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Abstract

We prove some consistency results about b(λ) and d(λ), which are
natural generalisations of the cardinal invariants of the continuum b

and d. We also define invariants bcl(λ) and dcl(λ), and prove that
almost always b(λ) = bcl(λ) and d(λ) = dcl(λ)

1 Introduction

The cardinal invariants of the continuum have been extensively studied. They

are cardinals, typically between ω1 and 2ω, whose values give structural in-

formation about ωω. The survey paper [2] contains a wealth of information

about these cardinals.

In this paper we study some natural generalisations to higher cardinals.

Specifically, for λ regular, we define cardinals b(λ) and d(λ) which generalise

the well-known invariants of the continuum b and d.
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For a fixed value of λ, we will prove that there are some simple constraints

on the triple of cardinals (b(λ), d(λ), 2λ). We will also prove that any triple

of cardinals obeying these constraints can be realised.

We will then prove that there is essentially no correlation between the

values of the triple (b(λ), d(λ), 2λ) for different values of λ, except the obvious

one that λ 7−→ 2λ is non-decreasing. This generalises Easton’s celebrated

theorem (see [3]) on the possible behaviours of λ 7−→ 2λ; since his model was

built using Cohen forcing, one can show that in that model b(λ) = λ+ and

d(λ) = 2λ for every λ.

b(λ) and d(λ) are defined using the co-bounded filter on λ, and for λ > ω

we can replace the co-bounded filter by the club filter to get invariants bcl(λ)

and dcl(λ). We finish the paper by proving that these invariants are essen-

tially the same as those defined using the co-bounded filter.

Some investigations have been made into generalising the other cardinal

invariants of the continuum, for example in [7] Zapletal considers s(λ) which

is a generalised version of the splitting number s. His work has a different

flavour to ours, since getting s(λ) > λ+ needs large cardinals.

We are indebted to the referee and Jindrich Zapletal for pointing out a

serious problem with the first version of this paper.

2 Definitions and elementary facts

It will be convenient to define the notions of “bounding number” and “domi-

nating number” in quite a general setting. To avoid some trivialities, all par-

tial orderings P mentioned in this paper (with the exception of the notions

of forcing) will be assumed to have the property that ∀p ∈ P ∃q ∈ P p <P q.

Definition 1: Let P be a partial ordering. Then

• U ⊆ P is unbounded if and only if ∀p ∈ P ∃q ∈ U q �P p.

• D ⊆ P is dominating if and only if ∀p ∈ P ∃q ∈ D p ≤P q.

• b(P) is the least cardinality of an unbounded subset of P.
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• d(P) is the least cardinality of a dominating subset of P.

The next lemma collects a few elementary facts about the cardinals b(P)
and d(P).

Lemma 1: Let P be a partial ordering, and suppose that β = b(P) and

δ = d(P) are infinite. Then

β = cf(β) ≤ cf(δ) ≤ δ ≤ |P|.

Proof: To show that β is regular, suppose for a contradiction that cf(β) < β.

Let B be an unbounded family of cardinality β, and write B =
⋃

α<cf(β)Bα

with |Bα| < β. For each α find pα such that ∀p ∈ Bα p ≤ pα, then find q such

that ∀α < cf(β) pα ≤ q. Then ∀p ∈ B p ≤ q, contradicting the assumption

that B was unbounded.

Similarly, suppose that cf(δ) < β. Let D be dominating with cardinality

δ and write D =
⋃

α<cf(δ) Dα where |Dα| < δ. For each α find pα such that

∀p ∈ Dα pα � p, and then find q such that ∀α < cf(δ) pα ≤ q. Then

∀p ∈ D q � p, contradicting the assumption that D was dominating.

�

The next result shows that we cannot hope to say much more.

Lemma 2: Let β and δ be infinite cardinals with β = cf(β) and δ<β = δ.

Define a partial ordering P = P(β, δ) in the following way; the underlying set

is β × [δ]<β , and (ρ, x) ≤ (σ, y) if and only if ρ ≤ σ and x ⊆ y.

Then b(P) = β and d(P) = δ.

Proof: Let B ⊆ P be unbounded. If |B| < β then we can define

ρ = sup { σ | ∃y (σ, y) ∈ B } < β,

x =
⋃

{ y | ∃σ (σ, y) ∈ B } ∈ [δ]<β.

But then (ρ, x) is a bound for B, so |B| ≥ β and hence b(P) ≥ β. On the

other hand the set { (α, ∅) | α < β } is clearly unbounded, so that b(P) = β.

3



Let D ⊆ P be dominating. If |D| < δ then
⋃
{ y | ∃σ (σ, y) ∈ D } 6= δ,

and this is impossible, so that d(P) ≥ δ. On the other hand GCH holds and

cf(δ) ≥ β, so that |P| = β × δ<β = δ. Hence d(P) = δ.

�

Definition 2: Let P, Q be posets and f : P −→ Q a function. f embeds P
cofinally into Q if and only if

• ∀p, p′ ∈ P p ≤P p′ ⇐⇒ f(p) ≤Q f(p′).

• ∀q ∈ Q ∃p ∈ P q ≤Q f(p). That is, rge(f) is dominating.

Lemma 3: If f : P −→ Q embeds P cofinally into Q then b(P) = b(Q) and

d(P) = d(Q).

Proof: Easy.

�

Lemma 4: Let P be any partial ordering. Then there is P∗ ⊆ P such that

P∗ is a dominating subset of P and P∗ is well-founded.

Proof: We enumerate P∗ recursively. Suppose that we have already enumer-

ated elements 〈bα : α < β〉 into P∗. If { bα | α < β } is dominating then we

stop, otherwise we choose bβ so that bβ � bα for all α < β.

