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Abstract

Peripancreatic vessel segmentation and anatomical labeling play extremely important roles to
assist the early diagnosis, surgery planning and prognosis for patients with pancreatic tumors.
However, most current techniques cannot achieve satisfactory segmentation performance for peri-
pancreatic veins and usually make predictions with poor integrity and connectivity. Besides, unsu-
pervised labeling algorithms cannot deal with complex anatomical variation while fully supervised
methods require a large number of voxel-wise annotations for training, which is very labor-intensive
and time-consuming. To address these problems, we propose our Automated Peripancreatic vEssel
Segmentation and lAbeling (APESA) framework, to not only highly improve the segmentation per-
formance for peripancreatic veins, but also efficiently identify the peripancreatic artery branches.
There are two core modules in our proposed APESA framework: iterative trunk growth mod-
ule (ITGM) for vein segmentation and weakly supervised labeling mechanism (WSLM) for artery
branch identification. Our proposed ITGM is composed of a series of trunk growth modules, each
of which chooses the most reliable trunk of a basic vessel prediction by the largest connected con-
straint, and seeks for the possible growth branches by branch proposal network. Our designed
iterative process guides the raw trunk to be more complete and fully connected. Our proposed
WSLM consists of an unsupervised rule-based preprocessing for generating pseudo branch anno-
tations, and an anatomical labeling network to learn the branch distribution voxel by voxel. We
achieve Dice of 94.01% for vein segmentation on our collected dataset, which boosts the accuracy
by nearly 10% compared with the state-of-the-art methods. Additionally, we also achieve Dice of
97.01% on segmentation and competitive performance on anatomical labeling for peripancreatic
arteries.

Keywords. Peripancreatic vessel, Segmentation, Anatomical labeling, Iterative trunk growth,
Branch proposal, Weakly supervised learning.

1 Introduction

Pancreatic cancer is the third most common cause of cancer deaths in the United States [1]. Pancreatic
ductal adenocarcinoma (PDAC) is the most prevalent malignant pancreatic tumor, accounting for
over 90% of pancreatic malignancies [2], and it is the most intractable pancreatic cancer with a poor
prognosis, where the operability and survival chance are strongly affected by the tumor infiltration of
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the surrounding vessels especially arteries. Peripancreatic vascular anatomy is complex and tumors
often tend to infiltrate both arteries and veins [3]. Figure 1 shows the relationship between the
pancreas, pancreatic tumor and peripancreatic vessels on contrast computed tomography (CT) images.
Hence, automated segmentation and anatomical labeling for peripancreatic vessels are promising for
the early diagnosis, surgery planning and prognosis to patients with pancreatic cancers.

Vein

Pancreas

Tumor

Artery

(a) Axial plane (b) Sagittal plane

(c) Coronal plane (d) 3D render

Figure 1: Visualization of relationship between the pancreas, pancreatic tumor and peripancreatic
vessels. The tumor areas are specially indicated by the yellow arrows.

To the best of our knowledge, only one existing work concentrated on the peripancreatic vessel
segmentation [3]. This work achieved nearly perfect segmentation performance on peripancreatic
arteries in multispectral CT images. However, it only provided one argument for segmenting the
arteries, but the veins. And it does not focus on the anatomical labeling for the artery branches,
which is extremely important for clinical issues. More and more studies demonstrate the significance
of vein analysis for tumor treatment. And identifying or labeling peripancreatic artery structure is of
great importance for the diagnosis and treatment of pancreatic cancers. Therefore, the goal of this
work is to address the problems: peripancreatic vein segmentation and artery labeling.

In CT images, the peripancreatic veins on the venous phase have lower contrast than the arteries
on arterial phase, which brings extra difficulty for segmentation. Besides, previous techniques show
the weakness of the vein segmentation performance for the terminal integrity and connectivity. Figure
2 shows the experimental results that we compare the existing deep learning-based methods and our
proposed APESA method, where we can see that existing methods can not deal with the terminal
errors and disconnection well.
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(a) nnU-Net (d) APESA (Ours)(c) UNETR(b) CoTr

TP FP FN

Figure 2: An example to illustrate the benefits of the proposed APESA method for peripancreatic
vein segmentation. (a) nnU-Net (b) CoTr (c) UNETR and (d)the proposed APESA method. The
green, red and blue voxels denote the true positive (TP), false positive (FP) and false negative (FN)
predictions, respectively. It can be found that the result of proposed method has fewer false negative
predictions and no false negative predictions almost. Besides, our prediction is fully connected while
the previous methods predict some noisy components indicated by yellow arrows.

