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Abstract

Interferences arising between wireless sensor-actuator systems communicating over shared wireless channels adversely affect
closed loop control performance. To mitigate this problem we design appropriate channel access policies for wireless control
systems subject to channel fading. The design is posed as an optimization problem where the total transmit power of the
sensors is minimized while desired control performance is guaranteed for each involved control loop. Control performance is
abstracted as a desired expected decrease rate of a given Lyapunov function for each loop. We prove that the optimal channel
access policies are decoupled and, intuitively, each sensor balances the gains from transmitting to its actuator with the negative
interference effect on all other control loops. Moreover the optimal policies are of a threshold nature, that is, a sensor transmits
only under favorable local fading conditions. Finally, we show that the optimal policies can be computed by a distributed
iterative procedure which does not require coordination between the sensors.
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1 Introduction

Wireless sensors are ubiquitous in modern smart in-
frastructures where they are deployed to monitor and
control physical processes in our homes, urban environ-
ments, and industrial plants. This abundance of wire-
less devices however also creates an increase in the wire-
less interferences arising between transmissions over the
shared wireless medium. The development of decentral-
ized communication mechanisms that can mitigate these
interference effects and guarantee closed loop control
performance arises as an important research direction.

The prevalent approach to the problem sharing a wire-
less communication medium in networked control sys-
tems is centralized scheduling which guarantees no in-
terferences. Static scheduling for example specifies that
sensors transmit in some predefined periodically repeat-
ing sequence such as round-robin and this sequence is
designed to meet control objectives, see, e.g., [15,17,30].
Deriving optimal scheduling sequences is recognized as a
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hard combinatorial problem [13,24]. Scheduling can also
be dynamic, where at each time step a central network
coordination authority decides which device gets access
to the medium. This dynamic decision may be stochas-
tic [13], based on plant state information [7,28], or based
on the wireless channel conditions [8].

In contrast to centralized scheduling, decentralized
mechanisms where sensors independently decide access
to the shared wireless medium are easier to implement.
They do not require predesigned sequences of how sen-
sors access the medium, or a central authority to take
scheduling decisions. The drawback of this decentral-
ized approach however is that packet collisions can oc-
cur from simultaneously transmitting sensors, resulting
in lost packets and control performance degradation.
Hence sensor access policies need to be appropriately
designed to mitigate these effects. We consider specif-
ically a random access mechanism where each sensor
independently and randomly decides whether to trans-
mit plant state measurements over a shared channel to
an access point/controller (Fig. 1).

Control under random access communication mecha-
nisms has drawn limited attention, to the best of our
knowledge. Comparisons between different medium ac-
cess mechanisms for networked control systems and the
impact of packet collisions in stability and control perfor-
mance have been considered either in numerical simula-
tions [18,23] or analytically in simple cases [4,22]. These
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include random access mechanisms and related Aloha-
like schemes, where after a packet collision the involved
sensors wait for a random time interval and retransmit.
Stability conditions under packet collisions were exam-
ined in [26, 29]. In contrast to these works, our goal is
to design the medium access mechanism so that desired
control performance is guaranteed. Besides closed loop
control, optimal remote estimation over collision chan-
nels is considered recently in [27].

We pose the design of channel access policies for mul-
tiple control loops over a shared wireless channel as an
optimization problem (Section 2). The goal is to satisfy
a control performance requirement for each control loop
while minimizing the total expected transmit power ex-
penditures of the sensors. We propose a Lyapunov-like
control performance abstraction, motivated from our
work on centralized scheduling [8]. Each control system
is abstracted via a given Lyapunov function which is de-
sired to decrease at a predefined rate and in expecta-
tion due to the random packet losses and collisions on
the shared medium. These control requirements are then
shown to be equivalent to a minimum packet success rate
on each link.

Besides mitigating packet collisions, sensors can ex-
ploit channel fading state information. Fading refers
to large unpredictable variations in wireless channel
transferences [12, Ch. 3,4] which in our setup affect the
likelihood of successful packet decoding at the receiver.
This communication model has been used in estimation
and control applications [8, 9, 21] but not under a ran-
dom access mechanism. We design sensor access policies
that adapt to channel states, allowing to, e.g., transmit
at higher rates under channel conditions with higher
packet success. In preliminary work presented in [10]
we considered again random access wireless sensors but
employing simpler policies, in particular policies that
do not adapt to channel states online.

Based on Lagrange duality arguments we characterize
the structure of the optimal sensor access policies (Sec-
tion 4).We show that the optimal policies are of a thresh-
old nature, that is, each sensor transmits only when
its corresponding channel state is favorable enough and
avoids transmission otherwise. Moreover we reveal an
intuitive decoupling of the policies among sensors. Each
sensor should select its channel threshold in a way that
balances the control performance of its own closed loop
with the collective negative effect it has on all other con-
trol loops due to collisions. Decentralized policies with
similar structures are also known to be optimal for gen-
eral wireless random access communication networks [1,
16,20]. The context differs however, since in these works
the objective is thoughput-based utility functions in con-
trast to the packet success rates used for control perfor-
mance here.