Clearly the construction stops and enumerates a dominating subset P∗ of

P. To see that P∗ is well-founded observe that bβ < bα =⇒ β < α.

�

Notice that the identity embeds P∗ cofinally in P, so b(P∗) = b(P) and

d(P∗) = d(P).
We also need some information about the preservation of b(P) and d(P)

by forcing.
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Lemma 5: Let P be a partial ordering with b(P) = β, d(P) = δ.

• Let V [G] be a generic extension of V such that every set of ordinals of

size less than β in V [G] is covered by a set of size less than β in V .

Then V [G] � b(P) = β.

• Let V [G] be a generic extension of V such that every set of ordinals

of size less than δ in V [G] is covered by a set of size less than δ in V .

Then V [G] � d(P) = δ.

Proof: We do the first part, the second is very similar. The hypothesis

implies that β is a cardinal in V [G], and since “B is unbounded” is upwards

absolute from V to V [G] it is clear that V [G] � b(P) ≤ β. Suppose for a

contradiction that we have C in V [G] unbounded with V [G] � |C| < β. By

our hypothesis there is D ∈ V such that C ⊆ D and V � |D| < β, but now

D is unbounded contradicting the definition of β.

�

With these preliminaries out of the way, we can define the cardinals which

will concern us in this paper.

Definition 3: Let λ be a regular cardinal.

1. If f, g ∈ λλ then f <∗ g iff ∃α < λ ∀β > α f(β) < g(β).

2. b(λ) =def b((λλ,<∗)).

3. d(λ) =def d((λλ,<∗)).

These are defined by analogy with some “cardinal invariants of the con-

tinuum” (for a reference on cardinal invariants see [2]) known as b and d. In

our notation b = b(ω) and d = d(ω).

Lemma 6: If λ is regular then

• λ+ ≤ b(λ).

• b(λ) = cf(b(λ)).
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• b(λ) ≤ cf(d(λ)).

• d(λ) ≤ 2λ.

• cf(2λ) > λ.

Proof: The first claim follows from the following trivial fact.

Fact 1: Let { fα | α < λ } ⊆ λλ. Then there is a function f ∈ λλ such that

∀α < λ fα <∗ f .

Proof: Define f(β) = sup { fγ(β) + 1 | γ < β }. Then f(β) > fγ(β) for

γ < β < λ.

�

The next three claims follow easily from our general results on b(P) and
d(P), and the last is just König’s well-known theorem on cardinal exponen-

tiation.

�

We will prove that these are essentially the only restrictions provable in

ZFC. One could view this as a refinement of Easton’s classical result (see [3])

on λ 7−→ 2λ.

3 Hechler forcing

In this section we show how to force that certain posets can be cofinally

embedded in (λλ, <∗). This is a straightforward generalisation of Hechler’s

work in [4], where he treats the case λ = ω.

We start with a brief review of our forcing notation. p ≤ q means that p

is stronger than q, a κ-closed forcing notion is one in which every decreasing

chain of length less than κ has a lower bound, and a κ-dense forcing notion

is one in which every sequence of dense open sets of length less than κ has

non-empty intersection.

If x is an ordered pair then x0 will denote the first component of x and

x1 the second component.
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Definition 4: Let λ be regular. D(λ) is the notion of forcing whose con-

ditions are pairs (s, F ) with s ∈ <λλ and F ∈ λλ, ordered as follows;

(s, F ) ≤ (t, F ′) if and only if

1. dom(t) ≤ dom(s) and t = s ↾ dom(t).

2. s(α) ≥ F ′(α) for dom(t) ≤ α < dom(s).

3. F (α) ≥ F ′(α) for all α.

We will think of a generic filter G as adding a function fG : λ −→ λ given

by fG =
⋃
{ s | ∃F (s, F ) ∈ G }. It is easy to see that

G = { (t, F ) | t = fG ↾ dom(t), dom(t) ≤ α =⇒ F (α) ≤ fG(α) },

so that V [fG] = V [G] and we can talk about functions from λ to λ being

D(λ)-generic.

Lemma 7: Let λ<λ = λ, and set P = D(λ). Then

1. P is λ-closed.

2. P is λ+-c.c.

3. If g : λ −→ λ is P-generic over V then ∀f ∈ λλ ∩ V f <∗ g.

Proof:

1. Let γ < λ and suppose that 〈(tα, Fα) : α < γ〉 is a descending γ-

sequence of conditions from P. Defining t =
⋃
{ tα | α < γ } and

F : β 7−→ sup { Fα(β) | α < γ }, it is easy to see that (t, F ) is a lower

bound for the sequence.

2. Observe that if (s, F ) and (s, F ′) are two conditions with the same first

component then they are compatible, because ifH : β 7−→ F (β)∪F ′(β)

the condition (s,H) is a common lower bound. There are only λ<λ = λ

possible first components, so that P clearly has the λ+-c.c.
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3. Let f ∈ λλ ∩ V , and let (t, F ) be an arbitrary condition. Let us define

F ′ : β 7−→ (F (β) ∪ f(β)) + 1, then (t, F ′) refines (t, F ) and forces that

f(α) < fG(α) for all α ≥ dom(t).

�

If µ = cf(µ) > λ = λ<λ then it is straightforward to iterate D(λ) with

< λ-support for µ steps and get a model where b(λ) = d(λ) = µ. Getting a

model where b(λ) < d(λ) is a little harder, but we can do it by a “nonlinear

iteration” which will embed a well chosen poset cofinally into (λλ,<∗).

Theorem 1: Let λ = λ<λ, and suppose that Q is any well-founded poset

with b(Q) ≥ λ+. Then there is a forcing D(λ,Q) such that

1. D(λ,Q) is λ-closed and λ+-c.c.

2. V D(λ,Q) � Q can be cofinally embedded into (λλ,<∗)

3. If V � b(Q) = β then V D(λ,Q) � b(λ) = β.

4. If V � d(Q) = δ then V D(λ,Q) � d(λ) = δ.

Proof: We will define the conditions and ordering for D(λ,Q) by induction

on Q. The idea is to iterate D(λ) “along Q” so as to get a cofinal embedding

of Q into λλ. It will be convenient to define a new poset Q+ which consists

of Q together with a new element top which is greater than all the elements

of Q.

