
two algorithms described in §4.2, and BFS is the basic algorithm of dCOLOR.
BFS scans from one vertex or a set of vertex, and each iteration marks the
non-visited vertex in the adjacent side of the current active vertex as the
active vertex of the next iteration. The algorithm doesn’t finish until there is
no new vertex to be marked. The visiting mode of BFS is often to traverse
only certain edges, so it can be used to test the performance of the selective
scheduling strategy like the dCOLOR algorithm.

Testbed: All our experiments are performed in a single server with 2 Intel
Xeon E3-1230 V2 CPUs (3.30GHz, 4 cores per CPU), 4 DDR3-1600 memory
of 8GB , and 2 3TB hard disks of 7200 rpm. We use 8 cores, 32GB memory
and 3TB hard disk under the default configuration.

Methodology: The purpose of the experiments is to achieve the efficiency
of the system, so we use the total run time of the implementation as the param-
eter for performance comparison. We measure the running time according to
two circumstances: in the task with long execution cycle, we can only guaran-
tee the test having no abnormity for only once; in the task with short execution
cycle, we use the method of obtaining the average value by multiple measuring.

Our evaluation will answer the follow questions:

1. Does a distributed version of the algorithm implemented on QuickSquad
(like dCOLOR) perform better than centralized one (like COLOR)? And
how well does dCOLOR perform when threads are of different numbers?
(§6.1)

2. How well does QuickSquad perform in social networks with power-law dis-
tribution when compared with existing graph systems? (§6.2)

3. Why can storage format and two-phase processing model perform better
on powerlaw graph? (§6.2.1)

4. How do selective scheduling and cache policy help QuickSquad improve its
performance? (§6.2.2)

2 we catch these data using crawler at Jan, 2015 in our lab and evaluate the fake account
by ourself.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Xinyang Jiang1 et al.

Fig. 5 Experiment Results of
dCOLOR/COLOR with different
numbers of threads

Fig. 6 Experiment Results of
dSybilRank with different memory
sizes(GB)

6.1 Comparison between dCOLOR and COLOR

We compare the performance of dCOLOR algorithm and COLOR algorithm.
Fig.5 shows the performance comparison between dCOLOR algorithm and
COLOR algorithm when they use different numbers of threads. COLOR algo-
rithm is implemented based on single-cored depth-first-search algorithm. For
acquiring the attribute of a single vertex, the average time of computing 10
vertices by COLOR algorithm is 92.79 seconds (the average value of 10 random
vertices when processing the same graph), and in order to improve the par-
allelism, dCOLOR algorithm uses the breadth-first-search algorithm, which
takes as fast as 44.68 seconds too compute 10 vertices. Compared with the
single core COLOR algorithm, 8-thread dCOLOR algorithm uses the breadth-
first-search algorithm with higher parallelism, but coloring it still has a large
number of critical areas and there will be a deadlock, so the thread execution
process needs a large amount of cost in mutual exclusive operation. This is
why the performance of the dCOLOR algorithm does not obtain linear growth
when the number of threads increases.

6.2 Performance comparison with other graph computing systems

The performance improvement of dSybilRank based on vertex-centric graph
computing framework compared with SybilRank based on MapReduce frame-
work can not directly prove that the optimization of QuickSquad has improved
the performance. In order to verify the performance improvement implemented
by our system specific to the optimization of social network graphs, we also
make a comparison with GridGraph [66] whose performance is now better in
every aspect, in addition to comparing with the implementation of traditional
algorithms. We implement dSybilRank algorithm (marked as dSybilRank-GG)
in GridGraph. At the same time, because GridGraph can not directly imple-
ment the algorithm which is secure in multiple threads, we use BFS algorithm

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 23

Table 2 Contrast between the I/O amount of QuickSquad and that of GridGraph. P
represents the number of partitions selected by related graph

Social Network # of v in Vh # of v in V Vh/V # of e in El

Sina Weibo 270433 500000 54.09% 35745638

Twitter Graph 20960978 54981152 38.12% 71416245

Friendster 25205669 65608366 38.42% 24474341

Social Network # of e in E El/E I/O Amount I/O Amount in GG

Sina Weibo 259579862 13.77% 332841571 269579862(P = 20)

Twitter Graph 1963263832 3.63% 2292000756 3612698392(P = 30)

Friendster 1806067135 1.36% 2077046584 3774318115(P = 30)

to detect the performance of selective scheduling (the implementation in Grid-
Graph is BFS-GG).

