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ON NON-MINIMAL COMPLEMENTS

ARINDAM BISWAS AND JYOTI PRAKASH SAHA

Abstract. The notion of minimal complements was introduced by Nathanson in 2011.
Since then, the existence or the inexistence of minimal complements of sets have been
extensively studied. Recently, the study of inverse problems, i.e., which sets can or cannot
occur as minimal complements has gained traction. For example, the works of Kwon, Alon–
Kravitz–Larson, Burcroff–Luntzlara and also that of the authors, shed light on some of the
questions in this direction. These works have focussed mainly on the group of integers, or
on abelian groups. In this work, our motivation is two-fold:
(1) to show some new results on the inverse problem,
(2) to concentrate on the inverse problem in not necessarily abelian groups.

As a by-product, we obtain new results on non-minimal complements in the group of integers
and more generally, in any finitely generated abelian group of positive rank and in any free
abelian group of positive rank. Moreover, we show the existence of uncountably many
subsets in such groups which are “robust” non-minimal complements.

1. Introduction

1.1. Motivation. Given two nonempty subsets A,B of a group G, the set A is said to be a
left (resp. right) complement to B if A ·B = G (resp. B ·A = G). If A is a left (resp. right)
complement to B and no subset of A other than A is a left (resp. right) complement to B,
then A is said to be a minimal left (resp. right) complement to B. The study of minimal
complements began with Nathanson in [Nat11], who introduced the notion in the context
of additive number theory as a natural arithmetic analogue of the metric concept of nets.
Since then, most of the literature about minimal complements have focussed on the direct
problem about which sets admit minimal complements, see the works of Chen–Yang [CY12],
Kiss–Sándor–Yang [KSY19], of the authors [BS], [BS19a] etc. Recently, the study of inverse
problems, i.e., which sets occur as minimal complements, has become popular. The works
of Kwon [Kwo19], Alon–Kravitz–Larson [AKL20], Burcroff–Luntzlara [BL20] and also of the
authors [BS19b, BS20a, BS20b] have investigated this direction of research. However, most
of the literature till date, has focussed on abelian groups. In this work, our motivation is
two-fold:

(1) To show some new results on the inverse problem.
(2) To concentrate on the inverse problem in not necessarily abelian or finite groups.

In [BS19b, Theorem C], it has been proved that the “large” subsets of a group cannot be
a minimal complement to any subset. In [AKL20], Alon–Kravitz–Larson have established
several interesting results which includes the above statement in the context of finite abelian
groups. For any group G, [BS19b, Theorem C] states that a subset C of G, other than G, is
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not a minimal complement in G if C is “large” in the sense that

(1)
|C|

|G \ C|
> 2.

In [BS19b, Theorem C], the set G\C was assumed to be finite. A refined version of this result
in the context of finite abelian groups is established in [AKL20, Proposition 17], which states
that a subset C of a finite abelian group G, contained in a subgroup H , is not a minimal
complement in G if C is “large” in the sense that

2|G||H|

|H|+ 2|G|
< |C| < |H|.

Note that the above inequality can be restated as

(2)
|C|

|H \ C|
> 2[G : H ]

together with C ( H (as explained in the proof of Proposition 2.17).
We consider the subsets of G which are contained in the subgroups of G and establish a

necessary condition (similar to Equations (1), (2)) for them to be non-minimal complements
in G. For a subset C of G, strictly contained in a subgroup H , define the relative quotient
of C with respect to H to be

λH(C) =
|C|

|H \ C|
.

Note that [AKL20, Proposition 17] (in the context of finite abelian groups G), [BS19b,
Theorem C] (for any group G with G = H) can be restated as follows: a subset C of a group
G, properly contained in a subgroup H of G, is not a minimal complement in G if its relative
quotient with respect to H is greater than the double of the index of H in G, i.e.,

λH(C) > 2[G : H ].

The aim of this article is to establish that such a statement holds in more general contexts.

1.2. Results obtained. By suitably adapting the proof of [BS19b, Theorem C], we prove
that a subset C of a group G, properly contained in a subgroup H , is not a minimal com-
plement in G if the inequality

λH(C) > 2[G : H ]

holds (when the above inequality is interpreted in an appropriate manner). In fact, our
results are more general. Under suitable hypothesis, we prove that not only such sets C,
but also the sets of the form (C \ E) ∪ F are non-minimal complements for subsets C of
H satisfying the above inequality, finite subsets E ⊆ C and subsets F ⊆ H \ C. We refer
to Theorems 2.2, 2.4, 2.7, 2.10, 2.19, 2.23 and Propositions 2.13, 2.15, 2.17 for the precise
statements. These results are more general than [AKL20, Proposition 17], [BS19b, Theorem
C]. Using them, we obtain subsets of groups which are not minimal complements to any
subset. Though the above-mentioned results apply to any group, to motivate the discussion,
we provide the examples in the context of the integers.

Example 1.1.

(1) It follows from Theorem 2.2 that the set

({5, 7, · · · , 27, 29}+ 32Z) ∪ {p | p ≡ ±1 (mod 32), p is a prime}

is not a minimal complement in Z.
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(2) It follows from Theorem 2.4 that the set

({3, 9, 11, 13, · · · , 47}+ 48Z) ∪ {p | p ≡ 1, 5, 7 (mod48), p is a prime}

is not a minimal complement in Z.
(3) It follows from Theorem 2.7 that the set

({3, 5, 7, 9, 11}+ 12Z) ∪ {p | p ≡ 1 (mod 12), p is a prime}

is not a minimal complement in Z.
(4) It follows from Theorem 2.10 that the set

({0, 1, 2, 3, 6, 7, 8}+ 9Z) ∪ {p | p ≡ ±5 (mod 9), p is a prime}

is not a minimal complement in Z.
(5) It follows from Proposition 2.13 that {2, 4, 6, 8, 10}+12Z is not a minimal complement

in Z. Moreover, it also follows that the set of irrational numbers is not a minimal
complement in R, and the set of transcendental numbers is not a minimal complement
in C.

(6) It follows from Proposition 2.15 that for any positive integer k and for any nonempty
finite subset F of kZ, the set kZ \ F is not a minimal complement in Z.

(7) It follows from Theorem 2.19 that the set of real numbers having absolute value greater
than one is not a minimal complement in R.

(8) It follows from Theorem 2.23 that the set of irrational numbers, with a countable num-
ber of points removed, is not a minimal complement in R, the set of transcendental
numbers, with a countable number of points removed, is not a minimal complement
in C.

