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Abstract  
 

This paper proposes a novel hybrid t-way test generation strategy (where t indicates interaction strength), 
called High Level Hyper-Heuristic (HHH). HHH adopts Tabu Search as its high level meta-heuristic and 
leverages on the strength of four low level meta-heuristics, comprising of Teaching Learning Based 
Optimization, Global Neighborhood Algorithm, Particle Swarm Optimization, and Cuckoo Search Algorithm. 
HHH is able to capitalize on the strengths and limit the deficiencies of each individual algorithm in a collective 
and synergistic manner. Unlike existing hyper-heuristics, HHH relies on three defined operators, based on 
improvement, intensification and diversification, to adaptively select the most suitable meta-heuristic at any 
particular time. Our results are promising as HHH manages to outperform existing t-way strategies on many of 
the benchmarks. 
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1.   Introduction 

Interaction (t-way) testing is a methodology to generate a test suite for detecting interaction faults. The 
generation of a t-way test suite is a n NP hard problem [1]. Many t-way strategies have been presented in the 
scientific literature. Some early algebraic t-way strategies exploit exact mathematical properties of orthogonal 
arrays. These t-way strategies are often fast and produce optimal solutions, yet they impose restrictions on the 
supported configurations and interaction strength. Computational t-way strategies remove such restrictions, 
allowing for the support of arbitrary configurations at the expense of producing (potentially) non-optimal 
solution.  
 

By formulating interaction testing as an optimization problem, recent efforts have focused on the adoption of 
meta-heuristic algorithms as the basis for t-way strategies.  Search Based Software Engineering (SBSE) [2-4], is 
a relatively new field that has proposed meta-heuristic based t-way strategies (e.g. Genetic Algorithms (GA) [5], 
Particle Swarm Optimization (PSO) [6, 7], Harmony Search Algorithm (HS) [8], Ant Colony Algorithm (ACO) 
[5], Simulated Annealing (SA) [9, 10] and Cuckoo Search (CS) [11]). The adoption of these meta-heuristic 
based strategies appears to be effective for obtaining good quality solutions, as reported in benchmarking 
experiments related to t-way testing [7, 8]. Nevertheless, as suggested by the No Free Lunch theorem  [12], no 
single meta-heuristic can outperform all others even over different instances of the same problem. For this 
reason, hybridization of meta-heuristics can be the key to further enhance the performance of t-way strategies. 
Since each meta-heuristic has its own advantages, meta-heuristic hybridization is beneficial for compensating 
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the limitation of one with the strengths of another. In fact, the best results of many optimization problems are 
often obtained by hybridization [13]. 
 

In this paper we explore the hybridization of meta-heuristics based on a hyper-heuristic approach. We 
present a new t-way testing strategy. Specifically, our contributions can be summarized as follows:  
 
• A novel hyper-heuristic based strategy, which we have termed High Level Hyper-Heuristic (HHH), for 

general combinatorial t-way test suite generation. HHH employs Tabu Search (TS) as its high level meta-
heuristic (HLH) and leverages on the strength of four low level meta-heuristics (LLH), comprising 
Teaching Learning based Optimization (TLBO) [14],  Global Neighborhood Algorithm (GNA) [15], 
Particle Swarm Optimization (PSO) [16], and Cuckoo Search Algorithm (CS) [17]. To the best of our 
knowledge, HHH is the first hyper-heuristic based strategy that addresses the problem of t-way test suite 
generation. 
 

• A new hyper-heuristic approach for the meta-heuristic selection and acceptance mechanism based on three 
operators (i.e. improvement, diversification and intensification) that are integrated into the tabu search 
HLH.  As the name suggests, the improvement operator checks for improvements in the objective function. 
The diversification operator measures how diverse the current and the previously generated solution are 
against the population of potential candidate solutions. Finally, the intensification operator evaluates how 
close the current and the previously generated solution are against the population of solutions. 

 
The rest of the paper is organized as follows. Section 2 presents an overview of hyper-heuristics and the 

mathematical and theoretical foundation for t-way testing. Section 3 reviews the state-of-the-art for t-way test 
case generation strategies. Section 4 presents the design and implementation of HHH. Section 5 describes the 
calibration of HHH. Section 6 evaluates HHH against existing strategies and section 7 debates the usefulness of 
HHH. Section 8 elaborates on threats to validity. Finally, section 9 presents our conclusion.  

2.   Theoretical Framework 

2.1.   Overview of Hyper-Heuristics 

To put hyper-heuristics into perspective, consider the different possible options for utilizing and combining 
meta-heuristic algorithms (see Figure 1). The first option, shown for completeness, is a standard meta-heuristic 
algorithm and can be ignored from our discussion as we want to focus on hybridization methodologies. These 
are shown in remaining figures, that is a hybrid meta-heuristic and a hyper-heuristic.  

 
Hybrid meta-heuristics can be low-level or high level hybridizations [13]. Low-level hybridization combines 

two or more algorithms. High-level hybridization retains the original meta-heuristic, which can run 
independently (e.g. either in sequence or parallel) without any connection amongst the meta-heuristics involved 
(i.e. it operates as a black box). 

 
Hyper-heuristics could be seen as a hybrid meta-heuristic owing to the integration of more than one meta-

heuristic algorithm (refer to Figure 1). However, unlike a typical hybrid meta-heuristic, hyper-heuristics (or 
(meta)-heuristic to choose (meta)-heuristics [18-20]) adopts a high level meta-heuristic (HLH) to adaptively 
select from a set of low level meta-heuristics (LLHs), which are applied to the problem at hand. The LLHs 
communicate with the HLH through a domain barrier to relay the feedback of the quality of the current solution.  
Only the LLHs have domain knowledge, meaning that the HLH is a general algorithm that can be utilized for 
different problems without any algorithmic changes. It is only required to supply a different set of LLHs. In fact, 
the LLHs can also be formed from (low-level or high-level) hybrid meta-heuristics themselves. 
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Figure 1. Standard Meta-Heuristic, Hybrid Meta-Heuristic and Hyper-Heuristic 

 
Recent developments have introduced hyper-heuristics that are able to automatically generate the LLHs, 

whereby the end user does not have to implement a set of LLHs for each problem domain.  Moreover, the HLH 
is also able to evolve its own selection and acceptance criteria [21, 22]. 

 

2.2.   The t-way Test Generation Problem 

Consider a hypothetical example of a Mobile Phone Product Configuration. The product configuration has 
four features (or parameters): Call Options, Message Types, Media, and Screen. Each parameter takes three 
possible values (e.g. Call Options = {Voice Calls, Video Calls, Both Voice and Video Calls}, Message Types = 
{Text, Video, Image}, Media = {Camera, Radio, Video Player}, and Screen = {Basic Colors, High Resolution, 
Black and White}). The pairwise (2-way) test generation for the Mobile Product Configuration can be seen in 
Figure 2 with nine test cases. The mapping of the corresponding tests can be achieved (row-wise) from the 2-
way representation based on the defined parameter values (column-wise) as depicted in Table 1. It should be 
noted that all the 2-way interaction tuples between parameters are covered at-least once. 
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Figure 2.  Pairwise Test Suite for Mobile Phone Product Configuration  
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Table 1. Mapping of the Pairwise Test Suite for Mobile Phone Product Configuration  
Test 
ID 

Call Options Message Types Media Screen 

1 Voice Calls Image Video Player Black and White 
2 Both Voice and Video Calls Video Video Player Basic Colors 
3 Voice Calls Text Radio Basic Colors 
4 Voice Calls Video Camera High Resolution 
5 Both Voice and Video Calls Text Camera Black and White 
6 Video Calls Text Video Player High Resolution 
7 Both Voice and Video Calls Image Radio High Resolution 
8 Video Calls Image Camera Basic Colors 
9 Video Calls Video Radio Black and White 

 

Mathematically, the t-way test generation problem can be expressed by Equation 1.  

                                           𝑓𝑓(𝑍𝑍) =  |{𝐼𝐼 𝑖𝑖𝑖𝑖 𝑉𝑉𝐼𝐼𝑉𝑉: 𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼}|                                 (1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆 𝑆𝑆𝑐𝑐 𝑍𝑍 = 𝑍𝑍1,𝑍𝑍2, …𝑍𝑍𝑖𝑖  𝑖𝑖𝑖𝑖 𝑃𝑃1,𝑃𝑃2, … …𝑃𝑃𝑖𝑖 ;  𝑖𝑖 = 1, 2, …𝑁𝑁 

 
where, f(Z) is an objective functions (or the fitness evaluation ), Z (i.e., the test case candidate) is the set of 
decision variables Zi, VIL is the set of non-covered interaction tuples (I), the vertical bars | · | represent the 
cardinality of the set and the objective value is the number of non-covered interaction tuples covered by Z, Pi is 
the set of possible range of values for each decision variable, that is, Pi = discrete decision variables 
(Zi(1)<Zi(2)<……<Zi(K)); N is the number of decision variables (i.e. parameters); and K is the number of 
possible values for the discrete variables. 

2.3.   The Covering Array Notation 

In general, t-way testing has strong associations with the mathematical concept of Covering Arrays (CA). 
For this reason, t-way testing  often adopts CA notation for representing t-way tests [23].  The notation CAλ 
(N;t,k,v) represents an array of size N with v values, such that every N×t sub-array contains all ordered subsets 
from the v values of size t at least λ times [24, 25], and k is the number of components. To cover all t-
interactions of the components, it is normally sufficient for each component to occur once in the CA. Therefore, 
with λ=1, the notation becomes CA (N;t,k,v). When the CA contains a minimum number of rows (N), it can be 
considered an optimal CA according to the definition in Equation 2 [26].  
 