As for the anatomical labeling of peripancreatic arteries, there are various studies focusing on the
abdominal artery anatomical labeling [4, 5, 6]. Most of these studies adopt unsupervised rule-based
algorithms or fully supervised learning-based methods. The rule-based algorithms usually cannot deal
with the anatomical variation and have low efficiency, while the fully supervised learning-based meth-
ods require a large number of voxel-wise annotations, which are labor-intensive and time-consuming.
In this work, we have proposed a weakly supervised anatomical labeling mechanism which aims to
identify the peripancreatic artery branches with very less participation of experts. Figure 3 shows
an example of our focused peripancreatic artery branches. For clinical needs, labeling the abdominal
aorta (AO), celiac artery(CA), superior mesenteric artery (SMA), splenic artery (SA), common hepatic
artery (CHA), left gastric artery (LGA) and gastroduodenal artery (GDA) has the highest priority.
Therefore, our goal is to identify the above branches in our experiments.

AO

CHA

GDA

LGA

SMA

SA

CA

Figure 3: Visualization of the anatomical labeling for peripancreatic arteries

The contributions of our work can be summarized as follows.

• To the best of our knowledge, this is the first work to simultaneously address the problem of
peripancreatic vessel segmentation and anatomical labeling. We propose our novel Automated
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Peripancreatic vEssel Segmentation and lAbeling (APESA) framework for highly improv-
ing peripancreatic vein segmentation accuracy and efficiently identifying peripancreatic artery
branches.

• We propose an iterative trunk growth module (ITGM) composed of a series of trunk growth
modules. Our proposed ITGM combines the largest connected constraint and branch proposal
network to guide a raw vessel trunk to be more complete and fully connected by an iterative
growth process.

• We propose a weakly supervised labeling mechanism (WSLM) to efficiently identify peripancre-
atic artery branches with very less participation of experts. Our proposed WSLM consists of an
unsupervised rule-based preprocessing to generate pseudo artery branch labels which are judged
by experts and an anatomical labeling network to learn the branch distributions voxel by voxel.

• Experimental results show that our proposed APESA approach boosts the vein segmentation
accuracy by nearly 10% (Dice: 94.01%) compared with the state-of-the-art (SOTA) methods, and
achieves more than 20% (clDice: 87.96%) improvement for the topological integrity compared
with the previous techniques. Besides, we also achieve the best (Dice: 97.01%) and competitive
performance on segmentation and anatomical labeling, respectively for peripancreatic arteries.

2 Related work

2.1 Abdominal vessel segmentation in CT images

In recent years, a myriad of dedicated blood vessel segmentation algorithms for different body regions
and modalities have been developed [7]. Ibragimov et al. [8] applied convolutional neural networks
(CNNs) to learn the consistent appearance patterns of the portal vein (PV) and achieved Dice score
of 83% in their experiments. Oda et al. [9] segmented abdominal arteries from an abdominal CT
volume with a fully convolutional network (FCN) [10] and they obtained 87.1% F-measure in a public
dataset BTCV [11]. Golla et al. [12] used a novel ratio-based sampling method to train 2D and
3D versions of the U-Net [13], the V-Net [14] and the DeepVesselNet [15] for abdominal blood vessel
segmentation, and achieved Dice score of 75.8% and 83.8% on veins and arteries respectively. Dima et
al. [3] also trained a U-Net based model to perform binary segmentation of the peripancreatic arteries
in multispectral CT images, where they obtained a near perfect segmentation with a Dice score of
95.05% in their best performing model. Mahmoudi et al. [16] introduced a framework based on CNN
for segmentation of PDAC mass and surrounding vessels in CT images by incorporating powerful
classic features, and got the Dice score of 73% and 81% on superior mesenteric vein (SMV) and SMA,
respectively. Zhu et al. [17] added two auxiliary tasks to the FCN to extract the skeleton context of
abdominal arteries and achieved Dice score of 93.2% in the same public dataset as in [9].

2.2 Region proposal and distraction attention

Region proposal strategy is widely used in computer vision especially object detection tasks. Ren
et al. [18] introduced a region proposal network (RPN) to efficiently generate high quality detection
region proposals, and these region proposals are fed to the subsequent training classifier to be judged
as true or false. The distraction concepts have been explored in many computer vision tasks, such
as semantic segmentation [19], saliency detection [20, 21] and visual tracking [22]. Zhao et al. [23]
proposed a cascaded two-stage U-Net based model to explicitly take the ambiguous region information
into account. In their model, the first stage generates a global segmentation for the whole input
CT volume and predicts latent distraction regions, which contain both false negative areas and false
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positive areas, against the segmentation ground truth. The second stage embeds the distraction region
information into segmentation for volume patches to further discriminate the target regions.

