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Auto-tuners for PID controllers have now been commercially available for a

few years. These controllers are automating the task normally performed by an instrument
engineer. The auto-tuners include some technique for extracting process dynamics from
experiments and some control design method. They may even be able to select to use PI
or PID control. For a higher degree of automation it is desirable to also automate tasks
normally performed by process engineers. To do so it is necessary to provide the controllers
with reasoning capability. This seems technically feasible with the increased computing
power that is now available in single loop controllers. This paper describes a PID controller

with such reasoning capabilities.

1. Introduction

In the design of an intelligent or knowledge based
feedback controller (Astrom et al 1986, Arzén 1987,
1988), it would be desirable to incorporate the expert
knowledge of design engineers so that it can make
decisions on the choice of control algorithm and
provide diagnostics on the effectiveness of the control
system. A system with such facilities would make
the task of the operator and the instrument engineer
more interesting. It would also make it possible for
the instrument engineer to improve the reasoning of
the system. For real-time implementation it would
also be desirable to have as much deep knowledge
as possible, in place of large number of possibly
conflicting rules. It would also be desirable that the
controller to a limited degree could explain its own
reasoning, e.g. why derivative action was used. It
should also be able to tell if PID is appropriate in the
particular case and possibly also suggest alternative
control schemes.

In this paper we attempt to develop formal tools
to assess what can be achieved by PID control of a
class of systems with the Ziegler-Nichols tuning for-
mula and to characterize a class of systexs where
PID control is appropriate. Based on empirical re-
sults and approximate analytical study, we introduce
two numbers, namely the normalized dead time 8 and
the normalized process gain X, to characterize the
open loop process dynamics and two numbers, the
peak load error A and the normalized rise time T, to
characterise the closed loop response. Simple meth-
ods of measuring these parameters are proposed. It
is shown that # and K are related and either of them
can be used to predict the achievable performance

of PID controllers tuned by the Ziegler-Nichols for-
mula. Using these relations the intelligent controller
can thus interact with the operator and advise on
choice of control algorithm.

We have established useful relations, which can
be used to assess whether the PID controller is prop-
erly tuned. The simplicity of the relations allows the
development of a first generation of intelligent con-
trollers using current technology. Significant insight
into the properties and heuristic aspects of PID con-
trol is gained. Such knowledge can be formally dis-
cussed and further refined. It is believed that the ap-
proach can be extended to other classes of systems
and this is a topic of current research.

The paper is organized as follows. The restricted
class of processes that we are concerned with is
introduced in Section 2. Some useful dimensionless
numbers are introduced in Section 3. In Sections 4
and 5 some relations between the features are derived
by approximate analysis and empirical refinement
based on simulation. The results are used in Section
6 to discuss the performance that may be achieved
with PID control based on Ziegler-Nichols tuning,.
Some characteristics are given in Section 7.

2. Process Characteristics

It is assumed that the process dynamics is linear and
stable. The characteristics will be further restricted
both in the time and the frequency domain. Feedback
with simple controllers only is considered.



Time Domain Characterization

It will be assumed that the step response is monotone
or essentially monotone, i.e. monotone except for a
small initial part. Such systems can be characterized
by the parameters Kj, L, and T, where K, is the
static process gain, L is the apparent dead time and
the T is the apparent time constant. The parameters
T and L are obtained by graphicel construction,
where the tangent is drawn in the inflection point
of the step response. The transfer function

e—.L
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is a crude analytic approximation of the the transfer
function of the class of processes that we are con-
sidering. Notice however that the transfer functions
considered are not restricted to this class.

The class of systems considered is the same as
that used in the classical works on Ziegler-Nichols
tuning. There are important classes of systems that
are excluded, e.g., systems having integrators and
systems with resonant poles. Systems having inte-
grators may have monotone step responses but they
are not stable. Systems with resonant poles do not
have essentially monotone step response.

Frequency Domain Characterization

A different frequency domain characterization of pro-
cess dynamics will also be introduced. It is assumed
that the Nyquist curve is monotone or essentially
monotone, i.e. both the phase and the amplitude
are monotone functions of the frequency. The first
intersection with the negative real axis defines the
ultimate frequency, wy, and the ultimate gain, K,.
Lack of monotonicity can be accepted at frequencies,
where the phase shift is larger than 180°.