We will define for each a ∈ Q+ a notion of forcing Pa. If a ∈ Q+ then

we will denote { c ∈ Q | c < a } by Q/a. It will follow from the definition

that if c < a then Pc is a complete subordering of Pa, and that the map

p ∈ Pa 7−→ p ↾ Q/c is a projection from Pa to Pc.

Suppose that for all b <Q a we have already defined Pb.

1. p is a condition in Pa if and only if

(a) p is a function, dom(p) ⊆ Q/a and |dom(p)| < λ.
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(b) For all b ∈ dom(p), p(b) = (t, Ḟ ) where t ∈ <λλ and Ḟ is a Pb-name

for a member of λλ.

2. If p, q ∈ Pa then p ≤ q if and only if

(a) dom(q) ⊆ dom(p).

(b) For all b ∈ dom(q), if p(b) = (s, Ḣ) and q(b) = (t, İ) then

i. t = s ↾ dom(t).

ii. p ↾ (Q/b) Pb
dom(t) ≤ α < dom(s) =⇒ s(α) > İ(α).

iii. p ↾ (Q/b) Pb
∀α Ḣ(α) ≥ İ(α).

We define D(λ,Q) = Ptop, and verify that this forcing does what we

claimed. The verification is broken up into a series of claims.

Claim 1: D(λ,Q) is λ-closed.

Proof: Let γ < λ and let 〈pα : α < γ〉 be a descending γ-sequence of con-

ditions. We will define a new condition p with dom(p) =
⋃

α dom(pα). For

each b ∈ dom(pα) let pα(b) = (tα(b), Ḟα(b)).

Let p(b) = (t, Ḟ ) where t =
⋃
{ tα(b) | b ∈ dom(pα) } and Ḟ (b) is a Pb-

name for the pointwise supremum of { Ḟα(b) | b ∈ dom(pα) }. Then it it is

easy to check that p is a condition and is a lower bound for 〈pα : α < γ〉

�

Claim 2: D(λ,Q) is λ+-c.c.

Proof: Let 〈pα : α < λ+〉 be a family of conditions. Since λ = λ<λ we may

assume that the domains form a ∆-system with root r. We may also assume

that for b ∈ r, pα(b) = (tb, Fα(b)) where tb is independent of α. It is now easy

to see that any two conditions in the family are compatible.

�

9



Claim 3: If c < a then Pc is a complete subordering of Pa, and the map

p 7−→ p ↾ Q/c is a projection from Pa to Pc.

Proof: This is routine.

�

If G is D(λ,Q)-generic, then for each a ∈ Q we can define fa
G ∈ λλ∩V [G]

by fa
G =

⋃
{ t(a)0 | t ∈ G }. It is these functions that will give us a cofinal

embedding of Q into (λλ ∩ V [G], <∗), via the map a 7−→ fa
G.

Claim 4: If a <Q b then fa
G <∗ f b

G.

Proof: Let p be a condition and let Ḟ be the canonical Pb-name for fa
G.

Refine p to q in the following way; q(c) = p(c) for c 6= b, and if p(b) = (t, Ḣ)

then q(b) = (t, İ) where İ names the pointwise maximum of Ḟ and Ḣ .

Then q forces that f b
G(α) is greater than fa

G(α) for α ≥ dom(t).

�

Notice that by the same proof f b
G dominates every function in V Pa.

Claim 5: If a ≮Q b then fa
G ≮∗ f b

G.

Proof: If b <Q a then we showed in the last claim that f b
G <∗ fa

G, so we may

assume without loss of generality that b ≮Q a.

Let p be a condition and let α < λ. Choose β large enough that

{dom(p(a)0), dom(p(b)0), α} ⊆ β. Let p(b) = (t, Ḟ ), and find q ∈ Pb such

that q ≤ p ↾ (Q/b) and q decides Ḟ ↾ (β + 1).

Let p1 be the condition such that p1(c) = p(c) if c ≮Q b and p1(c) = q(c)

if c <Q b. Then p1 refines p and p1(a) = p(a), p1(b) = p(b).

Let p(a) = (s, Ḣ). Find r ∈ Pa such that r ≤ p1 ↾ (Q/a) and r decides

Ḣ ↾ (β + 1).

Let p2 be the condition such that p2(c) = p1(c) if c ≮Q a and p2(c) = r(c)

if c <Q a. Then p2 refines p1 and p2(a) = p(a), p2(b) = p(b).
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Now it is easy to extend p2 to a condition which forces fa
G(β) > f b

G(β).

�

Claim 6: The map a 7−→ fa
G embeds Q cofinally into (λλ,<∗) in the generic

extension by D(λ,Q).

Proof: We have already checked that the map is order-preserving. It remains

to be seen that its range is dominating.

Let G be D(λ,Q)-generic and let f ∈ λλ∩V [G]. Then f = (ḟ)G for some

canonical name ḟ , and by the λ+-c.c. we may assume that there is X ⊆ Q
such that |X| = λ and ḟ only involves conditions p with dom(p) ⊆ X . Now

b(Q) ≥ λ+ so that we can find a ∈ Q with X ⊆ Q/a.

This implies that ḟ is a Pa-name for a function in λλ, so that f <∗ fa
G

and we are done.

�

Claim 7: If V � b(Q) = β then V D(λ,Q) � b(λ) = β.

Proof: Let G be D(λ,Q)-generic. By lemma 3 it will suffice to show that

V [G] � b(Q) = β. This follows from lemma 5, the fact that D(λ,Q) is λ+-

c.c. and the assumption that b(Q) ≥ λ+.