Inspired by the above methods and considering the characteristics of blood vessel segmentation, we
reformulate the vessel segmentation task: finding missing branches in predictions as possible based on
a reliable trunk segmentation. Therefore, we develop a new branch proposal network by learning the
distraction regions to provide missing branch proposals based on a raw vessel trunk prediction. Instead
of feeding these proposals to a training classifier in [18], we use the most essential prior knowledge:
the vessel is fully connected, to identify the rationality of the generated proposals.

2.3 Anatomical labeling for abdominal vessels

Anatomical labeling for abdominal vessels has been greatly developed in recent years. Oda et al.
[4] presented an automated anatomical labeling method of both upper or lower abdominal arteries
by designed rules and machine learning. They achieved 79.01% and 80.41% for recall and precision,
respectively. Matsuzaki et al. [5] adopted the similar strategy combing rule-based preprocessing,
machine learning techniques and rule-based postprocessing to label the abdominal arteries and a
hepatic portal system. And they obtained the labeling F-measure of 85.7% and 72.2% on manually
and automatically extracted arteries, respectively. The proposed method by Kitasaka et al. [24] for
vessel labeling represents a blood vessel tree as a probabilistic graphical model by conditional random
fields (CRFs)[25], and got the F-measure of 94.4% for abdominal arteries. Liu et al. [6] defined a
hypergraph representation of the abdominal arterial system as a family tree model with a probabilistic
hypergraph matching framework for automated vessel labeling. They achieved the average F-measure
of 93.0% for abdominal arteries.

3 Methods

3.1 Network architecture

As shown in Figure 4, we propose a novel framework for peripancreatic vein segmentation and artery
labeling on CT images. We term it as Automated Peripancreatic VEssel Segmentation and LAbeling
(APESA) framework. There are two processing flows in our APESA method, one for arteries and
another for veins. When our APESA is fed with a CT scan, a basic segmentation module composed
with a U-Net generates the basic predictions for peripancreatic arteries and veins. For the subsequent
vein flow, we design an iterative trunk growth module (ITGM) composed of a series of trunk growth
modules (TGMs) to obtain more complete and fully connected vein predictions based on the basic
segmentation results. Each TGM is composed of two largest connected constraint (LCC) operations
to get reliable vessel trunks, and a branch proposal network (BPN) to find surrounding possible
branches to make the trunk grow. For the subsequent artery flow, considering the importance of
the peripancreatic arteries to clinical issues, and the satisfactory segmentation performance by U-
Net architecture for peripancreatic arteries [3], we concentrate on designing the labeling algorithm.
The basic artery predictions is directly fed to the proposed weakly supervised labeling mechanism
(WSLM) for branch identification. Our proposed WSLM aims to efficiently identify most important
artery branches for pancreatic tumor treatment by combing rule-based pseudo label generation and
learning-based anatomical labeling network.
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Figure 4: Pipeline of our proposed Automated Peripancreatic VEssel Segmentation and LAbeling
(APESA) framework for peripancreatic vein segmentation and artery labeling.

3.2 Basic segmentation module

The basic segmentation module is composed of an nnU-Net [26] model based on the U-Net architecture
to segment the peripancreatic arteries and veins. We use the three-dimension full resolution training
strategy which is randomly cropping each patch with the fixed size as the input to the U-shape
segmentation network. The patch size is calculated to be 80× 192× 160 in both the artery and vein
segmentation experiments. The Cross-Entropy (CE) loss and Dice loss are used with 1:1 weight in the
training process. The sliding window strategy is adopted for testing.

3.3 Iterative Trunk Growth Module (ITGM)

We propose an iterative trunk growth module (ITGM) shown in the blue dashed box in Figure 4 to
obtain more complete and fully connected vein predictions based on the basic segmentation results.
Our proposed ITGM is composed of a series of trunk growth modules (TGMs) shown in the green
dashed box in Figure 4. The TGM firstly obtains the trunk of the previous segmentation by the
largest connected constraint (LCC) operation which only chooses the largest connected component
of the vessel prediction, considering the major connected component is the most reliable prediction
which is with little false positive (FP) predictions and much false negative (FN) predictions. Then, a
branch proposal network (BPN) is designed to find possible missing branches by learning the similar
vein’s deep features. Although these proposals generated by BPN cannot be absolutely true prediction,
the predicted branches which are connected to the raw trunk have high confidence to be the missing
branches. Therefore, another LCC operation is adopted for removing the branches which are far way
from the previous trunk to obtain a high-quality branches to make the trunk prediction grow. And the
above trunk growth process can be iterative to get more complete and fully connected vein prediction.
We formulate the iterative trunk growth mechanism as follows:

Trunki+1 = LCC(BPN(Trunki; Image) + Trunki). (1)
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The proposed BPN is designed to find the possible false negative regions or missing branches which
should be added to the previous vessel trunk. The details of the BPN is shown in Figure 5. When we
get the previous vessel trunk, we get the ground truth (GT) of the missing branches by calculating the
difference between vessel GT and predictions. Then, a 3D U-Net is trained to learn the feature and
distribution of these missing branches. We use the combination of Dice loss and CE loss to train the
3D U-Net in our experiments. In the testing stage, we apply the trained BPN to the previous trunks
to get possible missing branch proposals. It should be pointed that, in our experiments, the BPN is
only trained once and iteratively applied to inference on the subsequent vein predictions.

Input CT

3D U-Net backbone
Coarse trunk

Ground truth

\

Missing branch 

proposals

GT missing branches

𝑳𝑫𝒊𝒄𝒆 + 𝑳𝑪𝑬

Inference

Training

Figure 5: Details of our proposed Branch Proposal Network (BPN).

3.4 Weakly supervised labeling mechanism (WSLM)

The structure of the abdominal arteries is shown in Figure 6(a). We aims to automatically identify
the seven branches including AO, CA, SMA, SA, CHA, LGA and GDA, which are most important
for pancreatic tumor diagnosis and treatment. Figure 6(b) shows the above branches and related
keypoints. Besides, we also consider the upper abdominal vascular system without the iliac arteries
which is shown in Figure 6(c).

Pancreas

(a) (b) (c)
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Figure 6: (a) A schematic illustration of the abdominal artery structure. (b) The anatomical labeling
problem we address for peripancreatic arteries in this work. (c) An example of the upper abdominal
peripancreatic artery structure.
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3.4.1 Rule-based preprocessing

We extract the peripancreatic artery volumes based on the prediction of the basic segmentation net-
work. We skeletonize the basic artery volumes by the method proposed in [27]. Then, we build the
graphs on these skeletons and get the keypoints of these skeletons by neighbor selection. Finally, we
get the vessel tree structures by the Prim algorithm.

After we get the tree structure of the peripancreatic artery, AO is the first target branch we are
going to label. AO passes through the center of the abdominal region in a human body and bifurcates
into iliac arteries in the lower abdominal region. By utilizing the anatomical knowledge, anatomical
labeling of AO is performed as follows. For the whole abdominal CT case shown in Figure 6(b), we
find the most head side endpoint A, and two endpoints B and C which have larger diameter than
others at the most foot side. We denote A→ B as the shortest path from A to B in the tree structure.
By get the common part of A → B and A → C, then we get the conjunction D, and AO is exactly
labeled as A→ D. As for the upper abdominal case shown in Figure 6(c), we find the most head side
endpoint A and the most foot side endpoint D, then we can directly label AO as A → D. We judge
that there are iliac arteries or not by comparing the radius between the head side and the foot side.

After we label AO, we can get the junctions on AO centerline. The two most head side junctions,
E and F , are the CA and SMA junction respectively. By traveling all the endpoints to these two
junctions, each path which does not coincide with AO is labeled as CAs (CA and its subordinate
branches) and SMA, respectively.

Then, we find the most right and left side endpoints G and H on CAs. E → I is labeled as CA
which is the common path of E → G and E → H. I → H is labeled as SA and I → G is labeled as
CHA. For LGA, we have

LGA = (arg min
i∈UCAs

|(i→ E) ∩ CA|)→ E, (2)

where UCAs is the set of endpoints on CAs. Finally, The rest of the CAs M → L is labeled as GDA.

3.4.2 Anatomical labeling network

After we obtain the primary artery labeling results by the above rule-based strategy, the experts only
give the patient-level annotation of “good” or “bad” for the preprocessed predictions. The “good”
judgement is given when the true positive voxels account for the majority on all focused branches and
there is no negative influence for clinical issues based on these predictions. The “good” predictions are
used as pseudo branch labels for subsequent procedures. Then we train an atomical labeling network
based on the 3D U-Net architecture by feeding the original CT image and basic vessel prediction as
inputs, and calculating the Dice and CE loss between the predictions and pseudo branch labels voxel
by voxel. The details of the whole WSLM technique is shown in Figure 7.
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Figure 7: Details of our proposed Weakly Supervised Labeling Mechanism (WSLM).

