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Abstract
Traditional support vector machines (SVMs) play an important role in the classification of precise data. However, due to vari-
ous reasons, available data are sometimes imprecise. In this paper, uncertain variables are adopted to describe the imprecise 
data, and an uncertain support vector machine (USVM) is built for linearly �-nonseparable sets based on soft margin method, 
where a penalty coefficient is utilized as the trade-off between the maximum margin and the sum of slack variables. Then 
the equivalent crisp model is derived based on the inverse uncertainty distributions. Numerical experiments are designed 
to illustrate the application of the soft margin USVM. Finally, metrics, such as accuracy, precision, and recall are used to 
evaluate the robustness of the proposed model.

Keywords  Uncertain variable · Uncertain support vector machine · Linearly �-nonseparable data set · Soft margin method · 
Uncertainty theory

1  Introduction

As one of the most important classification methods, SVMs 
have achieved great success in numerous real-world problems 
(Vapnik 1999; Burges 1998), such as image recognition (Ven-
kateswarLal et al. 2019), disease diagnosis (Wang et al. 2018; 
Okwuashi and Ndehedehe 2020; Gautam et al. 2021), intrusion 
detection (Mukkamala et al. 2002; Priyadharsini and Chitra 
2021) and so on. Traditionally, SVMs are designed to search 
a tube with the maximum margin based on precise data. A 
tube is uniquely determined by a hyperplane and the minimum 
distance from the data to the hyperplane. Different SVMs are 
constructed according to the complexity of the classification 

problem. The hard margin method was first developed by 
Vapnik (1995) for linearly separable data sets, in which the 
data with positive labels and those with negative labels lie 
in the diverse half-spaces determined by a hyperplane. And 
the parameters of the hyperplane can be expressed as a linear 
combination of support vectors (Boser et al. 1992). Neverthe-
less, the majority of data sets are linearly nonseparable, and 
the SVM based on hard margin method failed in dealing with 
these problems. Thus, Cortes and Vapnik (1995) introduced 
slack variables for misclassification samples such that linearly 
nonseparable training sets can be classified at the maximum 
margin target, which is known as soft margin method.

However, when the observations are imprecise or the 
samples are not large enough, the results in the framework 
of probability theory are usually not satisfying. In order to 
handle such cases, Liu (2007) founded uncertainty theory, 
and then Liu (2009, 2010) further improved and perfected the 
theory. Following the idea, uncertain statistics are developed 
to handle the issues with imprecise observations. Yao and 
Liu (2018) proposed a least square method for regression by 
characterizing imprecise observations as uncertain variables. 
Then several other regression models (Hu and Gao 2020; 
Fang and Hong 2020; Zhang et al. 2020) were further studied, 
and parameter estimation methods (Liu and Yang 2020; Chen 
2020; Li et al 2022) were discussed. In the meantime, confi-
dence interval (Lio and Liu 2018), and hypothesis test (Lio 
and Liu 2020) for uncertain statistic were also introduced. For 
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time series analysis with imprecise observations, autoregres-
sive models (Yang and Liu 2019) and autoregressive mov-
ing average models (Lu et al. 2020; Xin et al. 2021) were 
also introduced, respectively. Some applications in other 
fields were also explored, such as uncertain differential game 
(Zhang et al. 2021; Yang and Gao 2016), uncertain extensive 
game (Wang et al. 2017), COVID-19 spread (Lio 2021) and 
uncertain queueing model (Yao 2021).

For classification problems with imprecise observations, 
Qin and Li (2022) introduced an USVM based on hard mar-
gin method in the framework of uncertainty theory, which 
extended the traditional hard margin SVM. However, the hard 
margin USVM is only suitable for the linearly �-separable data 
sets with imprecise observations. In this paper, we propose an 
USVM based on soft margin method for the classification prob-
lem with linearly �-nonseparable data set. Similarly, we assume 
the imprecise observations as uncertain variables and formulate 
an optimization model for the soft margin USVM. Further, we 
conduct numerical experiments to illustrate the application of 
the proposed method and evaluate its performance.