6.2.1 I/O account analysis

QuickSquad uses a two-phase processing model to get the direct benefit that is
the reduction of the total I/O in the power-law distribution graph. GridGraph
applies the vertex-based update execution model through 2-D partition [66].
The total amount of I/O in one of its iterations is 2 ∗ |V | + |E| + P ∗ |V |,
among which P is the interval number generated when GridGraph segments
vertices. QuickSquad makes full use of the characteristics of the power-law
distribution of social networks to eliminate the parameters related to P, which
are converted into a one-time access to a light edge and a heavy vertex, that is
3∗|V |+ |E|+2∗|Ul|+ |Vh|. The size setting of P in GridGraph affects whether
the data can be well cached in LLC (Last Level Cache) or not, affects as well as
the scheduling granularity. If P is too small, the scheduling granularity will be
large, and it can not be friendly cached in LLC or memory size. Therefore, the
size of P is generally related with the ratio of the total amount of the data being
dealt with to the memory of the machine [66]. We know that in the power-law
distribution graph, |Ul| and |El| are directly proportional, while |El| and |Vh|
may be two relatively small parameters after the proper cut. For example, the
actual size of Vh is 20960978 in Twitter graph after cut, while the El size is
only 71416245, accounting for only 3.63% of the total edges. While in Sina
Weibo data, after cut, the actual size of Vh is 270433 and El is only 35745638,
accounting for only 13.77% of the total edges. Therefore, our system increases
its scalability after eliminating the influence of P . In addition, QuickSquad can
better adjust of the selective scheduling granularity, even though P is 1(the
minimum value). We can also make 2 ∗ |Ul| + |Vh| stand at its lowest value,
even at zero (in the extreme case), via proper cut.

6.2.2 selective scheduling and cache policy analysis

QuickSquad uses a selective scheduling and cache policy for social network
graphs. In Twitter graph, the total number of edges after compression is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 Xinyang Jiang1 et al.

Fig. 7 Experiments Results of BFS
Fig. 8 Experiment Results of BFS’s
I/O Amount

15.6GB. In a full memory mode, GridGraph and QuickSquad both require
about 22GB memory to deal with the graph (including the memory required
by operating system). We measure the performance change of two system-
atic Twitter graphs from 8GB to 32GB memory, of which 8G represents a
small memory, 16GB represents a medium memory, but it is still not com-
pletely cache the required graph data into memory, while 24GB and 32GB
represent the infinite increase in memory. Fig.6 shows, in Twitter graphs,
the performance comparison of dSybilRank implemented in QuickSquad and
dSybilRank-GGs implemented in GridGraph. QuickSquad can use different
caching strategies according to the relationship between the data and the
available memory when memory is low, while GridGraph uses a unified way
(one size fits all) to cache data. Therefore, the greater the memory is , the
better performance QuickSquad can get than GridGraph when memory can’t
cache all the data. When memory is enough (or infinite), only the mode of
execution is optimized, so it can be said that QuickSquad is more scalable
when the data size is larger than the available memory.

Fig.7 shows, in the twitter graph, the performance comparison of BFS im-
plemented by QuickSquad and BFS-GG implemented on GridGraph, and BFS
algorithm is the basis of some traverse-based detection algorithms [13]. The
result of the performance comparison of BFS algorithm is the difference of
caching policies and the impact of selective scheduling policies. QuickSquad
uses a selective scheduling strategy of a dual mode, which can make the sys-
tem in each iteration focus on loading and computing the useful data, and in
the case of low memory, useful data can be loaded by making full use of disk
bandwidth. Therefore, comparing Fig.6 with Fig.7, we find that the optimiza-
tion of BFS algorithm is better than that of dSybilRank algorithm in the case
of low memory.

Fig.8 shows that if all the graph structure data are read from the storage
(i.e. no cache data in memory), the comparison is made among the actual
data size when reading Twitter in each iteration by BFS algorithm in two
systems, and the data amount required by an ideal circumstance (ideal I/O,
that is, when not reading any redundant data) and the total I/O. It can be
seen that QuickSquad uses selective scheduling strategy of dual modes, whose

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 25

performance is closer to the ideal I/O than GridGraph. It should be noted that
the amount of ideal data is very difficult to be implemented well in an ideal
circumstance, because the ideal data in the actual circumstance is randomly
dispersed in the file, and not reading the redundant data leads to a large
number of random overhead of I/O, especially in the storage of disks with
seek time [1].

