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Abstract
Genetic heterogeneity plays an important role in exploring the interplays of microor-
ganisms. Competitive exclusion principle is the main principle that governs causative
agentries of diseases competition. Identifying coexistence mechanisms is a core issue
for studying the interactions of multi-strains. In this paper, we are concerned with the
dynamics of a two-strain SIS epidemic model with general incidence rate on complex
networks. We derive the basic reproduction numbers and the invasion reproduction
numbers associated with each strain, which determine the competitive, exclusion and
coexistence of the two strains. We strictly prove that the competitive exclusion princi-
ple holds in a global sense and the endemic equilibrium coexists uniquely and globally.
Numerical examples visibly illustrate the evolution of the two strains.
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1 Introduction

Infectious diseases are essentially caused by bacteria, virus and parasites. Infectious
agents are represented bymultiple variants and often denoted by strains.Manydiseases
are indeed caused bymultiple strains of a pathogen, such as dengue, influenza, malaria
and COVID-19, etc, and the dominant strain alters during an outbreak. Multi-strain
convolves and complicates the process of the epidemic and increases the difficulties
of control. Mathematical modeling provides a theoretical insight for investigating the
dynamics of the coevolution of multiple strains. Overall, the aim of muti-strain models
is to investigate the competing and co-existence outcomes in varying significant epi-
demiological parameters, such as transmission probability and duration of infectious
period, etc.

Competitive exclusion is an important principle in theoretical biology, which sug-
gests that no two species can forever occupy the same ecological niche [1, 2]. Many
scholars have brought such theory to investigate the evolutionary interactions of host
and pathogen populations [3–7]. In view of existing results, the competitive exclusion
principle and coexistence are two main projects for studying the interplays of multi-
ple strains, which are in favor of taking effective control measures for policymakers.
From epidemiological view of points, the competitive exclusion principle shows that
one of strains dominates and the other strains burn out. Mathematically speaking, one
variable associated with one strain attends to a certain constant and the other vari-
ables corresponding to other strains approach zero as the time goes to infinity. Surely,
some multi-strain models exhibit competitive exclusion phenomena. For instance,
Bremermann and Thieme [8] considered a multi-strain SIR model, which displays
such phenomena i.e, only one strain with the largest reproduction number survives.
Martcheva and her collaborators [9, 10] investigated a multi-strain vector-borne dis-
ease model and a multi-strain flu model and both of them serve as that competitive
exclusion results. On the contrary, many scholars are conducted to digging out some
mechanisms, such as mutation [11], superinfection [12], cross-immunity [13], and
nonlinear incidence rate [14], etc., to make multiple strains coexist.

However, all the models mentioned above are assumed that populations are homo-
geneously mixed and they ignore the contact heterogeneities. Often, these models
overestimate partnerships of contacts and thus they may correctly characterize multi-
strain epidemics prevalence in large-scale social contact networks. Hence, much effort
has been attracted to concern with the multi-strain epidemic models on complex
networks, which describes contact heterogeneities among individuals. Karrer and
Newman considered a model of two competing diseases spreading on a static net-
work and they showed that competitive exclusion and coexistence may happen [16].
Wu et al. proposed a mean-field SIS model with two strain on complex networks and
strictly analyzed the dynamics of each feasible equilibrium [17]. Yang et al. created a
multi-strain SIS epidemic model with non-markovian process on complex networks
and found the competitive and exclusion phenomena [18]. In [19, 20], Wu and his
collaborators found that mutation and superinfection are two main factors resulting
in coexistence of two strains on scale free networks. Yang and Li identified that a
saturation incidence rate is one of mechanisms leading to coexistence of two strains
[21]. Huang et al, extended that incidence rate as a general one and found the similar
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Competitive exclusion and coexistence phenomena 4417

outcomes. In [23], Chen et al. constructed a pairwisemodel to describe the competitive
exclusion regime by the heterogeneous mean-field approach. Lv and Jin investigated
competitive exclusion phenomena in forms of final size associated with each strain
by an edge-compartmental multi-strain model on complex networks [24]. However,
most of competitive and exclusion results are viewed in a local sense not in a global
perspective [22]. In fact, the competitive exclusion principle should be globally estab-
lished or it has to hold for all values of the initial conditions from mathematical points
of view [25].

The main focuses of this paper includes two aspects: one is that we rigorously solve
the competitive exclusion outcomes in a global sense by constructing smart Lyapunov
functions. The other one is to capture the existence and global stability of coexistence
equilibriumbyusing invasive theory and constructing an analogousLyapunov function
as the first focus.