The paper is organized as follows. Some definitions 
and theorems in uncertainty theory are given in Sect. 2. 
In Sect. 3, we formulate an USVM based on soft margin 
method for linearly �-nonseparable data sets in uncertain 
environment. Then, Sect. 4 presents two examples to show 
the application of the soft margin USVM. Finally, we give a 
conclusion of the paper in Sect. 5.

2 � Preliminaries

In this section, we sketch some definitions and theorems 
used in this paper.

Let L be a �-algebra on a nonempty set Γ. A set function 
M ∶ L → [0, 1] is called an uncertain measure (Liu 2007; 
2009) if it satisfies: (1) M{Γ} = 1 for the universal set Γ ; (2) 
M{Λ} +M{Λc} = 1 for any Λ ∈ L ; (3) For every count-
able sequence Λ1,Λ2,… , M

�⋃∞

i=1
Λi

� ≤ ∑∞

i=1
M

�
Λi

�
 , 

where the triple (Γ,L,M) is called an uncertainty space; 
(4) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2,… . 
The product uncertain measure M is an uncertain measure 
satisfying

where Λk are arbitrarily chosen sets from Lk for k = 1, 2,… , 
respectively.

An uncertain variable (Liu 2007) � is a measurable function 
from an uncertainty space (Γ,L,M) to the set of real numbers, 
i.e., the set {� ∈ B} = {� ∈ Γ ∣ �(�) ∈ B} is an event in L for 
any Borel set B. The function Υ(x) = M{� ≤ x}, x ∈ ℜ is 
called the uncertainty distribution of �.

M

{
∞∏
i=1

Λk

}
=

∞⋀
i=1

Mk{Λk},

Theorem  1  (Liu 2010) Let �1, �2,… , �n be independent 
uncertain variables with inverse uncertainty distributions 
Φ−1

1
,Φ−1

2
,… ,Φ−1

n
 , respectively. If f (x1, x2,… , xn) is strictly 

increasing with respect to x1, x2,… , xm , and strictly decreas-
ing with respect to xm+1, xm+2,… , xn , then the uncertain 
variable � = f (�1, �2,… , �n) has an inverse uncertainty 
distribution

Theorem 2  (Liu 2015) Assume the function g(xxx , �1 , �2,… , �n) 
is strictly increasing with respect to �1, �2,… , �k and strictly 
decreasing with respect to �k+1, �k+2,… , �n . If �1, �2,… , �n 
are independent uncertain variables with inverse uncer-
tainty distributions Φ−1

1
,Φ−1

2
,… ,Φ−1

n
, respectively, then 

the chance constraint

holds if and only if

3 � Soft margin method for linearly ̨
‑nonseparable data sets

This section discusses linearly �-nonseparable data sets and 
presents a soft margin USVM for this situation.

S u p p o s e  t h e  o b s e r v e d  d a t a  s e t  i s 
S = {(x̃xx1, y1), (x̃xx2, y2),… , (x̃xxl, yl)} , where x̃xxi are uncertain 
vectors, and yi ∈ {1,−1} are crisp labels for i = 1, 2,… , l , 
respectively. Let � ∈ (0.5, 1) be a given confidence level. Qin 
and Li (2022) defined that S is linearly �-separable if there 
exists one hyperplane wwwTxxx + b = 0 such that

where www = (w1,w2,… ,wn) is an n-dimensional vector with 
an Euclidean norm ‖www‖ . This definition implies that linearly 
�-separable data sets are those which can be classified by a 
hyperplane at confidence level �.

If there exists no hyperplane wwwTxxx + b = 0 such that

for all i = 1, 2,… , l , then we call the data set S linearly �
-nonseparable. For instance, Fig. 1 gives an example of a 
linearly �-nonseparable data set. There is no hyperplane that 
makes Inequality (2) hold. Thus the hard margin method 
(Qin and Li 2022) can not be applied in this case.

Ψ−1(u) = f
(
Φ−1

1
(u),Φ−1

2
(u),… ,Φ−1

m
(u),

Φ−1
m+1

(1 − u),… ,Φ−1
n
(1 − u)

)
.