�

Claim 8: If V � d(Q) = δ then V D(λ,Q) � d(λ) = δ.

Proof: Exactly like the last claim.

�

This finishes the proof of Theorem 1.

�
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4 Controlling the invariants at a fixed cardi-

nal

In this section we show how to force that the triple (b(λ), d(λ), 2λ) can be

anything “reasonable” for a fixed value of λ.

Theorem 2: Let λ = λ<λ and let GCH hold at all cardinals ρ ≥ λ. Let

β, δ, µ be cardinals such that λ+ ≤ β = cf(β) ≤ cf(δ), δ ≤ µ and cf(µ) > λ.

Then there is a forcing M(λ, β, δ, µ) such that in the generic extension

b(λ) = β, d(λ) = δ and 2λ = µ.

Proof: In V define Q = P(β, δ), as in lemma 2. We know that V � b(Q) = β

and V � d(Q) = δ. Fix Q∗ a cofinal wellfounded subset of Q, and then define

a new well-founded poset R as follows.

Definition 5: The elements of R are pairs (p, i) where either i = 0 and

p ∈ µ or i = 1 and p ∈ Q∗. (p, i) ≤ (q, j) iff i = j = 0 and p ≤ q in µ,

i = j = 1 and p ≤ q in Q∗, or i = 0 and j = 1.

Now we set M(λ, β, δ, µ) = D(λ,R). It is routine to use the closure and

chain condition to argue that M makes 2λ = µ. Since R contains a cofinal

copy of Q∗, it is also easy to see that M forces b(λ) = β and d(λ) = δ.

�

5 A first attempt at the main theorem

We now aim to put together the basic modules as described in the previous

section, so as to control the function λ 7−→ (b(λ), d(λ), 2λ) for all regular λ.

A naive first attempt would be to imitate Easton’s construction from [3]; this

almost works, and will lead us towards the right construction.

Let us briefly recall the statement and proof of Easton’s theorem on the

behaviour of λ 7−→ 2λ.
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Lemma 8 (Easton’s lemma): If P is κ-c.c. and Q is κ-closed then P is κ-

c.c. in V Q and Q is κ-dense in V P. In particular <κON∩V P×Q = <κON∩V P.

Theorem 3 (Easton’s theorem): Let F : REG −→ CARD be a class

function such that cf(F (λ)) > λ and λ < µ =⇒ F (λ) ≤ F (µ). Let GCH

hold. Then there is a class forcing P which preserves cardinals and cofinalities,

such that in the extension 2λ = F (λ) for all regular λ.

Proof:[Sketch] The “basic module” is P(λ) = Add(λ, F (λ)). P is the “Easton

product” of the P(λ), to be more precise p ∈ P iff

1. p is a function with dom(p) ⊆ REG and p(β) ∈ P(β) for all β ∈ dom(p).

2. For all inaccessible γ, dom(p) ∩ γ is bounded in γ.

P is ordered by pointwise refinement. There are certain complications arising

from the fact that we are doing class forcing; we ignore them in this sketch.

If β is regular then we may factor P as P<β × P(β)× P>β in the obvious

way. P≥β is always β-closed.

It follows from GCH and the ∆-system lemma that if γ is Mahlo or the

successor of a regular cardinal then P<γ is γ-c.c. On the other hand, if γ is

a non-Mahlo inaccessible or the successor of a singular cardinal, then P<γ is

in general only γ+-c.c.

In particular for γ regular P≤γ = P<γ+ is always γ+-c.c. so that by Eas-

ton’s lemma γON ∩V P = γON ∩V P≤γ . This implies that in the end we have

only added F (γ) many subsets of γ.

It remains to be seen that cardinals and cofinalities are preserved. It

will suffice to show that regular cardinals remain regular. If γ is Mahlo

or the successor of a regular cardinal, then Easton’s lemma implies that
<γON ∩ V P = <γON ∩ V P<γ , and since γ is regular in V P<γ (by γ-c.c.) γ is

clearly regular in V P.

Now suppose that γ = µ+ for µ singular. If γ becomes singular in V P

let its new cofinality be β, where we see that β < µ and β is regular in V .
βON ∩ V P = βON ∩ V P≤β , so that γ will have cofinality β in V P≤β . This is

13



absurd as P≤β is β+-c.c. and β+ < µ < γ. A very similar argument will work

in case γ is a non-Mahlo inaccessible.

�

Suppose that we replace Add(λ, F (λ)) by P(λ) = M(λ, β(λ), δ(λ), µ(λ)),

where λ 7−→ (β(λ), δ(λ), µ(λ)) is a function obeying the constraints given by

Lemma 6. Let P be the Easton product of the P(λ). Then exactly as in

the proof of Easton’s theorem it will follow that P preserves cardinals and

cofinalities, and that 2λ = µ(λ) in V P.

Lemma 9: If λ is inaccessible or the successor of a regular cardinal then

b(λ) = β(λ), d(λ) = δ(λ) and 2λ = µ(λ) in V P.

Proof: For any λ, λλ∩V P = λλ∩V P≤λ. b(λ) and d(λ) have the right values

in V P(λ) by design, and these values are not changed by λ-c.c. forcing. So

assuming P<λ is λ-c.c. those invariants have the right values in V P≤λ , and

hence in V P.

�

We need some way of coping with the successors of singular cardinals and

the non-Mahlo inaccessibles. Zapletal pointed out that at the first inacces-

sible in an Easton iteration we are certain to add many Cohen subsets, so

that there really is a need to modify the construction.

6 Tail forcing

Easton’s forcing to control λ 7−→ 2λ can be seen as a kind of iterated forcing

in which we choose each iterand from the ground model, or equivalently as

a kind of product forcing. Silver’s “Reverse Easton forcing” is an iteration

in which the iterand at λ is defined in V Pλ . The “tail forcing” which we

describe here is a sort of hybrid.