The organization of this paper is taken as follows: Sect. 2 presents a degree-based
two-strain SIS epidemic model with nonlinear incidence and it is further translated
into a mixed degree-edge model by an aggregating approach. In Sect. 3, the main
theoretical results, such as the competitive exclusion and coexistence phenomena have
been established. In Sect. 4, some applications and numerical simulations have been
vividly illustrated.

2 Themodel formula

Asmentioned in [21, 22], the total nodes in a complex network are categorized by three
different statuses. Let sk(t), ρk(t) and ϑk(t) represent the densities of susceptibles,
densities of nodes infected by strain one and densities of nodes infected by strain two,
respectively. Susceptibles can be both infected by strain one and strain two. Infected
individuals recover by themselves or treated and then move back to the susceptible
class. The two-strain model with a competing mechanism is taken in the following
form:

⎧
⎪⎪⎨

⎪⎪⎩

dsk (t)
dt = −β1ksk F1(�1) − β2ksk F2(�2) + γ1ρk

+γ2ϑk,
dρk(t)
dt = −γ1ρk(t) + β1ksk F1(�1),

dϑk (t)
dt = −γ2ϑk(t) + β2ksk F2(�2),

k = 1, 2, · · · , n, (1)

where βi and γi for i = 1, 2 stand for the transmission rate and recover rate, respec-
tively. The formula

� j (t) = 1

〈k〉
n∑

k=1

kp(k)lk(t), l = ρ, ϑ

denotes the probability of an susceptible node connecting other infected nodes. The
nonlinear function Fj ( j = 1, 2) have the following properties: for � j ≥ 0,
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(1) Fj (� j ) ≥ 0, and Fj (0) = 0;
(2) F ′

j (� j ) > 0 and F ′′
j (� j ) ≤ 0;

(3)
Fj (� j )

� j
is a decreasing function for any � j ∈ [0, 1).

It is not hard to see that if Fj (� j ) = � j
1+α j� j

, j = 1, 2, then model (1) is same as
the model proposed by Yang and Li [21]; if kFj (� j ) = Fkj (� j ), j = 1, 2, k =
1, 2, · · · , n, then it becomes the model proposed by Huang et al. [22].

For the convenience, let γ1 = γ2 = γ. Then we adopt the method proposed by
Wang and Yang [26] to aggregate (2) into

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dsk(t)
dt = −β1ksk F1(�1) − β2ksk F2(�2) + γ (1 − sk),

d�1(t)
dt = −γ�1(t) + β1

〈k〉
n∑

k=1
k2 p(k)sk F1(�1),

d�2(t)
dt = −γ�2(t) + β2

〈k〉
n∑

k=1
k2 p(k)sk F2(�2),

k = 1, 2, · · · , n, (2)

In what follow, we are concerned with the dynamics of Eq.(2) instead of Eq.(1). The
following theorem shows the property of its solution.

Theorem 1 For any initial data φ = (sk0,�10,�20) ∈ (R+)n+2, the solutions of
system (2) preserve nonnegative i.e, for all t ∈ R+,

sk(t) > 0,�1(t) ≥ 0,�2(t) ≥ 0.

Furthermore, for any t ∈ R+,

sk(t) ≤ max
k=1,··· ,n{sk0, 1}, � j (t) ≤ max{� j0, 1}, j = 1, 2.

Proof The positivity of sk is a straightforward consequence of the positive tangent
curve theory. In fact, assume that sk(t) = 0, then the first equation of (2) becomes

s′
k(t) = γ > 0,

which implies that all the direct vector fields move into the first octant and so that
for all t ∈ R+, sk(t) > 0. From Assumption (2) for F it follows that Fj (� j ) ≥
F ′(1)� j ( j = 1, 2). The positivity of � j ( j = 1, 2) is an immediate result of the
second and the third equations of Sys.(2).

The nonnegativity of sk , � j ( j = 1, 2), together with the definition of Fj , indicates
that

s′
k(t) ≤ γ − γ sk(t),

hence

sk(t) ≤ (sk0 − 1)e−γ t + 1. (3)
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Define

�s(t) = 1

〈k〉
n∑

k=1

kp(k)sk(t).

Then

(�s(t) + �1(t) + �2(t))
′ = γ − γ (�s(t) + �1(t) + �2(t)),

which suggests that

(�s(t) + �1(t) + �2(t)) ≤ (�0 − 1)e−γ t + 1 (4)

where �0 = �s0 + �10 + �20 and �s0 = 1
〈k〉

n∑

k=1
kp(k)sk0. Inequalities (3) and (4)

admit a fact that for all t ∈ R+,

sk(t) ≤ max
k=1,··· ,n{sk0, 1}

and

� j (t) ≤ max{� j0, 1}.