There are several immediate questions about the minimal complements in a finite group,
for instance, given a group G of order n, what are the sizes of the minimal complements,
what are the integers k between 1 and n such that any subset (or some subset) of G of size k
is a minimal complement [BS19b, Question 1]. Further, one can study these questions in the
context of cyclic groups, or abelian groups, or finite groups. Some of these questions were
answered by Alon, Kravitz and Larson in the context of abelian groups [AKL20, Theorem 1,
Proposition 17]. The results obtained in Section 2 apply to groups, which are not assumed
to be abelian, and thus they further improve our understanding about [BS19b, Question 1].

Following [BL20, Definition 5], one can consider the notion of robust MAC and robust
non-MAC in any abelian group G. A subset of an abelian group G is said to be a robust
non-MAC if it remains a non-minimal complement after the removal or the inclusion of
finitely many points (see Definition 3.1). We obtain uncountably many examples of robust
non-MACs in finitely generated abelian groups of positive rank and in any free abelian group
of positive rank (see Theorem 3.4 for a more general statement). Further, one can consider
the analogous notion in non-abelian groups and obtain several examples by applying the
results from Section 2. In particular, we show that for any number field K of degree ≥ 3, the
group GLn(OK) contains uncountably many robust non-minimal complements where OK

denote the ring of integers of K. We refer to Section 3 for the details.

2. Non-minimal complements in groups

The principal results of this Section are Theorems 2.2, 2.4, 2.7, 2.10, 2.19, 2.23. They are
aimed at establishing that a subset C of a group G, properly contained in a subgroup H , is
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not a minimal complement in G if the inequality

λH(C) > 2[G : H ]

holds (when the above inequality is interpreted in an appropriate manner). Moreover, these
results not only deal with such sets C, but also deal with the sets of the form (C \ E) ∪ F
where C is a subset of H satisfying the above inequality, E is a finite subset of C and
F ⊆ H \ C. We refer to Theorems 2.2, 2.4, 2.7, 2.10, 2.19, 2.23 for the precise statements.
These results are illustrated by applying them to subsets of certain groups, and thereby
obtaining examples of non-minimal complements, see Remarks 2.3, 2.6, 2.8, 2.12, 2.20, 2.24,
see also Section 3. Some of their important consequences are stated in Propositions 2.13,
2.15, 2.17.

We remark that no group is assumed to be abelian or finite unless otherwise stated.
In the following, H denotes a finite index subgroup of a group G, K denotes a normal

subgroup of H . If X is a subset of G and X is the union of certain K-right cosets, then
denote the number of K-right cosets contained in X by [X : K]. Let C denote a proper
subset1 of H . Suppose C is a union of certain right cosets of K in H and H \C is the union
of finitely many right cosets of K in H . Henceforth, we assume that the relative quotient of
C with respect to H is greater than the double of the index of H in G, i.e., the inequality

λH(C) > 2[G : H ]

holds in the following sense.

Assumption 2.1. The number of the K-right cosets contained in C is greater than the
product of 2[G : H ] and the number of K-right cosets contained in H \ C.

Let E be a finite subset of C and F be a subset of H \ C.

Theorem 2.2. If

(1) the set F does not intersect with some K-right coset in H \ C,
(2) the number of elements of K is greater than 2([G : H ] + 1)|E|,

and Assumption 2.1 holds, then (C \ E) ∪ F is not a minimal complement in G.

Proof. On the contrary, let us assume that (C \ E) ∪ F is a minimal left complement to a
subset S of G. Let ℓ denote the index of H in G. Let s1, · · · , sℓ be elements of S such that

Hsi ∩Hsj = ∅ for all i 6= j.

For 1 ≤ i ≤ ℓ, let Si denote the subset of S defined by

Si := {s ∈ S |Hs = Hsi}.

By the first condition, it follows that (C \E) ∪ F and K · ((C \ E) ∪ F ) are proper subsets
of H . So, for each 1 ≤ i ≤ ℓ, there exists an element s′i in Si such that

(K · ((C \ E) ∪ F ))s′i 6= (K · ((C \ E) ∪ F ))si

for all 1 ≤ i ≤ ℓ. Since K is normal in H , it follows that

(3) Ksi 6= Ks′i

for any i.
Note that there exists a subset C of C consisting of certain K-right cosets such that C

contains at most ℓ[(H \ C) : K] many K-right cosets and (C ∪ F ) · S contains (H \ C) ·

1A subset A of a set B is said to be a proper subset if B \A is nonempty.
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{s1, · · · , sℓ}. Moreover, there exists a subset E of C \ E containing at most |E| elements
such that ((C \ E) ∪ E ∪ F ) · S contains (H \ C) · {s1, · · · , sℓ}. Further, the set

C ∪ ((H \ C) · {s′1s
−1
1 , · · · , s′ℓs

−1
ℓ })

contains at most 2ℓ[(H \ C) : K] many K-right cosets. By Assumption 2.1, it follows that
the set C contains a K-right coset Kh which is disjoint from the set

C ∪ ((H \ C) · {s′1s
−1
1 , · · · , s′ℓs

−1
ℓ }).

Note that there exists a subset E ′ of C \ E containing at most ℓ|E| elements such that
(E ′ ∪ F ) · S contains E · {s′1, · · · , s

′
ℓ}. Further, note that there exists a subset E ′′ of C \ E

containing at most ℓ|E| elements such that (E ′′ ∪ F ) · S contains E · {s1, · · · , sℓ}.
We claim that

Hsi ⊆ (((C \ E) \Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ F ) · S

for any 1 ≤ i ≤ ℓ. Since (C \ E)∪F is contained in (C \E)∪F , the set ((C \E)∪ E ∪F ) · S
contains (H \ C) · si and Kh does not intersect with C \ E, it follows that (H \ C) · si is
contained in

(((C \ E) \Kh) ∪ E ∪ F ) · S.

Note that (C \Kh) · si is contained in

(E · si) ∪ (((C \ E) \Kh) · S) ,

which is contained in
((C \ E) \Kh) ∪ E ′′ ∪ F ) · S.

Note that Khsi does not intersect with (H \ C) · {s′i}. Since Hsi = Hs′i, it follows that
Khsi is contained in C ·s′i. Further, note that Khsi does not intersect with Khs

′
i, otherwise,

Khsi = Khs′i. SinceK is normal inH , it follows that hKsi = hKs′i, which yieldsKsi = Ks′i,
contradicting Ksi 6= Ks′i. So Khsi is contained in (C \Kh) · s′i. Since (E ′ ∪ F ) · S contains
E · {s′1, · · · , s

′
ℓ}, it follows that Khsi is contained in

(((C \ E) \Kh) ∪ E ′ ∪ F ) · S.