In Section 5 we derive an iterative procedure to compute

Plant 1
x1,k

· · ·
Plant m
xm,k

· · ·Controller 1 Controller m

Access Point

α1,k

h1,k

αm,k

hm,k

Shared
Wireless
Channel

Fig. 1. Random access architecture for m control loops over
a shared wireless medium. Each sensor i randomly transmits
with probability αi,k at time k to a common access point
computing the plant control inputs. If only sensor i trans-
mits, the successful decoding probability depends on local
channel conditions hi,k. If other sensors transmit at the same
time a collision might occur at sensor i’s transmission, ren-
dering i’s packet lost.

the optimal access policies. The procedure is easy to im-
plement in our architecture as it does not require the sen-
sors to coordinate among themselves, or to know what
control performance the other sensors try to achieve.
Technically the procedure optimizes the Lagrange dual
problem, and relies on the common access point to com-
pute the optimal dual variables and provide them to the
sensors via the reverse channel. We conclude with a nu-
merical example and some remarks (Sections 6, 7).

2 System Description

We consider a wireless control architecture where m in-
dependent plants are controlled over a shared wireless
medium. Each sensor i (i = 1, 2, ...,m) transmits mea-
surements of plant i to an access point responsible for
computing the plant control inputs. Packet collisions
might arise on the shared medium between simultane-
ously transmitting sensors. See Fig. 1 for an illustra-
tion. We are interested in designing a mechanism for
each sensor to independently decide whether to access
the medium (random access) in a way that guarantees
desirable control performance for all control systems.

Our goal is to design communication policies under the
assumption that the dynamics for all m control systems
have been designed a priori and are therefore fixed and
independent of the communication policy. As a conse-
quence, the system evolution is described by a switched
model that depends on whether the controller manages
to reach the access point or not. Thus, if we use γi,k ∈
{0, 1} to indicate the success of the transmission at time
k for link/system i and assume the system is linear
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and time invariant, we can model its evolution by the
switched system

xi,k+1 =

{

Ac,i xi,k + wi,k, if γi,k = 1,

Ao,i xi,k + wi,k, if γi,k = 0.
(1)

Here xi,k ∈ R
ni denotes the state of control system i at

each time k, which can in general include both plant and
controller states – see, e.g., Example 1. At a successful
transmission the system dynamics are described by the
matrix Ac,i ∈ R

ni×ni , where ’c’ stands for closed-loop,
and otherwise by Ao,i ∈ R

ni×ni , where ’o’ stands for
open-loop.We assume that Ac,i is asymptotically stable,
implying that if system i successfully transmits at each
slot the state evolution of xi,k is stable. The open loop
matrix Ao,i may be unstable. The additive terms wi,k

model an independent (both across time k for each sys-
tem i, and across systems) identically distributed (i.i.d.)
noise process with mean zero and covarianceWi � 0. An
example of such a networked control system is presented
next.

Example 1 Suppose each closed loop i consists of a lin-
ear plant and a linear output of the form

xi,k+1 = Aixi,k +Biui,k + wi,k, (2)

yi,k = Cixi,k + vi,k, (3)

where {wi,k, k ≥ 0} and {vi,k, k ≥ 0} are i.i.d. Gaussian
disturbance and measurement noise respectively. Each
wireless sensor i transmits the output measurement yi,k
to the controller. A dynamic control law adapted to the
packet drops keeps a local controller state zi,k,

zi,k+1 = Fi zi,k + γi,k (Fc,i zi,k +Gi yi,k) (4)

which may for example represent a local estimate of the
plant state [14], and applies plant input ui,k as

ui,k = Ki zi,k + γi,k (Kc,i zi,k + Li yi,k). (5)

In other words, the controller updates appropriately the
local state and input whenever a measurement is received.
The overall closed loop system is obtained by joining plant
and controller states into

[

xi,k+1

zi,k+1

]

=

[

Ai + γi,kBiLiCi BiKi + γi,kBiKc,i

γi,kGiCi Fi + γi,kFc,i

]

·

[

xi,k

zi,k

]

+

[

I γi,kBiLiCi

0 γi,kGi

][

wi,k

vi,k

]

(6)

which is of the form (1). �

The transmission success indicator variables γi,k are ran-
dom with a distribution that depends on the commu-
nication policy which here is supposed to be a slotted

random access policy. Specifically, communication takes
place in time slots generically indexed by k. At every slot
k each sensor i transmits over the shared channel with
some probability αi,k ∈ [0, 1] to be designed. A sensor’s
transmission might fail due to two reasons, packet de-
coding errors and packet collisions. A collision might be
experienced on link i, thereby rendering packet i lost, if
some other sensor j 6= i transmits in the same time slot.
We assume that such a collision event occurs with con-
stant probability qji ∈ [0, 1], given that both sensors i, j
transmit in the slot. Thus, the probability that sensor
i’s transmission is free of collisions, i.e., that no other
sensor transmits and causes collisions on link i, equals
∏

j 6=i[1− αj,k qji]. See Remark 1 for details of this colli-
sion model.