CAN (t,k,v)= min{ N: Ǝ CAλ (N;t,k,v)}                  (2) 
 

To improve readability, it is customary to represent the covering array as CA (N;t,k,v) or simply CA(N;t,vk). 
Using our earlier example of the mobile phone product configuration in Figure 2, the test suite can be 
represented as CA (9; 2, 34). In the case when the number of component values varies, this can be handled by 
Mixed Covering Array (MCA) (N;t,k,(v1,v2,…vk)) [27]. Similar to covering array, the notation can also be 
represented by MCA (N;t,k,vk). For example, MCA (9; 2, 32 22) represents a test suite of size nine for a system 
with four components (two components having three values and two components having two values) covering 
two-way interactions.  Figure 3 illustrates the two aforementioned CA and MCA arrangements respectively. 
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CA (9; 2, 34)  MCA (9; 2, 32 22) 
k1 k2 k3 k4  k1 k2 k3 k4 
1 3 3 3  2 1 1 2 
3 2 3 1  2 2 2 1 
1 1 2 1  3 3 2 2 
1 2 1 2  1 3 1 1 
3 1 1 3  1 1 2 1 
2 1 3 2  1 2 1 2 
3 3 2 2  3 2 1 1 
2 3 1 1  3 1 1 1 
2 2 2 3  2 3 1 2 

Figure 3. Illustration of CA (9; 2, 34) and MCA (9; 2, 32 22) 

Having described the theoretical framework, the following section surveys the existing studies on t-way 
strategies in order to reflect the current progress and achievements in the scientific literature. 

3.   Existing Literature on t-way Strategies 

Generally, t-way strategies can be classified as algebraic or computational approaches [28, 29].  Algebraic 
approaches are often based on the extensions of the mathematical methods for constructing Orthogonal Arrays 
(OAs) [30, 31]. Examples of strategies that originate from the extension of OA include Combinatorial Test 
Services and TConfig.  The main limitation of the OA solutions is the fact that not all solutions can be found for 
t>2, thus, limiting its applicability for small scale system configuration. Empirical evidence [32] suggest the 
need to support up to at least t=6 in order to sufficiently cater for interaction faults.  

3.1.   General Computational-based Strategies 

Much existing work has placed emphasis on the computational-based approaches that provide support for 
very large configurations. Specifically, there are two competing approaches for constructing t-way test suites. 
That is, the one-test-at-a-time (OTAT) approach and the one-parameter-at-a-time (OPAT) approach. In the first 
case, the strategy iteratively traverses the required interaction and generates a complete test case per iteration. 
During each iteration, the strategy greedily checks whether or not the generated test case is the best fit value (i.e. 
covering the most uncovered interactions) to be selected in the final test suite. In the second case, the strategy 
constructs the test case incrementally by horizontal extension until completion. This is followed by vertical 
extension, if necessary, to cover the remaining uncovered interactions.  

One-test-at-a-time based strategies were pioneered by AETG [33]. AETG first constructs all the required 
interactions then generates one final test case for every cycle, for each iteration. For each cycle, AETG 
generates a number of test case candidates, and from these candidates, one is greedily selected as the final test 
case (i.e., covering the most uncovered interactions). Over the years, a number of variations of AETG have 
emerged including mAETG [27] and mAETG_SAT [34]. Similar to AETG, GTWay [35, 36] also adopts the 
one-test-at-a-time approach to generate the final test suite. Unlike AETG, GTWay permits the use of actual 
parameter values as a symbolic string and supports automated execution of test cases. 

Claiming to be an AETG variant, the test vector generator (TVG) [37] generates test suites based on three 
algorithms: T-reduced, Plus-one, and Random sets. Due to limited literature, the details’ concerning the 
implementation for each algorithm remains unclear. However, based on our experience with TVG 
implementation, T-reduced often produces the greater number of optimal results compared with other 
algorithms.  

Jenny [38] adopts the one-test-at-a-time approach by first generating a test suite that covers the 1-way 
interaction. Later, the test suite was extended to cover 2-way interactions and the process was repeated until all 
t-way interactions (where t is specified by the user) are covered. At around the same time, Hartman developed 
the Intelligent Test Case Handler (ITCH) [39] as an Eclipse Java plug-in tool. ITCH relies on exhaustive search 
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to construct the test suites for t-way testing. Owing to its exhaustive search algorithm, ITCH’s execution time 
typically takes a long time and results are often not optimal. 

PICT [40, 41] generates all specified interactions, and randomly selects their corresponding interaction 
combinations to form the test cases as part of the complete test suite. Due to its random behavior, PICT tends to 
give poor test sizes as compared to other strategies. 

Classification-Tree Editor eXtended Logics (CTE-XL) [42, 43] is a t-way strategy based on the 
Classification-Tree Method (CTM). The idea is that CTM abstracts and separates the test object’s input domain 
into different subsets according to features that the test engineer considers relevant to the test. Then, test cases 
are produced by combining subsets from different classifications as one-test-at-a-time. 

Complementing the one-test-at-a-time approach, the in-parameter-order (IPO) strategy [44] is a strategy that 
adopts the one-parameter-at-a-time approach. IPO generates a pairwise test set for the first two parameters, and 
then extends the test set by generating the pair for the first three parameters and so on, until all the system 
parameters are covered. This is followed by a vertical extension to cover the uncovered interactions, if 
necessary. The IPO strategy was later generalized into a number of variants; IPOG [45], IPOG-D [46] and IPOF 
[47].  Owing to its simplicity, IPO has been adopted by other researchers, notably in the development of MIPOG 
[48-50]. Unlike IPO and its family, MIPOG removes inherent dependencies between horizontal and vertical 
extensions in order to permit parallel t-way test suite generation on multiple-core machines. 

3.2.   Meta-heuristic-based Strategies 

Recently, efforts have been focused on the use of meta-heuristic algorithms as part of the computational 
approach for t-way test generation. Strategies adopting meta-heuristic algorithms as the basis of t-way strategies 
appear to be superior to other computational approaches. Its popularity has increased due to the interest in 
Search based Software Engineering [4]. 

Generally, meta-heuristic algorithms start with a random set of solutions. These solutions undergo a series 
of transformations in an attempt to improve them. One best candidate is selected at each iteration until all the 
required interactions are covered.  Concerning t-way test generation, a number of meta-heuristic algorithms have 
been explored as the basis for t-way strategies including Genetic Algorithms (GA), Ant Colony Optimization 
(ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS). 

GA, ACO, and SA represent early attempts to utilize meta-heuristic algorithms for constructing t-way 
strategies. A GA [5] mimics the natural selection processes. It begins with randomly created test cases, referred 
to as chromosomes. These chromosomes undergo crossover and mutation until a termination criteria is met. In 
each cycle, the best chromosomes are (probabilistically) selected and added to the final test suite. Unlike GAs, 
ACO [5] mimic the behavior of ants in their search for food. SA [51] relies on a large random search space and 
probability-based transformation equations for generating a t-way test suite. 

Although useful for addressing small values of uniform interaction strength t (i.e., t ≤ 3), strategies based on 
GA, ACO, and SA are not without their limitations. GA and ACO have been criticized for their complex 
algorithm structure as well as potentially requiring large computational resources. SA, being a single solution 
meta-heuristic, can be sensitive to its initial starting point in the search space, hence, prone to suffer from early 
convergence. For these reasons, these algorithms have been limited to small interaction strengths (i.e., t ≤ 3). 
Addressing earlier limitations of SA, an improved variant of SA, called CASA [52], has been developed to 
address the t-way test generation for software product lines testing.  

PSTG [53-56] is a meta-heuristic t-way strategy based on Particle Swarm Optimization, which mimics the 
swarm behavior of birds. Internally, PSTG iteratively performs local and global searches to find the candidate 
solution to be added to the final suite until all the interaction tuples are covered. Unlike other AI-based 
strategies, that address small values of t (i.e., 2 ≤ t ≤ 3), the most notable feature of PSTG is the fact that it can 
support up to t = 6. 
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Complementary to PSTG, HSS [8] is a meta-heuristic strategy based on the Harmony Search Algorithm 
(HSS). HSS mimics musicians trying to compose good music from improvisations to create the best tune from 
their memory or from random sampling. In doing so, HSS iteratively exploits the Harmony memory to store the 
best found solution through a number of defined improvisations within its local and global search process. In 
each improvisation, one test case will be selected to be the final test suite until all the required interactions are 
covered. Unlike PSTG, HSS addresses the support for forbidden combinations (or constraints).  

Cuckoo Search (CS) [11] is a recent strategy for t-way test generation. At the start, the algorithm generates 
random initial nests. Each egg in a nest represents a vector solution (i.e. a test case). At each generation, two 
operations are performed. Firstly, a new nest is generated (typically through Levy Flight path) and evaluated 
against the existing nests. The new nest will replace the current nest, if it has a better objective function. 
Secondly, CS has probabilistic elitism in order to maintain elite solutions for the next generation. 

Existing meta-heuristic based strategies have been successful as the basis of t-way strategies. Extending and 
complementing existing works, this paper proposes combining more than one meta-heuristic as part of a t-way 
strategy.  Instead of taking one meta-heuristic algorithm, our approach takes four algorithms to form the basis of 
our strategy, called High Level Hyper-Heuristic (HHH).  We utilize four recently developed meta-heuristic 
algorithms, these being Teaching Learning based Optimization (TLBO), Global Neighborhood Algorithm 
(GNA), Particle Swarm Optimization (PSO) and Cuckoo Search Algorithm (CS). 

4.   The Proposed HHH Strategy  

The proposed HHH strategy utilizes Tabu Search as the high level meta-heuristic (HLH), incorporating a 
selection and acceptance mechanism based on three defined operators (i.e. improvement, diversification and 
intensification operator). The HHH strategy is illustrated in Figure 4. The algorithmic details are provided in the 
next sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The HHH Strategy 
 
 

4.1.   The Tabu Search HLH 

 
The pseudo code for the Tabu Search HLH is shown in Figure 5. 
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Figure 5. The  Tabu Search HLH 

 
Line 1 initializes the population of the t-way interaction tuples, I = {I1, I2… IM}. The value of M depends on 

the given input interaction strength (t), parameter (k) and its corresponding value (v).  Specifically, M captures 
the number of required interactions that needs to be covered in the final test suite. M can be obtained as the sum 
of products of each individual’s t-way interaction. For example, for CA (9; 2, 34), M takes the value of 
3x3+3x3+3x3+3x3+3x3+3x3 = 54. If MCA (9; 2, 32 22) is considered, then M takes the value of 3x3+ 
3x2+3x2+3x2+3x2+2x2= 37. Line 2 defines the maximum iteration ϴmax and population size, N. Line 3 
randomly initializes the initial population of solutions Z = {Z1, Z2… ZN}. Line 4 selects the initial LLH from the 
four available meta-heuristics. The selected hyper-heuristic algorithm (LLH), Hi will then be performed 
repeatedly until all the interactions in I has been covered and the maximum fitness function limit, Fmax, has been 
reached, as shown in lines 5-22. The selected LLH Hi will update the population Z for ϴmax iterations, as shown 
in line 7. In line 8, Zbest (the individual with the best quality) is added to the final test suite (TS). To decide 
whether to select a new LLH or not, the three operators, comprising the improvement, diversification and 
intensification operator (lines 9-11) will be used. More precisely, the three operators work as follows.  

