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a b s t r a c t 

Dimension governs dynamical processes on networks. The social and technological net- 

works which we encounter in everyday life span a wide range of dimensions, but studies 

of spreading on finite-dimensional networks are usually restricted to one or two dimen- 

sions. To facilitate investigation of the impact of dimension on spreading processes, we de- 

fine a flexible higher-dimensional small world network model and characterize the depen- 

dence of its structural properties on dimension. Subsequently, we derive mean field, pair 

approximation, intertwined continuous Markov chain and probabilistic discrete Markov 

chain models of a COVID-19-inspired susceptible-exposed-infected-removed (SEIR) epi- 

demic process with quarantine and isolation strategies, and for each model identify the 

basic reproduction number R 0 , which determines whether an introduced infinitesimal level 

of infection in an initially susceptible population will shrink or grow. We apply these 

four continuous state models, together with discrete state Monte Carlo simulations, to 

analyse how spreading varies with model parameters. Both network properties and the 

outcome of Monte Carlo simulations vary substantially with dimension or rewiring rate, 

but predictions of continuous state models change only slightly. A different trend appears 

for epidemic model parameters: as these vary, the outcomes of Monte Carlo change less 

than those of continuous state methods. Furthermore, under a wide range of conditions, 

the four continuous state approximations present similar deviations from the outcome of 

Monte Carlo simulations. This bias is usually least when using the pair approximation 

model, varies only slightly with network size, and decreases with dimension or rewiring 

rate. Finally, we characterize the discrepancies between Monte Carlo and continuous state 

models by simultaneously considering network efficiency and network size. 
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1. Introduction 

Dimension is an important physical property, governing widespread phenomena such as diffusion and modes of vibra- 

tion [1] . In the context of networks, dimension not only governs dynamical processes [1,2] and topological properties [3] ,

but even suffices to approximate general structure [4] . While physical objects are constrained to three or fewer dimensions,

the dimensions of social, technological, biological and other networks span a wide spectrum [5–7] . A proper understand- 

ing of dynamical network phenomena, such as random walks [8,9] , synchronization and consensus [10–13] , heat conduc- 

tion [14,15] , information dissemination [16–21] , competition and cooperation [22–25] and the spread of rumours [26,27] , 

opinions [28] and diseases [29–35] including the ongoing COVID-19 pandemic [36,37] , requires assessment of the process 

across a broad range of dimensions and other network properties. This requires the development and application of flexible 

higher-dimensional network models. 

The Watts-Strogatz small world model [38] captures tension between order and randomness, and is one of the most 

influential and widely utilized models in network science [39] . The original model was defined by rewiring links of a toroidal

lattice of dimension one (i.e., a ring lattice) and arbitrary even mean degree. Rewiring is performed such that, regardless 

of the rewiring probability, the mean degree of the network remains constant and the degree of each node is at least

half the mean degree, making isolated nodes impossible and disconnections unlikely. Since the original small world model 

was proposed, methods have been developed to generalize to lattices of higher dimension [4] (especially two-dimensional 

lattices [40–43] ), but each which we have encountered sacrifices at least one important property of the original small world

model. Most models applicable to higher dimensions add links instead of rewiring, which changes the mean degree, and/or 

do not consider the case of mean degree other than twice the network dimension [44–47] . In this paper we develop a small

world model, defined by rewiring links of a toroidal lattice of arbitrary positive integer dimension and arbitrary even degree 

no smaller than twice the lattice dimension (code is available in Ref. [48] ). This model follows the foundational Watts-

Strogatz small world model in preserving the mean degree of the original toroidal lattice and ensuring that the degree of

each node is at least half the mean degree. We examine the dependence of important structural properties on parameters 

and implementation choices of the network model. 

A range of important phenomena and operations can be represented as dynamical processes on networks [49] , including 

spreading, network synchronization and control of complex systems [50] . However, despite the wide spectrum of dimensions 

apparent in real networks, dynamical processes in higher-dimensional networks are rarely analyzed. In this contribution 

we consider susceptible-exposed-infected-removed (SEIR) disease spreading in D -dimensional spatial networks, incorporat- 

ing quarantine and isolation methods. There exist other iconic disease spreading models, such as the susceptible-infected- 

removed (SIR) or susceptible-infected-susceptible (SIS) models, but we focus on the SEIR model because it is frequently 

chosen to describe the ongoing COVID-19 pandemic [43,51] . We use four probabilistic continuous state theories - namely, 

mean field (MF) [52] , pair approximation (PA) [53] , intertwined continuous Markov chain (ICMC) [54] and probabilistic dis-

crete Markov chain (PDMC) [55] - to establish analytically tractable spreading dynamical systems. For each continuous state 

system we deduce the basic reproduction number R 0 , which governs whether an infinitesimal level of infection in an ini-

tially susceptible population will increase. Moreover, we compare Monte Carlo (MC) and the four continuous state methods, 

examining how predicted outcomes and discrepancies between methods depend on epidemic, control and network model 

parameters, and identify systematic bias shared by each of the continuous state methods. 

The output of the MF, PA, ICMC and PDMC continuous state models is useful, but just as important is an understanding

of when these models are valid and the conditions under which systematic bias occurs [56,57] . Some discrepancies between

MC and continuous state models can be explained by finite size effects [58,59] , in which case errors should decrease with

the size of the network. An increased network size allows each MC simulation to involve a larger number of instances of

discrete processes, which could indeed bring them closer to continuous state models. However, the ease with which distinct 

nodes on the network can interact with each other, which is represented by the network efficiency, could also be expected to

play a role. To improve understanding of the conditions upon which model accuracy depends, we investigate how network 

size and network efficiency influence the difference between the final affected ratio predicted by continuous state models 

and that determined by MC. Furthermore, we formulate a simple network measure, called the network capacity, which 

is intended to capture effective network size and which we find better describes the discrepancy exhibited by the most 

accurate continuous state model. 

The remainder of the paper is arranged as follows. The flexible higher-dimensional small world model is presented in 

Section 2 , where the structural properties of the resultant small world networks are also examined and where we show that

the higher-dimensional small world model is important both for fitting topological properties and predicting dynamical char- 

acteristics of social networks. In Section 3 we focus on dynamics, and formulate a susceptible-exposed-infected-recovered 

(SEIR) epidemic model designed to reflect current understanding of the ongoing COVID-19 pandemic. In particular, this SEIR 

model includes the possibility for nodes in the exposed (E) state to spread disease. We also derive the MF, PA, ICMC and

PDMC continuous state probabilistic descriptions of the process, and identify the basic reproduction number R 0 correspond- 

ing to each. We use Section 4 to perform numerical simulations illustrating how the spread of disease in higher-dimensional

networks depends upon network parameters such as size, mean degree and, especially, dimension. We also investigate how 

the predictions of different continuous state models compare with MC simulation, highlight a systematic bias which is fre- 

quently shared by each continuous state method, and examine how this bias depends on model parameters and network 

properties. Finally, in Section 5 , we conclude. 
2 
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2. Higher-dimensional network model and properties 

In this section we define the higher-dimensional small world model, investigate the dependence of its properties on 

model parameters, and show that dimension is important in fitting and predicting the characteristics of real world social 

networks. 

2.1. Network measures 

First we define relevant network measures. The number of nodes in a network is called size and denoted N. The mean

network distance 〈 d〉 between distinct nodes is 

〈 d〉 = 

1 

N(N − 1) 

N ∑ 

i =1 

N ∑ 

j=1 
j � = i 

d i j , 

where d i j is the number of edges in the shortest path between nodes i and j. The clustering coefficient φ is the probability

for a randomly chosen connected ordered triple of nodes to form a triangle: 

φ = 

N ∑ 

i =1 

N ∑ 

j=1 
j � = i 

N ∑ 

k =1 
k � = i, j 

a i j a jk a ki 

N ∑ 

i =1 

N ∑ 

j=1 
j � = i 

N ∑ 

k =1 
k � = i, j 

a i j a jk 

, 

where A = 

(
a i j 

)
is the adjacency matrix of the network. Network efficiency 

η = 

1 

N(N − 1) 

N ∑ 

i =1 

N ∑ 

j=1 
j � = i 

d i j 
−1 

. 

is the mean rate of communication between distinct nodes in the network, assuming that information propagates at a rate 

of one link per time step. To characterize difference between continuous state and Monte Carlo approaches, we also define 

the network capacity 

χ = Nη, 

which comprises the mean over all nodes of the total number of communications with other nodes per time step. As the

product of the number of nodes ( N) and the mean number of communications per node per time ( η), the capacity χ equals

the total number of communications in the network per unit time. This formulation is intended to capture the effective 

network size from the perspective of continuous state approximations ( Section 3.2 ) which rely on the average, over many

pairs of nodes, of interactions between nodes. 