If sensor i transmits and has a collision free time slot,
the success of decoding the message at the access
point/receiver depends on the randomly varying chan-
nel conditions on link i. Denote then by hi,k ∈ R+ the
current channel fading conditions for link i at time k. We
adopt a block fading model [12, Ch. 4] whereby channel
states {hi,k, k ≥ 0} are assumed constant during each
transmission slot k, but i.i.d. across time with distribu-
tion φi. We also assume channel states are independent
among systems i, a common assumption in the litera-
ture [1, 16, 20], as well as independent of the plant pro-
cess noise wi,k. We let q(hi,k) denote the probability of
successful transmission given the current channel state
hi,k. For more details on this communication model see
Remark 2. The function q : R+ → [0, 1] is assumed to be
continuous and strictly increasing, i.e., higher channel
fading states imply higher packet success probability.

Combining the effects of collisions and packet losses due
to fading, the probability that a packet is successfully
decoded at the access point can be written as

P(γi,k = 1) = αi,k q(hi,k)
∏

j 6=i

[

1− αj,k qji

]

. (7)

This expression states that the probability of system i in
(1) closing the loop at time k equals the probability that
transmission i is successfully decoded at the receiver,
multiplied by the probability that no other sensor j 6= i
is causing collisions on ith transmission.

Channel states reveal information about how easy it is
for each sensor to successfully communicate, assuming
no other sensor transmits. We assume that before de-
ciding whether to transmit each sensor has access to its
respective channel state and may adapt accordingly. For
example sensor i may transmit with higher or lower rate
αi,k under favorable or unfavorable channel states hi,k

respectively. Hence we design policies that are measur-
able functions of the form αi,k = αi(hi,k). Since channel
states are i.i.d. over time we restrict attention to sta-
tionary policies, and drop the time index when not nec-
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essary. The set of all access policies for sensor i is then

Ai = {αi : R+ → [0, 1]} (8)

and the vector α(.) of access policies for all sensors be-
longs in the Cartesian product space A = A1 × . . .Am.
For fixed sensor access policies, the probability of suc-
cessful transmission on link i can be expressed as

P(γi,k = 1) = Ehi
[αi(hi) q(hi)]

∏

j 6=i

[

1− Ehj
[αj(hj)] qji

]

.

(9)

This expression follows from (7) by taking expectation
with respect to the channel states and using the inde-
pendence of channels among systems. The expectation
is well-defined as both functions α(.), q(.) are measur-
able and bounded in [0, 1] hence integrable.

Wemake the following technical assumption on the prob-
ability distribution of channel states, which holds true
for practically considered models [12, Ch. 3].

Assumption 1 The distributions φi of channel states
{hi,k, k ≥ 0} for all i = 1, . . . ,m are non-atomic, i.e.,
have a continuous distribution function on R+.

Remark 1 Our collision model captured by the probabil-
ities qji subsumes: i) the conservative case where simulta-
neous transmissions certainly lead to collisions (qji = 1)
usually considered in control literature, e.g., [26,29], ii)
the case where simultaneously transmitted packets are
not always lost (qji < 1), e.g., due to the capture phe-
nomenon [19], and iii) the asymmetric case where differ-
ent sensors j, ℓ interfere differently on link i, e.g., due to
their spatial configuration.

Remark 2 The channel fading conditions hi,k change
unpredictably over time [12, Ch. 3] and affect the commu-
nication of the sensors. In particular if sensor i transmits
at a power level pi, and assuming no other sensor trans-
mits, the power level of the received signal is the prod-
uct hi,kpi of the current channel fading gain and trans-
mit power. During high channel fading gains for sensor
i there is a higher received signal-to-noise ratio (SNR)
at the access point/controller and consequently a higher
chance to successfully decode the transmitted message.
We let q(hi,k) denote the packet success as a function
of the channel state – for more details on this model the
reader is referred to [9]. An illustration of this relation-
ship is given in Fig. 2. We suppose that each sensor i has
access to the channel state hi,k before deciding whether to
transmit over the shared channel. For example this can
be performed by short pilot signals sent from the access
point to the sensors at the beginning of each time slot.
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Fig. 2. Probability of successful decoding as a function of
the received signal power level. Higher channel fading gains
imply higher chance of packet success, hence more more fa-
vorable transmission opportunities.

3 Control Performance and Random Access
Problem

The random packet success on link i modeled by (9)
causes each control system i in (1) to switch in a ran-
dom fashion between the two modes of operation (open
and closed loop). As a result, the sensor access policies
α(.) to be designed affect the performance of all control
systems. The following proposition characterizes via a
Lyapunov-like abstraction a connection between control
performance and the packet success rate.