 
The Improvement Operator 
The improvement operator compares the current Zbest against the previous Zbest from the final test suite TS. 

F1 evaluates to true only if Zbest >= previous Zbest.  
 
The Diversification Operator 
The diversification operator exploits the hamming distance measure to evaluate the diversification of each 

Zbest solution (i.e. in terms of how far Zbest is from the population of candidate solutions).  The hamming distance 
measure between two rows of Z, d(Zi,Zj) is defined as the number of values in which they differ.  Referring to 
Figure 6 and assuming Zbest = Z3, the hamming distance between Z1 and Zbest is d(Z1,Zbest) = 4 (since all the 
values differ) and the hamming distance between Z2 and Z3 is d(Z2,Zbest ) = 3 (with three values being different). 
In this case, the diversification value dv can be defined as the cumulative sum of the hamming distance measure 
of each individual Z population with Zbest. Here, the value of dv =7 (i.e. as the sum of d(Z1,Zbest) and d(Z2,Zbest)). 

Input: interaction strength (t), parameter (k) and its corresponding value (v) 
Output:  final suite, TS 
1: Initialize the population of the required t-way interaction tuples, I = {I1, I2… IM} 
2: Initialize Tabumax, Fmax  fitness evaluation limit , ϴmax iteration, and population size S 
3: Initialize the population of solutions, Z = {Z1, Z2… ZS} 
4: Select a meta-heuristic algorithm Hi from the pool of meta-heuristics 
5: While all interaction tuples (I) are not covered and Fmax fitness evaluation limit is not reached 
6:  { 
7:       Update the population of solutions Z by the selected heuristic algorithm Hi with ϴmax iteration 
8:       Obtain Zbest from the population Z and add to the final suite TS 
9:       F1 = Improvement_Operator(Z) 
10:     F2 = Diversify_Operator(Z) 
11:     F3 = Intensify_Operator(Z) 
12:     If the meta-heuristic selection and acceptance mechanism evaluation, ѱ(Hi,F1 ,F2 ,F3), improves 
13:              Keep Hi 
14:     Else 
15:       {  
16:             Add Hi to Tabu List 
17:             If (Tabu List is Full)  // Tabumax 
18:                  Randomly select a new meta-heuristic algorithm Hi* where i*≠i from Tabu List 
19:             Else 
20:                  Select a new meta-heuristic algorithm Hi from the pool of meta-heuristics 
21:        } 
22:   } 
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Figure 6. Diversification value and Hamming Distance 
 

 
As far as the diversification operator is concerned, the current value of dv will be compared to the previous 

value of dv (i.e. from the previous iteration). F2 evaluates to true only if the current dv >= the previous dv. 
 
The Intensification Operator 
Like the diversify operator, the intensification operator also exploits the hamming distance to evaluate the 

intensification of each Zbest solution. Unlike the diversification operator, the intensification operator measures 
the intensification value, Iv, of Zbest against the final test suite TS population (i.e. how close is Zbest to the final 
test suite). To be more specific, the intensification value can be defined as the cumulative sum of the hamming 
distance of each individual TS population with Zbest.  Here, the current value of Iv will be compared to the 
previous value of Iv (i.e. from the previous iteration). F3 evaluates to true only if the current Iv <= the previous 
Iv. 

 
In line 12 (Figure 5), the meta-heuristic selection and acceptance mechanism, ѱ(Hi,F1 ,F2 ,F3) evaluates to 

true, if and only if, F1=true and F2 = true and F3=true. If ѱ(H,F1 ,F2 ,F3) evaluates to false,  the new Hi will be 
selected (and the current Hi will be put in the Tabu List).  Visually, the internal working of the meta-heuristic 
selection and acceptance mechanism, ѱ, is shown in Figure 7. 

Figure 7. Acceptance and Selection Rules 
 
 
Referring to lines 17-20, the current Hi is penalized and will miss at least one turn from being selected in the 

next iteration. Apart from one’s own performance in terms of objective value improvement, diversification, and 
intensification, a particular LLH can be chosen more frequently than others owing to the random selection of 
meta-heuristics within the Tabu search (line 18). 

 
Finally, it is worth mentioning here that the adopted LLHs are designed for continuous problems. As such, 

to deal with discrete parameters and values, each individual Zj needs to capture the parameters as a valid range 
of integer numbers (i.e. based on the user inputs). When the HHH iterates, each Zj will be updated accordingly 
depending on the chosen LLH (i.e. based on the specific LLH transformation equation). Here, the LLH update 
may result into the need to do rounding off floating point values. Apart from rounding off floating point values, 
there is also the need to deal with out-of-range values.  Within HHH, we establish the boundary condition (i.e. 
as clamping rule) to restrict parameter values to both lower and higher bounds. In this way, when Zj moves out-

Z1 = {2   1    0    1}
Z2 = {1   2 0   1}

Zbest =>  Z3 = {0  2 1 1}

d (Z1, Zbest) = 4
d (Z2, Zbest) = 3

The dv value  for  Zbest = d (Z1, Zbest) + d (Z2, Zbest)            
= 7 

Z population Hamming Distance

Non-domain feedback on 
the quality of the solution

    Particle 
Swarm 
Optimizati
on

     LLH1

     LLH2

     LLHn

Potential Solutions

Meta-heuristic 
acceptance and 

selection mechanism 

LLH -Low Level 
Meta-Heuristic

…………...

Acceptance and 
Selection Rules for ѱ

Given
LLHi = Current Running Meta-heuristic
   F1  = Improvement_Operator(Z)
   F2  = Diversify_Operator(Z)
   F3  = Intensify_Operator(Z)

If  ѱ(Hi,F1 ,F2 ,F3) improves 
     HLH accepts and keeps LLHi

Else 
    HLH selects a new LLHi
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of-range, the boundary condition brings it back to the search space. We configure our boundary condition in 
such a way that when the Zj value reaches a certain dimensional bound, we reset its position to the other 
endpoint. For example, if we have a parameter with a range of values from 1 to 3, when the position is greater 
than 3, the position is reset to 1. 

 

4.2.   Teaching Learning based Optimization LLH 

The Teaching Learning Based Optimization (TLBO) [14] is a population based meta-heuristic that draws on 
the analogy of the teaching and learning process between teachers and students. In TLBO, teachers attempt to 
impart knowledge in a way that will enhance the knowledge of their students. With knowledge gained from a 
particular teacher, the knowledge of the students would be enhanced. As teachers have different competency 
levels, there could be potential improvements if students learn from other teachers. Students can also learn from 
other students, yielding similar improvements.  

 
The TLBO algorithm is shown in Figure 8. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 8. The  Teaching Learning based Optimization LLH 

 
During the teacher phase (lines 7-10), each student learns from the best teacher Zbest teacher, that is, the best 

individual in the population. The student will move toward the Zbest teacher teacher by taking into account the 
current mean value of the learners, Zmean, that represents the qualities of all the students in the population (line 
8). The movement of the learner is also affected by the teaching factor, Ti

F (line 7). 
 
For the learner phase (lines 11-18), each student attempts to improve its knowledge through interaction with 

its peers. Specifically, the student Zi will select a peer learner Zj (where i≠j). If Zi has better fitness than Zj, the 
latter is moved toward the former (line 15) and vice versa (line 16).  

 
Concerning its implementation, unlike most meta-heuristic algorithms, TLBO has twice more fitness 

function evaluations due to the two phases (teacher and learner). For this reason, direct comparative experiments 
with TLBO and other meta-heuristic algorithms can be misleading. Additionally, despite its parameter free 
claims, TLBO still requires tuning of its population size and iteration. Recently, the original author for TLBO 
[14] has been criticized for not reporting the duplicate elimination step in the implementation resulting into 

Input: the population Z = {Z1, Z2… ZS} 
Output:  the updated population Z’ = {Z1’, Z2’… ZS’} 
1: Obtain Zmean from the population Z = {Z1, Z2… ZS}  
2: Choose global Zbest teacher from the population Z = {Z1, Z2… ZS} 
3: For i=1 to S 
4:  { 
          /******Teacher Phase******/ 
5:     Obtain teaching factor Ti

F = round (1+ rand(0,1){2-1}) 
6:     Update the current population according to Zi

(t+1) = Zi
(t) + rand(0,1)(Zbest teacher  - (Ti

F  · Zmean) 
         subjected to clamping rule 
7:     If Zi

(t+1) is better than Zi
(t), i.e. f(Zi

(t+1))>f(Zi
(t))  

8:           Zi
(t) = Zi

(t+1)  
         /******Learner Phase******/ 
9:   Randomly select Zj such that j≠ i  
10:   If Zi

(t) is better than Zj , i.e. f(Zi
(t))>f(Zj)  

11:           Zi
(t+1) = Zi

(t) + rand(0,1)( Zi
(t) - Zj ) 

12:    Else 
13:           Zi

(t+1) = Zi
(t) + rand(0,1)( Zj

(t) – Zi ) 
14:     If Zi

(t+1) is better than Zi
(t) , i.e. f(Zi

(t+1))>f(Zi
(t))  

15:           Zi
(t) = Zi

(t+1)  
16: } 
17:  return Z 
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inaccurate and unfair comparative results [57]. For our implementation, we consider the TLBO implementation 
without the duplicate elimination step (similar to that of Yarpiz [58]).  

 

4.3.   Global Neighborhood Algorithm LLH 

Like TLBO, the Global Neighborhood Algorithm (GNA) [15], is a population based meta-heuristic. GNA 
has only two control parameters; population size and the maximum number of iterations. The GNA algorithm is 
shown in Figure 9. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 9. The Global Neighborhood Algorithm LLH 

 
In GNA, the population is divided into two phases. In the first phase, GNA performs a local search through 

perturbation of Zi (line 5). If the pertubated Zi has a better fitness value, then the incumbent is replaced (lines 4-
5). 