We also characterize networks by their spectrum; the eigenvalues �1 ≥ �2 ≥ . . . ≥ �N of the adjacency matrix. The 

largest eigenvalue �1 of a graph, also called the index or spectral radius, plays an important role in dynamic processes 

on networks. In disease spreading, the spectral radius �1 directly determines epidemic thresholds [54,60] . 

The eigenvalues �2 and �N also impact dynamic or structural properties. Increasing the difference �1 − �2 between the 

first and second largest eigenvalues, which is called the spectral gap, can improve expansion and connectivity [61,62] . 

The smallest eigenvalue �N provides information about bipartite subgraphs, independence number, chromatic number 

and the maximum cut [62–65] . 

2.2. Definition of the higher-dimensional small world model 

Next, we define the higher-dimensional small world network model. A small world network of dimension D , even mean 

degree 〈 k 〉 and rewiring probability parameter p ∈ [0 , 1] is obtained as follows. First, we generate a D -torus 1 of N = L D 

nodes each connected to its k nearest neighbours. To do so, we start with L D nodes distributed in a grid of side length L

with periodic boundary conditions in each of the D directions. Initially, an edge is placed between nodes i and j if and only

if 0 < d 2 (i, j) < r. In this expression, d 2 is a version of Euclidean distance 2 which respects the periodic boundary conditions

in each dimension, in which each dimension is treated equivalently, and r > 0 is the minimum value for which the resulting
1 The Cartesian product of D copies of a circle is a D -torus. For example, a 1-torus is a ring, a 2-torus is a doughnut, and a 3-torus is a three-dimensional 

surface without a boundary. We would not expect to encounter many torus-like networks in the real world, but a torus has the advantage that each of its 

nodes is equivalent, up to translation, with any other node. This helps us to avoid issues with boundary conditions and better approximate large networks 

with limited computational resources. 
2 Other metrics, such as the city block or supremum metrics, could be used instead. 

3 
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network has degree at least k . If the degree k 0 of this network exceeds the desired degree k , then 

1 
2 ( k 0 − k ) links directed in

the clockwise direction 

3 from a single node are chosen uniformly at random from among the links which span the largest

Euclidean distance. These 1 
2 ( k 0 − k ) links are removed from each node, which reduces to k the degree of the network, while 

keeping the neighbourhood of each node the same up to translation. 

Given a D -torus with mean degree k , we consider each node i in turn, and consider consecutively each of the k/ 2 edges

which are directed clockwise starting from node i . With probability p, we reconnect this edge to a vertex selected from

among all nodes with which i is not already connected, chosen with probability proportional to 
(
κ + ω d 2 

σ
)−1 

, where d 2 
is the Euclidean distance between the two nodes, κ and ω control the balance between uniform random and distance 

dependent node choice, and the exponent σ determines how fast probability decays with Euclidean distance. We consider 

two choices of these parameters: κ = 1 , ω = 0 and σ arbitrary, which, because in this case rewiring does not depend on

distance, we refer to as random rewiring; and κ = 0 , ω = 1 and σ = 3 , which we refer to as distance dependent rewiring. 

To choose a small world network of dimension D and size about ˜ N , we generate a small world network of size 
[

˜ N 

1 /D 
]D 

,

where [ x ] is the integer closest to the real number x . In Section 4 we will sample from an ensemble of small world network

models which, in particular, requires random choices of network size N, rewiring probability p and dimension D . To ran- 

domly choose a small world network with mean degree 〈 k 〉 , size between about ˜ N min and 

˜ N max and rewiring rate bounded

below by p min ∈ (0 , 1] , we proceed as follows. First we randomly choose a rewiring rate p ∈ [ p min , 1] such that the rate of

choosing a rewiring rate p within any subinterval of [ p min , 1] is proportional to the logarithmic width of that subinterval.

Next, we choose a dimension D uniformly at random from the set { 1 , 2 , . . . , 〈 k 〉 / 2 } . Subsequently, we choose an approximate 

network size ˜ N ∈ 

[
˜ N min , ˜ N max 

]
with probability proportional to 1 / ̃  N ; such that the probability of choosing ˜ N within an in-

terval of 
[

˜ N min , ˜ N max 

]
is proportional to the interval’s logarithmic width. The small world network we finally generate has 

dimension D , rewiring probability p, and size about ˜ N (i.e., size 
[

˜ N 

1 /D 
]D 

). 

2.3. Properties of the small world model 

Here we examine the properties of small world models of dimension D between 1 and 5. Three kinds of networks are

considered: (1) lattices; (2) randomly rewired higher-dimensional small world networks; and (3) higher-dimensional small 

world networks with distance dependent rewiring. In Fig. 1 , we present regular lattice networks, of (mean) degree 〈 k 〉 = 10

and dimension from D = 1 to 5, which are the outcome of the first stage of the algorithm to generate higher-dimensional

small world networks. With mean degree fixed at 〈 k 〉 = 10 , dimension D > 5 would lead to a disconnected network with

L D −5 components, each comprising a lattice of dimension D = 5 having L = N 

1 /D nodes in each direction. For each dimension

we choose a network size N sufficiently large that the subgraph induced by a node and its neighbours would not change

with increasing network size N. 

We illustrate how the difference between random and distance dependent rewiring depends on network structure via 

Figs. 2 and 3 . These figures show interpolation between a lattice and a fully rewired network in dimension D = 2 . It is

particularly interesting to compare networks completely rewired ( p = 1 ) randomly ( Fig. 2 (c)) and with distance dependence

( Fig. 3 (c)). The structure resulting from complete distance dependent rewiring is influenced by the original lattice, but this

is not evident after complete random rewiring. In Fig. 4 we present the variation of important structural properties of 

regular lattices of various dimension D and (mean) degree 〈 k 〉 . Figure 4 (a) showcases global clustering coefficient φ, network

efficiency η and mean network distance 〈 d〉 for a range of dimensions D in lattice networks of fixed (mean) degree 〈 k 〉 = 10

and network size about N = 3 , 0 0 0 . Clustering coefficient φ decreases steadily as dimension D increases. Network efficiency

η tends to grow as dimension increases, although a slight decrease is evident as dimension increases to D = 5 - this decrease

results from an increase in network size from N = 2401 = 7 4 when D = 4 to N = 3025 = 5 5 when D = 5 . Mean network

distance 〈 d〉 decreases rapidly from dimension 1 to 2, but only slowly from dimensions 2 through to 5. In Fig. 4 (b) we

present the variation of these three network properties with (mean) degree 〈 k 〉 , for fixed dimension D = 2 and network

size N = 3 , 025 . For (mean) degree 〈 k 〉 < 2 D , the network is disconnected with some infinite internode distances, leading

to efficiency η = 0 . Similarly, for (mean) degree 〈 k 〉 ≤ 2 D , there is a complete absence of triangles, ensuring that clustering

coefficient φ vanishes. We see that, in the domain of degree where they are non-zero, clustering coefficient φ increases with 

growing (mean) degree 〈 k 〉 more slowly than network efficiency η. 

We reveal the impact of rewiring rate p and rewiring strategy (distance dependent or random) in Fig. 5 . Figure 5 (a)

shows the variation with rewiring rate p of the clustering coefficient and network efficiency, in dimension D = 2 and with

mean degree 〈 k 〉 = 10 , while Fig. 5 (b) shows the variation of mean network distance 〈 d〉 . Under either rewiring strategy,

network efficiency η increases with rewiring rate p, while clustering coefficient φ and mean network distance 〈 d〉 decrease. 

For a particular rewiring rate p, distant-dependent rewiring leads to a higher clustering coefficient φ and lower efficiency 

η than random rewiring. Similarly, the mean network distance 〈 d〉 between distinct nodes is lower under random rewiring 

than distance-dependent rewiring. Results for other dimensions are similar. In Fig. 5 (c,d) we show how the largest, second 

largest and smallest eigenvalues, � , � and � , vary with random and distance dependent rewiring rate p in dimension 
1 2 N 

3 The “clockwise” direction is clear in any single dimension. In a D -torus, we say that an edge between nodes i and j is directed clockwise starting from 

i whenever, in the first dimension in which the coordinates of nodes i and j differ, the edge is directed clockwise starting from i . 