3. Features

Dimension-free parameters, like Reynold’s numbers,
have found much use in many branches of engineer-
ing. They have however not been much used in au-
tomatic control. In this section it is attempted to
introduce some numbers that are useful in assessing
control system performance.

Normalized Dead-time

The normalized dead-time is defined as the ratio
of the apparent dead-time and the apparent time
constant, or formally

(2)
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This number is thue easily obtained from a record
of the step response. It has been known from prec-
tical experience that the normalized dead-time may
be used as a measure of the difficulty of controlling a
process. Processes with a small @ are easy to control
and processes with a large 0 are difficult to control.

The parameter 6 was actually called the controllabil-
ity ratio by Deshpande and Ash (1981). Fertik (1975)
introduced the name process controllability for the
quantity 6/(1 + 8). To avoid possible confusion with
the standard terminology of modern control theory
we will use the word normalized dead time.

Normalized Process Gain

The process gain K, is not dimension-free. It can
however be made dimension free by multiplication
with a suitable controller gain. The ultimate gain
K., ie., the controller gain that makes the process
unstable under proportional feedback control, is a
suitable normalization factor. The normalized pro-
cess gain, K, can be defined as

K=K,K, (3)

This number is easily obtained from the Nyquist
curve. It also has a physical interpretation as the
largest process loop gain that can be achieved under
proportional control. The number is useful to assess
the control performance. Roughly speaking, a large
value indicates that the process is easy to control
while a small value indicates that the process is
difficult to control.

The normalized process gain is directly obtained
from a Nyquist curve of the process. It can also be
obtained from an experiment with relay feedback, see
Astrdm and Higglund (1984).

Since the processes we consider are stable they
have a static error under proportional feedback. The
static error obtained for a unit step command

1 |
T1+ KK, 1+K (4)

where K is the proportional gain used. The inequal-
ity follows because K,K, < K. The number K can
thus be used to estimate the static error achievable
under proportional control and also to determine if
integral action is required to satisfy the specifications
on static error.

Peak Load Disturbance Error

The response to step load disturbances is an impor-
tant factor when evaluating control systems. The ef-
fect of a load disturbance depends on where the dis-
turbance acts on the system. In this section it will be
assumed that the disturbance acts on the process in-
put. With a controller without integral action & unit
step disturbance in the load gives the static error

= > (5)
1+ KuK, 14K

The quantity e;/K, is dimension-free.

When a controller with integral action is used
the static error due to a step load disturbance is zero.
A meaningful measure is then the maximum error
due to a load disturbarce. To obtain a dimension-
free quantity it is also divided by the process gain.

The following variable is thus obtained
1

where lp is the amplitude of the step disturbance.

e



Normalized Closed Loop Rise Time

The cloged loop rise time is a measure of the response
speed of the closed loop system. Again, to obtain &
dimension-free parameter it will be normalized by
the apparent dead time L of the open loop system.
The parameter is thus

~‘
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4. Empirics

The Ziegler-Nichols closed-loop tuning procedure
was applied to a large number of different processes.
It was attempted to correlate the observed properties
of the open and closed loop systems to the features
introduced in Section 3. In this section we will
present the empirical results. Processes with the
transfer functions

e—-lD

Gi(s) = W (8)

Ga(s) = ,3<n<20 (9)
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0<a<25 (10)
will be investigated. These models cover a wide range
of dynamic characteristics such as pure dead-time
and nonminimum phase response. The main features
of the models are summarized in Astzdm et al (1988).

The normalized apparent dead-time was mea-
sured from the step responses. The ultimate gain
was determined by simulation. Parameters of PID
regulators were determined by a straight forward
application of the Ziegler-Nichols closed-loop method
without fine tuning, i.e. with values of proportional
gain K., integral time T; and derivative time Ty set
as 0.6 K, 0.5T,, and 0.125T, respectively. The closed
loop performance is judged based on the closed loop
step and load responses.

The results obtained are summarized in Tables
1-3. The tables give a parameter that characterizes
the process, the ultimate period Ty, the overshoot os,
the undershoot us of the closed loop step response,
the apparent normalized dead-time 8 = L/T, the
normalized loop gain K, the normalized closed loop
rise time 7 = t,/L, and the normalized peak load
error KA.