Proposition 1 (Control performance abstraction)
Consider a switched linear system i described by (1) and
γi,k being a sequence of i.i.d. Bernoulli random variables,
and a quadratic function Vi(xi) = xT

i Pixi, xi ∈ R
ni

with a positive definite matrix Pi ≻ 0. Then the function
Vi(xi) decreases with an expected rate ρi < 1 at each
step, i.e., we have

E
[

Vi(xi,k+1)
∣

∣ xi,k

]

≤ ρi Vi(xi,k) + Tr(PiWi) (10)

for all xi,k ∈ R
ni , if and only if

P(γi,k = 1) ≥ ci, (11)

where ci ≥ 0 is computed by the semidefinite program

ci = min{ θ≥ 0 :

θ AT
c,iPiAc,i + (1− θ)AT

o,iPiAo,i � ρiPi}. (12)

Proof. The expectation over the next system state
xi,k+1 on the left hand side of (10) accounts via (1) for
the randomness introduced by the process noise wi,k

and the random success γi,k. In particular we have that

E
[

Vi(xi,k+1)
∣

∣xi,k

]

= P(γi,k = 1) xT
i,kA

T
c,iPiAc,ixi,k

+P(γi,k = 0) xT
i,kA

T
o,iPiAo,ixi,k + Tr(PiWi). (13)

Here we used the fact that the random variable γi,k is
independent of the system state xi,k. Plugging (13) at
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the left hand side of (10) we get

P(γi,k = 1) xT
i,kA

T
c,iPiAc,ixi,k

+P(γi,k = 0) xT
i,kA

T
o,iPiAo,ixi,k ≤ ρix

T
i,kPixi,k. (14)

Since condition (10) needs to hold for all xi,k ∈ R
ni we

can rewrite (14) as a linear matrix inequality [5]

P(γi = 1)AT
c,iPiAc,i + (1− P(γi = 1))AT

o,iPiAo,i � ρiPi,

(15)

where we dropped the time indices from γi,k since they
are i.i.d. by assumption. The values P(γi = 1) that sat-
isfy this linear matrix inequality belong in some closed
convex set. As a result there is a minimum value ci, given
by the semidefinite program (12), such that condition
(15) is equivalent to P(γi = 1) ≥ ci. �

The interpretation of the quadratic function Vi(xi) in
this proposition is that it acts as a Lyapunov function
for the control system – see Remark 3. When the loop
closes, the Lyapunov function of the system state de-
creases, while in open loop it increases, and (10) de-
scribes an overall decrease in expectation over the packet
success. We also point out that an implicit assumption
for Proposition 1 and throughout the paper is that if
system i always remains in closed loop then the desired
decrease rate is met, that is, AT

c,iPiAc,i � ρiPi.

In this paper we assume that quadratic Lyapunov func-
tions Vi(xi) and desired expected decrease rates ρi are
given for each control system. They present a control in-
terface for communication design over a shared wireless
medium. We design the sensor access policies so that all
Lyapunov functions i decrease at the desired rates ρi < 1
at any time k in expectation. By the above proposition,
these control performance requirements are equivalent
to minimum packet success rates (11) for each link i,
computed by (12). Hence we need to ensure that (11)
holds for all links i.

Besides control performance, it is desired that the sen-
sors’ channel access mechanism makes an efficient use
of their power resources. We assume that when sensor i
decides to access the channel it transmits with a fixed
power pi > 0. The total expected power consumption at
each slot is given by

∑m
i=1 Ehi

αi(hi)pi summing up the
transmit power of each system i if the system decides
to transmit. We pose then the design of the sensor ac-
cess policies α that minimize the total expected power
consumption subject to the desired control performance

(10) (equivalently (11)) for all plants as

minimize
α∈A

m
∑

i=1

Ehi
αi(hi)pi (16)

subject to ci ≤ Ehi
[αi(hi)q(hi)]

∏

j 6=i

[

1− Ehj
[αj(hj)]qji

]

i = 1, . . . ,m. (17)

Technically we assume that the problem is strictly feasi-
ble. This is a common constraint qualification assump-
tion that will allow us to examine the Lagrange dual
problem [5, Ch. 5]. More specifically we assume the fol-
lowing.

Assumption 2 There exists α′ ∈ A that satisfies con-
straints (17) with strict inequality.

In the following section we proceed to characterize the
optimal access policies α∗. In particular we reveal a sim-
ple and intuitive decoupled structure. Each sensor i in-
dependently accesses the channel in a way that trades
off the goal of closed loop i with the effect of collisions
on all other closed loops j 6= i collectively. Later in Sec-
tion 5 we develop a procedure to find these optimal ac-
cess policies.