 
In the second phase, GNA performs a random search. If Zrandom has better fitness value than the current Zi, Zi  

will be replaced with Zrandom (lines 10-11). 
 

4.4.   Particle Swarm Optimization LLH 

Particle Swarm Optimization (PSO) [16] is a population based meta-heuristic that simulates the swarm 
behavior of flocks of birds or schools of fish. PSO comprises a group of particles with negligible mass and 
volume and which move through hyperspace. Each particle attempts to find a better position (solution) by 
recording and updating essential information about its movement. This information is related to the ith particle of 
interest, which includes the current position (Zi), the velocity (Vi), local best (Zlbest) and global best (Zgbest). The 
PSO algorithm is shown in Figure 10. 

 
  

Input: the population Z = {Z1, Z2… ZS} 
Output:  the updated population Z’ = {Z1’, Z2’… ZS’} 
1: For i=1 to S 
2:  { 
          /******Local Search******/ 
3:      If i < (N/2) 
4:        { 
5:           Generate a new solution according to Zi

(t+1) = pertubate one value from Zi
(t)          

6:            If Zi
(t+1) is better than Zi

(t), i.e. f(Zi
(t+1))>f(Zi

(t))  
7:                 Zi

(t) = Zi
(t+1)  

8:         } 
           /******Global Search******/ 
9:     Else     
10:       { 
11:         Generate a random solution Zrandom  

12:         If f(Zrandom) is better than Zi
(t), i.e. f(Zrandom)>f(Zi

(t))  
13:              Zi

(t) = Zrandom  
14:      } 
15:  } 
16:  return Z 
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Figure 10. The  Particle Swarm Optimization LLH 

 
During the search, each Zith

 particle of the population stochastically adapts its trajectory through velocity its 
local best (Zlbest) and global best value (Zglobal best) through velocity (Vi) as indicated in lines 7-8. In turn, the 
velocity (Vi) exploits three coefficients c1, c2, and ω respectively. Here, c1 and c2 are the acceleration coefficients 
that control the personal and global best to the updated velocity; and ω is the inertia weight that is used to 
balance the global/local searches of the particle. In lines 9-10, if the updated Zi has better fitness than current Zi, 
the incumbent is updated. Finally, Zbest will be assigned to Zi if the latter has better fitness (lines 11-12). 

 

4.5.   The Cuckoo Search Algorithm LLH 

The Cuckoo Search algorithm (CS) [17] is a population based meta-heuristic algorithm that is based on the 
parasitic behavior and aggressive reproduction strategy of Cuckoos. The female Cuckoos lay their eggs 
(potential solutions in the algorithm) in the nest of other birds and have the ability to imitate the colors and 
pattern of the host eggs. Cuckoos also have the ability to remove existing (the host birds, or other cuckoos) from 
the nest. In the algorithm, this is akin to replacing a poorer solution with a better one.  The CS algorithm is 
shown in Figure 11. 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input: the population Z = {Z1, Z2… ZS} 
Output:  the updated population Z’ = {Z1’, Z2’… ZS’} 
1: Initialize the inertial weight ω, and the learning factors c1, c2  
2: Initialize the population velocity V = {V1, V2… VS} 
3: Choose global Zgbest from the population Z = {Z1, Z2… ZS}  
4: Set local best Zlbest = Zgbest 
5: For i=1 to S 
6:  { 
7:     Update the current velocity according to Vi

(t+1) = ω Vi
(t) + c1 rand(0,1)(Zlbest

(t)-Xi
(t)) +  

                                                                                       c2 rand(0,1)(Zgbest-Xi
(t)) 

8:     Update the current population according to Zi
(t+1) = Zi

(t) + Vi
(t+1) 

         subjected to clamping rule 
9:      If Zi

(t+1) is better than Zi
(t), i.e. f(Zi

(t+1))>f(Zi
(t))  

10:           Zi
(t) = Zi

(t+1)  
          /******Update Global Best******/ 
11:    If Zi

(t) is better than Zgbest , i.e. f(Zi
(t))>f(Zgbest)  

12:           Zgbest = Zi
(t) 

13: } 
14:  return Z 
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Figure 11. The Cuckoo Search LLH 

 
The CS algorithm provides two search capabilities: global search, which allows the algorithm to jump out 

of local optimum, and local search by intensifying search around the current best solution, via Lévy Flight 
motion. The Lévy Flight motion is a random walk that takes a sequence of jumps, which are selected from a 
heavy tailed probability function.  For our Lévy Flight implementation, we adopt the well-known Mantegna’s 
algorithm [17]. Within this algorithm, a step length can be defined as: 

 
𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆 =

𝑆𝑆

[𝑐𝑐]
1
𝛽𝛽

                                                                    (3) 

 
where 𝑆𝑆 and 𝑐𝑐  are approximated from the normal Gausian distribution in which: 
 

𝑆𝑆 ≈ 𝑁𝑁(0,𝜎𝜎𝑢𝑢2)  ∙  𝜎𝜎𝑢𝑢            𝑐𝑐 ≈ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) ∙  𝜎𝜎𝑣𝑣        (4) 

For  𝑐𝑐  value estimation, we use 𝜎𝜎𝑣𝑣 = 1. For 𝑆𝑆 value estimation, we evaluate the Gamma function(ᴦ) with the 
value of 𝛽𝛽 = 1.5 [59], and  obtain 𝜎𝜎𝑢𝑢  using: 
 

𝜎𝜎𝑢𝑢 =   �
ᴦ(1 + 𝛽𝛽) ∙ sin (𝜋𝜋𝛽𝛽2 )

ᴦ(1 + 𝛽𝛽)
2 ) ∙ 𝛽𝛽 ∙ 2

(𝛽𝛽−1)
2

�

1
𝛽𝛽

                                      (5)       

In our case, the Gamma function(ᴦ) implementation is adopted from William et al [60]. 
 
 
 
 
 
 
 

Input: the population Z = {Z1, Z2… ZS} 
Output:  the updated population Z’ = {Z1’, Z2’… ZS’} 
0:  Set α and elitism factor pa 
1: For i=1 to S 
2:  { 
3:      Generate new eggs according to Zi

(t+1) = Zi
(t) + α⊕ Lévy Flight 

         subjected to clamping rule 
4:      If Zi

(t+1) is better than Zi
(t), i.e. f(Zi

(t+1))>f(Zi
(t))  

5:           Zi
(t) = Zi

(t+1)  
6:   } 
     /******Maintain Elitism******/ 
7: For j=1 to (pa·S)     
8:   { 
9:      Generate random Zrandom  
10:    Get the worst Zworst

(t) 

11:    If f(Zrandom)is better than Zworst
(t), i.e. f(Zrandom)>f(Zworst

(t))  
12:           Zworst

(t) = Zrandom 
13:   } 
14: return Z 
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During the search, Zi will be continuously updated from its previous value with the appropriate step size (α), 

entry-wise multiplication (⊕) and Lévy Flight motion as indicated in line 3. If the updated Zi has better fitness 
than the current Zi, the former is updated (lines 4-5). CS also maintains an elite population of solutions (lines 7-
13). CS will replace a fraction pa·S of the poorly generated Zworst solutions (where pa is the elitism factor ranging 
from 0.0<pa<1.0) with a random solution Zrandom, iteratively if the corresponding fitness improves.  

 
It is worth mentioning here that the number of fitness function evaluation for CS cannot be determined 

statistically owing to the probability pa. However, a counter can be put during run-time to determine the exact 
number of fitness evaluation (so as to have the same fitness evaluation as other LLHs). 

5.   HHH Parameter Calibration 

As far as calibration is concerned, there are generally two types of parameters of concern; specific 
algorithm parameters and common algorithm parameters. The former relates to the algorithm settings of the four 
LLHs, whilst the latter accounts for the common parameters between LLHs and HLH.   

 
Table 2 summarizes the parameters that are to be calibrated. 

 
Table 2. Specific and Common Algorithm Parameters 

 Specific Algorithm Parameters Common Parameters 
Tabu Search HLH Tabumax =4  

 
Max iteration, ϴmax =20 
Population size, S= 40 

Maximum Fitness Evaluation, Fmax =400,000 

Teaching Learning based 
Optimization LLH 

- 

Global Neighborhood 
Algorithm  LLH 

- 

Particle Swarm LLH c1=1.375, c2=1.375, ω=0.3 
Cuckoo Search LLH pa=0.25 

 
 

In the design of HHH, the specific algorithm parameters are the Tabumax of the Tabu lists for TS HLH, c1,c2 
(i.e. acceleration coefficients) and ω (inertial weight) for PSO LLH as well as  pa (elitism factor) for CS LLH. 
As for TLBO LLH and GNA LLH, their parameters are ϴmax and S (which are also shared by PSO LLH, 
Cuckoo LLH and Tabu HLH as well). As far as the calibration of specific algorithm parameters is concerned, 
the value of Tabumax = 4 can be easily deduced as the number of adopted meta-heuristics as LLH.  Any 
particular meta-heuristic can either be available for selection or penalized in the Tabu list depending on its prior 
performance. Meanwhile, the value of c1= 1.375, c2= 1.375, ω = 0.3 and pa = 0.25 are adopted from existing 
work reported in the context of adopting PSO [7] and CS [11] as t-way `test generation strategy respectively. 

 
Unlike the specific parameters, the calibration of common parameters ϴmax iteration and population size, S, 

can be subtle owing to the way each individual LLH operates. As highlighted earlier, TLBO requires twice as 
much fitness function evaluation as GNA and PSO. Furthermore, Cuckoo also has non-deterministic number of 
fitness evaluation owing to the elitism probability pa. This large diversification makes it hard to select the 
appropriate value for both ϴmax and S to ensure fair comparison with other meta-heuristic based strategies 
particularly when it comes to the fitness function evaluation. For this reason, we decide to establish the limit on 
the maximum fitness function evaluation, called Fmax, as seen in Table 2. Specifically, we define Fmax = 400,000 
as it was empirically verified to be large enough to allow HHH’s solution to converge even for the largest 
configurations. Internally, we have implemented a global static counter (as part of fitness function evaluation) 
that ensures the Fmax limit is adhered to.  