4 
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Fig. 1. Regular lattices of (mean) degree 〈 k 〉 = 10 and dimension (a) D = 1 , (b) D = 2 , (c) D = 3 , (d) D = 4 and (e) D = 5 . The subgraph induced by a node 

and its neighbours is shown with larger, black nodes and thicker, red links. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 2. Using the small world network with random rewiring to interpolate between a two-dimensional lattice (rewiring rate p = 0 ) and a random network 

( p = 1 ). Network size N = 100 and mean degree 〈 k 〉 = 4 . 

Fig. 3. Using the small world network with distance dependent rewiring to interpolate between a two-dimensional lattice (rewiring rate p = 0 ) and a 

random network ( p = 1 ). The probability for a node to be a recipient of a rewired link decreases with the periodic Euclidean lattice distance d 2 as d 2 
−3 

( Section 2.2 ). Network size N = 100 and mean degree 〈 k 〉 = 4 . 

5 
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Fig. 4. Structural properties of regular lattices networks depend on dimension D and mean degree 〈 k 〉 . (a) Variation with dimension D of clustering 

coefficient φ, network efficiency η, and mean network distance 〈 d〉 , for regular lattices with (mean) degree 〈 k 〉 = 10 and about N = 3 , 0 0 0 nodes. (b) 

Variation with (mean) degree 〈 k 〉 of clustering coefficient φ, network efficiency η, and mean network distance 〈 d〉 , for regular lattices of dimension D = 2 

with N = 3 , 025 nodes. 

Fig. 5. Network structural properties depend on rewiring rate p and rewiring strategy. For a network with dimension D = 2 , mean degree 〈 k 〉 = 10 and 

N = 3 , 025 nodes, variation with random and distance dependent rewiring rate p of: (a) clustering coefficient φ and network efficiency η; and (b) mean 

network distance 〈 d〉 . For networks of five different dimensions, size about N = 3 , 0 0 0 and mean degree 〈 k 〉 = 10 , the largest eigenvalue �1 , second largest 

eigenvalue �2 and negative −�N of the smallest eigenvalue under: (c) random rewiring; and (d) distance dependent rewiring. The values of �1 , �2 and 

−�N shown comprise the mean over twenty independently generated graphs. 

 

 

 

 

D = 1 to 5 with mean degree 〈 k 〉 = 10 . The largest eigenvalue of a graph is at least as large as the average degree [66] and,

for regular graphs, exactly equals the (mean) degree [62] . Accordingly, the largest eigenvalue is �1 = 〈 k 〉 = 10 in the absence

of rewiring ( p = 0 ), but grows as rewiring rate p increases. 

For fixed rewiring rate p, as dimension increases, the spectral gap �1 − �2 increases, indicating better connectivity in 

higher dimension. The magnitude −�N of the smallest eigenvalue also increases with rewiring rate p and, under random 

rewiring, −�N and �2 converge. 

As rewiring rate p grows, the second largest and smallest eigenvalues, �2 and �N , decrease more slowly under distance 

dependent rewiring than random rewiring. Under distance dependent rewiring, the second smallest eigenvalue �2 even 

increases in dimension D = 1 , and initially also increases in distance D = 2 , maintaining a small spectral gap �2 − �1 and,

hence, high diameter and low connectivity. In particular, the dependence on rewiring rate p (of clustering coefficient φ, 

efficiency η, mean distance 〈 d〉 and the eigenvalues �1 , �2 and �N ) shows that, for the same fraction p of rewired links,

distance dependent rewiring can provide small world networks with structural properties closer to those of regular lattices. 
6 
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2.4. Utility of the higher-dimensional small world model 

In this section we show that the higher-dimensional small world model with random rewiring improves fits and predic- 

tions of properties of observed real world networks. We focus on the measures considered in Ref. [38] , which proposed the

original one-dimensional small world network model. 4 Given an observed network, first, we fit the parameters of a small 

world model to the topological properties of clustering coefficient φ and mean network distance 〈 d〉 . Next, we use the fitted

small world model parameters to calculate the dynamical properties examined in Ref. [38] , which are defined in terms of

a deliberately simplified susceptible-infected-removed (SIR) model. In this SIR model, spreading begins from a single, ran- 

domly chosen infected node in an otherwise completely susceptible network. In each time step, each infected node infects 

each of its susceptible neighbours with probability λ ∈ [0 , 1] and, simultaneously, all infected nodes enter the removed state.

The dynamical properties investigated in Ref. [38] are the time T required for a maximally infectious disease, with λ = 1 ,

to spread throughout the entire network, and the minimum rate of infection λHalf for which the disease infects at least

half the network. Each of these properties is calculated for the observed real world network by taking the mean over 100

independent trials. 

The small world parameters we must fit are mean degree 〈 k 〉 , dimension D , network size N, and rewiring rate p. Mean

degree 〈 k 〉 is chosen as the even integer 2 
[〈 k 〉 o / 2 ], where 〈 k 〉 o is the mean degree of the observed real world network and

[ x ] represents the integer closest to [ x ] . Dimension D can then be chosen in the range D = 1 , 2 , . . . , 〈 k 〉 / 2 . Given a choice

of dimension D , network size N is fitted as the power of D closest to the observed network size N 

o . The rewiring rate

p ∈ 

[ 
( 〈 k 〉 N ) 

−1 
, 1 

] 
is then chosen to minimize the root mean squared relative error in the fit: 

F = 

√ 

1 

2 

(
e φ

2 + 〈 d〉 2 ), (1) 

where 

e s = 

s − s o 

1 
2 

(
s + s o 

)
is the relative error in a statistic s and s o is the value of the statistic observed in the real world network. This minimization

is performed using the golden section method with variable log p in the interval [ − log 〈 k 〉 N, 0 ] , which involves the simplify- 

ing assumption that F has a single local minimum on the domain considered. For each value of p, the objective function F 

is estimated as the mean over 100 independent realisations of the small world network model. When we consider the origi-

nal, one-dimensional small world model, dimension is fixed at D = 1 . In contrast, when we consider the higher-dimensional

small world model, each dimension D = 1 , 2 , . . . , 〈 k 〉 / 2 is considered, with the dimension 

ˆ D finally chosen that which pro-

vides the smallest value of F . 

At this point we have fitted the parameters of the small world model to the observed real world network. We now

recalculate topological and dynamical properties φ, 〈 d〉 , T and λHalf as the mean over 100 trials, each from an indepen-

dently generated small world network with the identified model parameters. The root mean squared relative error to the 

fitted (topological) properties F is recalculated from Eq. (1) , while the root mean squared relative error to the predicted

(dynamical) properties is calculated as: 

P = 

√ 

1 

2 

(
e T 2 + e λ

Half. 
2 

)
. (2) 

We apply this approach to the largest connected components of eighty-four high school friendship networks [68] . 

Table 1 presents basic properties of these networks, as well as model parameters estimated using the original small world 

model (fixed dimension D = 1 ) and the higher-dimensional extension (fitted dimension D = 

ˆ D ). The fitted network dimen-

sion 

ˆ D is consistently three or less, and has median 

ˆ D = 2 . The table shows that allowing dimension D to exceed one allows

network properties to be fit with lower rewiring rate p. 

In Fig. 6 we compare fitting error (to topological properties) F and prediction error (of dynamical properties) P using 

the established, one-dimensional small world model and the developed higher-dimensional small world model. The legends 

summarize results by stating the number of times each approach is optimal (Opt.), providing the (possibly equal) lowest 

error. As Fig. 6 (a) shows, fitting dimension D as well as rewiring rate p reduces fitting error F in most cases, and rarely

increases error. There is a single counter-intuitive case in which fitting error F for D = 

ˆ D exceeds that for D = 1 . This cor-

responds to a situation in which statistical fluctuations cause dimension D = 

ˆ D > 1 to minimize F using the mean over 100

trials calculated during the fitting procedure, but this fitted dimension did not minimize F during its final evaluation using 

the mean over 100 new trials. In the majority of cases, as Fig. 6 (b) reveals, fitting dimension also reduces error P in the

prediction of dynamical properties. The networks for which the original small-dimensional model provides (possibly equal) 

lowest F and P tend to coincide: for twenty-two networks D = 1 provides both lowest fitting error F and lowest prediction
error P . 