We follow the conventions of Baumgartner’s paper [1] in our treatment of

iterated forcing, except that when have Q̇ ∈ V P and form P∗Q̇ we reserve the

14



right not to take all P-names for members of Q (as long as we take enough

names that the set of their denotations is forced to be dense). For example

if Q ∈ V we will only take names q̂ for q ∈ Q, so P ∗ Q̂ will just be P×Q.

We will describe a kind of iteration which we call “Easton tail iteration”

in which at successor stages we choose iterands from V , but at limit stage λ

we choose Q̇λ in a different way; possibly Qλ /∈ V , but we will arrange things

so that the generic Gλ factors at many places below λ and any final segment

of Gλ essentially determines Qλ. This idea comes from Magidor and Shelah’s

paper [5].

We assume for simplicity that in the ground model all limit cardinals

are singular or inaccessible. In the application that we intend this is no

restriction, as the ground model will obey GCH.

Definition 6: A forcing iteration Pγ with iterands 〈Q̇β : β + 1 < γ〉 is an

Easton tail iteration iff

1. The iteration has Easton support, that is to say a direct limit is taken

at inaccessible limit stages and an inverse limit elsewhere.

2. Q̇β = 0 unless β is a regular cardinal.

3. If β is the successor of a regular cardinal then Qβ ∈ V .

4. For all regular β, Pβ+1 is β+-c.c.

5. For λ a limit cardinal Pλ is λ++-c.c. if λ is singular, and λ+-c.c. if λ is

inaccessible.

6. For all regular α with α + 1 < γ there exists an iteration Pα
γ dense in

Pγ such that Pα
α+1 = Pα+1, and for β with α + 1 < β ≤ γ

(a) Pα
β factors as Pα+1 × Pα ↾ (α + 1, β).

(b) If β is inaccessible or the successor of a singular, and p ∈ Pα
γ , then

p(β) is a name depending only on Pα ↾ (α + 1, β).

(c) Pα ↾ (α+ 1, β) is α+-closed.
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Clause 6 is of course the interesting one. It holds in a trivial way if Pγ

is just a product with Easton supports. Clauses 6a and 6b should really be

read together, as the factorisation in 6a only makes sense because 6b already

applies to β̄ < β, and conversely 6b only makes sense once we have the

factorisation from 6a.

The following result shows that Easton tail iterations do not disturb the

universe too much.

Lemma 10: Let Pγ be an Easton tail iteration. Then

1. For all regular α < γ, αON ∩ V Pγ = αON ∩ V Pα+1.

2. Pγ preserves all cardinals and cofinalities.

Proof: Exactly like Theorem 3.

�

In the next section we will see how to define a non-trivial Easton tail iter-

ation. If γ+ is the successor of a regular then it will suffice to choose Qγ+ ∈ V

as any γ+-closed and γ++-c.c. forcing. The interesting (difficult) stages are

the ones where we have to cope with the other sorts of regular cardinal, here

we will have to maintain the hypotheses on the chain condition and factorisa-

tion properties of the iteration. It turns out that slightly different strategies

are appropriate for inaccessibles and successors of singulars.

7 The main theorem

Theorem 4: Let GCH hold. Let λ 7−→ (β(λ), δ(λ), µ(λ)) be a class function

from REG to CARD3, with λ+ ≤ β(λ) = cf(β(λ)) ≤ cf(δ(λ)) ≤ δ(λ) ≤ µ(λ)

and cf(µ(λ)) > λ for all λ.

Then there exists a class forcing P∞, preserving all cardinals and cofi-

nalities, such that in the generic extension b(λ) = β(λ), d(λ) = δ(λ) and

2λ = µ(λ) for all λ.
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Proof: We will define by induction on γ a sequence of Easton tail iterations

Pγ, and then let take a direct limit to get a class forcing P∞. The proof that

P∞ has the desired properties is exactly as in [3], so we will concentrate on

defining the Pγ. As we define the Pγ we will also define dense subsets Pα
γ

intended to witness clause 6 in the definition of an Easton tail iteration.

Much of the combinatorics in this section is very similar to that in Section

3. Accordingly we have only sketched the proofs of some of the technical

assertions about closure and chain conditions.

The easiest case to cope with is that where we are looking at the successor

of a regular cardinal. So let γ be regular and assume that we have defined Pγ+

(which is equivalent to Pγ+1 since we do trivial forcing at all points between

γ and γ+), and Pα
γ+ (which is equivalent to Pα

γ+1) for all α ≤ γ.

Definition 7: Qγ+ = M(γ+, β(γ+), δ(γ+), µ(γ+)) as defined in Section 4.

Pγ++1 = Pγ+ ×Qγ+ , and Pα
γ++1 = Pα

γ+ ×Qγ+ for α ≤ γ.

It is now easy to check that this definition maintains the conditions

for being an Easton tail iteration. Since Pγ+ is γ+-c.c. and we know that
γ+
γ+ ∩ V P∞ = γ+

γ+ ∩ V P
γ++1 , we will get the desired behaviour at γ+ in

V P∞ .

Next we consider the case of a cardinal λ+, where λ is singular. Sup-

pose we have defined Pλ+ (that is Pλ) and Pα
λ+ appropriately. Let R be a

well-founded poset of cardinality µ(λ) with b(R) = β(λ) and d(R) = δ(λ),

as defined in Section 4. Let R+ be R with the addition of a maximal ele-

ment top. We will define Pλ+ ∗ Q̇a by induction on a ∈ R+, and then set

Pλ++1 = Pλ+ ∗ Q̇top. In the induction we will maintain the hypothesis that,

for each α < λ, Pα
λ+ ∗ Q̇a can be factored as Pα+1 × (Pα ↾ (α + 1, λ+) ∗ Q̇a).