3.4.3 Adaptive radius-based post-processing

We observe that the rule-based preprocessing brings “disk” branch annotations to the subsequent
labeling network because of the large gap between AO’s radius and other branches’, which makes
negative impact on labeling evaluation for artery branches especially CA. A schematic diagram for
this happening is shown in Figure 8. After labeling the points on the vessel tree, we build a mapping
from the centerline to the 3D volume:

K(p) = K(arg min
i∈Ucl

||i− p||2), (3)

where p is a point on the 3D volume, K(p) is the branch prediction of p, Ucl is the set of points on the
centerline. In Figure 8, the distance from point p to AO’s centerline is farther than CA’s. Therefore,
point p and its surrounding voxels will be wrongly predicted to CA branch category.

To solve this problem, we design an adaptive radius-based post-processing. Considering the wrong
“disk” predicted volumes have larger radius, we calculate the radius of each point on the branch
centerline. Then, we use K-Means algorithm to divide these points into two clusters. The cluster with
larger radius is predicted as AO. Figure 9 shows the visual comparison of the labeling results with
and without our adaptive radius-based post-processing. It should be pointed that, because CA has
smaller size and is more affected by the “disk” predictions than the other branches, we only apply
our proposed adaptive radius-based post-processing to CA in our experiments. The other affected
branches such as SMA can be post-processed in the same mechanism.
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P

AO

CA

Figure 8: A schematic diagram for the reason that mapping from Eq. (3) predicts “disk” branch
results. The dash lines denote the centerlines of the branches.

Figure 9: Visual comparison of the labeling results with (the second row) and without (the first row)
the adaptive radius-based post-processing. Red and green denote AO and CA predictions, respectively.

4 Experiments

4.1 Dataset and evaluation

In this work, we evaluate our proposed method on two datasets collected from Nanjing Drum Tower
Hospital. The first dataset, called peripancreatic vein segmentation (PPV) dataset, consists of 272 ve-
nous phase CT scans from patients with surgical pathology-confirmed pancreatic tumors (136 PDACs,
43 IPMNs, 43 SCNs, 24 SPTs, 26 MCNs). The second dataset, called peripancreatic artery segmen-
tation (PPA) dataset, consists of 338 arterial phase CT scans from patients with surgical pathology-
confirmed pancreatic tumors (191 PDACs, 46 IPMNs, 40 SCNs, 34 SPTs, 27 MCNs). Each CT scan of
PPV or PPA has a manual annotation of peripancreatic vein or artery respectively which is performed
by the pancreatic imaging radiologists. All the segmentation experiments are performed using nested
five-fold cross-validation.

We employ the Dice similarity coefficient as the segmentation metrics which can be calculated as
follows.

Dice =
2× TP

2× TP + FP + FN
, (4)

where TP , FP and FN in Eq. (4) denote the numbers of true positive, false positive and false
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negative voxels in the prediction, respectively. In addition to the above traditional metrics, we adopt
the following two segmentation metrics for distractions. We use the false positive segmentation rate
(FPSR) and false negative segmentation rate (FNSR), which can intuitively reflect the false positive
and false negative segmentation errors. They can be calculated as follows.

FPSR =
FP

2× TP + FP + FN
, (5)

FNSR =
FN

2× TP + FP + FN
. (6)

We also employ the clDice [28] to measure the topology preservation of the segmentation for targets
with tubular structures. The clDice can be calculated as follows.

Tprec(SP , VG) =
|SP ∩ VG|
|SP |

, (7)

Tsens(SG, VP ) =
|RG ∩ VP |
|SG|

, (8)

clDice(VP , VG) = 2× Tprec× Tsens

Tprec + Tsens
, (9)

where VG and VP are the ground truth mask and the predicted segmentation mask, respectively. SG

and SP are the skeletons extracted from VG and VP , respectively.
To evaluate the connectivity-preserving performance of segmentation, we also calculate the number

of connected components (NCC) in our experiments.
Branch-wise performance for anatomical labeling is evaluated by the recall rate, precision rate and

F-measure (or F1 measure) which are calculated as follows.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2× Recall × Precision

Precision + Recall
(12)

We define a TP branch prediction while TP voxels on this branch account for the majority compared
with FP and FN voxels. FP and FN branch can be defined in a similar way.

4.2 Vein segmentation

4.2.1 Vein segmentation results on PPV dataset

We get the peripancreatic vein segmentation results of our proposed APESA for different pancreatic
tumor cases in our collected PPV dataset through five-fold cross-validation experiments. We show
the metrics of the clDice, Dice, FPSR and FNSR in Table 1. The highest metric is shown in bold
and the lowest one is shown in red. As we can see, the non-PDAC cases achieve better segmentation
performance comparing to the PDAC cases, which may be caused by the invasion of peripancreatic
vessels by pancreatic malignant tumors.
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Table 1: Comparison of segmentation results for pancreatic veins with different pancreatic tumors on
our PPV dataset.