4 A small difference from Ref. [38] is that we consider the global clustering coefficient ( Section 2.1 ) rather than the average local clustering coeffi- 

cient [67] . 
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Fig. 6. Access to higher dimensions improves fitting to topological properties and prediction of dynamical properties. Errors in fitting and prediction of 

properties of eighty-four US high school friendship networks ( Table 1 ) [68] . (a) Error F in fitted, topological properties, calculated using Eq. (1) . (b) Error 

P in predicted, dynamical properties calculated using Eq. (2) . The original small world network model is restricted to dimension D = 1 , but the higher- 

dimensional network model allows the use of a the fitted dimension D = 

ˆ D . The number of times each approach is optimal (Opt.) and yields the (possibly 

equal) lowest error is shown in the legends. For readability, the observed real worlds networks are ordered, separately for (a) and (b), by increasing error 

in the D = 1 case. 

Table 1 

Properties of the largest connected components of eighty-four US high school friend- 

ship networks [68] . From top bottom: observed network size, N o ; observed mean de- 

gree, 〈 k 〉 o ; observed clustering coefficient, φo ; observed mean network distance, 〈 d〉 o ; 
fitted dimension, ˆ D ; fitted rewiring rate p using dimension D = 1 (i.e., using original 

small world model), p | D =1 ; fitted rewiring rate p using fitted dimension, D = 

ˆ D (i.e., 

using the higher-dimensional small world model), p | D = ̂ D 
. 

Property Minimum First quartile Median Third quartile Maximum 

N o 25 222.5 387 621 1974 

〈 k 〉 o 3.7 6.2 7.4 8.1 12.0 

φo 0.13 0.17 0.21 0.26 0.67 

〈 d〉 o 1.5 3.3 3.8 4.2 6.6 
ˆ D 1 1 2 2 3 

p | D =1 0.012 0.24 0.29 0.34 0.42 

p | D = ̂ D 
0.0014 0.12 0.19 0.25 0.34 

Fig. 7. Structure of the SEIR disease spreading model. λ1 : infection rate from E nodes; λ2 : infection rate from I nodes; μ: disease progression rate; ξ : 

quarantine rate; γ : recovery rate; δ: isolation rate. 

 

 

 

3. SEIR epidemic model and theoretical analysis 

In this section, we establish a COVID-19-inspired SEIR disease spreading model incorporating quarantine and isolation 

control strategies. We apply four continuous state methods - MF, PA, ICMC and PDMC methods - to analyze SEIR processes

in higher-dimensional networks generated using the developed small world model. For each method we determine the basic 

reproduction number R 0 . 

3.1. SEIR epidemic model 

In this section we outline a SEIR model designed to reflect known properties of the ongoing COVID-19 pandemic, as well

as the intervention strategies applied to its mitigation. Specifically, the strategies we consider are two of the most effective 

methods for containing COVID-19: isolation of confirmed infections (based on testing); and quarantine of those who have 

been exposed to infection (based on contact tracing) [69,70] . 

A COVID-19 carrier can propagate the disease to others without experiencing symptoms themselves [71,72] , and person- 

to-person transmission is possible even during the incubation period [73] . Accordingly, in contrast to many SEIR models in

the literature, we allow exposed (E) nodes to have a non-zero probability of spreading disease. 
8 
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We establish the SEIR disease spreading model incorporating quarantine and isolation strategies, as shown in Fig. 7 . 

Under the SEIR model, each individual is in one of four states: individuals susceptible (S) to the disease; individuals who

have been exposed (E) to the disease and who have not yet developed symptoms but are in an incubation period; infected

(I) individuals; and individuals who have recovered from the disease and developed immunity, or for other reasons have 

been removed (R) from further consideration in the spreading system. In contrast to many established SEIR epidemic models, 

under our model, nodes are only in an E or I state when their movements are not controlled through quarantine or isolation

measures which would prevent them from infecting others. The model is specified by rate parameters which govern the 

probability of transition between states. The transition from S to E can occur in two distinct ways: S contacting E neighbours

and changing into E state with rate λ1 ; and S contacting I neighbours and changing into E state with rate λ2 . The disease

evolves such that individuals in the E state enter the I state with rate μ (the disease progression rate). Simultaneously, the

quarantine strategy allow individuals in state E to recover or be removed, and enter state R without involvement in new

infections, with rate ξ . The transition from I to R can also occur in two different ways. Infected nodes are isolated with

rate δ, and in this case enter state R without the opportunity to infect new nodes. Infected nodes can also enter state R by

recovery, with rate γ . 

As much as possible, we use rate parameters relevant to the COVID-19 case, although these are not known precisely, 

and vary with time and location [71,74–76] . A seven day incubation period of COVID-19 [43,77,78] leads to a progression

rate μ = 1 / 7 , and a fourteen day convalescence period [43,79] provides a recovery rate γ = 1 / 14 . For other parameters we

consider a range of reasonable values. 

3.2. Theoretical analysis 

In this section we apply four distinct continuous state methods to describe the SEIR epidemic spreading process and 

identify the basic reproduction number R 0 . 

3.2.1. Mean field 

Higher-dimensional small world networks have Poisson-like degree distributions. Therefore, we begin by considering a 

continuous state method developed for homogeneous uncorrelated networks. The MF formulation of the dynamical spread- 

ing system is 

˙ S = −λ1 〈 k 〉 SE − λ2 〈 k 〉 SI 
˙ E = λ1 〈 k 〉 SE + λ2 〈 k 〉 SI − ( ξ + ( 1 − ξ ) μ) E 
˙ I = ( 1 − ξ ) μE − ( δ + ( 1 − δ) γ ) I 
˙ R = ξE + ( δ + ( 1 − δ) γ ) , 

(3) 

where S, E, I and R denote the fraction of individuals in the S, E, I and R state respectively, so that S + E + I + R = 1 . 

We will use the next generation matrix (NGM) [80] method to deduce the basic reproduction number. Let X and Y be the

subpopulations in each of the possessive compartment (the states, E and I, which possess the disease) and non-possessive 

compartment (the states, S and R, which do not possess the disease) respectively: 

X = 

(
E 
I 

)
; Y = 

(
S 
R 

)
. 

The compartmental model is represented by the vector functions 

F = 

(
λ1 〈 k 〉 SE + λ2 〈 k 〉 SI 

0 

)
; V = 

(
( ξ + ( 1 − ξ ) μ) E 

−( 1 − ξ ) μE + ( δ + ( 1 − δ) γ ) I 

)
, 

where F represents the rate of transmissions (from non-possessive to possessive compartments) and V describes transi- 

tions (between possessive or from possessive to non-possessive), such that ˙ X = F − V . The SEIR model has a disease free

equilibrium (DFE) at which the population remains in the absence of disease, and this equilibrium solution has the form 

( S(t) , E(t) , I(t) , R (t) ) = 

(
S 0 , 0 , 0 , R 0 

)
. When the infectious disease is first introduced, at most a small number of individuals 

will be in the removed state, and so we can use the approximation S 0 → 1 , R 0 → 0 at the DFE. It follows that the Jacobian

matrices of F and V at the DFE are 

F = 

(
λ1 〈 k 〉 λ2 〈 k 〉 

0 0 

)
; V = 

(
ξ + ( 1 − ξ ) μ 0 

−( 1 − ξ ) μ δ + ( 1 − δ) γ

)
. 

The basic reproduction number of model (3) can be expressed in terms of spectral radius as 

R 0 = ρ
(
F V 

−1 
)

= 

〈 k 〉 
ξ+ ( 1 −ξ ) μ

(
λ1 + 

λ2 (1 −ξ ) μ
δ+ ( 1 −δ) γ

)
, 

where ρ(M) denotes the spectral radius of the square matrix M. 
9 
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3.2.2. Pair approximation 

The standard MF Eq. (3) assume that the states in a neighborhood are independent, i.e. that there are no dynamical

correlations. The MF method considers each node in isolation (i.e., first order interactions) but more accurate descriptions 

are possible by incorporating higher order interactions, where the order of an interaction is the number of nodes which it

involves. A technique incorporating higher order interactions is the moment closure approximation [81,82] . When quantities 

summarising third-order interactions are approximated in terms of quantities describing interaction of order two or lower 

(system equations are “closed” at the level of pairs) the moment closure method can be called PA [82] . The PA and MF

methods both assume randomly mixing populations, with the distinction that PA assumes that pairs of individuals, rather 

than the individuals themselves, randomly mix [83] . The PA method is most appropriate for networks with little variance

in the degrees, i.e., for which the number of neighbours of individuals do not differ too much from the average number of

neighbours per individual [84] . 