This proves the claim that

Hsi ⊆ (((C \ E) \Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ F ) · S

for all 1 ≤ i ≤ ℓ. So ((C \ E) \ Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ F is a left complement to S. By the
second condition, ((C \E) \Kh)∪E ∪E ′∪E ′′ is a proper subset of C \E. Hence (C \E)∪F
is not a minimal left complement to S.

If (C \E)∪F is a minimal right complement to some subset T of G, then (C−1\E−1)∪F−1

is a minimal left complement to T−1, which is impossible. �

Remark 2.3. Taking G = Z, H = 2Z, K = 32Z, C = ({5, 7, · · · , 27, 29} + 32Z) − 1, and
F = {p | p ≡ ±1 (mod 32), p is a prime} − 1, it follows from Theorem 2.2 that the set

({5, 7, · · · , 27, 29}+ 32Z) ∪ {p | p ≡ ±1 (mod 32), p is a prime}

is not a minimal complement in Z.

In the proof of Theorem 2.2, Equation (3) played a crucial role. This equation was obtained
by using the hypothesis that F does not intersect with someK-right coset contained inH\C.
In the following result, we prove that even if F intersects with each K-right coset contained
in H \ C, one may obtain a similar result under an alternate hypothesis.



6 ARINDAM BISWAS AND JYOTI PRAKASH SAHA

Theorem 2.4. If

(1) F is a proper subset of H\C and given 2[G : H ] many elements x1, y1, · · · , x[G:H], y[G:H]

of G with xi 6= yi for any i, there exists a finite index subgroup L of K such that
Lxi 6= Lyi for any i and L is normal in H.

(2) for any finite index subgroup L of K, the number of elements of L is greater than
2([G : H ] + 1)|E|,

and Assumption 2.1 holds, then (C \ E) ∪ F is not a minimal complement in G.

Proof. On the contrary, let us assume that (C \ E) ∪ F is a minimal left complement to a
subset S of G. Let ℓ denote the index of H in G. Let s1, · · · , sℓ be elements of S such that

Hsi ∩Hsj = ∅ for all i 6= j.

For 1 ≤ i ≤ ℓ, let Si denote the subset of S defined by

Si := {s ∈ S |Hs = Hsi}.

By the first condition, (C \ E) ∪ F is a proper subset of H . It follows that Si contains an
element other than si. Let 1 ≤ i ≤ ℓ be an integer and s′i 6= si be an element of Si. By
the first condition, there exists a finite index subgroup L of K such that L is normal in H
and Lsi 6= Ls′i for any i. Replacing K by L (if necessary), we may (and do) assume that
Ksi 6= Ks′i for any i. Note that the same condition was obtained in Equation (3) in the
course of the proof of Theorem 2.2. Proceeding in a similar fashion, we obtain the result. �

Corollary 2.5. Suppose C is a subset of Z and it is the union of translates of a nonzero
subgroup K of Z. If λZ(C) > 2, then (C \E)∪F is not a minimal complement in Z for any
finite subset E of C and for any proper subset F of Z \ C.

Remark 2.6. Taking G = Z, H = 2Z, K = 48Z, C = {2, 8, 10, 12, · · · , 46} + 48Z and F =
{p | p ≡ 1, 5, 7 (mod48), p is a prime} − 1, it follows from Theorem 2.4 that the set

({3, 9, 11, 13, · · · , 47}+ 48Z) ∪ {p | p ≡ 1, 5, 7 (mod48), p is a prime}

is not a minimal complement in Z.

Note that the proofs of Theorems 2.2, 2.4 crucially relied on the observation that Si

contains two elements which lies in two disjoint K-right cosets. However, if we consider a
set of the form (C \E) ∪ F and assume that it is a minimal left complement to some set S,
it is not clear whether each Si has this property. We show in the following result that even
in such a situation, one may obtain a similar result under an alternate hypothesis.

Theorem 2.7. If

(1) the set F is either empty or it is contained in a single K-right coset,
(2) the set F ∪ X does not contain any K-right coset for any subset X of H of size

≤ 2([G : H ] + 1)|E|,
(3) the set E · F−1 does not contain any K-right coset,

and Assumption 2.1 holds, then (C \ E) ∪ F is not a minimal complement in G.

Proof. On the contrary, let us assume that (C \ E) ∪ F is a minimal left complement to a
subset S of G. Let ℓ denote the index of H in G. Let s1, · · · , sℓ be elements of S such that

Hsi ∩Hsj = ∅ for all i 6= j.
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For 1 ≤ i ≤ ℓ, let Si denote the subset of S defined by

Si := {s ∈ S |Hs = Hsi}.

By the first and second condition, (C \ E) ∪ F is a proper subset of H . It follows that Si

contains an element other than si. Let P,Q denote the sets defined by

P = {i | 1 ≤ i ≤ ℓ, Cs′ 6= Csi for some s′ ∈ Si},

Q = {i | 1 ≤ i ≤ ℓ, i /∈ P}.

For i ∈ P , let s′i denote an element of Si such that Cs′i 6= Csi. For i ∈ Q, let s′i denote an
element of Si other than si.

Note that there exists a subset C of C consisting of certain K-right cosets such that C
contains at most ℓ[(H \ C) : K] many K-right cosets and (C ∪ F ) · S contains (H \ C) ·
{s1, · · · , sℓ}. There exists a subset E of C \ E containing at most |E| elements such that
((C \ E) ∪ E ∪ F ) · S contains (H \ C) · {s1, · · · , sℓ}. Further, the set

C ∪ ((H \ C) · {s′1s
−1
1 , · · · , s′ℓs

−1
ℓ })

contains at most 2ℓ[(H \ C) : K] many K-right cosets. By Assumption 2.1, it follows that
the set C contains a K-right coset R which is disjoint from the set

C ∪ ((H \ C) · {s′1s
−1
1 , · · · , s′ℓs

−1
ℓ }).