Case clDice(% ↑) Dice(% ↑) FPSR(% ↓) FNSR(% ↓)

PDAC 84.17±14.68 91.44±11.16 5.66±9.70 2.90±2.92

IPMN 89.75±11.01 95.32±5.89 2.94±5.77 1.74±0.90

MCN 92.51±6.67 97.16±3.73 0.83±3.59 2.02±1.34

SCN 94.14±5.26 97.73±2.75 0.36±2.14 1.91±1.83

SPT 90.34±13.19 96.24±5.42 2.41±5.37 1.36±0.69

Total 87.96±12.93 94.01±8.96 3.65±7.85 2.34±2.34

4.2.2 Ablation study

To verify the improvement of our proposed ITGM, we conduct the ablation study results shown in
Table 2. We compare the segmentation performance of the nnU-Net in the basic segmentation stage
marked as basic, and the two following TGM results after LCC marked as trunk 1 and trunk 2.
Besides, we also list the performance of largest connected component of the basic prediction marked
as trunk 0, and the iterative grown predictions before LCC operation which are marked as TGM ×1
and TGM ×2, respectively. From Table II, we can see that the proposed ITGM can effectively boost
the topological integrity (clDice) and the overall segmentation (Dice) performance. Additionally, the
proposed method can significantly improve the false negative predictions and keep comparable false
positive segmentation performance to the basic predictions. We can also see that the ITGM can
completely ensure the connectivity, and has better performance than the largest connected component
of the basic predictions. Figure 10 presents the performance distributions of different stages. We also
show the visualization of the different segmentation results in Figure 11 (coronal plane) and Figure
12 (3D render).

M
et
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%
）

80

60

40

20

0

clDice Dice 1-FPSR 1-FNSR

Basic

Trunk 1

Trunk 2

100

Figure 10: Visual comparison results of the ablation study in terms of different metrics.
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Table 2: Ablation study for peripancreatic vein segmentation on our proposed PPV dataset.

Methods clDice(% ↑) Dice(% ↑) FPSR(% ↓) FNSR(% ↓) NCC(↓)

Basic 68.52±9.22 84.57±7.90 3.43±8.54 12.00±4.31 5.08±2.72

Trunk 0 68.66±8.76 85.52±6.86 1.44±5.28 13.04±4.89 1.00±0.00

TGM ×1 78.68±9.75 89.53±7.33 3.16±6.73 7.31±3.31 4.33±2.29

Trunk 1 79.57±9.15 89.98±7.04 2.46±6.31 7.56±3.53 1.00±0.00

TGM ×2 86.12±12.79 93.41±8.53 4.45±7.99 2.13±1.76 6.26±3.32

Trunk 2 87.96±12.93 94.01±8.96 3.65±7.85 2.34±2.34 1.00±0.00

Trunk 1Basic Trunk 2

@015#187

@051#263

@135#223

Input CT

Figure 11: Visual comparison results of the ablation study. The green, red and blue pixels denote the
true positive, false positive and false negative segmentation, respectively.
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Figure 12: The 3D render comparison results of the ablation study. The green, red and blue voxels
denote the true positive, false positive and false negative segmentation, respectively. Dice score of each
case is written in the bottom left of each image. Top: basic segmentation. Middle: fine segmentation.
Bottom: refined segmentation.

4.2.3 Comparison to SOTA segmentation methods

We also compare to other baseline models for peripancreatic vein segmentation in our PPV dataset.
Recently, Transformer [29], a sequence-to-sequence prediction framework, has been considered as an
alternative architecture, and has achieved competitive performance on many computer vision tasks,
like image recognition [30], semantic segmentation [31], object detection [32] and low-level vision [33].
CoTr [34] and UNETR [35] are the combination of convolutional neural network and transformer for
computer vision and achieve state-of-the-art (SOTA) in medical image segmentation challenges. We
compare above two SOTA methods and the nnU-Net [26] to our proposed APESA on our PPV dataset.
All the experiments follow the same 5-fold cross-validation setting.

The segmentation results are shown in Table 3 where we can see that our APESA achieves the
best performance in terms of clDice, Dice, FNSR and NCC metrics. Additionally, the transformer-
combined methods do not show their superiority to the CNN-based method, which may be caused by
the limited scale of the dataset. Figure 13 presents the performance distributions of different methods.
It can be found that our proposed APESA has a more compact distribution with fewer outliers. Figure
14 and Figure 15 show the visual comparisons of coronal plane and 3D render results, respectively.

Table 3: Comparison to SOTA segmentation methods for peripancreatic vein segmentation on PPV
dataset.