M
{
g
(
xxx, �1, �2,… , �n

) ≤ 0
} ≥ �

(1)
g
(
xxx,Φ−1

1
(�),… ,Φ−1

k
(�),

Φ−1
k+1

(1 − �),… ,Φ−1
n
(1 − �)

) ≤ 0.

(2)M
{
yi ⋅

(
wwwTx̃xxi + b

) ≥ 0
} ≥ 𝛼, i = 1, 2,… , l,

M
{
yi ⋅

(
wwwTx̃xxi + b

) ≥ 0
} ≥ 𝛼
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Suppose that S is linearly �-nonseparable. Then, for 
each observation (x̃xxi, yi) , we may seek a nonnegative slack 
variable si such that

Note that such an inequality holds if si is large enough. 
Therefore, we always want the slack variable si to be as small 
as possible. Note that if si = 0 for all i, then the set S degen-
erates into a linearly �-separable one.

Theorem 3  Suppose that the components x̃i1 , x̃i2,… , x̃in of 
uncertain vector x̃xxi are independent. Let Φ−1

i,j
 denote the 

inverse uncertainty distributions ofx̃ij for i = 1, 2,… , l and 
j = 1, 2,… , n , respectively. Then Inequality (3) is equivalent 
to the following crisp form

where

Proof  The argument breaks into two cases. Case I: When 
yi = 1 . In this case, Inequality (3) degenerates into

(3)M
{
yi ⋅

(
wwwTx̃xxi + b

) ≥ −si
} ≥ 𝛼.

(4)yi

(
n∑
j=1

wjΥ
−1
ij

(
�,−yiwj

)
+ b

)
≥ −si,

(5)
Υ−1

ij

(
𝛼,−yiwj

)
= Φ−1

ij
(𝛼) ⋅ I{−yiwj≥0}

+ Φ−1
ij
(1 − 𝛼) ⋅ I{−yiwj<0}.

(6)

M
{
wwwTx̃xxi + b ≥ −si

}
= M

{
−wwwTx̃xxi − b − si ≤ 0

}

= M

{
−

n∑
j=1

wjx̃ij − b − si ≤ 0

}
≥ 𝛼.

T h e  i nve r s e  u n c e r t a i n t y  d i s t r i b u t i o n  o f 
−wwwTx̃xxi − b − si = −

∑n

j=1
wjx̃ij − b − si is

Thus, it follows from Theorem 2 that Inequality (6) is satis-
fied if and only if

which is equivalent to Inequality (4), i.e.

Case II: When yi = −1 . In this case, Inequality (3) degener-
ates into

Similarly, the inverse uncertainty distribution of ∑n

j=1
wjx̃ij + b − si is

Thus, Inequality (7) is satisfied if and only if

which is equivalent to Inequality (4), i.e.,

F−1
1i
(u) = −

n∑
j=1

wj

(
Φ−1

ij
(1 − u) ⋅ I{wj≥0}

+Φ−1
ij
(u) ⋅ I{wj<0}

)
− b − si

= −

n∑
j=1

wjΥ
−1
ij
(u,−wj) − b − si.

F−1
1i
(�) = −

n∑
j=1

wjΥ
−1
ij

(
�,−wj

)
− b − si ≤ 0,

n∑
j=1

wjΥ
−1
ij

(
�,−wj

)
+ b

= yi

(
n∑
j=1

wjΥ
−1
ij

(
�,−yiwj

)
+ b

)

≥ −si.

(7)

M
{
wwwTx̃xxi + b − si ≤ 0

}

= M

{
n∑
j=1

wjx̃ij + b − si ≤ 0

}

≥ 𝛼.

F−1
2i
(u) =

n∑
j=1

wj

(
Φ−1

ij
(u) ⋅ I{wj≥0}

+ Φ−1
ij
(1 − u) ⋅ I{wj<0}

)
+ b − si

=

n∑
j=1

wjΥ
−1
ij

(
u,wj

)
+ b − si.