The results for the first process are summarized
in Table 1. The closed loop behavior was Jjudged to
be satisfactory for 0.15 < @ < 0.6. The overshoot
for @ in the low range is too high. This is however
easily reduced by using the setpoint weighting factor
modification, see Astrém and Higglund (1988). For
large values of @ there is a pronounced undershoot in
the step response. The results for the second process
are summarized in Table 2. The closed loop behavior
was judged to be satisfactory for 0.22 < 6 < 0.64.
The overshoot for @ in the low range is too high.
This is however easily reduced by using the setpoint

D T, os wus "] K T KA

01 14 75 26 015 21 0.80 1.26
02 20 60 14 0.19 105 0.95 1.57
0.4 2.8 50 5 0.26 5.7 1.0 1.53
06 3.6 35 2 034 40 094 1.48
1.0 48 26 3 0.49 2.7 1.02 1.40
15 6.0 19 9 0.69 2.0 093 1.35
20 7.2 14 14 0.89 1.7 0.85 1.26
25 83 12 17 1.09 1.5 082 1.28
3.0 9.4 20 20 1.26 1.4 079 1.25

Table 1. Experimental results for a system
with the G(s) = e™*D /(s + 1)2.

weighting factor modification. For large values of
60 there is a pronounced undershoot in the step
response. Similar results are obtained for the third
process as summarized in Table 3.

n T. os us (/] K T KA
3 3.7 50 13 0.22 8.0 1.07 1.52
4 6.0 40 10 0.32 4.0 1.16 1.40
6 106 26 11 0.49 2.4 1.14 1.30
8 146 17 14 0.64 1.88 1.08 1.18
10 188 12 17 0.76 1.60 0.96 1.18
15 29.0 0 24 106 136 0.9 1.16
20 39.0 5 30 1.28 1.25 0.8 1.14

Table 2. Experimental results for a system
with the G(s) =1/(s + 1)™.

a Tu o8 us 0 K T KA

0 3.7 50 13 0.22 8 116 1.52
01 38 650 15 0.23 6.2 1.09 1.49
025 43 48 11 0.28 45 1.09 1.44
05 50 38 3.8 038 32 1.16 1.41
1.0 6.0 21 38 058 2.0 098 1.34
16 65 9.6 7.7 0.76 1.45 0.89 1.30
20 7.0 -19 16 098 1.15 0.84 1.24

Table 8. Experimental results for a system
with the G(s) = (1 — as)/(s + 1)3.

5. Relations

We have thus introduced two normalized numbers,
namely the normalized dead-time # and the normal-
ized process gain K, to characterize the open loop dy-
namics and two numbers, the peak load error A and
the normalized closed loop rise time T to character-
ize the closed loop response. Some relations between
these numbers will now be established. In doing so
we will also develop an intuitive feel for the meaning
of the numbers.

Normalized Dead-time and Process Gain

As can be seen from Tables 1-3 there appears to be
a relation between normalized process gain K and
normalized dead time 8. For specific systems it is
possible to find the relations exactly, see Astrom et



al (1988). For first order systems with dead time we
wyL

have:
— 2 _
0 = _T arctan vX 1 (11)
wy T K2 -1

See Astrom et al (1988). This relation is shown
graphically in Figure 1.

It is possible to find exact expressions for the
relations between X and 6 for the processes given
by equations (8), (9) and (10). They can also be ob-
tained experimentally as discussed in Section 4. The
relations are shown in Figure 1. The graphs indicate
that for processes with higher order dynamics the
product K@ is approximately constant. This is im-
portant because it means that the normalized pro-
cess gain K can be used instead of the normalized
dead time @ to assess achievable performance.

—
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Figure 1. The normalized process gain X as
a function of apparent normalized dead time 8
for systems (1), (8), (9), and (10).

Peak Load Error and Normalized Dead-time

Consider the closed loop system obtained with the
process and the controller. Assume that the distur-
bance enters at the plant input with PID control and
Ziegler-Nichols tuning. The transfer function from
the load disturbance to the output is

1 Gp(8)Ge(s)
Ge(s) 1+ Gp(s)Ge(a)

Ga(s) = (12)

A PID controller with Ziegler/Nichols tuning has the
transfer function

K.(s+ c.\z)2
Ge(8) = ————_
(8) 2as
where
a= L -4
- 2Ty~ Tu

This choice gives good rejection of load disturbances
as discussed by Hang (1989). With Ziegler-Nichols
tuning the closed loop system has a bandwidth
w & 7.4/T,. The transfer function (12) can then be
approximated by

2as

1 —_
G:(2) K. (s+a)?