 
Having established the Fmax = 400,000 as the stopping criterion, the selection of ϴmax and S follow 

accordingly. In this case, any values of ϴmax and S can be selected as long as the value of Fmax is observed.  For 
example, if the selected values of ϴmax =20 and S=40, the minimum fitness evaluation per iteration is at least 
20*40=800 and the maximum possible iteration for convergence is 400,000/800 = 500. In similar manner, if the 
selected values of ϴmax =20 and S=100, the minimum fitness evaluation per iteration is at least 20*100=2000 
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and the maximum possible iteration for convergence is 400,000/2000 = 200. For our case, considering the 
recommendation from the scientific papers in [61, 62], we opt to adopt the former case with ϴmax =20 and S=40. 

 

6.   Evaluation 

Our evaluation focuses on two related goals. Firstly, we compare the performance of HHH against existing 
strategies. Then, we verify our findings using statistical analysis. In our evaluation, we note that the comparative 
performances with the same number of objective function evaluations are not possible for meta-heuristic-based 
strategies (i.e. most implementations are not publically available; hence, the settings of each of the algorithm 
parameters are beyond our controls).  

 

6.1.   Benchmarking with Existing Strategies on Test Sizes 

 
We compare HHH against existing strategies based on the benchmark experiments in terms of test sizes as 

defined in [9, 11, 56, 63-68]. Considering that the test sizes are absolute and not affected by the computational 
platform, our comparison spans many t-way strategies from meta-heuristic-based to general computation ones. 
Concerning the comparison between meta-heuristic-based strategies, much criticism can be highlighted in terms 
of the way the results are presented in the scientific literature. In particular, important information related to 
individual strategy execution involving the average results as well as the maximum number of fitness 
evaluations (Fmax) are often missing, thus, hindering a fair comparison between them.  

 
To put our work into perspectives, we highlight all the algorithm parameters for the meta-heuristic-based 

strategies of interests obtained from their respective publications (as depicted in Table 3). 
 

Table 3. Algorithm Parameters for Existing Meta-heuristic-based Strategies of Interests  
Strategies Parameters Values 
HSS [8] Max Improvisation/Iteration 1000 

Harmony Memory Size 100 
Harmony Memory Considering 
Rate 

0.7 

Pitch Adjustment Rate 0.2 
PSTG [6, 7] Max Iteration 100 

Population Size 80 
Acceleration Coefficients 1.375 
Inertia Weight 0.3 

CS [17] Max Iteration 100 
Population Size 100 
Probability pa 0.25 

SA [51] Max Iteration 100 
Starting Temperature 20 
Cooling Schedule 0.9998 

GA [5] Max Iteration 1000 
Population Size  25 
Best Cloned 1 
Tournament Selection 0.8 
Random Crossover 0.75 
Gene Mutation 0.03 
Max Stale Period 3 
Escape Mutation 0.25 

ACO [5] Iteration 1000 
Number of Ants 20 
Pheromone Control 1.6 
Pheromone Persistence 0.5 
Pheromone Amount 0.01 
Initial Pheromone 0.4 
Heuristic Control 0.2 
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Elite Ants 2 
Max Stale Period 5 

 
  
We do not compare the performance in terms of execution times as most implementations are not available 

to be executed on the computer we used (a desktop PC with Windows 8, 2.5 GHz i5 CPU, 8 GB of RAM). 
Furthermore, in the case of meta-heuristic-based strategies, the time execution comparison can also be unfair 
[69-72] as the number of fitness evaluation varies significantly for each strategies.  

 
Owing to its non-deterministic nature, HHH is executed 30 times for each experiment. The parameter 

settings are based on the values obtained earlier (with Tabumax =4, c1=1.375, c2=1.375, ω=0.3, pa=0.25, S=20, 
ϴmax =40 and Fmax = 400,000). Both the best and average test sizes for each experiment are reported side-by-
side. To facilitate discussion, whenever possible, we have grouped the experiments into meta-heuristic-based 
and general computation-based strategies respectively. Bold cell entries indicate the best performance size 
whilst cell entries marked NA (Not Available) indicate that the results are unavailable in the scientific literature. 
The complete results are summarized in Tables 4 through 11. 

 
 

Table 4. Benchmarking CA and MCA Configurations 

System Configuration 
Meta-heuristic-based Strategies General Computational-based Strategies 

HHH HSS PSTG CS SA GA ACO mAETG AETG IPOG Jenny TVG Best  Ave 
CA(N; 2, 34) 9 9 9 9 9 9 9 9 9 9 9 10 11 
CA(N; 2, 313) 17 18.55 18 17 20 16 17 17 17 15 20 20 19 
CA(N; 2, 510) 42 43.9 43 45 NA NA NA NA NA NA 50 45 51 
CA(N; 3, 36 ) 33 38.25 39 42 43 33 33 33 38 47 53 51 49 
CA(N; 3, 46 ) 64 69.35 70 102 105 64 64 64 77 105 64 112 123 
CA(N; 3, 66) 325 329.35 336 338 350 300 331 330 330 343 382 373 407 
CA(N; 3, 57) 217 220.35 236 229 253 201 218 218 218 229 274 236 271 
MCA(N; 2,  51 38 22) 20 21.35 21 21 21 15 15 16 20 19 19 23 22 
MCA(N; 2, 71 61 51 46  38 23) 48 51.00 50 48 51 42 42 42 44 45 43 50 51 
MCA(N; 2, 61 51 46  38 23) 36 39.25 38 39 43 30 33 32 35 34 35 40 43 
MCA(N; 3, 52 42 32) 100 108.35 120 125 NA 100 108 106 114 

 
 

NA 

111 131 136 
MCA(N; 3, 101 62 43 31) 382 390.60 378 385 393 360 360 361 377 383 399 414 
MCA(N; 4, 3445) 427 434.20 436 447 

NA NA NA NA NA 

463 457 487 
MCA(N; 4, 51 38 22) 283 286.80 286 292 324 303 313 
MCA(N; 4, 82 72 62 52) 4305 4323.05 4395 4506 4776 4580 5124 
MCA(N; 4, 65 54 32) 2436 2446.50 2520 3154 3273 3033 2881 
MCA(N; 4, 101 91 81 71 61 51 41 31 21) 5873 5912.75 5915 5906 5492 6138 6698 

 
 

Table 5. CA (N; t, 210) with t varied from 2 to 6 

t 
Meta-Heuristic-based Strategies General Computational-based Strategies 
HHH HSS PSTG CS IPOG ITCH Jenny TConfig TVG Best Ave 

2 8 8.25 7 8 8 10 6 10 9 10 
3 16 16.2 16 17 16 19 18 18 20 17 
4 36 39.45 37 37 36 49 58 39 45 41 
5 79 80.6 81 82 79 128 NA 87 95 84 
6 153 156.15 158 158 157 352 NA 169 183 168 

 
  

Table 6. CA (N; t, 510) with t varied from 2 to 6 

t 

Meta-Heuristic-based Strategies General Computational-based Strategies 

HHH 
HSS PSTG CS IPOG 

ITC
H 

Jenn
y 

PICT TConfig TVG GTWay MIPOG 
CTE-
XL Best Ave 

2 43 44.2 43 45 45 50 45 45 47 48 50 46 45 50 

3 280 282.95 276 287 297 313 225 290 310 312 342 293 281 347 

4 1638 1642.21 1624 1716 1731 1965 1750 1719 1812 1878 1971 1714 1643 NA 

5 8704 8704.01 8866 9425 9616 11009 NA 9437 9706 NA NA 9487 8169 NA 

6 47800 48300.32 47550 50350 50489 57290 NA NA 47978 NA NA 44884 45168 NA 
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Table 7. CA (N; 4, 5k) with k varied from 5 to 12 

k 

Meta-Heuristic-based Strategies General Computational-based Strategies 

HHH 
HSS PSTG CS IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG 

Best Ave 

5 746 754.45 751 779 776 908 625 837 810 773 849 731 625 

6 967 976.30 990 1001 991 1239 625 1074 1072 1092 1128 1027 625 

7 1151 1159.25 1186 1209 1200 1349 1750 1248 1279 1320 1384 1216 1125 

8 1320 1327.00 1358 1417 1415 1792 1750 1424 1468 1532 1595 1443 1384 

9 1483 1488.85 1530 1570 1562 1793 1750 1578 1643 1724 1795 1579 1543 

10 1635 1642.05 1624 1716 1731 1965 1750 1719 1812 1878 1917 1714 1643 

11 1784 1786.15 1860 1902 2062 2091 1750 1839 1957 2038 2122 1852 1722 

12 1915 1925.1 2022 2015 2223 2285 1750 1964 2103 NA 2268 2022 1837 

 
 

Table 8. CA (N; 4, v10) with v varied from 2 to 7 

v 

Meta-Heuristic-based Strategies General Computational-based Strategies 

HHH 
HSS PSTG CS IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG 

Best Ave 

2 36 39.45 37 34 28 49 58 39 43 45 40 46 43 

3 207 209.51 211 213 211 241 336 221 231 235 228 224 217 

4 668 670.52 691 685 698 707 704 703 742 718 782 621 637 

5 1635 1642.05 1624 1716 1731 1965 1750 1719 1812 1878 1917 1714 1643 

6 3405 3410.42 3475 3880 3894 3935 NA 3519 3735 NA 4159 3514 3657 

7 6412 6505.34 6398 NA NA 7061 NA 6462 NA NA 7854 6459 5927 
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Table 9. CA (N; t, v7) with variable values 2 ≤ v ≤ 5, with t varied up to 6 

t V 
Meta-Heuristic-based Strategies General Computational-based Strategies 

HHH HSS PSTG CS Jenny TConfig ITCH PICT TVG CTE-XL IPOG 
Best Ave 

2 

2 7 7.00 7 6 6 8 7 6 7 7 8 8 
3 14 15.20 14 15 15 16 15 15 16 15 16 17 
4 23 24.9 25 26 25 28 28 28 27 27 30 28 
5 35 36.35 35 37 37 37 40 45 40 42 42 42 

3 

2 15 15.0 12 13 12 14 16 13 15 15 15 19 
3 49 50.3 50 50 49 51 55 45 51 55 54 57 
4 112 115.4 121 116 117 124 112 112 124 134 135 208 
5 216 219.7 223 225 223 236 239 225 241 260 265 275 