F−1
2i
(�) =

n∑
j=1

wjΥ
−1
ij

(
�,wj

)
+ b − si ≤ 0,

Indicates the points with label -1 
Indicates the points with label 1 

Fig. 1   A hyperplane and a linearly �-nonseparable data set
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	�  ◻

It follows from Qin and Li (2022) that the distance from a 
data set S to the hyperplane wwwTxxx + b = 0 is

which determines the margin for the positive class and nega-
tive class. In order to maximize the margin and meanwhile 
minimize the sum of slack variables, we choose

as the objective function, in which C > 0 is a penalty coef-
ficient. Correspondingly, we formulate the following opti-
mization model for the soft margin USVM as

If (www, b, sss) is an optimal solution to Model (8), then for any 
constant 𝜆 > 0 , (�www, �b, �sss) is also an optimal solution to 
Model (8). To obtain an unique optimal solution, a constraint 

−

(
n∑
j=1

wjΥ
−1
ij

(
�,wj

)
+ b

)

= yi

(
n∑
j=1

wjΥ
−1
ij

(
�,−yiwj

)
+ b

)

≥ −si.

min
i

E

���wwwTx̃xxi + b��
‖www‖

�
,

min
i

E

���wwwTx̃xxi + b��
‖www‖

�
− C

l�
i=1

si

(8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
www, b,

s1, s2,… , sl

min
i

E

���wwwTx̃xxi + b��
‖www‖

�
− C

l�
i=1

si

s.t. M
�
yi
�
wwwTx̃xxi + b

� ≥ −si
� ≥ 𝛼,

i = 1, 2,… , l

si ≥ 0, i = 1, 2,… , l.

on the coefficients is necessary. Without loss of generality, 
we insert a new constraint ‖www‖ = 1 to Model (8). The objec-
tive function correspondingly becomes

Further, we obtain the following model for the soft margin 
USVM,

For the linearly �-separable case, we have si = 0 for 
i = 1, 2,… , l . In this case, Model (9) degenerates into the 
hard margin USVM proposed by Qin and Li (2022).

Next we give the crisp equivalent form of Model (9) when 
inverse uncertainty distributions of imprecise observations 
are given.

Theorem 4  Suppose that the components x̃i1 , x̃i2,… , x̃in of 
each uncertain vectors x̃xxi are independent for i = 1, 2,… , l . 
Let Φ−1

ij
 be the inverse uncertainty distributions of x̃ij for 

i = 1, 2,… , l and j = 1, 2,… , n , respectively. Then Model 
(9) is equivalent to Model (10).

min
i

E
[|||www

Tx̃xxi + b
|||
]
− C

l∑
i=1

si

= min
i

E

[||||||

n∑
j=1

wjx̃ij + b

||||||

]
− C

l∑
i=1

si.

(9)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max

w1,w2,… ,wn, b,

s1, s2,… , sl

min
i

E

�������

n�
j=1

wjx̃ij + b

������

�
− C

l�
i=1

si

s.t. M

�
yi

�
n�
j=1

wjx̃ij + b

�
≥ −si

�
≥ 𝛼,

i = 1, 2,… , l

n�
j=1

w2

j
= 1

si ≥ 0, i = 1, 2,… , l.

(10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
w1,w2,… ,wn, b,

s1, s2,… , sl

min
i �

1

0

������

n�
j=1

wjΥ
−1
ij

�
u,wj

�
+ b

������
du − C

l�
i=1

si

s.t. yi

�
n�
j=1

wjΥ
−1
ij

�
�,−yiwj

�
+ b

�
≥ −si, i = 1, 2,… , l

n�
j=1

w2
j
= 1

si ≥ 0, i = 1, 2,… , l,
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where Υ−1
ij
(�,−yiwj) is given in Equality (5), and

Proof  It follows from Theorem 1 that the inverse uncertainty 
distributions of

are

for i = 1, 2,… , l, respectively. Thus, the objective function 
becomes

The constraints follow from Theorem 3 immediately. 	� ◻

4 � Numerical experiments

In this section, we conduct two examples to show the applica-
tion of the soft margin USVM. We suppose that all the impre-
cise observations are characterized by linear uncertain vari-
ables. The uncertainty distribution and the inverse uncertainty 
distribution of a linear uncertain variable L(a, b) is