Here, we extend the PA method to our SEIR model, adopting the following notation: let [ X] be the number of sites

that are of type X, let [ XY ] be the number of ordered X-Y pairs and, similarly, let [ XY Z] be the number of ordered X-Y-Z

triples. The following differential equations describe the evolution of first order (node level) quantities according to the PA 

description of the SEIR model: [
˙ S 
]

= −λ1 [ SE ] − λ2 [ SI ] [
˙ E 
]

= λ1 [ SE ] + λ2 [ SI ] − ( ξ + ( 1 − ξ ) μ) [ E ] [
˙ I 
]

= ( 1 − ξ ) μ[ E ] − ( δ + ( 1 − δ) γ ) [ I ] [
˙ R 

]
= ξ [ E ] + ( δ + ( 1 − δ) γ ) [ I ] . 

(4) 

The corresponding differential equations for second order quantities (describing states of pairs of nodes) are 

[ ˙ SS ] = −2 λ1 [ SSE] − 2 λ2 [ SSI] 

[ ˙ SE ] = λ1 ( [ SSE] − [ ESE] − [ SE] ) + λ2 ( [ SSI ] − [ I SE] ) − ( ξ + (1 − ξ ) μ) 

[ ˙ SI ] = ( 1 − ξ ) μ[ SE] − λ1 [ ESI] − λ2 ( [ ISI] + [ SI] ) − ( δ + (1 − δ) γ ) [ SI] 

[ ˙ SR ] = ( δ + (1 − δ) γ ) [ SI] + ξ [ SE] − λ1 [ ESR ] − λ2 [ ISR ] 

[ ˙ EE ] = 2 λ1 ( [ SE] + [ ESE] ) + 2 λ2 [ ISE] − 2 ( ξ + (1 − ξ ) μ) [ EE] 

[ ˙ EI ] = λ1 [ ESI] + λ2 ( [ I SI ] + [ SI] ) + ( 1 − ξ ) μ[ E E ] − ( ξ + (1 − ξ ) μ) [ EI] − ( δ + (1 − δ) γ ) [ EI] 

[ ˙ ER ] = λ1 [ ESR ] + λ2 [ ISR ] + ξ [ E E ] + ( δ + (1 − δ) γ ) [ EI] − ( ξ + (1 − ξ ) μ) [ ER ] 

[ ̇ II ] = 2(1 − ξ ) μ[ EI] − 2 ( δ + (1 − δ) γ ) [ I I ] 

[ ˙ IR ] = (1 − ξ ) μ[ ER + ξ [ EI] + ( δ + (1 − δ) γ ) [ II] − ( δ + (1 − δ) γ ) [ IR ] 

[ ˙ RR ] = 2 ξ [ ER ] + 2 ( δ + (1 − δ) γ ) [ IR ] . 

(5) 

In order to close Eqs. (4) and (5) , we must express the third-order quantities, like [ X Y Z] , [ X Y X ] , etc., in terms of the second-

order state variables [ X Y ] , [ X X ] . We employ the homogeneous network approximation [81,83] 

[ X Y Z] = 

〈 k 〉 − 1 

〈 k 〉 
[ X Y ][ Y Z] 

[ Y ] 

(
(1 − φ) + 

φN 

〈 k 〉 
[ X Z] 

[ X ][ Z] 

)
. 

The PA system comprises the thirteen equations given by systems (4) and (5) , together with the preceding approximation

of third order interactions. 

The basic reproduction number R 0 can be estimated by introducing correlations C XY between individuals of distinct type 

X and Y : 

C XY = C Y X = 

N[ X Y ] 

〈 k 〉 [ X ][ Y ] 
. (6) 

This definition allows system (4) to be rewritten 

[ ̇ S ] = −λ1 
〈 k 〉 [ S][ E] C SE 

N 
− λ2 

〈 k 〉 [ S][ I] C SI 

N 

[ ̇ E ] = λ1 
〈 k 〉 [ S][ E] C SE 

N 
+ λ2 

〈 k 〉 [ S][ I] C SI 

N 
− ( ξ + (1 − ξ ) μ) [ E] 

[ ̇ I ] = ( 1 − ξ ) μ[ E] − ( δ + (1 − δ) γ ) [ I] 

[ ̇ R ] = ξ [ E] + ( δ + (1 − δ) γ ) [ I] . 

By applying the NGM method as in Section 3.2.1 , we can estimate the basic reproduction number as 

R 0 = 

〈 k 〉 
ξ + ( 1 − ξ ) μ

(
λ1 C SE (0) + 

λ2 C SI (0)(1 − ξ ) μ

δ + (1 − δ) γ

)
. 

Assuming that exposed and infected individuals are chosen randomly at the initial time, C SE (0) ≈ 1 ≈ C SI (0) . Therefore, under

PA we estimate the same basic reproduction number R as under the MF method. 
0 
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3.2.3. Intertwined continuous Markov chain 

In this section we present the ICMC [54] method to analyze disease spreading in networks. Let S i (t) , E i (t) , I i (t) and R i (t)

represent the probability at time t for the node i to be S, E, I and R respectively. These probabilities satisfy the normalisation

condition S i (t) + E i (t) + I i (t) + R i (t) = 1 . 

The probabilities q E 
i 
(t) and q I 

i 
(t) for node i in state S not to be affected by any E and I neighbours are respectively 

q E 
i 
(t) = 

∏ N 
j=1 

[
1 − λ1 a i j E j (t) 

]
; q I 

i 
(t) = 

∏ N 
j=1 

[
1 − λ2 a i j I j (t) 

]
. (7) 

The ICMC system can therefore be expressed 

˙ S i ( t ) = −
(
1 − q E 

i ( t ) q 
I 
i ( t ) 

)
S i ( t ) 

˙ E i ( t ) = 

(
1 − q E 

i ( t ) q 
I 
i ( t ) 

)
S i ( t ) − ( ξ + ( 1 − ξ ) μ) E i ( t ) 

˙ I i ( t ) = ( 1 − ξ ) μE i ( t ) − ( δ + ( 1 − δ) γ ) I i ( t ) 
˙ R i ( t ) = ξE i ( t ) + ( δ + ( 1 − δ) γ ) I i ( t ) . 

(8) 

We use the NGM method to deduce the basic reproduction number R 0 . Analogously to Section 3.2.1 , E i and I i , i =
1 , 2 , . . . , N are the possessive compartments, and the compartmental model can be written 

F = 

(((
1 − q E 

i 
(t) q I 

i 
(t) 

)
S i (t) 

)
0 

)
; V = 

(
( ( ξ + (1 − ξ ) μ) E i (t) ) 

( −( 1 − ξ ) μE i (t) + ( δ + (1 − δ) γ ) I i (t) ) 

)
, 

where 0 ∈ R 

N and i = 1 , . . . , N. Analogously to Section 3.2.1 , the disease free equilibrium (DFE) solution of ICMC method is

Q 0 = 

(
S 0 

i 
, 0 , 0 , R 0 

i 

)
, with S 0 

i 
≈ 1 and R 0 

i 
≈ 0 . The Jacobian matrices of F and V at DFE point are then 

F = 

(
λ1 A λ2 A 

0 0 

)
; V = 

(
( ξ + ( 1 − ξ ) μ) D 0 

−( 1 − ξ ) μD ( δ + ( 1 − δ) γ ) D 

)
, 

where D is the identity matrix. The basic reproduction number of system (5) is R 0 = ρ(F V −1 ) , or 

R 0 = 

1 
ξ+ ( 1 −ξ ) μ

(
λ1 + 

λ2 (1 −ξ ) μ
δ+ ( 1 −δ) γ

)
�1 . 

Since spectral radius �1 equals mean degree 〈 k 〉 in the absence of rewiring ( p = 0 ) and increases only slightly with

rewiring rate p ( Fig. 5 (c,d)), the value of the basic reproduction number R 0 estimated via the ICMC method is similar to the

result obtained using MF. 