4 

2 31 32.35 29 29 27 31 36 40 32 31 

NA 

48 
3 148 153.25 155 155 155 169 166 216 168 167 185 
4 482 484.85 500 487 487 517 568 704 529 559 509 
5 1153 1160.40 1174 1176 1171 1248 1320 1750 1279 1385 1349 

5 

2 58 58.40 53 53 53 57 56 

NA 

57 59 

NA 

128 
3 435 439.35 437 441 439 458 477 452 464 608 
4 1805 1815.40 1831 1826 1845 1938 1792 1933 2010 2560 
5 5413 5431.25 5468 5474 5479 5895 NA 5814 6257 8091 

6 

2 64 64.0 64 64 66 87 64 

NA 

72 78 

NA 

64 
3 853 922.55 916 977 973 1087 921 1015 1016 1281 
4 5478 5497.15 4096 5599 5610 6127 NA 5847 5978 4096 
5 21107 21159.95 21748 21595 21597 23492 NA 22502 23218 28513 
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Table 10. CA (N; t, 3k) with variable number of parameters 3≤ k ≤12, with t varied up to 6 

t K 
Meta-Heuristic-based Strategies General Computational-based Strategies 
HHH HSS PSTG CS Jenny TConfig ITCH PICT TVG CTE-XL IPOG Best Ave 

2 

3 9 9.80 9 9 9 9 10 9 10 10 10 11 
4 9 9.00 9 9 9 13 10 9 13 12 14 12 
5 11 11.35 12 12 11 14 14 15 13 13 14 14 
6 13 14.20 13 13 13 15 15 15 14 15 14 15 
7 14 15.00 15 15 14 16 15 15 16 15 16 17 
8 15 15.60 15 15 15 17 17 15 16 15 17 17 
9 15 16.30 17 17 16 18 17 15 17 15 18 17 

10 16 16.90 17 17 17 19 17 15 18 16 18 20 
11 17 17.75 17 17 18 17 20 15 18 16 20 20 
12 16 17.95 18 18 18 19 20 15 19 16 20 20 

3 

4 27 29.45 30 30 28 34 32 27 34 34 34 39 
5 39 41.25 39 39 38 40 40 45 43 41 43 43 
6 33 39.00 45 45 43 51 48 45 48 49 52 53 
7 49 50.80 50 50 48 51 55 45 51 55 54 57 
8 52 53.65 54 54 53 58 58 45 59 60 63 63 
9 57 57.85 59 58 58 62 64 75 63 64 66 65 

10 60 61.25 62 62 62 65 68 75 65 68 71 68 
11 63 64.45 66 64 66 65 72 75 70 69 76 76 
12 66 67.45 67 67 70 68 77 75 72 70 79 76 

4 

5 81 86.5 94 96 94 109 97 153 100 105 

NA 

115 
6 131 133.5 132 133 132 140 141 153 142 139 181 
7 150 153.3 154 155 154 169 166 216 168 172 185 
8 173 175.15 174 175 173 187 190 216 189 192 203 
9 167 188.65 195 195 195 206 213 306 211 215 238 

10 207 209.45 212 210 211 221 235 336 231 233 241 
11 222 225.05 223 222 229 236 258 348 249 250 272 
12 238 240.35 244 244 253 252 272 372 269 268 275 

5 

6 267 287.55 310 312 304 348 305 

NA 

310 321 

NA 

393 
7 432 437.25 436 441 434 458 477 452 462 608 
8 514 518.05 515 515 515 548 583 555 562 634 
9 585 590.75 597 598 590 633 684 637 660 771 

10 656 663.31 670 667 682 714 773 735 750 784 
11 728 733.55 753 747 778 791 858 822 833 980 
12 798 802.01 809 809 880 850 938 900 824 980 

6 

7 900 927.65 977 977 963 1087 921 

NA 

1015 1024 

NA 

1281 
8 1392 1399.43 1402 1402 1401 1466 1515 1455 1484 2098 
9 1679 1688.35 1684 1684 1689 1840 1931 1818 1849 2160 

10 1960 1967.75 1991 1980 2027 2160 
NA 

2165 2192 2726 
11 2230 2240.05 2255 2255 2298 2459 2496 2533 2739 
12 2503 2503.02 2528 2528 2638 2757 2815 2597 3649 
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Table 11. Four CA derived from Real Software System Configurations, t is varied up to 6 

System 
Configuration 

Meta-Heuristic-based Strategies General Computational-based Strategies 

HHH 
HSS PSTG CS Jenny TConfig ITCH PICT TVG CTE-XL IPOG-D IPOG 

Best Ave 
BBS  

CA(2,34) 9 9.00 9 9 9 13 10 9 13 12 10 15 12 

CA(3,34) 27 29.70 27 27 27 34 32 27 34 32 37 27 39 
TCAS  

CA(2,27 32 41 102) 100 110.45 106 100 100 106 109 120 100 100 100 130 100 
CA(3,27 32 41 102) 400 411.05 412 400 400 413 472 2388 400 434 426 480 400 
CA(4,27 32 41 102) 1509 1524.75 1531 1520 1537 1536 1548 1484 1369 1599 NA NA 1377 
CA(5,27 32 41 102) 4492 4492.01 4569 4566 4566 4621 NA NA 4250 4773 NA 13458 4283 
CA(6,27 32 41 102) 11735 11742.80 11740 11743 11431 11625 NA NA 11342 NA NA 41280 11939 

Mobile Phone  
CA(2,22 33) 9 11.02 9 9 9 12 12 15 10 10 9 15 11 
CA(3,22 33) 27 33.25 27 27 27 29 30 45 29 30 32 34 27 
CA(4,22 33) 54 54.15 54 54 54 59 56 138 59 55 NA NA 54 

Spin Simulator  
CA(2,213 45) 24 26.11 25 24 NA 26 29 28 23 27 26 28 20 
CA(3,213 45) 102 104.81 106 101 NA 111 113 196 96 111 113 112 78 
CA(4,213 45) 387 397.05 390 380 NA 412 427 1296 353 288 NA NA 341 
CA(5,213 45) 1260 1270.43 1265 1270 NA 1304 NA NA 1185 842 NA 5054 1243 
CA(6,213 45) 3636 3645.41 3641 3648 NA 3538 NA NA 3420 NA NA 30214 3516 

 

6.2.   Statistical Analysis 

 
We conduct our statistical analysis for all the obtained results in Tables 4 through 11 based on multiple 

pairwise comparisons with 95% confidence level (i.e. α=0.05). To be specific, we adopt the Friedman tests 
subjecting HHH as the control strategy (i.e. 1xN pair comparison). In all the cases, the table entries with NA are 
ignored as their contributions are incomplete (i.e. Friedman tests must be based on complete samples).  Under 
the null hypothesis, Friedman test states that all the strategies are the equivalent, so a rejection of this hypothesis 
implies the existence of differences among the performance of all the strategies studied. It must be stressed here 
that the differences of performances may not be necessarily involved the pairing of HHH alone (i.e. the 
Friedman test analysis can also signify the differences in performances for other pairing). The null hypothesis 
(H0) is only rejected if the Friedman statistic (χ2) is greater than the critical value. After this, a post-hoc test 
based on the Wilcoxon Rank-Sum could be used to find whether the control strategy presents statistical 
difference with regards to the remaining strategies in the comparison.  The null hypothesis (H0) is that there is 
no significant difference as far as the test size is concerned for HHH and each individual strategy (i.e. the two 
populations have the same medians). Our alternative hypothesis (H1) is that test size for HHH is less than that of 
each individual strategy (i.e. HHH has a lower population median). To control the Type I - family wise error 
rate (FWER) due to multiple comparisons, we have adopted the Bonferroni-Holm correction for α values. In this 
case, the p-values are first sorted in ascending order such that p1< p2<p3...<pi…<pk. Then, α is adjusted based 
on: 

 
𝛼𝛼𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =

𝛼𝛼
𝑘𝑘 − 𝑖𝑖 + 1

                       (6) 

If p1  < αHolm, the corresponding hypothesis is rejected and we are allowed to make similar comparison for p2. If 
the second hypothesis is rejected, the test proceeds with the third and so on. As soon as a certain null hypothesis 
cannot be rejected, all the remaining hypotheses are retained as well. The complete statistical analyses are 
shown in Tables 12 through 27.   

 
 



21 
 
 

 
 
 
 
 

Table 12. Friedman Test for Table 4 
Friedman Test Conclusion 

Degree of freedom = 5, α = 0.05, 
Critical value = 11.0705 
Friedman statistic (χ2)   = 49.099 

49.099  > critical value, reject Ho and 
proceed to post-hoc test 
 

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of CS, SA, 
GA, ACO, mAETG and AETG are ignored 

 
 

Table 13. Post-hoc Wilcoxon Rank-Sum Tests for Table 4 
Pair Comparison p-value in 

ascending order 
Bonferroni-Holm 
Correction: α Holm 

Conclusion 

HHH vs Jenny 0.0001451 0.01 p-value < α Holm , 
Reject Ho 

HHH vs TVG 0.0001454 0.0125 p-value < α Holm , 

Reject Ho 
HHH vs PSTG 0.0007959 0.0166 p-value < α Holm , 

Reject Ho 
HHH vs HSS 0.0007959 0.0166 p-value < α Holm , 

Reject Ho 
HHH vs IPOG 0.01537 0.05 p-value < α Holm , 

Reject Ho 
 
 

Table 14. Friedman Test for Table 5 
Friedman Test Conclusion 

Degree of freedom = 7, α = 0.05, 
Critical value = 14.0671 
Friedman statistic (χ2)  = 31.2134 

31.2134 > critical value, reject Ho and 
proceed to post-hoc test 
 

*Owing to incomplete sample (i.e. with one or more NA entries), the contribution of  ITCH is 
ignored 