7 Conclusion

With the continuous development of social networks and their potential com-
mercial value, attackers attempt to reap the benefits by new methods, such
as fake accounts. The graph-based detection algorithm is one of the effective
ways to detect fake accounts. However, with the continuous expansion of the
data scale, the scalability and computing efficiency of the existing detection
algorithms need to be improved. This paper puts forward a computing sys-
tem on single machines, which specific to the feature optimization of social
networks’ graph structures by analyzing and studying the features of social
networks’ graph features, by the existing large-scale graph computing systems,
by the existing algorithm of fake account detection based on graphs, and by
the algorithm implemented on the system , including two kinds of detection
algorithms and breadth-first-search traversal algorithm. The algorithm imple-
mented in our system can significantly enhance the performance in contrast
to the traditional implementation including the single-core algorithm imple-
mentation and even the implementation of MapReduce distributed framework.
Moreover, the performance of the system can be improved by an average of
1.76 times compared with the existing system.

For future work, we are to improve from three aspects: First, now we only
implement a single-node version, which is limited to extending to deal with so-
cial networks of ten billions nodes, like FaceBook. QuickSquad will be extended
to support a distributed cluster which can be easily extended to have the fea-
ture of multiple nodes share memory [24]. Second, we would like to support
the dynamic and mutable graph on QuickSquad, which means the graph can
dynamically add/delete vertices or edges when we process them. Third, we will
put forward a graph-based detection algorithm, which can not only improve
the detection efficiency by making full use of such graph computation system
as QuickSquad, but also improve the detection performance. However, current
work tries to improve the algorithm’s efficiency on the premise of ensuring the
algorithm’s validity, while algorithm’s detection accuracy performance can’t
be optimized.

Acknowledgements We would like to thank the four anonymous reviewers for their in-
sightful comments and suggestions, which have helped to improve the quality of our paper.
This work is supported by the National Natural Science Foundation of China under Grant
No.61772229 and No.61472162, the Open Fundation of Symbol Computation and Knowledge
Engineer of Ministry of Education, JSPS KAKENHI under Grant Number JP16K00117, and
KDDI Foundation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Xinyang Jiang1 et al.

References

1. Alok Aggarwal, Jeffrey Vitter, et al. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. Muhammad Al-Qurishi, Mabrook Al-Rakhami, Atif Alamri, Majed Alrubaian,
Sk Md Mizanur Rahman, and M Shamim Hossain. Sybil defense techniques in online
social networks: A survey. IEEE Access, 5:1200–1219, 2017.

3. Vincent D Blondel, Jean-Lou Guillaume, Renaud Lambiotte, and Étienne Lefebvre. The
louvain method for community detection in large networks. J of Statistical Mechanics:
Theory and Experiment, 10:P10008, 2011.

4. Yazan Boshmaf, Dionysios Logothetis, Georgos Siganos, Jorge Leŕıa, Jose Lorenzo,
Matei Ripeanu, and Konstantin Beznosov. Integro: Leveraging victim prediction for
robust fake account detection in osns. In NDSS, volume 15, pages 8–11. Citeseer, 2015.

5. Jian Cao, Qiang Fu, Qiang Li, and Dong Guo. Discovering hidden suspicious accounts in
online social networks. Information Sciences, 394-395(Supplement C):123 – 140, 2017.

6. Jian Cao, Qiang Li, Yuede Ji, Yukun He, and Dong Guo. Detection of forwarding-based
malicious urls in online social networks. International Journal of Parallel Programming,
44(1):163–180, Feb 2016.

7. Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. Aiding the detection
of fake accounts in large scale social online services. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),
pages 197–210, 2012.

8. Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. Uncovering large groups
of active malicious accounts in online social networks. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 477–488. ACM,
2014.

9. Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi. Mea-
suring User Influence in Twitter: The Million Follower Fallacy. In In Proceedings of the
4th International AAAI Conference on Weblogs and Social Media (ICWSM), Wash-
ington DC, USA, May 2010.

10. Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P Krishna Gummadi. Mea-
suring user influence in twitter: The million follower fallacy. ICWSM, 10(10-17):30,
2010.

11. Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra: Differentiated graph
computation and partitioning on skewed graphs. In Proceedings of the Tenth European
Conference on Computer Systems, page 1. ACM, 2015.

12. J. Cheng, Q. Liu, Z. Li, W. Fan, J.C.S. Lui, and C. He. Venus: Vertex-centric streamlined
graph computation on a single pc. In Proceedings of the IEEE 31st International
Conference on Data Engineering, ICDE ’15, pages 1131–1142, 2015.

13. S. Cheng, G. Zhang, J. Shu, Q. Hu, and W. Zheng. Fastbfs: Fast breadth-first graph
search on a single server. In 2016 IEEE International Parallel and Distributed Process-
ing Symposium, 2016, Chicago, IL, USA, May 23-27, 2016, pages 303–312, 2016.

14. Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang.
Nxgraph: an efficient graph processing system on a single machine. In Data Engineering
(ICDE), 2016 IEEE 32nd International Conference on, pages 409–420. IEEE, 2016.

15. George Danezis and Prateek Mittal. Sybilinfer: Detecting sybil nodes using social net-
works. In NDSS. San Diego, CA, 2009.

16. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

17. Xiaoheng Deng, Genghao Li, Mianxiong Dong, and Kaoru Ota. Finding overlapping
communities based on markov chain and link clustering. Peer-to-Peer Networking and
Applications, 10(2):411–420, Mar 2017.

18. Mianxiong Dong, Kaoru Ota, and Anfeng Liu. Rmer: Reliable and energy-efficient data
collection for large-scale wireless sensor networks. IEEE Internet of Things Journal,
3(4):511–519, 2016.

19. Mianxiong Dong, Kaoru Ota, Anfeng Liu, and Minyi Guo. Joint optimization of life-
time and transport delay under reliability constraint wireless sensor networks. IEEE
Transactions on Parallel & Distributed Systems, (1):1–1, 2016.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 27

20. Manuel Egele, Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Compa:
Detecting compromised accounts on social networks. In NDSS, 2013.

21. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. In Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’99, pages 251–262, 1999.

22. Apache Giraph. http://giraph.apache.org/.
23. J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed

graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI’12, pages 17–30,
2012.

24. J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
Graphx: Graph processing in a distributed dataflow framework. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14,
pages 599–613, 2014.

25. Hugo Gualdron, Robson Cordeiro, Jose F Rodrigues Jr, Duen Horng Polo Chau, Minsuk
Kahng, and U Kang. M-flash: Fast billion-scale graph computation using block partition
model. arXiv preprint arXiv:1506.01406, 2015.

26. Supraja Gurajala, Joshua S White, Brian Hudson, Brian R Voter, and Jeanna N
Matthews. Profile characteristics of fake twitter accounts. Big Data & Society,
3(2):2053951716674236, 2016.

27. Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating web spam with
trustrank. In Proceedings of the Thirtieth international conference on Very large data
bases-Volume 30, pages 576–587. VLDB Endowment, 2004.

28. János Höner, Shinichi Nakajima, Alexander Bauer, Klaus-Robert Müller, and Nico
Görnitz. Minimizing trust leaks for robust sybil detection. In International Confer-
ence on Machine Learning, pages 1520–1528, 2017.

29. Yanling Hu, Mianxiong Dong, Kaoru Ota, Anfeng Liu, and Minyi Guo. Mobile target
detection in wireless sensor networks with adjustable sensing frequency. IEEE Systems
Journal, 10(3):1160–1171, 2016.

30. Jaakko Järvi, Gary Powell, and Andrew Lumsdaine. The lambda library: unnamed
functions in c++. Software: Practice and Experience, 33(3):259–291, 2003.

31. Yuede Ji, Yukun He, Xinyang Jiang, Jian Cao, and Qiang Li. Combating the evasion
mechanisms of social bots. Computers & Security, 58:230–249, 2016.

32. Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex
Aiken. A distributed multi-gpu system for fast graph processing. Proceedings of the
VLDB Endowment, 11(3):297–310, 2017.

33. H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th International Conference on World Wide Web,
WWW ’10, pages 591–600, 2010.

34. A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation on
just a pc. In Proceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, pages 31–46, 2012.

35. Amy N Langville and Carl D Meyer. Deeper inside pagerank. Internet Mathematics,
1(3):335–380, 2004.

36. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densifica-
tion and shrinking diameters. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1):2, 2007.

37. Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

38. Changchang Liu, Peng Gao, Matthew Wright, and Prateek Mittal. Exploiting temporal
dynamics in sybil defenses. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 805–816. ACM, 2015.

39. Hang Liu and H Howie Huang. Enterprise: Breadth-first graph traversal on gpus. In High
Performance Computing, Networking, Storage and Analysis, 2015 SC-International
Conference for, pages 1–12. IEEE, 2015.

40. Hang Liu and H Howie Huang. Graphene: Fine-grained io management for graph com-
puting. In FAST, pages 285–300, 2017.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 Xinyang Jiang1 et al.

41. Yushan Liu, Shouling Ji, and Prateek Mittal. Smartwalk: Enhancing social network se-
curity via adaptive random walks. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 492–503. ACM, 2016.

42. Yuxin Liu, Mianxiong Dong, Kaoru Ota, and Anfeng Liu. Activetrust: secure and
trustable routing in wireless sensor networks. IEEE Transactions on Information Foren-
sics and Security, 11(9):2013–2027, 2016.

43. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Dis-
tributed graphlab: A framework for machine learning and data mining in the cloud.
Proc. VLDB Endow., 5(8):716–727, 2012.

44. G. Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 135–146, 2010.

45. R. R. McCune, Tim Weninger, and G. R. Madey. Thinking like a vertex: a survey
of vertex-centric frameworks for distributed graph processing. CoRR, abs/1507.04405,
2015.

46. Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu graph traversal.
In ACM SIGPLAN Notices, volume 47, pages 117–128. ACM, 2012.

47. Abedelaziz Mohaisen, Nicholas Hopper, and Yongdae Kim. Keep your friends close:
Incorporating trust into social network-based sybil defenses. In INFOCOM, 2011 Pro-
ceedings IEEE, pages 1943–1951. IEEE, 2011.

48. Dieudonne Mulamba, Indrajit Ray, and Indrakshi Ray. Sybilradar: A graph-structure
based framework for sybil detection in on-line social networks. In IFIP International
Information Security and Privacy Conference, pages 179–193. Springer, 2016.

49. Mark EJ Newman. The structure and function of complex networks. SIAM review,
45(2):167–256, 2003.

50. A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric graph processing
using streaming partitions. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 472–488, New York, NY, USA, 2013.

51. Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and Qiang-
Sheng Hua. Graph processing on gpus: A survey. ACM Computing Surveys (CSUR),
50(6):81, 2018.

52. Nguyen Tran, Jinyang Li, Lakshminarayanan Subramanian, and Sherman SM Chow.
Optimal sybil-resilient node admission control. In INFOCOM, 2011 Proceedings IEEE,
pages 3218–3226. IEEE, 2011.

53. L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–
111, August 1990.

54. Bimal Viswanath, Ansley Post, Krishna P Gummadi, and Alan Mislove. An analysis
of social network-based sybil defenses. ACM SIGCOMM Computer Communication
Review, 40(4):363–374, 2010.

55. Gang Wang, Tristan Konolige, Christo Wilson, Xiao Wang, Haitao Zheng, and Ben Y
Zhao. You are how you click: Clickstream analysis for sybil detection. In Proc. USENIX
Security, pages 1–15. Citeseer, 2013.

56. Jilong Xue, Zhi Yang, Xiaoyong Yang, Xiao Wang, Lijiang Chen, and Yafei Dai.
Votetrust: Leveraging friend invitation graph to defend against social network sybils.
In INFOCOM, 2013 Proceedings IEEE, pages 2400–2408. IEEE, 2013.

57. Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. CoRR, abs/1205.6233, 2012.

58. Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y Zhao, and Yafei Dai. Un-
covering social network sybils in the wild. ACM Transactions on Knowledge Discovery
from Data (TKDD), 8(1):2, 2014.

59. Haifeng Yu. Sybil defenses via social networks: a tutorial and survey. ACM SIGACT
News, 42(3):80–101, 2011.

60. Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. Sybillimit: A near-
optimal social network defense against sybil attacks. In Security and Privacy, 2008. SP
2008. IEEE Symposium on, pages 3–17. IEEE, 2008.

61. Haifeng Yu, Michael Kaminsky, Phillip B Gibbons, and Abraham Flaxman. Sybilguard:
defending against sybil attacks via social networks. ACM SIGCOMM Computer Com-
munication Review, 36(4):267–278, 2006.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 29

62. C. Zhang, M. Dong, K. Ota, and M. Guo. A social-network-optimized taxi-sharing
service. IT Professional, 18(4):34–40, July 2016.

63. Jiahao Zhang, Qiang Li, Xiaoqi Wang, Bo Feng, and Dong Guo. Towards fast and
lightweight spam account detection in mobile social networks through fog computing.
Peer-to-Peer Networking and Applications, Jun 2017.

64. D. Zheng, R. Burns, and A. S. Szalay. Toward millions of file system iops on low-
cost, commodity hardware. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13, pages 69:1–69:12,
New York, NY, USA, 2013. ACM.

65. D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay. Flash-
graph: Processing billion-node graphs on an array of commodity ssds. In Proceedings of
the 13th USENIX Conference on File and Storage Technologies, FAST’15, pages 45–58,
2015.

66. X. Zhu, W. Han, and W. Chen. Gridgraph: Large-scale graph processing on a single
machine using 2-level hierarchical partitioning. In 2015 USENIX Annual Technical
Conference, USENIX ATC’15, pages 375–386, Santa Clara, CA, 2015.

67. Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16)(Savannah, GA, 2016.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