3.2.4. Probabilistic discrete Markov chain 

The fourth and final continuous state approach which we consider is the PDMC [55] method. Let X i (t) denote the prob-

ability that node i is in state X at time t , and observe that S i (t) + E i (t) + I i (t) + R i (t) = 1 . The PDMC update rules for node i

are 

S i ( t + 1 ) = q E 
i ( t ) q 

I 
i ( t ) S i ( t ) 

E i ( t + 1 ) = 

(
1 − q E 

i ( t ) q 
I 
i ( t ) 

)
S i ( t ) + ( 1 − ξ ) ( 1 − μ) E i ( t ) 

I i ( t + 1 ) = ( 1 − ξ ) μE i ( t ) + ( 1 − δ) ( 1 − γ ) I i ( t ) 
R i ( t + 1 ) = ξE i ( t ) + ( δ + ( 1 − δ) γ ) I i ( t ) , 

(9) 

where q E 
i 
(t) , q I 

i 
(t) are given by Eq. (7) . 

To identify R 0 under the PDMC method, following Ref. [55,85] , we consider introducing into an otherwise purely sus- 

ceptible system small levels of exposed and/or infected nodes. We then identify the critical epidemiological parameters and 

network properties for which an approximately stable solution exists. Conditions more (less) favourable for epidemics than 

this critical point will correspond to levels of disease which initially grow (shrink). Accordingly, near the critical point, the 

probability for any node i to be in states E and I are E i = εE 
i 

� 1 , I i = εI 
i 
� 1 , and S S 

i 
≈ 1 . By Eq. (7) , 

q E i (t) ≈ 1 − λ1 

N ∑ 

j=1 

a i j ε
E 
j , q 

I 
i (t) ≈ 1 − λ2 

N ∑ 

j=1 

a i j ε
I 
j . 

Inserting this into system (9) , we obtain 

( ξ + ( 1 − ξ ) μ) εE 
i 

= λ1 

∑ N 
j=1 a ij ε

E 
j 
+ λ2 

∑ N 
j=1 a ij ε

I 
j 

( 1 − ξ ) μεE 
i 

= ( δ + ( 1 − δ) γ ) ε I 
i 
. 

By eliminating εI 
i 

we reach 

h i j ε
E 
j = εE 

i , (10) 

where 

h i j = 

1 

ξ + ( 1 − ξ ) μ

(
λ1 + 

λ2 (1 − ξ ) μ

δ + ( 1 − δ) γ

)
a i j . 
11 
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Fig. 8. Different descriptions of the SEIR spreading process predict distinct time evolution. Variation with time t according to five different methods: MF, 

PA, ICMC, PDMC and MC. (a) Exposed node fraction E(t) ; (b) infected node fraction I(t) ; (c) SE pair fraction ρSE ; (d) SI pair fraction ρSI ; (e) SE correlation 

C SE ; and (f) SI correlation C SI . Spreading takes place on a small world network with size N = 3 , 025 , dimension D = 2 , mean degree 〈 k 〉 = 10 and random 

rewiring rate p = 0 . 01 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus the solution of Eq. (10) reduces to an eigenvalue problem for the matrix H, whose elements are h i j . A nontrivial

solution to Eq. (10) requires the largest eigenvalue of H to equal one, which allows us to identify the basic reproduction

number as the spectral radius of H; R 0 = ρ(H) . This result for R 0 is the same as under the ICMC method. 

4. Numerical simulation 

In this section, we present numerical simulations illustrating the SEIR epidemic spreading model in D -dimension small 

world networks. Unless stated otherwise, we consider networks of size about N = 3 , 0 0 0 and mean degree 〈 k 〉 = 10 ,

and use epidemic parameters λ1 = 0 . 005 , λ2 = 0 . 01 , δ = 0 , ξ = 0 and γ = 1 / 14 , μ = 1 / 7 . Initial conditions are chosen as

E(0) = 50 /N, I(0) = 50 /N, R (0) = 1 /N, S(0) = 1 − E(0) − I(0) − R (0) . Under ICMC and PDMC, for greater realism, we randomly

seed the predominately susceptible system with the specified number of exposed, infected and recovered individuals such 

that each node initially is entirely in a single state; S i (0) , E i (0) , I i (0) , R i (0) ∈ { 0 , 1 } , i = 1 , 2 , . . . , N. For PA, we assume ini-

tial conditions corresponding to perfect mixing: [ XY ](0) = 〈 k 〉 [ X](0)[ Y ](0) /N = 〈 k 〉 NX(0) Y (0) , where X, Y = S, E, I, R . Unless

indicated otherwise, results for MC comprise the mean over fifty independent trials. 

In Fig. 8 we show how the disease evolves in time according to our five methods of description, MF, PA, ICMC, PDMC and

MC, in a network of size N = 3 , 025 , dimension D = 2 , mean degree 〈 k 〉 = 10 and random rewiring rate p = 0 . 01 . Figure 8 (a,b)

show the change with time of the infected and exposed node fraction I(t) and E(t) . These fractions are lower under MC

than under other methods, and PA has the least extreme deviations from MC. Figure 8 (c,d) show f SE = [ SE] / ( 〈 k 〉 N ) and

f SI = [ SI] / ( 〈 k 〉 N ) ; f XY is the fraction of pairs of (ordered) pairs of connected nodes which comprise a node in state X and

a node in the state Y, where, to calculate link fractions under MF, we assume perfect mixing. In Fig. 8 (e,f) we show the

variation with time of the correlation C SE , C SI for each of the five methods. The fractions of pairs of SE and SI, i.e., f [ SE] and

f [ SI] , and the SE and SI correlations C [ SE] and C [ SI] are lowest for the MC method, and PA has the least extreme deviations from

MC. Together, these results show that the continuous state methods MF, PA, ICMC and PDMC systematically overestimate 

levels of disease compared with MC, but that PA offers the least extreme differences. 

4.1. Dependence on epidemic model parameters 

We use Fig. 9 to show the final number of people affected by the epidemic, which is represented by the final affected

ratio R (∞ ) = lim 

t→∞ 

R (t) , depends on infection rates λ1 and λ2 for a network of size N = 3 , 025 , mean degree 〈 k 〉 = 10 and

dimension D = 2 , with random rewiring rate p = 0 . 01 . 
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Fig. 9. The final number affected by the disease increases with infection rate. (a)–(e) Variation with infection rates λ1 and λ2 of the final affection ratio 

R (∞ ) when using the (a) MF; (b) PA; (c) ICMC; (d) PDMC; and (e) MC methods. Level sets of the final affected density R (∞ ) are shown with black dashed 

lines, while the white dotted line highlights parameters for which the basic reproduction number R 0 is unity. (f) Variation with λ2 of the final affection 

ratio R (∞ ) , with λ1 = 0 . 005 . Spreading takes place on a small world network with dimension D = 2 , size N = 3 , 025 , mean degree 〈 k 〉 = 10 and random 

rewiring rate p = 0 . 01 . Results for Monte Carlo comprise the mean over twenty independent trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under any method, the final affected ratio R (∞ ) increases as either infection rate increases. Comparing Fig. 9 (a)–(e)

shows that, across the spectrum of infection rates λ1 , λ2 considered, the MF, ICMC and PDMC methods lead to similar final

affected ratios R (∞ ) , which are higher than those under MC, while PA leads to outcomes intermediate between MC and

the other continuous state methods. This pattern is highlighted by Fig. 9 (f), which shows how the final affected ratio R (∞ )

varies with infection rate λ2 for each of the five methods considered, for fixed infection rate λ1 = 0 . 005 . Figure 9 (a)–(d)

also depict the critical values of infection rates around which the basic reproduction number under each continuous state 

method achieves its critical value R 0 = 1 . This threshold is similar under any of the continuous state methods and, for the

MF, ICMC and PDMC methods, is roughly parallel to the level sets of the final affected ratio R (∞ ) . 

In Fig. 10 we show how the final affected ratio R (∞ ) depends upon epidemic intervention parameters. Figure 10 (a)

shows how R (∞ ) depends on quarantine rate ξ , while Fig. 10 (b) shows the variation with isolation rate δ. Each of the five

modelling methods predicts rapid decreases in the final affected ratio R (∞ ) as either the quarantine rate ξ or isolation

rate δ increases. The figure shows that quarantine and isolation strategies are effective in decreasing the final number of 

affected individuals. The figure also shows that the four methods MF, PA, ICMC and PDMC overestimate the final affected 

ratio compared with MC, but that PA provides a more accurate result. 