Note that there exists a subset E ′ of C \ E containing at most ℓ|E| elements such that
(E ′ ∪ F ) · S contains E · {s′1, · · · , s

′
ℓ}. Further, note that there exists a subset E ′′ of C \ E

containing at most ℓ|E| elements such that (E ′′ ∪ F ) · S contains E · {s1, · · · , sℓ}.
Assume that F is contained in Kα for some α ∈ H . Let h be an element of R such that

h /∈ (E · F−1)α (if there were no such h, then (E · F−1)α would contain R, which would
imply that E · F−1 contains a K-right coset, contradicting the third condition.). We claim
that

Hsi ⊆ (((C \ E) \Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ (hα−1F ) ∪ F ) · S

for any 1 ≤ i ≤ ℓ. Since (C \ E)∪F is contained in (C \E)∪F , the set ((C \E)∪ E ∪F ) · S
contains (H \ C) · si and Kh does not intersect with C \ E, it follows that (H \ C) · si is
contained in

(((C \ E) \Kh) ∪ E ∪ F ) · S.

Note that (C \Kh) · si is contained in

(E · si) ∪ ((((C \ E) \Kh) ∪ F ) · S) ,

which is contained in

((C \ E) \Kh) ∪ E ′′ ∪ F ) · S.

Let i be an element of P . Note that Khsi does not intersect with (H \ C) · {s′i}. Since
Hsi = Hs′i, it follows that Khsi is contained in C · s′i. Further, note that Khsi does not
intersect with Khs′i, otherwise, Khsi = Khs′i. Since K is normal in H , it follows that

hKsi = hKs′i, which yields Ksi = Ks′i, and consequently Kh̃s′i = Kh̃si holds for any

h̃ ∈ H , contradicting i ∈ P . So Khsi is contained in (C \Kh) · s′i. Since (E
′∪F ) ·S contains

E · {s′1, · · · , s
′
ℓ}, it follows that Khsi is contained in

((C \ E) \Kh) ∪ E ′ ∪ F ) · S

for i ∈ P .
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For each i ∈ Q, we have
F · Si = (H \ C) · si.

Note that for any β ∈ H , we obtain

βα−1F ⊆ βα−1Kα

= Kβα−1α

= Kβ

and

(βα−1F ) · Si = (βα−1) · (F · Si)

⊇ (βα−1) ·Kαsi

= Kβα−1αsi

= Kβsi

for i ∈ Q. It follows that Khsi is contained in (hα−1F ) · S for i ∈ Q.
This proves the claim that

Hsi ⊆ ((C \ E) \Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ (hα−1F ) ∪ F ) · S

for all i. So (C \ E) \ Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ (hα−1F ) ∪ F is a left complement to S. Since
h /∈ (E · F−1)α, using the second condition, ((C \ E) \ Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ (hα−1F ) is a
proper subset of C \ E. Hence (C \ E) ∪ F is not a minimal left complement to S.

If (C \E)∪F is a minimal right complement to some subset T of G, then (C−1\E−1)∪F−1

is a minimal left complement to T−1, which is impossible. �

Remark 2.8. Taking G = Z, H = 2Z, K = 12Z, C = {2, 4, 6, 8, 10}+ 12Z and F = {p | p ≡
1 (mod 12), p is a prime} − 1, it follows from Theorem 2.7 that the set

({3, 5, 7, 9, 11}+ 12Z) ∪ {p | p ≡ 1 (mod 12), p is a prime}

is not a minimal complement in Z.

Note that in the proof of Theorem 2.7, the hypothesis that F is either empty or is contained
in a single K-right coset, played a crucial role. It would be interesting to consider the subsets
of H of the form (C \E)∪F for “large” C and for any proper subset F of H \C. In Theorem
2.10, we prove that even if F intersects with each K-right coset contained in H \C, one may
obtain a similar result under an alternate hypothesis.

Proposition 2.9. Let X, Y be two nonempty disjoint subsets of a group G with X ∪Y = G.
Let L be a subgroup of G such that X is the union of certain right cosets of L. Then the
inclusion

(4) (X · Y −1) ∪ (Y ·X−1) ⊆ G \ L

holds. Moreover, the following conditions are equivalent.

(1) The inclusion in Equation (4) is a proper inclusion.
(2) For each y ∈ Y , there exists an element y′ ∈ Y \ (Ly) such that

y′y−1 · Y = Y.

(3) For some y ∈ Y , there exists an element y′ ∈ Y \ (Ly) such that

y′y−1 · Y = Y.
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(4) The set Y is the union of certain right cosets of some subgroup of G which properly
contains L.

(5) The set X is the union of certain right cosets of some subgroup of G which properly
contains L.

The set

G \
(
(X · Y −1) ∪ (Y ·X−1)

)

is a subgroup of G and it is the maximal subgroup of G such that Y is a union of its right
cosets. If Y is finite, then the inclusion

(5) (X · Y −1) ∪ (Y ·X−1) ⊆ G \ {e}

is an equality under any one of the following conditions.

(a) The order of y′y−1 is greater than the size of Y for any y, y′ ∈ Y with y 6= y′.
(b) The size of Y is not divisible by the size of any nontrivial finite subgroup of G.

Proof. Since X, Y are disjoint and each of them can be expressed as the union of certain
L-right cosets, it follows that the inclusion in Equation (4) holds.

Note that

((X · g) · (Y · g)−1) ∪ ((Y · g) · (X · g)−1) = (X · Y −1) ∪ (Y ·X−1)

for any g ∈ G. Thus the inclusion

(X · Y −1) ∪ (Y ·X−1) ⊆ G \ L

is an equality if and only if the inclusion

((X · g) · (Y · g)−1) ∪ ((Y · g) · (X · g)−1) ⊆ G \ L

is an equality.
Note that for y, y′ ∈ Y , the element y′y−1 does not belong to the set ((X · y−1) · (Y ·

y−1)−1) ∪ ((Y · y−1) · (X · y−1)−1) if and only if

y′y−1 · (Y · y−1) ⊆ Y · y−1, and y′y−1 · (X · y−1) ⊆ X · y−1,

which holds if and only if

y′y−1 · Y = Y.

Assume that the first condition holds. Choose an element y ∈ Y . Note that the set
((X ·y−1) · (Y ·y−1)−1)∪ ((Y ·y−1) · (X ·y−1)−1) contains X ·y−1. So this set does not contain
y′y−1 for some y′ ∈ Y \ (Ly). We obtain

y′y−1 · Y = Y.