 
Table 15. Post-hoc Wilcoxon Rank-Sum Tests for Table 5 

Pair Comparison p-value in 
ascending order 

Bonferroni-Holm 
Correction: α Holm  

Conclusion 

HHH vs Jenny 0.02108 0.007142 p-value > α Holm , 
Cannot reject Ho 

HHH vs TVG 0.02108  Cannot reject Ho 
HHH vs TConfig 0.02156 Cannot reject Ho 
HHH vs IPOG 0.02156 Cannot reject Ho 
HHH vs PSTG 0.0328 Cannot reject Ho 
HHH vs HSS 0.09873 Cannot reject Ho 
HHH vs CS 0.1587 Cannot reject Ho 

 
Table 16. Friedman Test for Table 6 

Friedman Test Conclusion 
Degree of freedom = 7, α = 0.05, 
Critical value = 14.0671 
Friedman statistic (χ2)  = 28.388 

28.388 > critical value, reject Ho and 
proceed to post-hoc test 
 

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of  ITCH, 
Jenny, TConfig, TVG and CTE-XL are ignored 

 
Table 17. Post-hoc Wilcoxon Rank-Sum Tests for Table 6 

Pair Comparison p-value in 
ascending order 

Bonferroni-Holm 
Correction: α Holm 

Conclusion 

HHH vs HSS 0.02156 0.007142 p-value > α Holm , 

Cannot reject Ho 
HHH vs PSTG 0.02156  Cannot reject Ho 
HHH vs CS 0.02156 Cannot reject Ho 
HHH vs IPOG 0.02156 Cannot reject Ho 
HSS vs PICT 0.02156 Cannot reject Ho 
HSS vs GTWay 0.2501 Cannot reject Ho 
HSS vs MIPOG 0.6571 Cannot reject Ho 
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Table 18. Friedman Test for Table 7 
Friedman Test Conclusion 

Degree of freedom = 10, α = 0.05, 
Critical value = 18.3070 
Friedman statistic (χ2)  = 56.022 

56.022 > critical value, reject Ho and 
proceed to post-hoc test 
 

*Owing to incomplete sample (i.e. with one or more NA entries), the contribution of TConfig 
is ignored 

 
 

Table 19. Post-hoc Wilcoxon Rank-Sum Tests for Table 7 
Pair Comparison p-value in 

ascending order 
Bonferroni-Holm 
Correction: α Holm 

Conclusion 

HHH vs HSS 0.005859 0.005 p-value (3 d.p) ≈ α Holm , 

Reject Ho if confident level is 
set  at 90% 

HHH vs PSTG 0.005859 0.005 p-value (3 d.p) ≈ α Holm , 

Reject Ho if confident level is 
set at 90% 

HHH vs CS 0.005859 0.005 p-value (3 d.p) ≈ α Holm , 

Reject Ho if confident level is 
set at 90% 

HHH vs IPOG 0.005859 0.005 p-value (3 d.p) ≈ α Holm , 

Reject Ho if confident level is 
set at 90% 

HSS vs Jenny 0.005859 0.005 p-value (3 d.p) ≈ α Holm , 

Reject Ho if confident level is 
set at 90% 

HSS vs PICT 0.005859 0.005 p-value (3 d.p) ≈ α Holm , 

Reject Ho if confident level is 
set at 90% 

HSS vs TVG 0.008645 0.0125 p-value < α Holm , 

Reject Ho if confident level is 
set at 90% 

HHH vs HSS 0.01253 0.0166 p-value < α Holm , 

Reject Ho if confident level is 
set at 90% 

HHH  vs ITCH 0.2877 0.025 p-value > α Holm , 
Cannot reject Ho 

HHH  vs MIPOG 0.8962  Cannot reject Ho 
 

Table 20. Friedman Test for Table 8 
Friedman Test Conclusion 

Degree of freedom = 6, α = 0.05, 
Critical value = 12.5916 
Friedman statistic (χ2)  = 25.500 

25.500 > critical value, reject Ho and 
proceed to post-hoc test 
 

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG, 
CS, ITCH, PICT, and TConfig are ignored 

 
Table 21. Post-hoc Wilcoxon Rank-Sum Tests for Table 8 

Pair Comparison p-value in 
ascending order 

Bonferroni-Holm 
Correction: α Holm 

Conclusion 

HHH vs IPOG 0.01385 0.008333 p-value > α Holm , 

Cannot reject Ho 
HHH vs Jenny 0.01385  Cannot reject Ho 
HHH vs TVG 0.01385 Cannot reject Ho 
HHH vs GTWay 0.07056 Cannot reject Ho 
HHH vs HSS 0.2315 Cannot reject Ho 
HHH vs MIPOG 0.4583 Cannot reject Ho 

 
Table 22. Friedman Test for Table 9 

Friedman Test Conclusion 
Degree of freedom = 7, α = 0.05, 
Critical value = 14.0671 
Friedman statistic (χ2)  = 96.883 

96.883 > critical value, reject Ho and 
proceed to post-hoc test  

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of TConfig, 
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ITCH, CTE-XL are ignored 

 
 
 
 

Table 23. Post-hoc Wilcoxon Rank-Sum Tests for Table 9 
Pair Comparison p-value in 

ascending order 
Bonferroni-Holm 
Correction: α Holm 

Conclusion 

HHH vs Jenny 0.0001235 0.007142 p-value < α Holm , 

Reject Ho 

HHH vs PICT 0.0001266 0.008333 p-value < α Holm , 

Reject Ho 
HHH vs TVG 0.0001462 0.01 p-value < α Holm , 

Reject Ho 
HHH vs IPOG 0.0008479 0.0125 p-value < α Holm , 

Reject Ho 
HHH vs PSTG 0.001536 0.01666 p-value < α Holm , 

Reject Ho 
HHH vs HSS 0.0024 0.025 p-value < α Holm , 

Reject Ho 
HHH vs CS 0.02462 0.05 p-value < α Holm , 

Reject Ho 
\ 

Table 24. Friedman Test for Table 10 
Friedman Test Conclusion 

Degree of freedom = 7, α = 0.05, 
Critical value = 14.0671 
Friedman statistic (χ2)  = 216.963 

216.963 > critical value, reject Ho and 
proceed to post-hoc test 

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of TConfig, 
ITCH, and CTE-XL are ignored 

 
Table 25. Post-hoc Wilcoxon Rank-Sum Tests for Table 10 

Pair Comparison p-value in 
ascending order 

Bonferroni-Holm 
Correction: α Holm 

Conclusion 

HHH vs PICT 1.762e-08 0.007142 p-value < α Holm , 

Reject Ho 

HHH vs IPOG 1.766e-08 0.008333 p-value < α Holm , 
Reject Ho 

HHH vs Jenny 3.786e-08 0.01 p-value < α Holm , 

Reject Ho 
HHH vs TVG 9.877e-08 0.0125 p-value < α Holm , 

Reject Ho 
HHH vs HSS 1.698e-07 0.01666 p-value < α Holm , 

Reject Ho 
HHH vs PSTG 2.527e-07 0.025 p-value < α Holm , 

Reject Ho 
HHH vs CS 6.752e-07 0.05 p-value < α Holm , 

Reject Ho 
 

Table 26. Friedman Test for Table 11 
Friedman Test Conclusion 

Degree of freedom = 5, α = 0.05, 
Critical value = 11.0705 
Friedman statistic (χ2)  = 23.779 

23.779 > critical value, reject Ho and 
proceed to post-hoc test  

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of CS, 
TConfig, ITCH, TVG, CTE-XL and IPOG-D are ignored 

 
 

Table 27. Post-hoc Wilcoxon Rank-Sum Tests for Table 11 
Pair Comparison p-value in 

ascending order 
Bonferroni-Holm 
Correction: α Holm 

Conclusion 

HHH vs HSS 0.002474 0.01 p-value > α Holm , 

Cannot reject Ho 
HHH vs Jenny 0.03042  Cannot reject Ho 

HHH vs PSTG 0.03149 Cannot reject Ho 

HHH vs PICT 0.090750 Cannot reject Ho 

HHH vs IPOG 0.9226 Cannot reject Ho 
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7.   Discussion 

A number of observations can be summarized based on the obtained results from Table 4 through 11 as well 
as their corresponding statistical analyses from Tables 12 through 27. 

 
Referring to Table 4, SA appears to outperform most other strategies for low interaction (i.e. t<3). 

Specifically, SA gives the best overall results for CA(N; 3, 66), CA(N; 3, 57), and MCA(N; 2, 61 51 46  38 23). 
However, no results for SA are available for t>3. HHH generates the best overall results for MCA (N; 4, 3445), 
MCA (N; 4, 51 38 22), MCA (N; 4, 82 72 62 52), MCA (N; 4, 65 54 32) and MCA (N; 4, 101 91 81 71 61 51 41 31 21). 
Putting SA and HHH aside, GA and ACO obtain similar performance. PSTG appears to perform the poorest as 
far as the meta-heuristic strategies are concerned. Overall, the meta-heuristic based strategies outperform the 
general computational based counterparts.  Concerning the statistical analysis of Table 4 (as highlighted  by the 
Friedman test analysis in Tables 12 and the post-hoc test in 13), we observe that HHH performance is 
statistically superior to all other strategies (ignoring the results of CS, SA, GA, ACO, mAETG and AETG 
owing to incomplete samples).  It must be stressed that SA could have been the best strategy if the samples are 
complete. 

 
In Table 5, HHH outperforms all other strategies in terms of test size with CS being the runner up. HHH 

obtains the best overall results for CA (N; 6, 210). ITCH gives the best overall result for CA (N; 2, 210). Despite 
the ITCH result, meta-heuristic strategies outperform the general computational counterparts (similar to the 
previous results).  The Friedman test analysis of Table 5 (as summarized in Table 14) indicates that there are 
significant differences among the pairwise performance of all the strategies. However, post-hoc analysis of 
Table 5 (as seen in Table 15) demonstrates that the performance of HHH is not significantly better as compared 
to the given strategies (ignoring the contribution of ITCH). 

 
Concerning Table 6, there are little differences as far as comparative performances between strategies are 

concerned. HHH generates only one best overall result for CA (N; 4, 510). In similar manner, ITCH, MIPOG and 
GTWay obtain the best overall result for CA(N; 3, 510), CA(N; 5, 510), and CA(N; 6, 510) respectively. As 
expected, although the Friedman test analysis indicates that there are differences among the pairwise 
performance of all the strategies (as depicted in Table 16), the post-hoc analysis of Table 6 (as seen in Table 17) 
demonstrates that there is no significant difference in the performance of HHH with other strategies (ignoring 
the contributions of ITCH, Jenny, TConfig, TVG and CTE-XL). 