This completes the proof. �	
By Theorem 1, we can define the following sets

	 ={φ0 ∈ (R+)n+2 : 0 < sk ≤ 1, 0 ≤ � j ≤ 1, k = 1, 2, · · · , n, j = 1, 2} (5)

	1 = {φ0 ∈ (R+)n+2 : 0 < sk ≤ 1, 0 ≤ �1 ≤ 1,�2 = 0, k = 1, 2, · · · , n}, (6)

	2 = {φ0 ∈ (R+)n+2 : 0 < sk ≤ 1,�1 = 0, 0 ≤ �2 ≤ 1, k = 1, 2, · · · , n}, (7)

which are positively invariant. In the following, we will investigate the long-time
behaviors of system (2) taken initial values from 	.

3 Themain results

For any feasible equilibrium E∗ = (s∗
k ,�

∗
1,�

∗
2), its components satisfy the following

equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = −β1ksk F1(�∗
1) − β2ksk F2(�∗

2) + γ (1 − s∗
k ),

0 = −γ�∗
1 + β1

〈k〉
n∑

k=1
k2 p(k)s∗

k F1(�
∗
1),

0 = −γ�∗
2 + β2

〈k〉
n∑

k=1
k2 p(k)sk F2(�∗

2),

k = 1, 2, · · · , n. (8)
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Solving the first equation of Eq.(8) yields to

s∗
k = γ

γ + k(β1F1(�∗
1) + β2F2(�∗

2)
. (9)

Substituting Eq.(9) into the second and third equations of Eq.(8), one arrives at

�∗
1 = β1

〈k〉
n∑

k=1

k2P(k)F1(�∗
1)

γ + k(β1F1(�∗
1) + β2F2(�∗

2))
, (10)

�∗
2 = β2

〈k〉
n∑

k=1

k2P(k)F2(�∗
2)

γ + k(β1F1(�∗
1) + β2F2(�∗

2))
. (11)

Apparently, E0 = (s0k , 0, 0) = (1, 0, 0) is always a solution of Eq.(8). Now, we con-
sider the following two cases, namely,�∗

1 = 0 or�∗
2 = 0. To investigate the existence

of such boundary equilibria, we define two basic reproduction number associated with
each strain by

R01 = β1〈k2〉F ′
1(0)

γ 〈k〉 , (12)

R02 = β2〈k2〉F ′
2(0)

γ 〈k〉 . (13)

The basic reproduction numbers of R0 j ( j = 1, 2) mean that the average number
β〈k2〉F ′

1(0)/〈k〉 of secondary infected edges associated with strain j produced by an
infected edge with respect to strain j during its infected infectious period 1/γ at a
completely susceptible environment. Letting �∗

2 = 0, then Eq.(10) can be reduced to

�∗
1 = β1

〈k〉
n∑

k=1

k2P(k)F1(�1)

γ + kβ1F1(�1)
= g1(�1). (14)

It is easy to verify that

g1(0) = 0, g′
1(0) = β1〈k2〉F ′

1(0)

γ 〈k〉 = R10, g1(1) = β1

〈k〉
n∑

k=1

k2P(k)F1(1)

γ + kβ1F1(1)
< 1.

Additionally,

g′
1(�1) = β1

〈k〉
n∑

k=1

k2P(k)γ

(γ + kβ1F1(�1))2
> 0.

Therefore, equation (14) has a unique positive solution�∗
1 ∈ (0, 1) providedR01 > 1.
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Analogous to the case �∗
2 = 0, if we assume �∗

1 = 0 and define

�∗
2 = β2

〈k〉
n∑

k=1

k2P(k)F2(�2)

γ + kβ2F2(�2)
:= g2(�

∗
2),

then g2(�∗
2) = �∗

2 has a unique positive solution �∗
2 ∈ (0, 1) as long as R02 > 1.

Fromwhat we have been discussed, we have the following theorem on the existence
of equilibria of Sys.(2).

Theorem 2 Let R0 j ( j = 1, 2) be defined in (12) and (13), separately. Then the fol-
lowing claims hold.

(1) There exists a disease-free equilibrium E0, when R0 = max{R01,R02} < 1.
(2) There exists two equilibria, one is disease-free equilibrium E0, the other is strain

1 dominated equilibrium E1 = (s∗
1k,�

∗
1, 0) when R01 > 1.

(3) There exists two equilibria, one is disease-free equilibrium E0, the other is strain
2 dominated equilibrium E2 = (s∗

2k, 0,�
∗
2) when R02 > 1.