Υ−1
ij

(
u,wj

)
= Φ−1

ij
(u) ⋅ I{wj≥0} + Φ−1

ij
(1 − u) ⋅ I{wj<0}.

wwwTx̃xxi + b =

n∑
j=1

wjx̃ij + b

n∑
j=1

wjΥ
−1
ij

(
�,wj

)
+ b

∫
1

0

||||||

n∑
j=1

wjΥ
−1
ij
(u,wj) + b

||||||
du − C

l∑
i=1

si.

and

respectively.

Example 1  We consider the first data set S1 which contains 
60 observations. The data is denoted as (x̃i1, x̃i2) with the 
label yi ∈ {1,−1} , i = 1, 2,… , 60 . Let Φ−1

i1
 and Φ−1

i2
 denote 

the inverse uncertainty distributions of x̃i1 and x̃i2 for 
i = 1, 2,… , 60 , respectively. The detailed data are shown 
in Table  1.

Φ(x) =

⎧⎪⎨⎪⎩

0, if x ≤ a
x − a

b − a
, if a < x ≤ b

1, if b < x

Φ−1(u) = (1 − u)a + ub,

Table 1   Data set S
1

i A i B

x̃
1i

x̃
2i

x̃
1i

x̃
2i

1 L(17,21) L(71,74) 31 L(26,28) L(61,63)
2 L(9,10) L(4,5) 32 L(31,33) L(54,57)
3 L(12,14) L(7,8) 33 L(29,31) L(63,66)
4 L(10,11) L(12,14) 34 L(25,27) L(47,49)
5 L(21,23) L(72,74) 35 L(30,33) L(31,33)
6 L(24,26) L(72,75) 36 L(37,39) L(76,79)
7 L(17,19) L(42,45) 37 L(20,22) L(0,1)
8 L(18,20) L(77,80) 38 L(28,30) L(57,60)
9 L(23,25) L(44,46) 39 L(21,23) L(39,41)
10 L(18,20) L(46,48) 40 L(30,32) L(68,71)
11 L(15,17) L(17,19) 41 L(30,32) L(17,19)
12 L(12,14) L(7,9) 42 L(34,36) L(50,53)
13 L(17,19) L(31,33) 43 L(24,26) L(34,36)
14 L(12,13) L(35,37) 44 L(31,33) L(49,52)
15 L(12,14) L(35,37) 45 L(28,30) L(60,62)
16 L(12,13) L(38,40) 46 L(36,38) L(72,75)
17 L(14,15) L(7,8) 47 L(32,34) L(63,66)
18 L(14,16) L(26,28) 48 L(26,28) L(42,44)
19 L(22,24) L(43,46) 49 L(26,28) L(71,74)
20 L(9,10) L(7,8) 50 L(24,26) L(28,30)
21 L(10,11) L(2,3) 51 L(25,26) L(13,14)
22 L(15,16) L(48,50) 52 L(34,35) L(70,72)
23 L(18,19) L(63,65) 53 L(30,31) L(45,46)
24 L(17,18) L(58,60) 54 L(38,39) L(41,42)
25 L(11,12) L(46,48) 55 L(34,35) L(40,42)
26 L(13,14) L(52,54) 56 L(22,23) L(30,31)
27 L(14,15) L(22,23) 57 L(28,29) L(37,38)
28 L(15,16) L(65,66) 58 L(26,27) L(24,25)
29 L(20,21) L(28,29) 59 L(32,33) L(25,26)
30 L(19,20) L(55,56) 60 L(35,36) L(60,62)

Fig. 2   Training data and test data in Example 1
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For brevity, denote by A the negative class and denote by 
B the positive one. The first 20 data in A and the first 20 data 
in B are utilized as the training data, while the rest are utilized 
as the test data. The training data and the test data are plotted 
in Fig. 2, where black squares represent the training data in A, 
black stars represent the training data in B, blue squares rep-
resent the test data in A, and blue stars represent the test data 
in B. It can be seen that S1 is a linearly �-nonseparable data set.