Let us now fix a, and suppose that we have defined Pλ+ ∗ Q̇b for all b below

a in R+.

Definition 8: Let b < a, and let τ̇ be a for a function from λ+ to λ+. Then

τ̇ is symmetric iff for all α < λ, whenever G0 × G1 and G′
0 × G1 are two

generics for Pα+1 × (Pα ↾ (α + 1, λ+) ∗Qb), then τ̇G0×G1 = τ̇G
′
0×G1 .
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Of course the (technically illegal) quantification over generic objects in

this definition can be removed using the truth lemma, to see that the collec-

tion of symmetric names really is a set in V .

Definition 9: (p, q) is a condition in Pλ+ ∗ Q̇a iff

1. p ∈ Pλ+.

2. q is a function, dom(q) ⊆ R+/a and |dom(q)| ≤ λ.

3. For each b ∈ dom(q), q(b) is a pair (s, Ḟ ) where s ∈ <λ+
λ+ and Ḟ is a

symmetric Pλ+ ∗ Q̇b-name for a function from λ+ to λ+.

Definition 10: Let (p, q) and (p′, q′) be conditions in Pλ+∗Q̇a. (p
′, q′) refines

(p, q) iff

1. p′ refines p in Pλ+ .

2. dom(q) ⊆ dom(q′).

3. For each b ∈ dom(q), if we let q(b) = (s, F ) and q(b′) = (s′, F ′), then

(a) s′ extends s.

(b) If α ∈ lh(s′)− lh(s) then (p′, q′ ↾ (R+/b))  s′(α) ≥ F (α).

(c) For all α, (p′, q′ ↾ (R+/b))  F ′(α) ≥ F (α).

Definition 11: We define Pλ++1 as Pλ+ ∗Q̇top. If α < λ then we define Pα
λ++1

as Pα
λ+ ∗ Q̇top.

It is now routine to check that this definition satisfies the chain condition

and factorisation demands from Definition 6. The chain condition argument

works because 2λ = λ+, and any incompatibility in Qtop is caused by a dis-

agreement in the first coordinate at some b ∈ R. The factorisation condition

(clause 6a) holds because symmetric names can be computed using any final

segment of the Pλ-generic, and the closure condition (clause 6c) follows from
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the fact that the canonical name for the pointwise sup of a series of functions

with symmetric names is itself a symmetric name.

Now we check that we have achieved the desired effect on the values of

b(λ+) and d(λ+).

Lemma 11: The function added by Pλ+ ∗ Q̇top at b ∈ R+ eventually domi-

nates all functions in λ+
λ+ ∩ V P

λ+∗Q̇b .

Proof: It suffices to show that if Ḟ is a Pλ+ ∗ Q̇b-name for a function from

λ+ to λ+ then there is a symmetric name Ḟ ′ such that  ∀β F (β) ≤ F ′(β).

For each regular α < λ we factor Pλ+ ∗Q̇b as Pα+1×(Pα ↾ (α+1, λ+)∗Q̇b).

In V Pα↾(α+1,λ+)∗Q̇b we may treat Ḟ as a Pα+1-name and define

Gα(β) = sup({ γ | ∃p ∈ Pα+1 p  Ḟ (β) = γ }).

Notice that we may also treat Gα as a Pλ+ ∗ Q̇b-name, and that if α < ᾱ

then  Gα ≤ Gᾱ. Now let F ′ be the canonical name for a function such that

∀β F ′(β) = supα<λ Gα(β), then it is easy to see that F ′ is a symmetric name

for a function from λ+ to λ+ and that  ∀β F (β) ≤ F ′(β).

�

Lemma 12: In V P
λ++1 there is a copy of R embedded cofinally into λ+

λ+.

Proof: Let ḟ name a function from λ+ to λ+ in V P
λ++1. As Pλ++1 has the

λ++-c.c. we may assume that ḟ only depends on λ+ many coordinates in R,
and hence (since b(R) = β(λ+) ≥ λ++) that ḟ is a Pλ+ ∗ Q̇b-name for some

b ∈ R. By the preceding lemma the function which is added at coordinate b

will dominate ḟ .

�

It remains to be seen what we should do for λ inaccessible. The construc-

tion is very similar to that for successors of singulars, with the important

difference that we need to work with a larger class of names for functions in

order to guarantee that we dominate everything that we ought to. This in

turn leads to a slight complication in the definition of Pα.
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Suppose that we have defined Pλ and Pα
λ appropriately. Let R be a poset

with the appropriate properties (|R| = µ(λ), b(R) = β(λ), d(R) = δ(λ))

and let R+ be R with a maximal element called top adjoined. As before we

define Pλ ∗ Q̇a by induction on a ∈ R+. In the induction we will maintain

the hypothesis that for each α < λ there is a dense subset of Pα
λ ∗ Q̇a which

factorises as Pα+1 × (Pα ↾ (α+1, λ) ∗ Q̇α
a ). Let us fix a, and suppose that we

have defined everything for all b below a.

Definition 12: (p, (µ, q)) is a condition in Pλ ∗ Q̇a iff

1. p ∈ Pλ.

2. µ < λ, µ is regular.

3. q is a function, dom(q) ⊆ R+/a and |dom(q)| < λ.

4. For each b ∈ dom(q), q(b) is a pair (s, Ḟ ) where s ∈ <λ+
λ+ and Ḟ is a

Pµ ↾ (µ+ 1, λ) ∗ Q̇µ
b -name for a function from λ+ to λ+.

Definition 13: Let (p, (µ, q)) and (p′, (µ′, q′)) be conditions in Pλ+ ∗ Q̇a.

(p′, (µ′, q′)) refines (p, (µ, q)) iff

1. p′ refines p in Pλ+ .

2. dom(q) ⊆ dom(q′).

3. µ′ ≥ µ.