Next, we are in a position to show the stability of each feasible strain dominated
equilibrium. To achieve this goal, define two invasion reproduction numbers by

R2
1 = β2

γ 〈k〉
n∑

k=1

k2 p(k)s∗
1k F

′
2(0), (15)

R1
2 = β1

γ 〈k〉
n∑

k=1

k2 p(k)s∗
2k F

′
1(0). (16)

Rl
j ( j = 1, 2, l = 1, 2, j �= l) indicate the ability of strain l invading strain j or they

mean that the average number of secondary infected edges associated with strain j
produced by an infected edge with respect to strain j during its infected infectious
period at the boundary equilibrium El .

Lemma 1 Let Rl
j ( j, l = 1, 2) be defined in (15) and (16).

(1) IfR0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable
for any φ ∈ 	;

(2) If R2
1 < 1, then the strain one dominated equilibrium E1 is globally asymptoti-

cally stable for any φ ∈ 	 \ 	1;
(3) If R1

2 < 1, then the strain one dominated equilibrium E2 is globally asymptoti-
cally stable for any φ ∈ 	 \ 	2.

Proof The global stability of the disease-free equilibrium comes from constructing
some smart Lyapunov function, which is taken in form of

V [�1,�2](t) = �1(t) + �2(t).

123



4422 X. Wang et al.

Calculating the derivative of V along the trajectory of system (2), we obtain

dV (t)
dt |(2)= d�1(t)

dt + d�2(t)
dt

≤ β1
〈k〉

n∑

k=1
k2 p(k) [sk(t) − 1] F ′

1(0)�1(t)

+ β2
〈k〉

n∑

k=1
k2 p(k) [sk(t) − 1] F ′

2(0)�2(t)

+γ (R01 − 1) �1(t) + γ (R02 − 1) �2(t)
≤ γ (R01 − 1) �1(t) + γ (R02 − 1) �2(t).

(17)

Hence, V̇ (t) ≤ 0 onceR0 < 1 and the equality holds if and only if�1(t) = �2(t) = 0
for any t ∈ R+. Returning to the first equation, we easily see the largest invariant set
M = {φ ∈ 	 | V̇ (t) = 0} = {φ ∈ 	 | sk(t) = 1,�(t) = �2(t) = 0}. From
LaSalle invariant principle, it follows that the disease-free equilibrium E0 is globally
asymptotically stable.

Alternatively, R0 = 1 implies that one of the following cases holds

(i) R01 < 1, and R02 = 1,
(ii) R01 = 1, and R02 < 1,
(iii) R01 = R02 = 1.

The first two cases have similar features and hence wewill fix one of them. If condition
(i) holds, then

dV (t)
dt |(2)≤ β1

〈k〉
n∑

k=1
k2 p(k) [sk(t) − 1] F ′

1(0)�1

+ β2
〈k〉

n∑

k=1
k2 p(k) [sk(t) − 1] F ′

2(0)�2

+γ (R01 − 1) �1.

(18)

Apparently, inequality (18) is semi-negative definite and the equality holds if and only
if

�1(t) = �2(t) = 0, or �1(t) = 0, sk(t) = 1.

Each above case implies that the largest invariant set M contains a singleton point
E0 and it is globally asymptotically stable. A similar result directly follows from the
symmetric of system (2) if condition (ii) holds.

Finally, let condition (iii) hold, then

dV (t)
dt |(2)≤ β1

〈k〉
n∑

k=1
k2 p(k) [sk(t) − 1] F ′

1(0)�1

+ β2
〈k〉

n∑

k=1
k2 p(k) [sk(t) − 1] F ′

2(0)�2.

(19)

Inequality (19) preserves V̇ (t) ≤ 0 and the equality holds if and only if sk(t) = 1
or �1(t) = �2(t) = 0 for any k = 1, 2, · · · , n and t ∈ R+. The last case has been
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discussed above. Provided sk(t) = 1 for any t ∈ R+, we have from the first equation
of (2) that

0 = −β1kF1(�1) − β2kF2(�2).

The properties of Fj ( j = 1, 2), together with the positivity of β j ( j = 1, 2) suggest
that �1(t) = �2(t) = 0 for each t ∈ R+. The global result follows immediately.

In what follows, we are concerned with the global stability of each strain dominated
equilibrium. To achieve this goal, let us define a Lyapunov function as follows:

V1[S,�1,�2](t) =
n∑

k=1

kp(k)Vsk (t) + 〈k〉 [
V�1(t) + V�2(t)

]
, (20)

where

Vsk = sk − s∗
k − ln

(
sk
s∗
1k

)

, V�1 = �1 − 1 − ln
�1

�∗
1
, V�2 = �2.