Remark 3 In this paper we are interested in commu-
nication design for control performance, in contrast to
determining what communication designs guarantee sta-
bility commonly examined in the literature, e.g. [14, 15,
29, 30]. The Lyapunov-like abstraction (10) of Proposi-
tion 1 provides a characterization of control performance,
which also implies stability. If (10) holds for each time
step k = 0, . . . , N − 1, then by taking the expectation at
both sides and by iterating backwards in time we find that

EVi(xi,N ) ≤ ρi EVi(xi,N−1) + Tr(PiWi)

≤ . . . ≤ ρNi EVi(xi,0) +

N−1
∑

k=0

ρki Tr(PiWi). (18)

Hence, system states have second moments that decay
exponentially with rate ρi < 1 and in the limit remain
bounded by Tr(PiWi)/(1−ρi), since the sum in (18) con-
verges. As a technical sidenote, an advantage of the Lya-
punov performance approach is that it defines a convex
region (a lower bound) for the packet success rate in (11),
which is easy to employ in our random access design (17).
On the contrary, a jump linear system of the form (1) is
(mean square) stable if and only if the spectral radius of
the matrix P(γi = 1)Ac,i ⊗ Ac,i + P(γi = 0)Ao,i ⊗ Ao,i

is less than 1 [6]. However the spectral radius of a non-
symmetric matrix is not convex in general, hence it is
unclear how to best examine stability in our random ac-
cess framework. �
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4 Channel-aware Random Access Design

Our main result is the following characterization of the
optimal access policies for the sensors.

Theorem 1 (Optimal sensor access) Consider a
random access architecture with m control loops of
the form (1), communication modeled by 9, and con-
trol performance abstracted by (10)-(11) for each loop
i = 1, . . . ,m. Consider the design of optimal sensor ac-
cess policies (16)-(17), and let Assumptions 1, 2 hold.
Then there exists a matrix of non-negative elements
ν∗ ∈ R

m×m
+ such that the optimal sensor access policy

for each sensor i = 1, . . . ,m is written as

α∗
i (hi) =

{

1 if ν∗ii q(hi) ≥ pi +
∑

j 6=i ν
∗
ji qij

0 otherwise.
(19)

We observe the following interesting facts. First note
that the optimal policies are deterministic, that is, given
current channel conditions each sensor either transmits
or not. Second we note that by the assumed strict mono-
tonicity of the packet success function q(.), the optimal
sensor access policies in (19) are threshold policies. That
is, a sensor transmits only when its corresponding chan-
nel quality is above some threshold. The intuitive in-
terpretation is that a sensor should attempt to close its
loop only when its channel is sufficiently favorable, i.e.,
the sensor experiences a sufficiently high current packet
success rate.

Third, and more importantly, the optimal policies are
decoupled among the sensors. That is because the pol-
icy α∗

i (or equivalently the threshold for sensor i) in
(19) only depends on parameters pertinent to system
i, i.e., its transmit power pi, and the values ν∗ii and
∑

j 6=i ν
∗
ji qij which belong in the ith column of matrix

ν∗. Hence, as long as the matrix ν∗ is available, each sen-
sor can select its optimal channel access policy indepen-
dently of what the other sensors are trying to achieve.
We note that decentralized threshold-based policies have
also been shown to be optimal for general wireless com-
munication networks [1,16,20]. The context differs how-
ever, since in these works the objective is thoughput-
based utility functions in contrast to the packet success
rates used for control systems here.

As we explain in the proof, the matrix ν∗ technically
corresponds to the optimal Lagrange multiplier of an
appropriately defined problem (cf. (A.7)-(A.10)). An in-
tuitive alternative interpretation is as follows. We can
think of each diagonal term ν∗ii as the importance of con-
trol performance of system i, and of each off-diagonal
term ν∗ji as the collision effect that sensor i has on an-
other system j. The optimal access policy for sensor i
in (19), or equivalently the optimal channel threshold,

trades off the requirement on loop i and the collective
negative effect (

∑

j 6=i ν
∗
jiqij) on all other control loops

j 6= i. That is because a larger value ν∗ii corresponds to
a lower threshold (sensor transmits more often), while a
larger value

∑

j 6=i ν
∗
jiqij corresponds to a higher thresh-

old (sensor transmits less often). Note also that the lat-
ter summands are normalized by the parameters qij , i.e.,
the probability that sensor i collides with link i when
both sensors transmit. Morever, a high transmit power
pi in (19) also implies that sensor i should access the
channel less often to limit expenditures.

The decoupled structure of the optimal sensor access
policies in Theorem 1 relies on knowing the values ν∗. In
the following section we develop a distributed iterative
procedure to obtain the desired ν∗.

Remark 4 In our previous work in [10] we consider
simpler random access policies for the sensors, not tak-
ing into account channel state information. In particu-
lar we consider that at every time k each sensor i ran-
domly and independently transmits with some constant
probability α̃i ∈ [0, 1] to be designed. Similarly to (9) the
probability of successfully closing each loop is given by

P(γi,k = 1) = α̃i qii
∏

j 6=i

[

1 − α̃jqji

]

. It turns out [10,

Theorem 2] that the optimal access rates α̃∗, i.e., the so-
lution to a problem equivalent to the channel-aware setup
in (16)-(17) can be expressed as

α̃i =
ν̃ii

pi +
∑

j 6=i ν̃ji qij
(20)

for each i ∈ {1, . . . ,m} for some non-negative matrix
ν̃ ∈ R

m×m
+ . The matrix ν̃ here has the same interpre-

tation as the matrix ν∗ of Theorem 1 but the two ma-
trices are different as they correspond to different prob-
lems. Hence we see that for the non-channel-aware case
the sensors need to randomize (0 < α̃i < 1). In contrast,
conditioned on channel state information being available
the optimal policies for the sensors are deterministic, ex-
ploiting favorable channel conditions to transmit.