4. For each b ∈ dom(q), if we let q(b) = (s, F ) and q(b′) = (s′, F ′), then

(a) s′ extends s.

(b) If α ∈ lh(s′)− lh(s) then (p′, q′ ↾ (R+/b))  s′(α) ≥ F (α).

(c) For all α, (p′, q′ ↾ (R+/b))  F ′(α) ≥ F (α).
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Notice that since any Pλ∗Q̇b-generic induces a Pµ ↾ (µ+1, λ)∗Q̇µ
b -generic,

there is a natural interpretation of any Pµ ↾ (µ+1, λ)∗ Q̇µ
b -name as a Pλ ∗ Q̇b-

name. We are using this fact implicitly when we define the ordering on the

conditions. We need to maintain the hypothesis on factorising the forcing,

so we make the following definition.

Definition 14: Let µ be regular with µ < λ. Pµ+1× (Pµ ↾ (µ+1, λ) ∗ Q̇µ
a) is

defined as the set of (p0, (p1, (ν, q))) such that p0 ∈ Pµ+1, p1 ∈ Pµ ↾ (µ+1, λ)

and (p0 ⌢ p1, (ν, q)) ∈ Pλ ∗ Q̇a with ν ≥ µ.

The key point here is that the factorisation makes sense, because for such

a condition q(b) depends only on Pµ ↾ (µ+ 1, λ) ∗ Q̇µ
b .

Definition 15: We define Pλ+1 as Pλ ∗ Q̇top, and Pµ
λ+1 as Pλ ∗ Q̇

µ
top,

As in the case of a successor of a singular, it is straightforward to see that

we have satisfied the chain condition and factorisation conditions. To finish

the proof we need to check that the forcing at λ has achieved the right effect,

which will be clear exactly as in the singular case when we have proved the

following lemma.

Lemma 13: The function added by Pλ ∗ Q̇top at b ∈ R eventually dominates

all functions in λλ ∩ V Pλ∗Q̇b .

Proof: We do a density argument. Suppose that ḟ names a function in
λλ ∩ V Pλ∗Q̇b , and let (p, (µ, q)) be a condition in Pλ ∗ Q̇top. We factor

Pλ ∗ Q̇b as Pµ+1 × (Pµ ↾ (µ + 1, λ) ∗ Q̇µ
b ), and use the fact that Pµ+1 has

µ+-c.c. in V Pµ↾(µ+1,λ)∗Q̇µ
b to find a Pµ ↾ (µ + 1, λ) ∗ Q̇µ

b -name ġ such that

 ∀β ḟ(β) ≤ ġ(β).

Now we can refine (p, (µ, q)) in the natural way by strengthening the

second component of q(b) to dominate ġ. This gives a condition which forces

that the function added at b will eventually dominate ḟ .

�

This concludes the proof of Theorem 4.

�
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8 Variations

In this appendix we discuss the invariants that arise if we work with the club

filter in place of the co-bounded filter. It turns out that this does not make

too much difference. All the results here are due to Shelah.

Definition 16: Let λ be regular.

1. Let f, g ∈ λλ. f<clg iff there is C ⊆ λ closed and unbounded in λ such

that α ∈ C =⇒ f(α) < g(α).

2. bcl(λ) =def b((λλ,<cl)).

3. dcl(λ) =def d((λλ,<cl)).

Theorem 5: dcl(λ) ≤ d(λ) ≤ dcl(λ)
ω.

Proof: If a family of functions is dominating with respect to <∗ it is domi-

nating with respect to <cl, so that dcl(λ) ≤ d(λ).

For the converse, let us fix D ⊆ λλ such that D is dominating with

respect to <cl and |D| = dcl(λ). We may assume that every function in D is

increasing (replace each f ∈ D by f ∗ : γ 7−→
⋃

α≤γ f(α)).

Let g0 ∈
λλ. Define by induction fn, gn, and Cn such that

1. fn ∈ D.

2. Cn is club in λ, and α ∈ Cn =⇒ gn(α) < fn(α).

3. Cn+1 ⊆ Cn.

4. gn is increasing.

5. gn+1(β) > gn(β) for all β.

6. gn+1(β) > fn(min(Cn − (β + 1))) for all β.
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Now let α = min(
⋂

n<ω Cn). We will prove that g0(γ) ≤
⋃

n fn(γ) for

γ > α.

Fix some γ > α. For each n we know that Cn∩γ 6= ∅, so that if we define

γn = sup(Cn ∩ (γ + 1)) then γn is the largest point of Cn less than or equal

to γ. Notice that min(Cn − (γ + 1)) = min(Cn − (γn + 1)).

Since Cn+1 ⊆ Cn, γn+1 ≤ γn, so that for all sufficiently large n (say

n ≥ N) we have γn = γ̄ for some fixed γ̄. We claim that g0(γ) ≤ fN+1(γ),

which we will prove by building a chain of inequalities. Let us define

δ = min(CN − (γ + 1)) = min(CN − (γ̄ + 1)).

Then

g0(γ) ≤ gN(γ) ≤ gN(δ) < fN(δ) < gN+1(γ̄) < fN+1(γ̄) ≤ fN+1(γ),

where the key point is that γ̄ ∈ CN+1 and hence gN+1(γ̄) < fN+1(γ̄).

Now it is easy to manufacture a family of size dcl(λ)
ω which is dominating

with respect to <∗, so that d(λ) ≤ dcl(λ)
ω.

�

Theorem 6: bcl(λ) = b(λ).

Proof: If a family of functions is unbounded with respect to <cl it is un-

bounded with respect to <∗, so that b(λ) ≤ bcl(λ).

Suppose for a contradiction that b(λ) < bcl(λ), and fix U0 ⊆ λλ such

that |U0| = b(λ) and U0 is unbounded with respect to <∗. We may assume

without loss of generality that every function in U0 is increasing. We perform

an inductive construction in ω steps, whose aim is to produce a bound for

U0 with respect to <∗.