Since strain one dominated equilibrium E1 satisfies the following equations

γ = γ s∗
1k + β1ks∗

1k F1(�
∗
1), (21)

γ�∗
1 = β1

〈k〉
n∑

k=1
k2 p(k)s∗

1k F1(�
∗
1). (22)

Differentiating Vsk and V�1 along trajectory of system (2) leads to

dVsk (t)
dt |(2)=

n∑

k=1
kp(k)

(
1 − sk (t)

s∗1k

)
dsk (t)
dt

= −γ
n∑

k=1
kp(k)sk

(
1 − sk (t)

s∗1k

) (
1 − s∗1k

sk (t)

)

−
n∑

k=1
k2 p(k)β2F2(�2(t))(sk(t) − s∗

1k)

+
n∑

k=1
k2 p(k)β1s1∗k F1(�∗

1)
[
−g

(
sk (t)F1(�1(t))
s∗1k F1(�∗

1)

)

−g
(

s∗1k
sk (t)

)
+ g

(
F1(�1(t))
F1(�∗

1)

)]

(23)

where

g(x) = x − 1 − ln x
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which has the properties: g(x) ≥ 0 for all x ≥ 0 and the equality holds if and only if
x = 1. Recalling (22), we derive

dV�1 (t)
dt |(2)=

(
1 − �1(t)

�∗
1

)
d�1(t)

dt

=
n∑

k=1
k2 p(k)β1s∗

1k F1(�
∗
1)

[
g

(
sk (t)F1(�1(t))
s∗1k F1(�∗

1)

)
− g

(
�1(t)
�∗

1

)

−g
(

�∗
1sk (t)F1(�1(t))

�1(t)s∗1k F1(�∗
1)

)]
.

(24)

Hence, the derivative of V1 along the solution of system (2) takes in form of

dV1(t)
dt |(2)= −γ

n∑

k=1
kp(k)sk(t)

[
g

(
sk (t)
s∗1k

)
+ g

(
s∗1k
sk (t)

)]

−
n∑

k=1
k2 p(k)β1s∗

1k F1(�
∗
1)

[

g

(
s1∗k
sk (t)

)

+ g
[

�∗
1sk (t)F1(�1(t))

�1(t)s∗1k F1(�∗
1)

]]

+
n∑

k=1
k2 p(k)β1s∗

1k F1(�
∗
1)

[
g

(
F1(�1(t))
F1(�∗

1)

)
− g

(
�1(t)
�∗

1

)]

+
n∑

k=1
k2 p(k)β2s∗

1k F
′
2(0)�2(t)

[
F2(�2(t))
F ′
2(0)�2(t)

− 1
R2

1

]

By assumption for F2 and Proposition A.1 [27], we have that

g

(
F1(�1)

F1(�∗
1)

)

≤ g

(
�1

�∗
1

)

and

F2(�2)

�2
≤ F ′

2(0).

Therefore, if R2
1 < 1, the derivative of V is semi-negative definite and the equality

holds if and only if

sk(t) = s∗
1k,�1 = �∗

1,�2(t) = 0.

Employing LaSalle invariant principle, we infer that the strain one dominated equi-
librium E∗

1 is globally asymptotically stable.
Similarly, it follows from the symmetric of system (2) that the strain two dominated

equilibrium E∗
2 is also globally asymptotically stable when R1

2 < 1. This completes
the proof. �	

Next, we will be conducted to the existence of coexistence of equilibrium. Dividing
� j on both sides of the second and the third equation of (10), we get

1 = β1

〈k〉
n∑

k=1

k2P(k)F1(�1)

(γ + k(β1F1(�1) + β2F2(�2)))�1
:= f1(�1,�2), (25)
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1 = β2

〈k〉
n∑

k=1

k2P(k)F2(�2)

(γ + k(β1F1(�1) + β2F2(�2)))�2
:= f2(�1,�2). (26)

Noting that f2 is a decreasing function of �1, Implicit Function Theorem suggests
that there exists a function h such that �1 = h(�2).

Define

f2(0,�2) = β2

〈k〉
n∑

k=1

k2P(k)F2(�2)

(γ + kβ2F2(�2))�2
.

By Theorem 2, we have known that f2(0,�2) = 1 has a unique solution�∗
2. Provided

G(�2) = f1(h(�2),�2), then

G(0) = f1(0,�
∗
2) = lim

�1→0
f1(�1,�

∗
2) = R1

2 > 1. (27)

On the contrary, let H(�1) = f2(h(�1),�1). Observe that

H(�∗
1) = f2(�

∗
1, 0) = lim

�2→0
f2(�

∗
1,�2) = R2

1 > 1.

and

H(1) = β2

〈k〉
n∑

k=1

k2P(k)F2(1)

γ + kβ2F2(1)
< 1.