The four continuous state methods predict far stronger dependencies on epidemic parameters than are observed under 

MC. This is especially evident for infection rates λ1 and λ2 , but is also true of control parameters ξ and δ. The relative

insensitivity of MC to changes in epidemic parameters may arise because continuous state approximations allow arbitrarily 

small fractions of infections to continue propagating but, under MC, any level of infection which is not one is zero. This

would tend to attenuate increases in final affected ratio observed under MC as epidemic parameters are changed. Each of 

the continuous state models we consider has so far tended to overestimate the final affected ratio R (∞ ) , although the PA

method does so least. 

4.2. Dependence on network model parameters 

Now we examine the dependence of the final affected ratio R (∞ ) on parameters of the small world network model.

Figure 11 presents the variation of final affected ratio R (∞ ) with mean degree 〈 k 〉 for five dimensions from D = 1 to 5. The
13 
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Fig. 10. The final number affected by the disease decreases with quarantine rate ξ and isolation rate δ. Variation of final affected ratio R (∞ ) with (a) 

quarantine rate ξ and (b) isolation rate δ for a small world network of dimension D = 2 , size N = 3 , 025 , mean degree 〈 k 〉 = 10 and random rewiring rate 

p = 0 . 01 . 

Fig. 11. The final number affected by the disease increases with mean degree. (a-e) Variation with mean degree 〈 k 〉 of the final affected ratio R (∞ ) 

according to the MF, PA, ICMC, PDMC and MC methods for networks of size about N = 3 , 0 0 0 , randomly rewired with probability p = 0 . 01 , and with 

dimension (a) D = 1 , (b) D = 2 , (c) D = 3 , (d) D = 4 , and (e) D = 5 . (f) The difference between MC and other methods for the network of dimension D = 2 . 

 

 

 

 

 

 

 

 

figure reveals that mean degree 〈 k 〉 strongly affects final outcomes. Specifically, Fig. 11 (a)–(e) reveal that, in any dimension,

the final affected ratio grows with mean degree 〈 k 〉 . Moreover, we notice that MF, ICMC and PDMC provide quite similar

results, and under widespread conditions predict higher final affected ratios than MC. The PA method usually overestimates 

final affected ratio R (∞ ) compared with MC, but provides results closer to MC than are provided by the other three con-

tinuous state methods. In particular, in dimension D = 4 or 5, the final outcomes are similar under PA and MC. Each of

the continuous state methods is insensitive to dimension, but under MC, the final affected ratio R (∞ ) grows with increas-

ing dimension D . Thus, analyses based on MC simulations with the original, one-dimensional, small world model have the 

potential to underestimate the severity of an epidemic. 

In Fig. 11 (f) we highlight a trend present throughout Fig. 11 (a–e). Figure 11 (f) shows that the difference between MC and

the continuous state methods is not monotonic in mean degree 〈 k 〉 . Instead, the discrepancy initially increases with mean

degree 〈 k 〉 , reaches a peak around 〈 k 〉 = 10 , and decreases again. The smaller discrepancy for low degree may arise because

interactions are more local and easier to approximate. In turn, the smaller deviation for higher degree can be explained 

because the network is closer to complete, which corresponds better to the assumptions underlying mean field theory. The 
14 
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Fig. 12. The final number affected by the disease increases with rewiring rate p, but this variation decreases with dimension D . Change with rewiring rate 

p of affected node fraction R (∞ ) for networks with mean degree 〈 k 〉 = 10 and N = 3 , 025 nodes: (a,b) in dimension D = 2 using MF, PA, ICMC, PDMC and 

MC methods; and (c,d) using MC in dimensions D = 1 to 5. Rewiring is: (a,c) random; and (b,d) distance dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure also illustrates that, in dimension D = 2 , as for other dimensions, the difference from MC is less for PA than the other

three continuous state methods, MF, ICMC and PDMC. 

In Fig. 12 we illustrate the effect of random or distance dependent rewiring on epidemic spreading in higher-dimensional 

networks, focusing on mean degree 〈 k 〉 = 10 and networks of size about N = 3 , 0 0 0 . For all five methods in dimension D = 2 ,

Fig. 12 (a) and (b) illustrate the variation of the final affected ratio R (∞ ) with random and distance dependent rewiring rate

p respectively. Under MC we observe that the final affected ratio R (∞ ) grows with increasing rewiring rate p but, when

using the continuous state methods MF, PA, ICMC and PDMC, outcomes vary little with rewiring rate p. For large random

or distance rewiring rate p, the final affected ratio R (∞ ) under MC approaches that under PA but, for the other three

continuous state methods, a difference persists. 

Figure 12 (c,d) shows how the final affected ratio R (∞ ) changes with random and distance dependent rewiring rate

p under MC and in dimensions D = 1 to 5 (under the four continuous state methods, R (∞ ) varied little with rewiring

rate p in any dimension). For fixed rewiring rate p < 0 . 5 , the final affected ratio R (∞ ) grows as dimension D increases

from D = 1 , the dimension of the original small world model. For lower dimensions D , the final affected ratio R (∞ ) grows

as rewiring rate p increases. When the random rewiring rate p is high, the final number of affected nodes varies little 

with dimension D , but under distance dependent rewiring even large rewiring rates allow substantial disparities between 

dimensions. Networks of similar size can accommodate larger distances in smaller dimension, which makes more significant 

the decision to rewire in a distance-dependent way. For lower dimension, whether the epidemic affects the majority of 

nodes of a fully rewired network (for the parameters which we consider) hinges on whether rewiring is performed randomly 

or in a distance dependent manner. For higher dimension, this difference is less obvious. Thus, Fig. 12 (c,d) illustrate that both

dimension and the nature of shortcuts impact epidemic outcomes, and that long-distance connections increase spreading. 

In Fig. 13 we investigate the dependence on network size N of the final affected ratio R (∞ ) for a diverse selection of

dimension ( D = 1 , 2 , 4 ), mean degree ( 〈 k 〉 = 4 , 10 , 20 ) and random rewiring rate ( p = 0 . 01 , 0 . 1 , 1 ). Here, we use the initial

conditions E(0) = 1 / 60 = I(0) , R (0) = 1 /N, S(0) = 1 − E(0) − I(0) − R (0) . For each of the five methods considered, results

vary little as network size changes. In particular, MF, ICMC and PDMC consistently yield similar results which comprise an 

overestimate of the final affected ratio R (∞ ) according to MC, while PA is usually intermediate between MC and the other

continuous state methods ( Fig. 13 (b,c)) or, under some conditions, slightly underestimates R (∞ ) ( Fig. 13 (a)). In particular,

the figure suggests that the discrepancies between methods are not due to finite size effects. 

In Section 2 we showed that important network properties vary substantially with rewiring rate p and dimension D , but 

this section shows that these substantial changes in topological properties have limited effect on the outcome of continuous 

state models. This insensitivity is inconsistent with MC simulations, the results of which vary considerably with network 

model parameters. We might observe this difference because under MC, the disease cannot propagate via fractional levels 
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Fig. 13. The final number affected by the disease varies little with network size N. Variation with network size N of affected node fraction R (∞ ) using MF, 

PA, ICMC, PDMC and MC methods, for networks with dimension, mean degree and random rewiring rate: (a) D = 1 , 〈 k 〉 = 4 and p = 1 ; (b) D = 2 , 〈 k 〉 = 10 

and p = 0 . 01 ; and (c) D = 4 , 〈 k 〉 = 20 and p = 0 . 1 . . 

Fig. 14. For fixed (combined) mean degree 〈 k 〉 , the discrepancy between PA and MC decreases (increases) with increasing capacity χ . Variation with 

different network properties of the absolute value of the difference between the mean affected ratio for PA and MC methods for random small world 

networks of size between about ˜ N min = 500 and ˜ N max = 10 , 0 0 0 and rewiring rate bounded below by p min = 10 −4 . (a) For fixed mean degree 〈 k 〉 = 10 , 

variation of the absolute value of the difference versus capacity χ . (b) Kendall τ correlation between absolute deviation and network size N, efficiency η

and capacity χ respectively versus mean degree 〈 k 〉 and (c) levels of significance for hypothesis that error decreases with these network properties. (d) 

Absolute value of the difference between the mean affected ratio for PA and MC methods versus network capacity χ , with all mean degrees 〈 k 〉 combined. 

 

 

 

 

 

 

of infection - any level of infection less than unity must be zero. This makes MC simulations more dependent on the ability

of individual infected or exposed nodes to continue spreading, and this ability will likely hinge on topological properties. As 

previously observed when varying epidemic model parameters ( Section 4.1 ), each of the continuous state models tends to 

overestimate the final affected ratio R (∞ ) , but the PA method does so least. 