Gd(a) ]

The corresponding unit step response is

2act
HO =%

r

e—at

It has & maximum

(13)

at
1=2T,

We thus find that the parameter KA can be expected
to be constant. This is also supported by the exper-
imental results given in Tables 1-3 which gives

)~ 1.3 (14)
The knowledge of A can be used by an intelligent
controller to check if a PID controller with Ziegler-
Nichols tuning can be used to satisfy the given
specifications to peak load error. From the analysis
we also find that the peak error occurs T./4 time
units after the step disturbance is applied.

Closed Loop Rise Time

The experimental results given in Tables 1-3 show
that the normalized rise time is approximately con-
stant. Hence

Tl

(15)

In physical terms this implies that t, ~ L, compare
with equation (7). This means that the Ziegler-
Nichols method gives a closed loop system with &
rise time approximately equal to the apparent dead-
time of the open loop system.

6. Ziegler-Nichols Tuning

The results obtained will now be used to evaluate
PID controllers with Ziegler-Nichols tuning. We can
first observe that the Ziegler-Nichols tuning proce-
dure is very simple. It is based on a simple character-
ization of the process dynamics, either parameters a
and L from the step response or the critical point on
the Nyquist curve parameterized in Ky and w,. We
have also obtained two relations r ~ 1 and K\ ~ 1.3
which characterizes the closed loop performance. The
condition T & 1 implies that Ziegler-Nichols tuning
tries to make the closed loop rise time equal to the
apparent dead-time,

When can Ziegler-Nichols Tuning be used?

The results obtained show that Ziegler-Nichols tun-
ing will give good results under certain conditions
and that these conditions can be characterized by
one parameter, 8, or K = K, K.

The results are summarized in Table 4. Four
cases are introduced in the table. They are classified
as follows:



Case 1, 0 < 0.15 or K > 20: Ziegler-Nichols tun-
ing may not give the best results in this case. The
reason is that it is possible to use comparatively high
loop gains. There are many possible choices of con-
trollers. A P or PD controller may be adequate if
the requirements on static errors are not too strin-
gent. A proportional controller could be chosen if a
static error around 10% is tolerable. (This estimate
is based on the assumption that the controller gain
is half of the ultimate gain). If smaller static errors
are required it is necessary to use integral action.
In some ceses performance can be increased signifi-
cantly by using derivative action or even more com-
plicated control laws. Temperature control where the
dynamics is dominated by one large time constant is
a typical case. We have observed that the derivative
time Tq = Ti/4 obtained by the Ziegler-Nichols rule
is too large in this case. It gives a long tail in the
step response; a better value is T = T;/8. a

Case 2, 015 < 0 < 0.6 or 2 < K < 20: This is
the prime application area for PID controllers with
Ziegler-Nichols tuning. It works well in this case.
Derivative action is often very helpful. O

Case 3, 06 < 0 <1 or 15 < K < 2: When
0 approaches 1 Ziegler-Nichols tuning becomes less
useful. This is easy to understand if we recall that
the tuning procedure tries to make closed loop
rise time equal to the apparent dead time. It is
difficult to achieve tight control with Ziegler-Nichols
tuned PID controllers. Other tuning methods and
other controller structures like Smith predictors, pole
placement, or feedforward could be considered. [

Case 4, 0 > 1 or K < 15: PID control based
on Ziegler-Nichols tuning is not recommended when
0 is larger than 1. The reason why PID controllers
work so poorly for § > 0.6 is partly due to inherent
limitations of PID controllers and partly due to the
Ziegler-Nichols tuning procedure. Modifications of
the Ziegler-Nichols rule were proposed by Cohen-
Coon (1953). By choosing other tuning methods it
is however possible to tune PID controllers to work
satisfactorily even for 8 = 10, see Astrom (1988). O

A parallel effort by Hang and Astrom (1988) has
gone further than merely using 6 to predict the
effectiveness of the Ziegler-Nichols tuning formula.
The following modification to eliminate manual fine
tuning has been recommended. When 8 < 0.6
the main drawback of the Ziegler-Nichols formula

is excessive overshoot. This can be overcome by
setpoint weighting where the weighting factor is a
simple function of 8. When 0 > 0.6 the integral time
computed by the Ziegler-Nichols formula needs to be
modified by a factor which again can be expressed
as a simple function of §. These modifications are
esgential to obtain high quality PID control without
manual fine tuning.