From the monotone decreasing property of H , it follows that there exists a �̄∗
1 ∈

(�∗
1, 1) such that H(�̄∗

1) = 1. Let �2 = 0 = h(�̄∗
1), then

G(�̄∗
1) = f1(�̄∗

1, 0) = β1
〈k〉

∑n
k=1

k2P(k)F1(�̄∗
1)

(γ+kβ1F1(�̄∗
1))�̄

∗
1

<
β1
〈k〉

∑n
k=1

k2P(k)F1(�∗
1)

(γ+kβ1F1(�∗
1))�

∗
1

= 1.
(28)

Immediate Value Theorem, together with (27) and (28), indicates that G has a unique
�̃∗

1 ∈ (0, �̄∗
1) such that f1(h(�̃∗

1), �̃
∗
1) = 1. From what we has been discussed, we

have established the coeixstence of the endemic equilibrium.

Theorem 3 IfR2
1 > 1 andR1

2 > 1, then system (2) has at least one endemic equilib-
rium E∗ = (s∗

k ,�
∗
1,�

∗
2).

Theorem 4 If R2
1 > 1 and R1

2 > 1, then the coexistence equilibrium E∗ is globally
asymptotically stable for any φ ∈ 	 \ {	1 ∪ 	2}.
Proof Analogous to Lemma 1, we can employ a Lyapunov function as follows

V [s,�1,�2](t) =
n∑

k=1

kp(k)Vsk (t) + 〈k〉 [
V�1(t) + V�2(t)

]
,
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where

V f = f − f ∗ − f ∗ ln f

f ∗ , f = sk,�1,�2.

Calculating the derivative of V along the total trajectory of Eq.(2) takes in form of

dV (t)
dt |(2)= −γ

n∑

k=1
kp(k)sk

[
g

(
sk (t)
s∗k

)
+ g

(
s∗k

sk (t)

)]

−
n∑

k=1
k2 p(k)β1s∗

k F1(�
∗
1)

[

g
(

s∗k
sk (t)

)
+ g

(
�∗

1sk (t)F1(�1(t))

�1(t)s1∗k F1(�∗
1)

)]

+
n∑

k=1
k2 p(k)β1s∗

k F1(�
∗
1)

[
g

(
F1(�1(t))
F1(�∗

1)

)
− g

(
�1(t)
�∗

1

)]

−
n∑

k=1
k2 p(k)β2s∗

k F2(�
∗
1)

[
g

(
s∗k

sk (t)

)
+ g

(
�∗

1sk F2(�2(t))
�2s∗k F1(�∗

2)

)]

+
n∑

k=1
k2 p(k)β1s∗

k F2(�
∗
1)

[
g

(
F2(�2(t))
F2(�∗

2)

)
− g

(
�2(t)
�∗

2

)]

≤ 0,

here we have used the fact that for every t ∈ R+,

g

(
Fj (� j (t))

Fj (�
∗
j )

)

≤ g

(
� j (t)

�∗
j

)

, j = 1, 2.

The equality holds if and only if sk(t) = s∗
k ,�1(t) = �∗

1,�2(t) = �∗
2 for all t ∈ R+

and k = 1, 2, · · · , n. Hence, the largest invariant set has a unique element E∗ and
so it is globally asymptotically stable by LaSalle invariant principle. This finishes the
proof. �	
Remark 1 Theorems 3 and 4 show that the coexistence equilibrium uniquely exists.
Fromepidemiological viewof points, if themutually invasive abilities of two strains are
strong enough, the two strain may attain certain equivalence and thus the coexistence
phenomenon happens.

4 Applications

In this section, we will give some applications for clarifying the nonlinear incidence
rate. Let us define the basic reproduction numbers associated with each strain by

R0 j = β j 〈k2〉
γ 〈k〉 , j = 1, 2, j . (29)

In the section, we assume that system (2) has two boundary equilibria E1 =
(s∗

1k,�
∗
1, 0) and E2 = (s∗

2k, 0,�
∗
2),
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4.1 The bilinear incidence rate

If we select

Fj (� j ) = � j .

We have noted that F ′
j (� j ) = 1 > 0 and F ′′

j (� j ) = 0. Hence, the first two conditions

of assumption for Fj are satisfied. However,
Fj (� j )

� j
= 1 is constant and so it doesn’t

satisfy condition (3) for F . The endemic equilibrium E∗ = (s∗
k ,�

∗
1,�

∗
2) exists holds if

and only if β1 = β2. Adversely, s∗
jk( j = 1, 2) in the associated equilibrium E j , ( j =

1, 2) satisfy the following equations

1

〈k〉
n∑

k=1

k2 p(k)s∗
jk = γ

β j
, j = 1, 2.

Hence, the invasion reproduction numbers associated with each strain is defined by

Rl
j = βl〈k2s∗

jk〉
γ 〈k〉 = Rl0

R j0
, l = 1, 2, j = 1, 2, j �= l.