So the first condition implies the second condition. Note that the second condition implies
the third condition. Now, assume that the third condition holds, i.e.,

y′y−1 · Y = Y

holds with y, y′ ∈ Y , Ly 6= Ly′. Let L′ denote the subgroup of G generated by L and y′y−1.
Since x · Y = Y for any x ∈ L, and y′y−1 · Y = Y , it follows that x · Y = Y for any x ∈ L′.
So, Y is union of certain right cosets of L′. Since Ly 6= Ly′, it follows that L is properly
contained in L′. Thus the fourth condition follows. Assume that the fourth condition holds,
i.e., Y is the union of certain translates of some subgroup L of G which properly contains
L. Then the set (X · Y −1) ∪ (Y · X−1) does not contain L. Since L properly contains L,
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the first condition follows. Since X, Y are disjoint and X ∪ Y = G, the fourth and the fifth
conditions are equivalent. This proves the equivalence of the five conditions.

Consider the subgroups L′ of G such that L′ contains L and Y can be expressed as the
union of right cosets of L′. Let L denote the subgroup of G generated by such subgroups.
Note that Y can be expressed as the union of the right cosets of L . It follows that

(X · Y −1) ∪ (Y ·X−1) ⊆ G \ L .

By the construction of L , it follows that the above inclusion is an equality, and it also
follows that L is the maximal subgroup of G such that Y is a union of its right cosets.

Suppose Y is finite and the order of y′y−1 is greater than the size of Y for any y, y′ ∈ Y
with y 6= y′. Assume that the inclusion in Equation (5) is not an equality. So, there exist
two distinct elements y1, y2 ∈ Y such that

y1y
−1
2 · Y = Y.

Let y0 be an element of Y . Denote the order of y1y
−1
2 by r. Then the set Y contains the

r distinct elements yy0, y
2y0, y

3y0, · · · , y
ry0 where y = y1y

−1
2 , which is impossible, since r is

greater than the size of Y . Hence, the inclusion in Equation (5) is an equality. Moreover, if
Y is finite and the size of Y is not divisible by the size of any nontrivial finite subgroup of G,
then Y cannot be expressed as the union of certain right cosets of some nontrivial subgroup
of G. Hence, the inclusion in Equation (5) is an equality. �

Theorem 2.10. If

(1)

(6) (C−1(H \ C)) ∪ ((H \ C)−1C) = H \K

(2) the set F ∪X does not contain a K-right coset for any subset X of H of size ≤ 2([G :
H ] + 1)|E|,

(3) the set E · F−1 does not contain any K-right coset,

and Assumption 2.1 holds, then (C\E)∪F is not a minimal complement in G. In particular,
(C \ E) ∪ F is not a minimal complement in G if

(1) any subgroup K ′ of H such that K is contained in K ′ and H \C can be expressed as
a union of right cosets of K ′, is normal in H,

(2) the set F ∪X does not contain a K-right coset for any subset X of H of size ≤ 2([G :
H ] + 1)|E|,

(3) the set E · F−1 does not contain any K-right coset,

and Assumption 2.1 holds.

Proof. On the contrary, let us assume that (C \ E) ∪ F is a minimal left complement to a
subset S of G. Let ℓ denote the index of H in G. Let s1, · · · , sℓ be elements of S such that

Hsi ∩Hsj = ∅ for all i 6= j.

For 1 ≤ i ≤ ℓ, let Si denote the subset of S defined by

Si := {s ∈ S |Hs = Hsi}.
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By the second condition, (C \E)∪F is a proper subset of H . It follows that Si contains an
element other than si. Let P,Q denote the sets defined by

P = {i | 1 ≤ i ≤ ℓ, Cs′ 6= Csi for some s′ ∈ Si},

Q = {i | 1 ≤ i ≤ ℓ, i /∈ P}.

For i ∈ P , let s′i denote an element of Si such that Cs′i 6= Csi. For i ∈ Q, let s′i denote an
element of Si other than si.

Note that there exists a subset C of C consisting of certain K-right cosets such that C
contains at most ℓ[(H \ C) : K] many K-right cosets and (C ∪ F ) · S contains (H \ C) ·
{s1, · · · , sℓ}. Moreover, there exists a subset E of C \ E containing at most |E| elements
such that ((C \ E) ∪ E ∪ F ) · S contains (H \ C) · {s1, · · · , sℓ}. Further, the set

C ∪ ((H \ C) · {s′1s
−1
1 , · · · , s′ℓs

−1
ℓ })

contains at most 2ℓ[(H \ C) : K] many K-right cosets. By Assumption 2.1, it follows that
the set C contains a K-right coset class R which is disjoint from the set

C ∪ ((H \ C) · {s′1s
−1
1 , · · · , s′ℓs

−1
ℓ }).

Note that there exists a subset E ′ of C \ E containing at most ℓ|E| elements such that
(E ′ ∪ F ) · S contains E · {s′1, · · · , s

′
ℓ}. Further, note that there exists a subset E ′′ of C \ E

containing at most ℓ|E| elements such that (E ′′ ∪ F ) · S contains E · {s1, · · · , sℓ}.
Assume that F ∩Kα is properly contained in Kα for some α ∈ H . Let h be an element

of R such that h /∈ (E · F−1)α (if there were no such h, then (E · F−1)α would contain R,
which would imply that E ·F−1 contains a K-right coset, contradicting the third condition.).
We claim that

Hsi ⊆ (((C \ E) \Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ (hα−1F ∩Kh) ∪ F ) · S

for any 1 ≤ i ≤ ℓ. Since (C \ E)∪F is contained in (C \E)∪F , the set ((C \E)∪ E ∪F ) · S
contains (H \ C) · si and Kh does not intersect with C \ E, it follows that (H \ C) · si is
contained in

((C \ E) \Kh) ∪ E ∪ F ) · S.

Note that (C \Kh) · si is contained in

(E · si) ∪ ((((C \ E) \Kh) ∪ F ) · S) ,

which is contained in
((C \ E) \Kh) ∪ E ′′ ∪ F ) · S.

Let i be an element of P . Note that Khsi does not intersect with (H \ C) · {s′i}. Since
Hsi = Hs′i, it follows that Khsi is contained in C · s′i. Further, note that Khsi does not
intersect with Khs′i, otherwise, Khsi = Khs′i. Since K is normal in H , it follows that

hKsi = hKs′i, which yields Ksi = Ks′i, and consequently Kh̃s′i = Kh̃si holds for any

h̃ ∈ H , contradicting i ∈ P . So Khsi is contained in (C \Kh) · s′i. Since (E
′∪F ) ·S contains

E · {s′1, · · · , s
′
ℓ}, it follows that Khsi is contained in

((C \ E) \Kh) ∪ E ′ ∪ F ) · S

for i ∈ P .
We choose an element i ∈ Q. Note that the set Si is contained in Ksi. Otherwise, there

exists an element s′i ∈ Si such that Ks′i 6= Ksi. Let β denote the element s′is
−1
i of H .