Methods clDice(% ↑) Dice(% ↑) FPSR(% ↓) FNSR(% ↓) NCC(% ↓)

nnU-Net 68.52±9.22 84.57±7.90 3.43±8.54 12.00±4.31 5.08±2.72

CoTr 65.30±10.10 82.47±8.56 4.00±7.17 13.52±6.82 6.64±3.56

UNETR 62.25±10.21 80.90±8.69 5.42±9.24 13.68±4.70 15.13±7.36

APESA 87.96±12.93 94.01±8.96 3.65±7.85 2.34±2.34 1.00±0.00
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Figure 13: Performance distributions of different methods for peripancreatic vein segmentation on
PPV datasets.

Image CoTrnnU-Net UNETR APESA

@015#187

@051#263

@135#223

@238#262

Figure 14: Visual comparison results to other baseline methods. the green, red and blue contours
denote the ground truth and the predicted segmentation, respectively.
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Figure 15: The 3D render comparison results to other baseline methods. the green, red and blue
voxels denote the true positive, false positive and false negative segmentation, respectively. Dice score
of each case is written in the bottom left of each image.

4.2.4 Comparison to the works related to vein segmentation.

To the best of our knowledge, this is the first work concentrating on the segmentation of peripancreatic
veins and there is almost no published segmentation performance we can compare. Therefore, we
compare with the state-of-the-art methods for portal vein or other related vein branch segmentation
in Table 4. Because any direct comparison is not possible, we list the reported Dice score in these
studies. We can see that our methods achieve the highest reported Dice score on abdominal vein
segmentation. Besides, since our dataset includes patients with 5 types of pancreatic tumors, our
proposed method has more reliable performance for clinical diagnosis and treatment.

Table 4: Comparison to the works related to vein segmentation.

Methods Data Target Tumor Dice(%)

Ibragimov 2017 [8] 72 Portal vein - 83.00

Golla 2020 [12] 20 Portal vein - 75.80

Mahmoudi 2022 [16] 138 SMV 1 73.00

APESA (Ours) 273 Peripancreatic 5 94.01

4.3 Artery segmentation

4.3.1 Segmentation results on PPA dataset

We also get the peripancreatic artery segmentation results of our proposed APESA for different pan-
creatic tumor cases in our collected PPA dataset. We show the metrics of the clDice, Dice, FPSR
and FNSR in Table 5. The highest metric is shown in bold and the lowest is shown in red. Just like
the vein segmentation performance, the non-PDAC cases achieve better segmentation performance
comparing to the PDAC cases. Figure 16 presents the qualitative results of the peripancreatic artery
segmentation. It can be found that the artery segmentation almost achieves perfect performance com-
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paring to the vein segmentation, which may be caused by the high contrast of arteries in the arterial
CT scans.

Table 5: Comparison of segmentation results for peripancreatic arteries with different pancreatic
tumors on our PPA dataset.

Case clDice(% ↑) Dice(% ↑) FPSR(% ↓) FNSR(% ↓)

PDAC 78.98±8.07 96.25±2.90 1.59±2.40 2.16±1.14

IPMN 88.15±3.63 98.28±0.34 0.77±0.29 0.95±0.29

MCN 87.13±5.59 98.08±0.66 0.77±0.45 1.15±0.40

SCN 85.81±4.39 97.85±0.79 0.91±0.63 1.25±0.46

SPT 87.23±3.13 97.77±0.59 0.95±0.30 1.28±0.43

Total 82.52±7.81 97.01±2.39 1.27±1.87 1.72±1.04

Case @003 Case @083 Case @302 Case @326Case @048

Figure 16: Qualitative results: In the first row our segmentations are presented in the axial view, in
the second row as sagittal view, in the third row as coronal view, in the last row as a 3D rendering.
Green, blue, and red represent true positive, false negative and false positive predictions, respectively.

4.3.2 Comparison to the works related to peripancreatic artery segmentation

We also compare with the state-of-the-art methods in peripancreatic artery segmentation in Table 6.
Dima et al. [3] get the Dice score of 95.05% for the peripancreatic artery segmentation using 3D U-Net
based on the Iodine and arterial image inputs. Our methods achieve the highest reported Dice score
on peripancreatic segmentation by single-phase image input with more tumor types. Additionally, our
performance is however no rival for methods using multiple image inputs. Multi-phase CT volumes or
Iodine map used in [3] can help the model to learn more information about the peripancreatic arteries.
However, the annotated dataset with multiple phase images is extremely hard to obtain.
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Table 6: Comparison to the works related to peripancreatic artery segmentation.