5 Computation of Channel-aware Random Ac-
cess Policies

In the previous section the optimal sensor access policies
that guarantee control performance of all closed loop sys-
tems andminimize power expenditures are characterized
in terms of some appropriate matrix of values ν∗ (The-
orem 1). In this section we capitalize on this result and
develop an iterative procedure to determine the optimal
sensor access policies by computing these values ν∗. The
procedure is distributed and easily implementable in the
architecture of Fig. 1. In particular the common access
point/controller is responsible for finding ν∗ and com-
municates them to the sensors via the reverse channel,
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so that the sensors do not need to directly coordinate or
communicate among themselves.

Technically as we have argued in the proof of Theorem 1
the values ν∗ are the optimal Lagrange dual variables
of an appropriately defined problem (cf.(A.7)-(A.10)).
The iterative procedure presented in Algorithm 1 cor-
responds mathematically to a dual subgradient algo-
rithm [2, Ch. 8] to find the optimal dual variables ν∗.
Alternatively we can interpret the procedure as a dis-
tributed implementation in the wireless control architec-
ture of Fig. 1 as follows.

At each period t the access point/controller of Fig. 1
maintains a tentative matrix of values ν(t). At the be-
ginning of each period, the access point (AP) sends to
each sensor i the values νii(t) and

∑

j 6=i νji(t)qij via the

reverse channel (Step 3). For the rest of the period t
each sensor uses a random access policy α(hi, ; t) as if
the received values ν(t) corresponded to the optimal ν∗

(Step 4). Here α(hi; t) denotes the valuation of the pol-
icy during period t at any channel state hi ∈ R+. Then
the AP measures the gap between desired and current
control performance of each system during this period
and updates the values ν(t) to ν(t + 1) to prepare for
the next period (Step 7). To perform this update the AP
needs to compute 1 the average transmission and packet
success rates for each system during this period (Step 5)
and keep track of some auxiliary variables (Step 6).

This algorithm is guaranteed to converge to the optimal
sensor access policies as we state next.

Theorem 2 (Sensor access optimization) Consider
the setup of Theorem 1. The iterations of Algorithm 1
with stepsizes in (24)-(26) satisfying

∑

t≥0 ε(t)
2 < ∞,

∑

t≥0 ε(t) = ∞ converge to the optimal sensor access
policies, i.e.,

ci ≤ lim
t→∞

Ehi
[αi(hi; t)q(hi)]

∏

j 6=i

[

1− Ehj
[αj(hj ; t)]qji

]

,

(27)

for all i = 1, . . . ,m, and

lim
t→∞

m
∑

i=1

Ehi
[αi(hi; t)]pi =

m
∑

i=1

Ehi
[α∗

i (hi)]pi. (28)

The caveat of this distributed implementation is that it
requires information exchange between sensors and the

1 Here we assume that even when collisions arise the AP
can identify which sensor transmits at each time slot. Hence
it can measure the average rate Ehi

[αi(hi; t)] at which
each sensor i accesses the channel, as well as the term
Ehi

[αi(hi; t) q(hi)] which is the packet success ratio when
only sensor i transmits.

Algorithm 1 Distributed random access computation

1: Initialize λ(0) ∈ R
m
+ , ν(0) ∈ R

m×m
+ at the AP

2: loop At period t = 0, 1, . . .
3: AP sends νii(t),

∑

j 6=i
νji(t) qij to each sensor i.

4: During the period each sensor i accesses the channel
according to policy

αi(hi; t)←







1 if νii(t) q(hi) ≥ pi +
∑

j 6=i
νji(t) qij

0 otherwise.
(21)

5: AP measures Ehi
[αi(hi; t) q(hi)], Ehi

[αi(hi; t)] for all
sensors i = 1, . . . ,m during the period.

6: AP computes the auxiliary variables

βii(t)←

[

λi(t)

νii(t)

]

B

(22)

βji(t)←

[

1−
λi(t)

νij(t)

]

B

(23)

for all i 6= j ∈ {1, . . . ,m}, where [ ]B denotes the projec-
tion to the set defined in (A.6).

7: AP updates the new dual variables

νii(t+ 1)←
[

νii(t) +

ε(t)
(

βii(t)− Ehi
[αi(hi; t)q(hi)]

)

]

+

(24)

νij(t+ 1)←
[

νij(t) +

ε(t)
(

Ehj
[αj(hj ; t)]qji − βji(t)

)

]

+

(25)

λi(t+ 1)←
[

λi(t) + ε(t)
(

log(ci)− log(βii(t))

−
∑

j 6=i

log(1− βji(t))
)

]

+

(26)

for all i 6= j ∈ {1, . . . ,m}, where [ ]+ denotes the projec-
tion to the non-negatives R+.