Table 4 indicates that a broad classification of
Ziegler-Nichols tuned PID controllers can be made
based on the normalized dead-time. This observation
is useful if we try to build control systems with
decision aids where the instrument engineer or the
operator is advised also on controller selection.

Implications for Smart Controllers

There are several simple auto-tuners that are based
on the Ziegler-Nichols tuning procedure. A drawback
with them is that they are unable to reason about
the achievable performance. The result of this paper
indicates that there is a simple modification. By
determining one of the parameters 8 or K it is
thus a simple matter to provide facilities so that
a simple auto-tuner can select the controller form
P, PI, or PID and also give indications if a more
sophisticated control law would be useful. For an
auto-tuner based on the transient method this can
be achieved by determining not only a and L but
also K, and including a logic based on Table 4. For
relay based auto-tuners it is necessary to complement
the determination of w, and K, with determination
of K;. This can easily be made from measurement
of average values of inputs and outputs in steady
state operation. It is also possible to modify the relay
tuning so that the static gain is also determined. The
accuracy of the tuning formula over a wide range of
0-values can be markedly improved by the use of the
correlation formula of Hang and Astrom (1988) as
discussed above.

On-line Assessment of Control Performance

The results of this paper can also be used to evaluate
performance of feedback loops under closed loop
operation. Consider, e.g., the relation (15) for the
normalized rise time. The rise time can be measured
when the set point is changed. If the controller
is properly tuned then the closed loop rise time
should be equal to the apparent dead time. If

Tight Control is

Tight Control is Required

0 Not Required

High Measurement Low Saturation Low Measurement Noise
Noise Limit and High Saturation Limit

Class I < 0.15 P PI PI or PID P or PI

Class I1 0.15 ~ 0.6 PI PI PI or PID PID

Class IIT1 0.6 ~ 1 Ior PI I+ A PI+ A PlorPID+ A+ C

Class IV > 1 I I+B+C PI+B+C PI+B+D

Table 4. A: Feedforward compensation recommended, B: Feedforward compensation

essential, C: Dead-time compensation recommended, D: Dead-time compensation essen-

tial.



the actual rise time is significantly different, say
50% larger, it indicates that the loop is poorly
tuned. This type of assessment is particularly useful
when the damping is adequate but it is not certain
whether the control is too sluggish. Note that the
Foxboro’s EXACT adaptive controller, based on
pattern recognition, Bristol (1977), cannot make this
kind of judgement. Similarly the relation (13) can be
used by introducing a perturbation at the controller
output. If the maximum error deviates from that
predicted by (13) we can suspect that the loop is
poorly tuned.

7. Conclusions

In this paper it has been attempted to analyze simple
feedback loops with PID controllers that are tuned
using the Ziegler-Nichols closed loop method. It has
been shown that there are some quantities that are
useful to assess achievable performance and to select
suitable controllers. These quantities are the normal-
ized process gain (K), the normalized dead-time (),
the normalized closed loop rise time (7), and the peak
load error (A). Simple methods to determine these
parameters have also been suggested.

It has been shown that X and 0 are related
and that they can be used to assess the control
problem. A small @ indicates that tight control
is possible with P or PI control but also that
significant improvements is sometimes possible with
more sophisticated control laws. Processes with @
in the range from 0.15 to 0.6 can be controlled
well by PID controllers with Ziegler-Nichols tuning.
The results show clearly that Ziegler-Nichols tuning
gives poor results when the normalized dead-time
0 is larger than 0.6. There are also relations like
T ~ 1 and KX ~ 1.3, that may be used to assess
the closed loop response time and the load rejection
properties, The results indicate that it would be
useful to determine at least one of the parameters
K or 6 in connection with controller tuning because
these parameters are so important for assessment of
achievable performance.
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