For the data set S1 , Model (10) is reformulated and we 
obtain Model (11).

(11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
w1,w2, b,

si, i ∈ I

min
i∈I �

1

0

���w1Υ
−1
i1
(u,w1) + w2Υ

−1
i2
(u,w2) + b

���du − C
�
i∈I

si

s.t. yi
�
w1Υ

−1
i1

�
�,−yiw1

�
+ w2Υ

−1
i2

�
�,−yiw2

�
+ b

� ≥ −si, i ∈ I

w2
1
+ w2

2
= 1

si ≥ 0, i ∈ I,

where I = {1, 2,… , 20, 31, 32,… , 50}.
Setting confidence levels � = 0.90, 0.95, 0.99, respec-

tively, we employ ‘fmincon’ package in Matlab to seek the 
optimal solution to Model (11) under different parameters. 
The coefficients for the optimal hyperplanes are reported in 
Table 2. It can be seen that the optimal hyperplanes appear 
to change slightly under different penalty coefficients C. And 
a larger C seems to produce more reliable results. However, 
the results are slightly different for distinct confidence levels.

Table 2   Optimal solutions 
( w

1
,w

2
, b ) under different 

penalty coefficients and 
confidence levels

� = 0.90 � = 0.95 � = 0.99

C=0 (0.9941,−0.1089,−19.5222) (0.9940,−0.1092,−19.5023) (0.9986,−0.0531,−22.3406)

C=1 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=2 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=3 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=4 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=10 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=20 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=40 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

Fig. 3   Misclassified data in S
1

Table 3   Predicting the data label

No. 21 22 23 24 25

Forecasted label −1 −1 −1 −1 −1

No. 26 27 28 29 30
Forecasted label −1 −1 −1 −1 −1

No. 51 52 53 54 55
Forecasted label +1 +1 +1 +1 +1
No. 56 57 58 59 60
Forecasted label −1 +1 +1 +1 +1

Table 4   Confusion matrix in 
Example 1

Real label Forecasted label

Positive Negative

Positive 9 1
Negative 0 10
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When the parameter C = 1 and confidence level � = 0.95 , 
the optimal hyperplane determined by Model (11) for S1 is 
0.9966x1 − 0.0820x2 = 19.9543 . The misclassified data are 
the 9th, 19th, and 39th observations, and their correspond-
ing slack variables are 1.0278, 0.1051, and 2.2807, respec-
tively. These misclassified data are pointed in red in Fig. 3, 
where the data x̃xxi with label yi = 1 are indicated as squares, 
and the data x̃xxi with label yi = −1 are indicated as stars for 
i = 1, 2,… , 40.

Next, we evaluate the generalization ability of the soft 
margin USVM by following the classification approach 
given by Qin and Li (2022). We evaluate Model (11) by 
the test data with the confidence level � = 0.90 . Denote 
the number of the points in positive class for right clas-
sification as true positive (TP), the number of the points in 
positive class for the false classification as false negative 
(FN), the number of the points in negative class for the 
right classification as true negative (TN), and the number 
of points in negative class for the false classification as 
false positive (FP). The results are presented in Table 3 
and summarized in a confusion matrix which is listed in 
Table 4.

Further, commonly used evaluation indicators for 
binary classification problem are accuracy, precision, 
recall, and F-score, which are defined as follows,

and

We expect a higher number of the right classification for 
positive class as well as negative class. That is, above met-
rics indicate a good classification result if they are close to 
1. Accordingly, we obtain

Accuracy =
TP + TN

TP + FN + TN + FP
,

Precision =
TP

TP + FN
,

Recall =
TP

TP + FP
,

F =
2

Recall∕2 + Precision∕2
=

TP

TP + (FP + FN)∕2
.

and

The results show that the soft margin USVM performs rea-
sonably well for the data set S1.