8: end loop

access point, hence it introduces some communication
overhead. This overhead however burdens mainly the
access point which is typically a base station with more
capabilities compared to the simpler wireless sensors.

6 Numerical simulations

We present a numerical example of the random access
design. We consider a case with m = 2 scalar control
systems of the form (1). We assume the first system has
open and closed loop dynamics given by Ao,1 = 1.1,
Ac,1 = 0.5 respectively, i.e., it is open loop unstable.
We assume the second system has integrator open loop
dynamics Ao,i = 1 and stable closed loop dynamics
Ac,2 = 0.4. Both systems are perturbed by zero-mean
unit-variance Gaussian noises, hence both system states
will diverge unless the closed loops are applied appropri-
ately. The systems are asymmetric, but we model a sym-
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Fig. 3. Evolution of dual variables during the optimization
algorithm. The elements of the matrix ν(t) converge to the
optimal values ν∗ required to obtain the optimal sensor ac-
cess policies.
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Fig. 4. Channel thresholds corresponding to the access poli-
cies selected by the optimization algorithm. The channel
thresholds for both sensors converge to their optimal values
in the limit. Sensor 1 has a lower threshold, i.e., transmits
more often, since it is required to guarantee control perfor-
mance for a more demanding (unstable) plant.

metric control performance requirement. The Lyapunov
function Vi(xi) = x2

i (Pi = 1) for both plants i = 1, 2 is
required to decrease with expected rate ρ1 = ρ2 = 0.8
(cf. (10)). By Proposition 1 these control performance
requirements are equivalent to required packet success
rates c1 ≈ 0.43, c2 ≈ 0.27 for the two sensors, com-
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Fig. 5. Evolution of control systems using the optimal ran-
dom access policies. Both systems remain stable despite colli-
sions and packet drops. Also their long run average quadratic
cost converges to the same value, since be design both sys-
tems were required to have the same control performance.

puted by (12). Hence System 1, which is more unstable,
requires a higher packet success rate.

We assume that both channel states h1,k, h2,k are i.i.d.
exponential with mean 1. In isolation each sensor faces
a packet success probability modeled by the function
q(hi,k), i = 1, 2 shown in Fig. 2. Also when both sensors
transmit at the same time, collisions occur with proba-
bility q12 = q21 = 0.5. The transmit powers are taken
equal p1 = p2 = 1.

We solve the random access design problem (16)-(17) by
implementing Algorithm 1, which as explained in Sec-
tion 5 solves the problem in the dual domain. We note
that at each iteration of the algorithm some expectations
with respect to the channel state distributions need to
be computed, in particular in steps 24 and 25 of Algo-
rithm 1. In our simulations we approximate these expec-
tations with averages from a large number of samples,
since samples from the exponential channel distributions
can be readily simulated. The iterates of the matrix dual
variables ν(t) during the simulation are shown in Fig. 3
where we observe that they converge to the optimal val-
ues ν∗, as was also shown in the proof of Theorem 2.
We also plot the evolution of the sensor access policies
αi(hi; t), or equivalently the thresholds of these policies
during the simulation of the algorithm in Fig. 4. As also
established in Theorem 2 the channel thresholds con-
verge to their optimal values in the limit. We observe
that the Sensor 1 has a lower threshold, meaning that
it transmits more often, which is natural since it corre-
sponds to the unstable plant.

After the optimal access policies (equivalently channel
thresholds) have been found, we simulate the random
access architecture with the obtained. In Fig. 5 we plot
the empirical average long term quadratic cost of the

systems 1/N
∑N

k=1 x
2
i,k for each system i = 1, 2. We

first observe that both systems remain stable despite

8



packet collisions over the shared channel. Moreover, even
though the two systems are asymmetric, both long term
average costs converge to the same value because we re-
quired the same control performance for both systems.
More specifically this long term cost equals the value
Tr(PiWi)/(1 − ρi) = 1/(1 − 0.8) = 5 for both systems
i = 1, 2, as noted in Remark 3. Hence even though the
two plants have different dynamics, the obtained chan-
nel access policies provide symmetric performance by de-

sign. The empirical rates 1/N
∑N

k=1 αi,k at which each
sensor transmits equal 0.51 and 0.32 for i = 1, 2 respec-
tively. As expected, both sensors access the channel at a
rate higher than the respective necessary packet success
rate on each link, i.e., α∗

i > ci. This happens because the
sensors need to counteract the effect of packet collisions,
as well as packet drops due to decoding errors.

7 Concluding Remarks

We design a random access mechanism for sensors trans-
mitting measurements of multiple plants over a shared
wireless channel to a controller. The goal of the sensors is
to guarantee control performance for all control systems
by mitigating the effect of packet collisions from simulta-
neous transmissions as well as by adapting online to ran-
domly varying channel conditions. Via a Lyapunov func-
tion abstraction, control performance is transformed to
required packet success rates of each closed loop. We
show that the optimal random access policies can be de-
coupled between the sensors and are of a threshold form
with respect to channel states. Moreover we develop a
distributed procedure to compute the optimal policies.