Note that β does not lie in K. By the first condition (i.e. Equation (6)), β±1 = γ−1δ with
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γ ∈ C, δ ∈ H \C. If β = γ−1δ, then Cβ intersects with H \C, and hence Cβsi intersects with
(H \ C)si, i.e., Cs

′
i intersects with (H \ C)si, which implies that Csi 6= Cs′i. If β

−1 = γ−1δ,
then Cβ−1 intersects with H \ C, and hence Cβ−1s′i intersects with (H \ C)s′i, i.e., Csi
intersects with (H \ C)s′i, which implies that Cs′i 6= Csi. This shows that i ∈ P , which is a
contradiction. So Si is contained in Ksi. Since Kαsi is contained in (C ∪ F ) · Si, it follows
that Kαsi is contained in (F ∩Kα) · Si, and hence

(hα−1F ∩Kh) · Si = (hα−1(F ∩ (αh−1Kh))) · Si

= (hα−1(F ∩ (Kαh−1h))) · Si

= (hα−1(F ∩Kα)) · Si

= (hα−1)((F ∩Kα) · Si)

⊇ (hα−1)Kαsi

= K(hα−1)αsi

= Khsi.

It follows that Khsi is contained in (hα−1F ∩Kh) · S for any i ∈ Q.
This proves the claim that

Hsi ⊆ ((C \ E) \Kh) ∪ E ∪ E ′ ∪ E ′′ ∪ (hα−1F ∩Kh) ∪ F ) · S

for all 1 ≤ i ≤ ℓ. So (C \E) \Kh)∪E ∪ E ′ ∪E ′′ ∪ (hα−1F ∩Kh)∪F is a left complement to
S. By the second condition, ((C \E) \Kh)∪E ∪ E ′ ∪E ′′ ∪ (hα−1F ∩Kh) is a proper subset
of C \ E. Hence (C \ E) ∪ F is not a minimal left complement to S.

If (C \E)∪F is a minimal right complement to some subset T of G, then (C−1\E−1)∪F−1

is a minimal left complement to T−1, which is impossible.
Now we establish the second part. Since H \ C is the union of finitely many right cosets

of K, it follows from Proposition 2.9 that

(C−1(H \ C)) ∪ ((H \ C)−1C) = H \K ′

and H \C is the union of certain left cosets of K ′ for some subgroup K ′ of H containing K
as a finite index subgroup. Since K ′ contains K, it follows from the hypothesis that the set
F ∪X does not contain a K ′-right coset for any subset X of H of size ≤ 2([G : H ] + 1)|E|,
and the set E ·F−1 does not contain any K ′-right coset. Hence from the first part, the result
follows. �

Remark 2.11. By Proposition 2.9, the first condition in Theorem 2.10 is equivalent to requir-
ing that H \C cannot be expressed (or equivalently, C cannot be expressed) as the union of
certain left cosets of some subgroup L of H satisfying L ) K.

Remark 2.12. Taking G = Z, H = 2Z, K = 2nZ, it follows from Theorem 2.10 that for any
integer n ≥ 11, for any 1 ≤ a < b ≤ n with

(7) 2(a− b) 6≡ 0 (mod n),

the set

(({2, 4, 6, · · · , 2n} \ {2a, 2b}) + 2nZ) ∪ F
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is not a minimal complement in Z for any proper subset of F of {2a, 2b}+ 2nZ since

(({2, 4, 6, · · · , 2n} \ {2a, 2b}) + 2nZ) + ({−2a,−2b}+ 2nZ)

= (({2, 4, 6, · · · , 2n} \ {0, 2(b− a)}) + 2nZ) ∪ (({2, 4, 6, · · · , 2n} \ {2(a− b), 0}) + 2nZ)

= {2, 4, 6, · · · , 2n} \ {0}+ 2nZ.

Note that Equation (7) holds when n is odd. One can obtain a more general example than
the above. Taking G = Z, H = 2Z, K = 2nZ, it follows from Proposition 2.9 and Theorem
2.10 that for any integer k ≥ 2, n ≥ 5k + 1 such that n is not divisible by any integer
1 < i ≤ k and for any 1 ≤ a1 < a2 < · · · < ak ≤ n, the set

(({2, 4, 6, · · · , 2n} \ {2a1, 2a2, · · · , 2ak}) + 2nZ) ∪ F

is not a minimal complement in Z for any proper subset of F of {2a1, 2a2, · · · , 2ak}+ 2nZ.

When F is the empty set, Theorems 2.2, 2.7 are equivalent. One obtains the following
consequences.

Proposition 2.13. If

(1) the number of elements of K is greater than 2([G : H ] + 1)|E|,

and Assumption 2.1 holds, then C \ E is not a minimal complement in G.

Remark 2.14. It follows from Proposition 2.13 that {2, 4, 6, 8, 10} + 12Z is not a minimal
complement in Z. Taking G = H = R, K = Q, it follows from Proposition 2.13 that the
set of irrational numbers is not a minimal complement in R. Taking G = H = C, K = Q,
it follows from Proposition 2.13 that the set of transcendental numbers is not a minimal
complement in C.

When K is the trivial subgroup and E is the emptyset in Proposition 2.13, one obtains
the following results.

Proposition 2.15. If H \ C is finite and C contains more than 2[G : H ]|H \ C| elements,
i.e., the relative quotient of C with respect to H satisfies

λH(C) > 2[G : H ],

then C is not a minimal complement to any subset of G. In particular, if D is a proper
subset of G such that G \D is finite and D contains more than 2|G \D| elements, then D
is not a minimal complement to any subset of G.

Proof. The first part follows from Proposition 2.13. The second past follows from the first
part as a consequence. �

Remark 2.16. It follows from Proposition 2.15 that for any positive integer k and for any
nonempty finite subset F of kZ, the set kZ \ F is not a minimal complement in Z.

In the context of finite groups, one has the following consequence of Proposition 2.15. See
also [AKL20, Proposition 17].

Proposition 2.17. If G is finite and the relative quotient of C with respect to H satisfies

λH(C) > 2[G : H ],

i.e., C is a subset of H satisfying

|H| > |C| > 2[G : H ]|H \ C|,
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then C is not a minimal complement to any subset of G. Equivalently, no subset C of a
subgroup H of a finite group G satisfying

|H|
2[G : H ]

1 + 2[G : H ]
=

2|G||H|

|H|+ 2|G|
< |C| < |H|

is a minimal complement to some subset of G. In particular, if C is a proper subset of a
finite group G containing more than 2|G\C| elements, then C is not a minimal complement
in G.