Next, we explore the robustness of the soft margin 
USVM by repeating the analysis and changing original 
data. Suppose that the uncertainty distributions of the 
12th and the 35th data become (L(12, 14),L(7, 9)) and 
(L(38, 40),L(60, 62)) , respectively, and their labels remain 
unchanged. Then, we obtain a new data set S2 . Running 
‘fmincon’ function in Matlab, we obtain the optimal solu-
tions under confidence levels 0.90, 0.95 and 0.99, respec-
tively, which are reported in Table 5.

Accuracy =
9 + 10

9 + 1 + 0 + 10
= 95.0%,

Precision =
9

9 + 1
= 90.0%,

Recall =
9

9 + 0
= 100.0%,

F =
9

9 + (0 + 1)∕2
= 94.7%.

Table 5   Optimal solutions 
( w

1
,w

2
, b ) under different 

penalty coefficients and 
confidence levels with two 
modified data

�=0.90 �=0.95 �=0.99

C=0 (0.9936,−0.1133,−18.2130) (0.9894,−0.1450,−16.7865) (1.0000,−0.0034,−23.3601)

C=1 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=2 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=3 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=4 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=10 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=20 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

C=40 (0.9966,−0.0821,−20.0578) (0.9966,−0.0820,−19.9543) (0.9965,−0.0836,−19.8671)

Fig. 4   Optimal hyperplane for data set S
2
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When the penalty coefficient C = 1 and the confidence 
level � = 0.95 , the optimal hyperplane determined by 
Model (11) for the linearly �-nonseparable data set S2 is 
0.9966x1 − 0.0820x2 = 19.9543 . Figure 4 shows the optimal 
hyperplane as a line and two modified data in red. The 
misclassified data are the 9th, the 19th, and the 39th data, 
and the corresponding slack variables are 1.0278, 0.1051 
and 2.2807, respectively.

Table 5 indicates that the optimal solution will change 
when the penalty coefficient C from 0 to 1. But when C 
continues increasing, the optimal solutions are unchanged 
under data modification. This is possibly because the pen-
alty term in the objective function plays a leading role.

Example 2  In this example, we examine the soft margin 
USVM based on the linearly �-separable data set given by 
Qin and Li (2022). Denote the data set as S

3
 , whose ele-

ments are denoted as (x̃i1, x̃i2) with label yi ∈ {1,−1} , 

Table 6   Optimal solutions 
( w

1
,w

2
, b ) under different 

penalty coefficients and 
confidence levels for data set S3

�=0.90 �=0.95 �=0.99

C=0 (0.1104, 0.9939,−35.5314) (0.1104, 0.9939,−35.5309) (0.1104, 0.9939,−35.5309)

C=1 (0.1104, 0.9939,−35.5314) (0.1104, 0.9939,−35.5311) (0.1104, 0.9939,−35.5313)

C=2 (0.1104, 0.9939,−35.5313) (0.1104, 0.9939,−35.5315) (0.1104, 0.9939,−35.5313)

C=3 (0.1104, 0.9939,−35.5309) (0.1104, 0.9939,−35.5313) (0.1104, 0.9939,−35.5313)

C=4 (0.1104, 0.9939,−35.5313) (0.1104, 0.9939,−35.5314) (0.1105, 0.9939,−35.5333)

C=10 (0.1104, 0.9939,−35.5314) (0.1092, 0.9940,−35.5005) (0.1617, 0.9868,−36.9185)

C=20 (0.1104, 0.9939,−35.5314) (0.1623, 0.9867,−36.9345) (0.1104, 0.9939,−35.5316)

C=40 (0.1104, 0.9939,−35.5315) (0.1623, 0.9867,−36.9342) (0.1618, 0.9868,−36.9206)