 
As for Table 7, MIPOG dominates the overall best results. In fact, MIPOG establishes the best overall 

results for CA(N; 4, 57) and CA(N; 4, 511). ITCH is the runner up giving the best overall result for CA(N; 4, 512). 
HHH generates the best overall results for two configurations involving CA (N; 4, 58) and CA (N; 4, 59). HSS 
manages to generate the best overall result for CA(N; 4, 510). The null hypothesis for the Friedman test analysis 
for Table 7 (as seen in Table 18) is rejected indicating that there are significant differences in term of the 
comparative performances of between each individual strategy. The post-hoc analysis, however, is not in favor 
of the alternate hypothesis with 95% confidence level. Nevertheless, if the confidence level is reduced to 90%, 
the null hypothesis can now be revisited (refer to Table 19). Here, the HHH performance is statistically superior 
as compared to all other strategies with the exception of MIPOG and ITCH (ignoring the contribution of 
TConfig). 

 
As far as Table 8 is concerned, HHH gives the best overall performance with two best overall results for 

configurations involving CA (N; 4, 310), and CA (N; 4, 610) respectively. Unlike HHH, most other strategies 
manage to obtain the best result only for one configuration. Specifically, HSS offers the best overall results for 
CA(N; 4, 510) with MIPOG for CA(N; 4, 710). GTWay gives the best overall result for CA (N; 4, 410). Statistical 
analysis (involving the Friedman test analysis in Table 20) and post-hoc analysis in Table 21) confirm our 
observation. HHH performance is statistically superior to all other strategies (not considering the contribution of 
PSTG, CS, ITCH, PICT, and TConfig). 
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Concerning Table 9, HHH outperforms most other given strategies. HHH offers the best overall results for 
CA (N; 2, 47), CA (N; 3, 57), CA (N; 4, 37), CA (N; 4, 47), CA (N; 4, 57), CA (N; 5, 37), CA (N; 5, 57), CA (N; 6, 
37), and CA (N; 6, 57). Not considering HHH, the best overall results for other configurations are partially shared 
by many strategies. CS offers the best overall result for CA(N; 4, 27). TConfig gives the best overall result for 
CA(N; 5, 47). ITCH offers the best overall results for CA(N; 3, 37). Based on our statistical analysis (involving 
the Friedman test analysis in Table 22) and post-hoc analysis (in Table 23), HHH performance is statistically 
superior as compared to other strategies (not considering the contributions of TConfig, ITCH, CTE-XL). 

 
Referring to Table 10, HHH obtains the best overall results for almost half of the table including CA (N; 3, 

36), CA (N; 3, 39), CA (N; 3, 310), CA (N; 3, 311), CA (N; 3, 312), CA (N; 4, 35), CA (N; 4, 36), CA (N; 4, 37), CA 
(N; 4, 38), CA (N; 4, 39), CA (N; 4, 310), CA (N; 4, 311), CA (N; 4, 312), CA (N; 5, 36), CA (N; 5, 37), CA (N; 5, 
38), CA (N; 5, 39), CA (N; 5, 310), CA (N; 5, 311), CA (N; 5, 312), CA (N; 6, 37), CA (N; 6, 38), CA (N; 6, 39), CA 
(N; 6, 310), CA (N; 6, 311), and CA (N; 6, 312) respectively. ITCH is the runner up offering the best overall results 
in five configurations involving CA(N; 2, 310), CA(N; 2, 311), CA(N; 2, 312), CA(N; 3, 37), and CA(N; 3, 38). 
Meanwhile, CS offers the best overall results for CA(N; 3, 36). The Friedman test analysis of Table 10 (in Table 
24) is in favor of the alternate hypothesis. The post-hoc analysis (in Table 25) is also in favor of the alternate 
hypothesis. We conclude that HHH performance is statistically superior as compared all other strategies (not 
considering the contributions of TConfig, ITCH, CTE-XL). 

 
Finally, the best overall results for Table 11 are evenly distributed across many strategies. IPOG gives the 

best performance with three new best overall results for CA(4,27 32 41 102), CA(2,213 45), CA(3,213 45).  PICT 
establishes the best overall results for CA(5,27 32 41 102), CA(6,27 32 41 102), and CA(6,213 45). TVG offers the 
best overall results for CA(4,213 45) and CA(5,213 45). Although does not generate any new best overall results, 
HHH performance is sufficiently competitive. HHH manages to match seven existing best results involving 
CA(2,34), CA(3,34), CA(2,27 32 41 102), CA(3,27 32 41 102), CA(2,22 33), CA(3,22 33) and CA(4,22 33). Based on 
the statistical analysis (involving the Friedman test analysis in Table 26) and post-hoc analysis (in Table 27), we 
conclude that there is no significant difference as far as the HHH test size is concerned with each individual 
strategy (ignoring the contribution of CS, TConfig, ITCH, TVG, CTE-XL and IPOG-D).  

 

8.   Threats to Validity 

Empirical and experimental studies often encounter many threats to validity.  Substantial efforts have been 
undertaken to minimize such threats. In the context of our study, several threats could be leveled. Firstly, the 
fairness of our benchmark experiments involving meta-heuristic-based strategies can be an issue. Owing to 
unavailability of source codes, much comparison with the related work is solely based on the published results. 
Revisiting Table 3, given the population size and iteration value, the most minimum number of fitness function 
evaluation per iteration is the only value that can be ascertained (population size ∙ max iteration). As the t-way 
test suite generation is not a single solution problem, there is a need for the outer loop to ensure convergence 
(i.e. producing a population of solution as the complete test suite covering all the required interactions). For this 
reason, the maximum number of fitness function evaluation (Fmax = number of iteration for convergence ∙
 population size ∙  max iteration) cannot be exactly determined as it depends on each algorithm’s convergence 
process (i.e. until all interactions are covered). As such, there is no guarantee that the maximum number of 
fitness function evaluation (Fmax) is the same for all strategies (even with the same number of fitness function 
evaluation per iteration). Only when Fmax is empirically fixed (as the stopping criterion large enough to allow 
convergence for the largest configurations) for all strategies can the fair comparison be made.  

 
Secondly, as far as the calibration of the specific parameters for each LLH is concerned, we relied on the 

reported best tuned values for our LLH (i.e. for PSO and Cuckoo) from the similar problems in the scientific 
literature. As meta-heuristics algorithm such as PSO is highly sensitive to parameter changes, the adopted best 
tuned values may not be applicable to our case. Thus, in order to ensure optimum performance, re-tuning of the 
related HHH parameters may be beneficial. 

 
Thirdly, our statistical analysis has been based on the best reported values and not the mean values for all the 

configurations (as the mean values are not highlighted in most published results). The main issue here is that 
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some of the best results may be obtained by chance (especially in the case of meta-heuristic-based strategies), 
hence, affecting our conclusion.  

 
 
Finally, our last threat to validity also relates to statistical analysis. As highlighted in earlier sections, our 

statistical analysis (based on the Friedman test and post-hoc Wilcoxon-Rank Sum analysis) requires the 
complete samples for all the strategies. In the case of strategies with missing values (i.e. cells with NA entries), 
their contributions are completely ignored. For this reason, the complete statistical analysis involving all the 
strategies cannot be feasibly performed.  

 

9.   Concluding Remark 

In this paper, we have described a novel approach of applying hyper-heuristic, called HHH, as a strategy for 
t-way test generation. Comparatively, the performances of HHH with other strategies have been promising. In 
the case of meta-heuristic-based strategies, we are unable to ensure the same number of objective function 
evaluations for all the experiments. To be specific, the common Fmax cannot be introduced as most 
implementation source codes are not publically available for modification. 

 
 To the best of our knowledge, HHH is the first hyper-heuristic heuristic based strategy that addresses the 

problem of t-way test suite generation. The main feature of HHH is that it enhances the diversification and 
intensification of the searching process by adaptively selecting the LLHs based on their previous performances. 
Each LLH works in synergy with the HLH whereby highly performing LLH has more chance of being selected 
during the search process.   

 
Within HHH, the three defined operators (i.e. improvement, intensification and diversification operators) 

serve as the virtual “switch” for HHH.  Achieving balance diversification and intensification through diversity 
learning  [73] within the Reinforced Learning Framework [18], the three HHH operators can be comparable to 
Choice Function (CF) accept all moves operator [74]. Similar to HHH, CF accepts the current move but the 
current LLH can only continue to the next iteration if the quality of the current solution improves. Specifically, 
CF maintains the performance score of the LLHs based on three criteria:  previous performance, pair-
independence between LLHs, and time performance. As the name suggests, the previous performance 
consideration is the same for both CF and HHH but not the pair-independence and time performance. Although 
pair-independence and individual time performance criteria are useful for adaptive meta-heuristic switching, 
their contribution within the context of (domain specific) t-way test generation might not be significant as 
compared to intensification and diversification measure provided by the HHH operators. Recall that the HHH 
diversification operator measures how diverse the current and the previously generated test case are, whilst the 
intensification HHH operator evaluates how close the current and the previously generated test case are against 
the final test suite list. 

 
As our findings have been encouraging, we are planning to improve our work further. Comparative analysis 

can also be made between HHH operators with the potentially different heuristic selection and acceptance 
operators (e.g. the Exponential Monte Carlo with counter [75]) using the same LLHs as reference within the 
context of t-way test suite generation. In this manner, the performance of different selection and acceptance 
operators can be objectively evaluated. Perhaps, the scope of the test generation can also be broadened to 
address variable strength interaction as well as constraints support to cater for the testing of software product 
lines. 

 
Additionally, instead of relying on a full-blown algorithm as the LLH candidate, HHH can also support 

singling out the operator from the meta-heuristic of interest. For instance, the Teacher Phase search in TLBO 
can independently serve as LLH whilst the Student Phase search can be used as another LLH. As a result, tuning 
of each individual (full-blown) LLH would not be issues that have to be addressed. 

 
To recap, as  demonstrated by the implementation of HHH, a hyper-heuristic is able to generate good 

enough, soon enough and cheap enough solutions [76] so as to improve generality, raise domain independence, 
as well as enhance the level of flexibility [18]. 
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