4.3. Characterization of bias 

We have illustrated how, under a wide range of conditions, the four continuous state approximations which we consider 

- MF, PA, ICMC and PDMC - exhibit similar biases relative to the discrete MC approach. We will now investigate how such

discrepancies in final affected density R (∞ ) can be characterized using network properties. To do so, we consider randomly

chosen small world networks of fixed mean degree 〈 k 〉 , size between about ˜ N min = 500 and 

˜ N max = 10 , 0 0 0 and rewiring rate

bounded below by p min = 10 −4 ( Section 2.2 ), and compare the final affected ratio R (∞ ) X 

for each continuous state method X

with the mean value R (∞ ) MC 

of final affected ratio over five MC trials. We consider 100 independently generated networks
16 



H. Wang, J.M. Moore, M. Small et al. Applied Mathematics and Computation 421 (2022) 126911 

Fig. 15. For fixed (combined) mean degree 〈 k 〉 , the discrepancy between MF and MC decreases (increases) with increasing efficiency η. Variation with 

different network properties of the absolute value of the difference between the mean affected ratio for MF and MC methods for random small world 

networks with size between about ˜ N min = 500 and ˜ N max = 10 , 0 0 0 and rewiring rate bounded below by p min = 10 −4 ( Section 2.2 ). (a) For fixed mean 

degree 〈 k 〉 = 10 , variation of the absolute value of the difference versus efficiency η. (b) Kendall τ correlation between absolute deviation and network 

size N, efficiency η and capacity χ respectively versus mean degree 〈 k 〉 and (c) levels of significance for the hypothesis that error decreases with these 

network properties. (d) Absolute value of the difference between the mean affected ratio for MF and MC methods versus network efficiency η, with all 

mean degrees 〈 k 〉 combined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

per mean degree 〈 k 〉 , and use the Kendall τ correlation coefficient to assess the statistical significance of variations of the

magnitude of the deviation with changing network size N, efficiency η and capacity χ ( Section 2.1 ). 

In Fig. 14 we demonstrate that, for fixed mean degree 〈 k 〉 , the capacity χ governs the deviation from MC of the most

accurate method, PA, more consistently than either the network size N or efficiency η. As Fig. 14 (a) shows, for fixed mean

degree 〈 k 〉 = 10 , the decrease of error with capacity χ is significant at the 10 −6 level. Fig. 14 (b) does reveal that, as mean

degree 〈 k 〉 varies from 2 to 16, it is only rarely the case that the Kendall τ correlation corresponding to the capacity χ has

higher magnitude than the correlations corresponding to both network size N and efficiency η, but only capacity χ consis- 

tently leads to correlation which is significant at the 5% level ( Fig. 14 (c)). We have just noted that, for fixed mean degree 〈 k 〉 ,
the deviation of PA from MC decreases with capacity χ . However, Fig. 14 (d) shows that, conversely, when different mean

degrees 〈 k 〉 are grouped, the deviation instead increases with capacity χ with Kendall τ correlation significant at the 10 −3 

level. That is, the relationship between capacity χ and the deviation between PA and MC, grouped by mean degree, provides 

an example of Simpson’s paradox, in which a trend which appears in each group of data disappears or reverses when the

groups are combined. 

Figure 15 pertains to differences in the final affected ratios R (∞ ) according to MF and MC (the deviations of ICMC and

PDMC from MC are similar). In Fig. 15 we show that, for fixed mean degree 〈 k 〉 = 10 , both the efficiency η and capacity χ
govern deviation from MC better than the network size N for fixed mean degree 〈 k 〉 . We show in Fig. 15 (a) that, for fixed

mean degree 〈 k 〉 = 10 , the decrease of error with efficiency η is significant at the 10 −13 level. As shown in Fig. 15 (a), for

mean degree varying from 〈 k 〉 = 2 to 16, in all but one case the Kendall τ correlation corresponding to the efficiency η has

the highest magnitude, followed by the correlation corresponding to the capacity χ , and then the correlation corresponding 

to network size N. However, the Kendall τ correlation is significant at the 5% level for the efficiency η for precisely the

same set of mean degrees 〈 k 〉 for which it is significant for the capacity χ ( Fig. 15 (c)). The relationship between efficiency η
and deviation between MF and MC, grouped by mean degree, provides another example of Simpson’s paradox: we see from 

Fig. 15 (d) that when different mean degrees 〈 k 〉 are grouped, the increase with capacity χ of the deviation is significant at

the 10 −2 level. 

5. Conclusion 

In this paper we formulated a flexible higher-dimensional small world network model which allowed us to characterize 

how the spread of disease, represented using the SEIR epidemic model, depends upon network properties including di- 
17 



H. Wang, J.M. Moore, M. Small et al. Applied Mathematics and Computation 421 (2022) 126911 

 

 

 

 

 

 

 

 

mension and mean degree. The developed higher-dimensional small world model is defined by rewiring links of a toroidal 

lattice of arbitrary positive integer dimension and arbitrary even degree no smaller than twice the lattice dimension (code 

is available in Ref. [48] ), and emulates the important properties of the foundational Watts-Strogatz small world model. We 

investigate structural properties of higher-dimensional graphs by considering three kinds of networks: (1) original lattice 

networks; (2) higher-dimensional small world networks with random rewiring (independent of distance); and (3) higher- 

dimensional small world networks with rewiring probability decreasing with increasing distance. We found that important 

network properties depend on dimension, especially as dimension increases from one to two, with higher dimension lead- 

ing to lower mean network distance and clustering coefficient but higher network efficiency. Moreover, distance dependent 

rewiring led to higher clustering coefficient and mean network distance. As random rewiring rate or dimension increased, 

the largest eigenvalue increased slightly, the second largest eigenvalue decreased, the magnitude of the smallest eigenvalue 

increased and the spectral gap decreased. Under distance-dependent rewiring, these spectral properties changed more slowly 

with rewiring rate. In addition, we showed that incorporating dimension into the small world network model improves fits 

to the topological properties of real networks, as well as improving prediction of their dynamical properties. 

To study epidemic spreading dynamics in higher-dimensional small world networks, and incorporating known proper- 

ties of the COVID-19 epidemic, we extended the SEIR epidemic spreading model while considering quarantine and isolation 

disease control strategies. Specifically, we applied the continuous state MF, PA, ICMC and PDMC methods, and for each ob- 

tained the basic reproduction number R 0 . The dependence of R 0 on quarantine and isolation strategies parameters indicates 

the effectiveness of these strategies for controlling outbreaks. We verified the effectiveness of these control strategies with 

numerical simulations involving the four continuous state methods as well as MC sampling, and in this way corroborate 

other recent studies [70,74,86] . Additional results included the following. First, according to MC simulations, the number af- 

fected by the disease increases with dimension. This suggests that analyses based on the original small world model, which 

was one-dimensional, could underestimate the true impact of an epidemic. Second, for fixed mean degree, the difference 

from MC is similar for each of the four continuous state methods considered, but usually least for PA, and decreases as

dimension increases. 

Third, the final affected ratio R (∞ ) varies little with network size, either for MC or the four continuous state methods.

Fourth, the final affected ratio R (∞ ) changes more under continuous state methods than MC simulations as epidemic pa-

rameters vary. In contrast, as the dimension or rewiring rate change, the outcomes of MC simulations change more than 

the predictions of continuous state methods. Fifth and finally, for fixed mean degree, the network efficiency η governs the 

deviation of MF from MC more consistently than the network size N, but a new measure - the network capacity χ = Nη -

governs most consistently the deviation of PA from MC. 

The preceding investigation of disease spreading on higher-dimensional small world networks affects both future epi- 

demiological practice and emerging network science research. We have illustrated the impact of epidemic and control pa- 

rameters across networks of realistically broad degree and dimension, and this can inform disease control and prevention 

policies. Just as important for decision-makers is information about the limitations of popular continuous state models, and 

how these limitations depend on topological characteristics. Finally, the developed flexible higher-dimensional small world 

model opens the door to a plethora of studies gauging the impact of dimension, mean degree and randomness on structural 

properties and dynamical processes. 

Code and data availability 

Code to produce higher-dimensional small world networks and the data which support the findings of this study are 

openly available at https://github.com/JackMurdochMoore/small-world . 
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