According to Lemma 1, the competitive exclusion principle holds. From biological
viewof points, if the process of individual contacts is a linear process or each individual
is independent, then individuals infected one strain dominate and other infectives will
be eradicated in a region.

Corollary 1 Let R0 j be defined in (29).

(1) IfR0 ≤ 1, then E0 is globally asymptotically stable for any φ ∈ 	;
(2) If R01 > 1, and R20 < R10, then E1 is globally asymptotically stable for any

φ ∈ 	 \ {	1 ∩ 	2};
(3) If R02 > 1, and R10 < R20, then E2 is globally asymptotically stable for any

φ ∈ 	 \ {	1 ∩ 	2};
Corollary 1 can be considered as a generalized the results in Sect. 2.1 in [17] which

suggests that the competitive exclusion principle exists locally.

4.2 The saturation incidence rate

If we take

Fj (� j ) = � j

1 + α j� j
, j = 1, 2

then F ′
j (0) = 1. Assume that

Rl
j = βl〈k2s∗

jk〉
γ 〈k〉 , l = 1, 2, j = 1, 2, j �= l, (30)
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where

〈k2s∗
jk〉 =

n∑

k=1

k2 p(k)s∗
jk .

From Lemma 1 and Theorem 4, it follows that

Corollary 2 Let R0 j and Rl
j ( j, l = 1, 2) be defined in (29).

(1) IfR0 ≤ 1, then E0 is globally asymptotically stable for any φ ∈ 	;
(2) If R01 > 1, and R2

1 < 1, then E1 is globally asymptotically stable for any
φ ∈ 	 \ {	1 ∩ 	2};

(3) If R02 > 1, and R1
2 < 1, then E2 is globally asymptotically stable for any

φ ∈ 	 \ {	1 ∩ 	2};
(4) If R2

1 > 1 and R1
2 > 1, then E∗ is globally asymptotically stable for any φ ∈

	 \ {	1 ∪ 	2}.
Corollary 2 can be considered as an extended version of Theorems 3.4 and 4.1 [21].

Interestingly, we clarify the condition of coexistence equilibrium and strictly prove
the global stability of such equilibrium. Furthermore, we note that the last conditions
of Corollary 2 are more concise than the conditions of Theorem 4.1 in [21].

4.3 The nonlinear connectivity

On the other hand, if we take k = ϕ(k) and kFj (� j ) = F̃k j (� j ), j = 1, 2; k =
1, 2, · · · , n, then

R0 j = 〈ϕ(k)F ′
k j (0)〉

γ 〈k〉 ,Rl
j = 〈ϕ(k)s∗

jk F
′
kl(0)〉

γ 〈k〉 , j = 1, 2, l = 1, 2, j �= l. (31)

Again using Lemma 1 and Theorem 4, we have concluded the competitive, exclusion
and coexistence results as in Corollary 2, which can be considered as a further result
of Theorem 3.4 and Theorem 4.1 in [22] from a global perspective. To visually insight
into the dynamics of model (2), we are conducted to numerical simulation to show
our theoretical results. First, we take the size of nodes N = 1000 and the average
network 〈k〉 = 3. Then let us generate a configure network. Now, we fix recovered
rate γ1 = γ2 = 0.01.

First, we choose Fj (� j ) = � j ( j = 1, 2) and β1 = 0.003, β2 = 0.0028, then
R01 = 1.17 > R02 = 1.0920 > 1. Corollary 1 suggests that the infected edges with
strain one dominates and the other infected edges will die out (see Fig. 1). Figure 1b
shows the bifurcation diagram of system (2) when α1 = α2 = 0. In Fig. 1b, system (2)
has only disease-free equilibrium and it is globally asymptotically stable in the green
region. Moreover, it has a strain one dominance equilibrium E∗

1 in yellow area and
a strain two dominance equilibrium E∗

2 in the purple region. Second, provided α1 =
α2 = 0.01 and β1 = 0.0028, β2 = 0.003, thenR02 = 1.17 > R01 = 1.0920 > 1 and
R1

2 = 0.9345 < 1. Figure 2 indicates that infected edges with strain two dominates
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Fig. 1 a The evolution of the infected edges associated with each strain. b Plots of invasion regions in the
plane of (R01,R02)

and infected edges die out (see Fig. 2a). Enlarging α2 = 1.0, then R2
1 = 1.0722 > 1

andR1
2 = 1.005 > 1. Corollary 2 infers that system (2) has a coexistence equilibrium

and it is globally asymptotically stable (see Fig. 2b). Conversely, Corollary 2 infers that
R2

1,R1
2 andR0 separate the invariant set	 into an eradication region, two competitive

regions and a coexistence area. Figure 3 displays that ∂	 is the eradication area of the
disease; 	 j ( j = 1, 2) denotes the strain j dominated regions, which means that if the
parameters are taken in that region, strain j must compete the other strain and make it
burn out; 	0 represents the coexisting region of both strains, which area is gradually
decreasing as values of α j ( j = 1, 2) increase.