Proof. The first statement and the third statement follow from Proposition 2.15.
To obtain the second statement, note that for a subset C of H , the inequality |C| > 2[G :

H ]|H \ C| is equivalent to

(2[G : H ] + 1)|C| > 2[G : H ]|C|+ 2[G : H ]|H \ C| = 2[G : H ]|H| = 2|G|,

which is equivalent to

|C| >
2|G||H|

|H|+ 2|G|
.

Then the second part follows from the first part. �

Remark 2.18. It follows from Proposition 2.17 that the set {2, 4, 6, 8, 10} is not a minimal
complement in Z/12Z.

Theorem 2.19. Let H be a finite index subgroup of a topological group G. Let C be a proper
subset of H. Suppose H \ C is compact and closed2 in H. If H is not a union of finitely
many translates of H \ C, then C is not a minimal complement in G. In particular, if C is a
proper subset of a topological group of G such that G \ C is closed and compact, and G \ C is
“small” in the sense that G is not a union of finitely many translates of G \ C, then C is not
minimal complement in G.

Proof. On the contrary, let us assume that C is a minimal left complement to some subset
T of G. Let S be a subset of T such that H · S = G, and Hs1 ∩ Hs2 = ∅ for any two
distinct elements s1, s2 ∈ S. Since C is a proper subset of H, for each s ∈ S, there exists an
element ts ∈ T such that ts 6= s and Hs = Hts. Since C is compact and S is finite, there is
a nonempty finite subset T ′ of T such that {C · s}s∈T ′ is an open cover of C · S. From the
hypothesis, it follows that the subgroup H strictly contains

(H ∩ (∪x∈S·T ′−1C · x)) ∪ (∪s∈SC · tss
−1) ∪ C ,

and hence there is an element h ∈ H lying outside this union. We claim that C \ {h} is a left
complement to T . Note that C \ {h} is nonempty. It suffices to show that Hs is contained
in (C \ {h}) · T for each s ∈ S. Let k be an element of C . Then ks is equal to ct′ for some
c ∈ C, t′ ∈ T ′. So c lies in the above union and hence h 6= c. Thus ks lies in (C \ {h}) · T . So
C · s is contained in (C \ {h}) · T . Note that hs lies in Hts and does not lie in C ts. Thus
hs lies in C · ts. Since s 6= ts, it follows that hs lies in (C \ {h}) · ts. Clearly, (C \ {h})s is
contained in (C \ {h}) · T . So H · s is contained in (C \ {h}) · T . Thus C \ {h} is a minimal
left complement to T . Note that h lies in H and does not lie in C . So C \ {h} is a proper
subset of C. Hence C is not a minimal left complement to T . Similarly, assuming C to be a

2Note that the compact subsets need not be closed unless the ambient topological space is assumed to be
Hausdorff.
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right minimal complement to some subset of G will lead to a contradiction. Hence C is not
a minimal complement in G.

The second statement follows from the first statement. �

Remark 2.20. From Theorem 2.19, it follows that the set of real numbers having absolute
value greater than one is not a minimal complement in R.

Corollary 2.21. Let H be a finite index subgroup of an infinite group and C be a proper
subset of H such that H \ C is finite. Then C is not a minimal complement in G.

Proof. If G is endowed with the discrete topology, then this corollary follows from Theorem
2.19.

It can also be seen as an immediate consequence of Proposition 2.15 (and also of Propo-
sition 2.13). �

Corollary 2.22. For any positive integer k and for any nonempty finite subset F of kZ, the
set kZ \ F is not a minimal complement in Z.

It turns out that the set of irrational numbers is not a minimal complement in R (see
Remark 2.14). It is natural to ask whether the set of irrational numbers, with a countable
number of points removed, is a minimal complement in R. Theorem 2.19 does not seem to
shed any light on this question since the set of irrational numbers, with a countable number
of points removed, does not form a closed or a compact set under the Euclidean topology.

Theorem 2.23. Let H be a subgroup of a group G. Let C be a proper subset of H. Suppose
Assumption 2.1 holds in the sense that no map from {0, 1}×(H\C)×(G/H) to C is surjective.
Then C is not a minimal left complement in G.

Proof. On the contrary, let us assume that C is a minimal left complement to a subset S of
G. Let {si}i∈Λ be elements of S such that G = ∪i∈ΛHsi and

Hsi ∩Hsj = ∅ for all i 6= j.

Since C is a proper subset of H, it follows that for each i ∈ Λ, there exists an element s′i such
that Hs′i = Hsi and Cs′i 6= Csi. For each (a, i) ∈ (H\ C)×Λ, choose an element (c(a,i), s(a,i))
in C × S such that c(a,i)s(a,i) = asi. Consider the map

(H \ C)× Λ → C

defined by
(a, i) 7→ c(a,i).

Denote the image of this map by C . Note that C · S contains (H\C) · {si | i ∈ Λ}. Consider
the map

{0, 1} × (H \ C)× Λ → C

defined by

(∗, a, i) 7→

{
c(a,i) if ∗ = 0,

as′is
−1
i if ∗ = 1.

By the hypothesis, C contains an element h which lies outside the image of this map, i.e., h
avoids the set

C ∪ ((H \ C) · {s′is
−1
i | i ∈ Λ}).

We claim that
Hsi ⊆ (C \ {h}) · S
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for any i ∈ Λ. Since C is contained in C, the set C · S contains (H \ C) · si and h does not
lie in C , it follows that (H \ C) · si is contained in (C \ {h}) · S. Note that hsi does not
lie in (H \ C)s′i. Since Hsi = Hs′i, it follows that hsi belongs to C · s′i. Hence hsi lies in
(C \ {h}) · s′i. Moreover, (C \ {h}) · si is contained in (C \ {h}) · S. This proves the claim that
Hsi is contained in (C \ {h}) · S for any i ∈ Λ. Hence C is not a minimal left complement to
S.

If C is a minimal right complement to some subset T of G, then C−1 is a minimal left
complement to T −1, which is impossible. �

Remark 2.24. It follows from Theorem 2.23 that given any uncountable group G, no proper
subset C of G having countable set-theoretic complement in G is a minimal complement in
G. In particular,

(1) the set of irrational numbers, with a countable number of points removed, is not a
minimal complement in R,

(2) the set of transcendental numbers, with a countable number of points removed, is
not a minimal complement in C.