Table 7   Optimal solutions 
( w

1
,w

2
, b ) under different 

penalty coefficients and 
confidence levels for data set S4

� = 0.90 � = 0.95 � = 0.99

C=0 (0.1504, 0.9886, −36.6204) (0.1104, 0.9939, −35.5314) (0.1104, 0.9939, −35.5317)
C=1 (0.1104, 0.9939, −35.5313) (0.1104, 0.9939, −35.5314) (0.1104, 0.9939, −35.5312)
C=2 (0.1104, 0.9939, −35.5314) (0.1104, 0.9939, −35.5314) (0.1104, 0.9939, −35.5313)
C=3 (0.1104, 0.9939, −35.5305) (0.1104, 0.9939, −35.5313) (0.1104, 0.9939, −35.5313)
C=4 (0.1104, 0.9939, −35.5314) (0.1104, 0.9939, −35.5312) (0.1104, 0.9939, −35.5314)
C=10 (0.1104, 0.9939, −35.5313) (0.1528, 0.9883, −36.6848) (0.1105, 0.9939, −35.5338)
C=20 (0.1104, 0.9939, −35.5314) (0.1102, 0.9939, −35.5246) (0.1523, 0.9883, −36.6700)
C=40 (0.1535, 0.9881, −36.7032) (0.1108, 0.9938, −35.5427) (0.1104, 0.9939, −35.5315)

Fig. 5   Optimal hyperplane for data set S
3

Fig. 6   Optimal hyperplane for data set S
4
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i = 1, 2,… , 40 . Let Φ−1
i1

 and Φ−1
i2

 denote the inverse 
uncertainty distributions of x̃i1 and x̃i2 for i = 1, 2,… , 40 , 
respectively.

To classify the data in S3 , Model (10) is reformulated, 
and we obtain Model (12) with a penalty coefficient. This 
calls for an examination of the classification power of Model 
(12) from the perspective of different penalty coefficients as 
well as confidence levels. As before, we explore the opti-
mal solutions for confidence levels � ∈ {0.90, 0.95, 0.99} , 
and penalty coefficient C ∈ {1, 2, 3, 4, 10, 20, 40}. The opti-
mal solution (w1,w2, b) to Model (12) can be obtained by 
employing ‘fmincon’ function in Matlab. We list the optimal 
solutions in Table 6.

When the penalty coefficient C increases, the results tend 
to be unchanged. Letting C = 10 and � = 0.90 , we plot the 
results in Fig. 5 to show that the optimal hyperplane correctly 
classifies the data set. Suppose that the uncertainty distribu-
tions of the 26th and the 30th data become (L(1, 3),L(81, 83)) 
and (L(3, 4),L(55, 58)) , respectively, and their labels remain 
unchanged. Then we obtain a new data set S4 . As indicated 
by Fig. 6, two new data are indicated in circles.

Similarly, we may obtain the corresponding optimal 
hyperplane and their coefficients are presented in Table 7. 
The results are not sensitive to the confidence level � and 
the penalty coefficient C. From Fig. 6, we observe that all 
the data with positive labels are lying in the same half-plane 
determined by the optimal hyperplane, and the data with 
negative labels are lying in the contrary part. In the mean-
time, the widest margin is manifested by the hyperplane. 
The results are consistent with the main conclusions in Qin 
and Li (2022). We can see that the soft margin USVM is 
not only capable of handling the classification problem with 
linearly �-separable data sets, but also capable of the case 
with linearly �-nonseparable data sets.

5 � Conclusions

This paper proposed an USVM based on soft margin method 
for linearly �-nonseparable data set with imprecise observa-
tions in the framework of uncertainty theory. The equivalent 

(12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
w1,w2, b,

s1, s2 … , s40

min
i �

1

0

���w1Υ
−1
i1
(u,w1) + w2Υ

−1
i2
(u,w2) + b

���du − C

40�
i=1

si

s.t. yi
�
w1Υ

−1
i1

�
�,−yiw1

�
+ w2Υ

−1
i2

�
�,−yiw2

�
+ b

� ≥ −si, i = 1, 2,… , 40

w2
1
+ w2

2
= 1

si ≥ 0, i = 1, 2,… , 40.

crisp model was derived based on the inverse uncertainty 
distributions. Two numerical examples were conducted to 
demonstrate the application and effectiveness of the proposed 
model. The modelling idea on soft margin USVM shed a light 
on some future research directions. We may further study the 
nonlinear classification problems, multi-classification prob-
lem and so on in the case with imprecise observations.
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