Figure 4 illustrates the evolution of the two strains associated with parameters
α j ( j = 1, 2). We have seen that the two strains undergo a switching phenomena,
i.e, the competitive exclusion, coexistence and competitive exclusion. If β j ( j = 1, 2)
is larger, then the associated strain will dominate and compete the other at the initial

0 2000 4000 6000 8000
Time t

0
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1,
2

1

2

0 2000 4000 6000 8000
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0
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0.04

0.06

1,
2

1

2

(a) (b)

Fig. 2 The evolution of the infected edges associated with each strain a With α1 = α2 = 0.01. b With
α1 = 0.01, α2 = 1.0
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(a) (b)

Fig. 3 Plots of invasion regions in the (R01,R02). a Parameters are taken as α1 = α2 = 20. b Parameters
are taken as α1 = α2 = 0.01
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Fig. 4 Plots of endemic steady state �∗
j associated delay effects α j ( j = 1, 2). a β1 = 0.1, β2 = 0.2 and

α2 = 0.01. b β1 = 0.2, β2 = 0.1 and α1 = 0.01

phase; as the values ofα j ( j = 1, 2) increases from0.41 to 0.46, the two strains coexist;
when α j ( j = 1, 2) continuously increase, the dominant relationship is reversed.

To catch the sight of the effects on different networks, we select p(k) = m ×
k−2.4(k = 1, 2, · · · , n) where m is a coefficient for 〈k〉 = 3. Obviously, such action
generates aBAnetwork [17]. Figure 5 shows the evolutions of infected edgeswith each
strain on a stochastic network and a BA network. We have found that the densities
of infected edges on a stochastic network are bigger than those on a BA network.
Hence, the topology of the network plays an key role in characterizing the disease
transmission.
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Fig. 5 The evolutions of infected edges on different networks. a The evolution of infected edges with strain
one; b The evolution of infected edges with strain two

5 Discussion

Competitive exclusion and coexistence phenomena have always been the focuses of
studying multi-strain models. Once the competitive exclusion principle holds, the
strain with the largest reproduction number will compete the other strains. Such prin-
ciple in most of existing results [21] and [22] was established from local perspectives.
Mathematical speaking, such results hold only and if only one needs to pick up initial
values of model (2) closely to the dominance equilibria nor a global space. In fact,
the competitive exclusion principle should be established in a global sense as seen in
Sect. 8.1.3 [25] and Theorem 6.10 in [18]. On the contrary, many mechanisms, such
as mutation, coinfection, superinfection and nonlinear incidence etc., have been illus-
trated to lead to the coexistence phenomena for multi-strain models on homogeneous
environments [11–15] or on complex networks [21, 22, 28]. Generally, the conditions
of coexistence are tedious [21] or the proof process is vague [22]. In this paper, we
have adopted the Implicit Function Theorem to definitely clarify those conditions and
pointed out the uniqueness of that equilibrium as seen Theorems 3 and 4 .

Nonlinear incidence rate plays a significant role in resulting in the coexistence of
multi-strain. In our model, parameters α j ( j = 1, 2) approximately characterize the
nonlinear properties. If the values of α j ( j = 1, 2) are small enough, the incidence
rates closely approximate to be bilinear ones. On the other hand, we have noticed that
0 ≤ � j (t) ≤ 1 for all t ∈ R+. Hence, if α j ( j = 1, 2) are large enough, α j� j (t)
dominate by the values of α j ( j = 1, 2) and those incidence rates go back to bilinear
ones. In both cases, competitive and exclusion phenomenon occurs. The coexistence
phenomenon takes place when α j ( j = 1, 2) are taken as appropriated values as seen
the coexistence zone in Fig. 4.

From epidemiological view of points, the nonlinear incidence rate Fj (� j )( j =
1, 2), considered as the contacts of individuals are strongly dependent, such as famil-
ial clusters or sociality bunching behaviors, is one of important factors leading to
coexistence phenomenon of multiply strains. Undoubtedly, this phenomena increases
the heterogeneity of infections and enhances the difficulties of diseases control. Pub-

123



4432 X. Wang et al.

lic health governments and policymakers should take more attention on dependent
conductivities among individuals for curbing multi-strain epidemics.

Model (2) can be considered as extended versions of models with nonlinear inci-
dence rates [21, 22]. Theoretical results give a strong proof of competitive exclusion
phenomena from global points of view. The coexistence equilibrium uniquely and
globally exists when the invasion abilities of both strains are strong enough.
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