3. On robust non-minimal complements

In an abelian group, a minimal complement is often called a minimal additive complement,
abbreviated as MAC [BL20]. Following [BL20, Definition 5], one can consider the notion of
robust MAC and robust non-MAC in any abelian group G.

Definition 3.1. Let G be an abelian group. A subset C of G is said to be a robust MAC if
any non-empty subset D of G having finite symmetric difference with C is a MAC in G. A
subset C of G is said to be a robust non-MAC if any non-empty subset D of G having finite
symmetric difference with C is a non-MAC in G.

Kwon proved that the finite subsets of the integers are robust MACs [Kwo19, Theorem 9].
In [BS19b], the authors showed that the finite subsets of any free abelian group of rank ≥ 1
are robust MACs. Alon–Kravitz–Larson established that the finite subsets in any infinite
abelian group are robust MACs [AKL20, Theorem 2]. Burcroff–Luntzlara proved results
which provides several examples of infinite subsets of Z which are robust MACs and several
examples of infinite subsets of Z which are robust non-MACs [BL20, Theorems 3, 5]. As a
corollary of Theorem 2.4, one also obtains examples of robust non-MACs.

Corollary 3.2. Suppose C is a subset of Z and it is the union of translates of a nonzero
subgroup K of Z. If λZ(C) > 2, then (C \ E) ∪ F is a robust non-MAC in Z for any finite
subset E of C and for any subset F of Z \ C such that (Z \ C) \ F is infinite.

Moreover, there are infinite sets which are neither bounded below nor above, and do not
satisfy the hypothesis of [BL20, Theorem 5]. Indeed, consider the set

({1, 2, 3}+ 4Z) ∪ F ∪ F1

for any subset F of F0 where the sets F0,F1 are defined by

Fi = 4Z \ {(4n)! + 4k |n ≥ 1, n ≡ i (mod 2), 0 ≤ k ≤ n}

for i = 0, 1. Note that ({1, 2, 3} + 4Z) ∪ F ∪ F1 does not satisfy the hypothesis of [BL20,
Theorem 5]. From Theorem 2.7, it follows that it is a robust non-MAC. Since F0 is an infinite
set, it has uncountably many subsets. Thus Theorem 2.7 yields examples of uncountably
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many robust non-MACs in Z, none of them satisfying the hypothesis of [BL20, Theorem
5]. This provides a partial answer to [BL20, Question 2]. More generally, we establish the
following Theorem 3.4, which shows in particular that any finitely generated abelian group of
positive rank and any free abelian group of positive rank contain uncountably many robust
non-MACs. Moreover, it follows from Theorem 2.23 that given any uncountable abelian
group G, any proper subset C of G having countable set-theoretic complement in G is a
robust non-MAC.

In the context of groups which are not assumed to be abelian, the minimal complements
are more precisely called minimal multiplicative complements to indicate the underlying
structure of the ambient group. The minimal multiplicative complements are abbreviated
as MMCs. In the spirit of robust MACs and non-MACs, one can also define the notion of
robust MMCs and robust non-MMCs.

Definition 3.3. Let G be a group. A subset C of G is said to be a robust MMC if any
non-empty subset D of G having finite symmetric difference with C is a MMC in G. A
subset C of G is said to be a robust non-MMC if any non-empty subset D of G having finite
symmetric difference with C is a non-MMC in G.

Note that in the context of abelian groups, the MMCs (resp. robust MMCs, robust non-
MMCs) coincide with the MACs (resp. robust MACs, robust non-MACs).

Theorem 3.4. Any group that admits Z as a quotient, contains uncountably many robust
non-MMCs.

Proof. Note that there exists a normal subgroup G′ of G such that G/G′ is isomorphic to Z.
Let p ≥ 5 be a prime number. Let a be a positive integer satisfying p ≥ 3a+1 and C denote a
subset of {1, 2, · · · , p} of size p−a. Denote the set {1, 2, · · · , p}\C by C ′. Let ψ : G/G′ → Z
be a group isomorphism. Let K denote the subgroup ψ−1(pZ) of G. Note that K is a normal
subgroup of G. For any subset F of C ′ + pN, the subset ψ−1((C + pZ) ∪ F) is a robust
non-MAC by Proposition 2.9 and Theorem 2.10. Since the set C

′ + pN contains infinitely
many elements, it has uncountably many subsets. Thus the group G contains uncountably
many robust non-MACs. �

Corollary 3.5. For any number field K of degree ≥ 3, the group GLn(OK) contains un-
countably many robust non-MMCs where OK denotes the ring of integers of K.

Proof. Note that the group GLn(OK) admits O×

K as a quotient. Since K has degree ≥ 3, by
the Dirichlet’s unit theorem, O×

K admits Z as a quotient. Hence GLn(OK) admits Z as a
quotient. By Theorem 3.4, the result follows. �

Corollary 3.6. Any finitely generated abelian group of positive rank and any free abelian
group of positive rank contain uncountably many robust non-MACs.

Proof. It follows from Theorem 3.4. �

It seems plausible that any infinite abelian group contains uncountably many robust non-
MACs.

We conclude this section with the following remarks.

Remark 3.7. If a subset A of H (for example, the sets of form C ∪ F considered in Section
2) is not a minimal left complement in G, then so are its left translates, i.e., the sets of the
form g · A for any g ∈ G.
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Remark 3.8. Note that the subsets which are shown to be non-minimal complements are
not a part of any co-minimal pair3. By Theorem 3.4, any finitely generated abelian group of
positive rank contains uncountably many infinite subsets which are robust non-MACs and
in particular, not minimal complements. We contrast this result with [BS20b, Theorem 2.2],
which states that any such group also contains uncountably many infinite subsets which
admit minimal complements. In [BS20b], we considered lacunary sequences4 in Zd for d ≥ 1,
and proved that “a majority” of such sequences are a part of a co-minimal pair, and in
particular, they are minimal complements [BS20b, Theorem 2.1]. It also follows that any
such sequence remain a minimal complement even after the removal of finitely many points.
It would be interesting to investigate whether “a majority” of such sequences are robust
MACs. It follows from [BL20, Theorem 4] that it is indeed the case when d = 1.

It would be interesting to consider the situations when the sets C, F (as in Section 2) are
somewhat modified. For instance,

(1) What happens if C is taken to be a “large” set in H and F is taken to be a “small”
set lying outside H (or more generally, to be a “small” set in G \ C)?

(2) What happens if C intersects with several right cosets of H in G and the intersection
of C with each such (or one such) right coset is “large”?
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