By assumption U0 is bounded with respect to <cl, so choose g0 which

bounds it modulo the club filter. Choose also club sets { C0
f | f ∈ U0 } such

that α ∈ C0
f =⇒ f(α) < g0(α). For each f ∈ U0 define another function f [0]

by f [0] : β 7−→ f(min(C0
f − (β + 1)))

For n ≥ 1 define Un = Un−1 ∪ { f [n−1] | f ∈ Un−1 }. By induction it will

follow that |Un| = b(λ), so that we may choose gn such that gn(β) > gn−1(β)
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for all β and gn bounds Un modulo clubs. We choose clubs { Cn
f | f ∈ Un }

such that

1. α ∈ Cn
f =⇒ f(α) < gn(α).

2. If f ∈ Un−1, then Cn
f ⊆ Cn−1

f .

3. If n ≥ 2 and f ∈ Un−2 then Cn
f ⊆ Cn−1

f [n−2] , where this makes sense

because in this case f [n−2] ∈ Un−1.

For each f ∈ Un we define f [n] : β 7−→ f(min(Cn
f − (β + 1))) to finish round

n of the inductive construction.

Now we claim that the pointwise sup of the sequence 〈gn : n < ω〉 is an

upper bound for U0 with respect to <∗. Let us fix f ∈ U0, and then let

α = min(
⋂
Cn

f ).

We will now give a very similar argument to that of Theorem 5. Fix

γ > α. We define γn = sup(Cn
f ∩ (γ + 1)) and observe that γn+1 ≤ γn, so we

may find N and γ̄ such that n ≥ N =⇒ γn = γ̄.

Let δ = min(CN
F − (γ + 1)) = min(CN

F − (γ̄ + 1)). We now get a chain of

inequalities

f(γ) ≤ f(δ) = f [N ](γ̄) < gN+1(γ̄) ≤ gN+1(γ).

This time the key point is that γ̄ ∈ CN+2
f ⊆ CN+1

f [N] , so that f
[N ](γ̄) < gN+1(γ̄).

We have proved that γ > α =⇒ f(γ) ≤
⋃

n gn(γ), so that every function

f ∈ U0 is bounded on a final segment of λ by γ 7−→
⋃

n gn(γ). This contradicts

the choice of U0 as unbounded with respect to <∗, so we are done.

�

It is natural to ask whether the first result can be improved to show that

bcl(λ) = b(λ). This can be done for λ sufficiently large, at the cost of using

a powerful result from Shelah’s paper [6].

Definition 17: Let θ = cf(θ) < µ.

1. Pθ(µ) = { X ⊆ µ | |X| = θ }.
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2. µ[θ] is the least cardinality of a family P ⊆ Pθ(µ) such that

∀A ∈ Pθ(µ) ∃B ⊆ P (|B| < θ ∧ A ⊆
⋃

B).

One of the main results of [6] is that ZFC proves a weak form of the GCH.

Theorem 7: Let µ > iω. Then µ[θ] = µ for all sufficiently large θ < iω.

It is easy to see that if P ⊆ Pθµ is such that

∀A ∈ Pθ(µ) ∃B ⊆ P (|B| < θ ∧ A ⊆
⋃

B),

then ∀A ∈ Pθ(µ) ∃C ∈ P |A ∩ C| = θ. This is all we use in what follows,

and in fact we could get away with ∀A ∈ Pθ(µ) ∃C ∈ P |A ∩ C| = ℵ0.

Theorem 8: Let λ = cf(λ) > iω. Then d(λ) = dcl(λ).

Proof: Let µ = dcl(λ). Then µ > iω, so that we may apply Theorem 7 to

find a regular θ < iω such that µ[θ] = µ. let us fix P ⊆ Pθ(µ) such that

|P | = µ and ∀A ∈ Pθ(µ) ∃C ∈ P |A ∩ C| = θ.

Now let D ⊆ λλ be such that |D| = µ and D is dominating in (λλ,<cl).

We may suppose that D consists of increasing functions. Enumerate D as

〈hα : α < θ〉, and then define hA : γ 7−→
⋃

α∈A hα(γ) for each A ∈ P . Since

θ < iω ≤ λ, hA ∈ λλ. We will prove that { hA | A ∈ P } is dominating in

(λλ,<∗).

We will do a version of the construction from Theorem 5. Let g0 ∈ λλ.

Define by induction fα, gα, and Cα for α < θ, with the following properties.

1. fα ∈ D.

2. Cα is club in λ, and β ∈ Cα =⇒ gα(β) < fα(β).

3. α < ᾱ =⇒ Cᾱ ⊆ Cα.

4. gα is increasing.

5. If α < ᾱ, then gᾱ(β) > gα(β) for all β.
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6. If α < ᾱ, then gᾱ(β) > fα(min(Cα − (β + 1))) for all β.

This is easy, because θ < λ. By the choice of P we may find a set A ∈ P

such that |{ hβ | β ∈ A } ∩ { fα | α < θ }| = θ. Enumerate the first ω many

α such that fα ∈ { hβ | β ∈ A } as 〈αn : n < ω〉.

We may now repeat the proof of Theorem 5 with fαn
, gαn

and Cαn

in place of fn, gn and Cn. We find that for all sufficiently large γ we

have g0(γ) ≤ gα0(γ) ≤
⋃

n fαn
(γ). By the definition of hA and the fact

that { fαn
| n < ω } ⊆ { hβ | β ∈ A },

⋃
n fαn

(γ) ≤ hA(γ) for all γ, so that

g0 <
∗ hA. This shows { hA | A ∈ P } to be dominating, so we are done.

�

We do not know whether it can ever be the case that dcl(λ) < d(λ). This

is connected with some open and apparently difficult questions in pcf theory.
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