Methods Data Target Tumor Dice

Oda 2019 [9] 20 Abdominal - 87.10

Golla 2020 [12] 20 Abdominal - 83.80

Dima 2021 [3] 143 Peripancreatic 1 95.05

Mahmoudi 2022 [16] 138 SMA 1 81.00

Zhu 2022 [17] 20 Abdominal - 93.20

APESA (Ours) 345 Peripancreatic 5 97.01

4.4 Artery branch identification

We apply the rule-based preprocessing to 108 cases from the PPA dataset. There are 24 cases are
judged as “good” by experienced experts. We train the labeling network with these 24 pseudo annota-
tions. And there are 30 independent cases from the PPA dataset with voxel-wise branch annotations
by experts for testing. Table 7 shows the anatomical labeling results for the peripancreatic artery
branches. Branch-wise and voxel-wise metrics are shown in blue and red, respectively. Since most
abdominal artery labeling studies include our peripancreatic artery labeling mission, we list the re-
ported experimental results for the related branches in Table 8. As we can see, we achieve a best or
comparable performance for peripancreatic artery branch labeling compared to the existing labeling
techniques. Figure 17 presents the qualitative results of the anatomical labeling predictions, and the
difference between predictions and ground truth is marked by arrow.

Table 7: Experimental results of WSLM for peripancreatic artery branch identification.

Artery Precision(%) Recall(%) F-measure(%) Dice(%)

AO 100 100 100 95.67

CA 100 86.67 92.86 67.79

SMA 100 100 100 86.09

SA 100 100 100 94.42

CHA 100 100 100 89.92

LGA 100 96.67 98.31 89.37

GDA 96.55 96.55 96.55 81.95
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Table 8: Comparison to the existing artery labeling works, the branch-wise F-measure is shown as the
evaluation metric.

Methods Data AO CA SMA SA CHA LGA GDA

Oda 2012 [4] 23 100 64.6 83.3 57.1 33.3 - -

Kitasaka 2017 [24] 50 95.8 93.8 97.6 91.1 87.0 89.5 75.8

Liu 2022 [6] 37 98.7 95.5 95.9 84.8 88.4 - -

APESA (Ours) 30 100 92.9 100 100 100 98.3 96.6

Case @076 Case @095Case @032 Case @084

Figure 17: The 3D render comparison results of the anatomical labeling predictions for the peripan-
creatic artery. Top: Predictions. Bottom: Ground truth. The black arrows show the difference
between prediction and ground truth.

5 Discussions

We have successfully evaluated our proposed APESA method for the peripancreatic vessel segmen-
tation and anatomical labeling. Since previous techniques have achieved nearly perfect segmentation
performance on peripancreatic artery segmentation, the ITGM in our proposed APESA is designed
only for the peripancreatic veins. However, this mechanism can also be applied for artery segmen-
tation to improve the terminal error predictions. For vein segmentation, we show the experimental
results by twice iterations because of the satisfactory performance on improving terminal integrity
and connectivity. The experimental results show that our ITGM is an effective algorithm that helps
the medical experts refine their annotations iteratively. Besides, we admit that the iterative trunk
growth module may also make some mistakes such as predicting other tissues twined or adhered with
the vessels in few special cases(Case@135 in Figure 12 as an example), which is the problem we aim
to address in our subsequent studies.

Our proposed method follows the intuitive and effective coarse-to-fine strategy for medical seg-
mentation. In fact, the iterative trunk growth mechanism can be trained in an end-to-end manner to
find the global optimal parameters for the whole framework. Moreover, the anatomical labeling for
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peripancreatic veins and other artery branches will be also further studied in our future work.

6 Conclusions

In this paper, we propose a novel Automated Peripancreatic VEssel Segmentation and LAbeling
(APESA) framework, for peripancreatic vein segmentation and artery labeling. Our approach is
driven by two functional modules, iterative trunk growth module (ITGM) for peripancreatic vein
segmentation and weakly supervised labeling mechanism (WSLM) for artery branch identification.
Our proposed ITGM inspires by the prior knowledge that the vessels are fully connected and the main
trunk is the most reliable prediction, it takes the largest connected component of a basic prediction
as a seedling, and iteratively makes the seedling grow into a complete tree by our designed branch
proposal network. Our WSLM consists of an unsupervised rule-based pseudo label generation judged
by experts and an anatomical labeling network to learn the branch distribution voxel by voxel.

In our experiments, we not only improve nearly 10% peripancreatic vein segmentation accuracy
compared to the SOTA algorithms, but also boost nearly 20% topological integrity performance com-
pared to the previous techniques. Besides, we also achieve the best and competitive performance for
peripancreatic artery segmentation and labeling, respectively.
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