In future research we aim to explore the ability of the
distributed random access design procedure to track
changes in the problem parameters, for example, vari-
ations in the channel collision pattern, changes in the
control performance requirements, or the admission
of new control loops in the architecture. Additionally
some preliminary work on online sensor adaptation to
plant states as in, e.g., the single link case of [9] or the
scheduling of [7, 28], is considered in [11].
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[4] R. Blind and F. Allgöwer. Analysis of networked event-based
control with a shared communication medium: Part I-Pure
ALOHA. In IFAC World Congress, 2011.

[5] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2009.

[6] O. L. Costa and M. D. Fragoso. Stability results for discrete-
time linear systems with markovian jumping parameters.
Journal of Math. Analysis and Applications, 179(1):154–178,
1993.

[7] M. Donkers, W. Heemels, N. Van De Wouw, and L. Hetel.
Stability analysis of networked control systems using a
switched linear systems approach. IEEE Transactions on
Automatic Control, 56(9):2101–2115, 2011.

[8] K. Gatsis, M. Pajic, A. Ribeiro, and G. J. Pappas.
Opportunistic control over shared wireless channels. IEEE
Transactions on Automatic Control, 60(12):3140–3155, 2015.

[9] K. Gatsis, A. Ribeiro, and G. J. Pappas. Optimal power
management in wireless control systems. IEEE Transactions
on Automatic Control, 59(6):1495–1510, 2014.

[10] K. Gatsis, A. Ribeiro, and G. J. Pappas. Control with random
access wireless sensors. In 54th IEEE Conference on Decision
and Control, pages 318–323, 2015.

[11] K. Gatsis, A. Ribeiro, and G. J. Pappas.
Control-aware random access communication. In
ACM/IEEE 7th International Conference on Cyber-
Physical Systems (ICCPS), 2016. Available at
http://www.seas.upenn.edu/~kgatsis/papers/GatsisEtal_ICCPS16.pdf.

[12] A. Goldsmith. Wireless communications. Cambr. Univ.
Press, 2005.

[13] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray.
On a stochastic sensor selection algorithm with applications
in sensor scheduling and sensor coverage. Automatica,
42(2):251–260, 2006.

[14] J. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of
recent results in networked control systems. Proceedings of
the IEEE, 95(1):138–162, 2007.

[15] D. Hristu-Varsakelis. Feedback control systems as users of
a shared network: Communication sequences that guarantee
stability. In Proc. of the 40th IEEE Conf. on Decision and
Control, 2001, volume 4, pages 3631–3636, 2001.

[16] Y. Hu and A. Ribeiro. Adaptive distributed algorithms for
optimal random access channels. IEEE Transactions on
Wireless Communications, 10(8):2703–2715, 2011.

[17] J. Le Ny, E. Feron, and G. J. Pappas. Resource constrained
lqr control under fast sampling. In Proc. of the 14th Int.
Conf. on Hybrid Systems: Computation and Control, pages
271–280, 2011.

[18] X. Liu and A. Goldsmith. Wireless medium access control in
networked control systems. In Proc. of the 2004 American
Control Conference (ACC), volume 4, pages 3605–3610, 2004.

[19] W. Luo and A. Ephremides. Power levels and packet
lengths in random multiple access. IEEE Transactions on
Information Theory, 48(1):46–58, 2002.

[20] X. Qin and R. Berry. Distributed approaches for exploiting
multiuser diversity in wireless networks. IEEE Transactions
on Information Theory, 52(2):392–413, 2006.

[21] D. E. Quevedo, A. Ahlén, A. S. Leong, and S. Dey. On
Kalman filtering over fading wireless channels with controlled
transmission powers. Automatica, 48(7):1306–1316, 2012.

[22] M. Rabi, L. Stabellini, A. Proutiere, and M. Johansson.
Networked estimation under contention-based medium
access. Int. Journal of Robust and Nonlinear Control,
20(2):140–155, 2010.

[23] C. Ramesh, H. Sandberg, and K. H. Johansson. Design of
state-based schedulers for a network of control loops. IEEE
Transactions on Automatic Control, 58(8):1962–1975, 2013.

9

http://www.seas.upenn.edu/~kgatsis/papers/GatsisEtal_ICCPS16.pdf


[24] H. Rehbinder and M. Sanfridson. Scheduling of a limited
communication channel for optimal control. Automatica,
40(3):491–500, 2004.

[25] A. Ribeiro. Optimal resource allocation in wireless
communication and networking. EURASIP Journal on
Wireless Communications and Networking, 2012(1):1–19,
2012.

[26] M. Tabbara and D. Nesic. Input–output stability of
networked control systems with stochastic protocols and
channels. IEEE Transactions on Automatic Control,
53(5):1160–1175, 2008.

[27] M. Vasconcelos and N. Martins. Remote estimation games
over shared networks. In 52nd Annual Allerton Conf. on
Communication, Control, and Computing, pages 12–18, 2014.

[28] G. C. Walsh, H. Ye, and L. G. Bushnell. Stability analysis of
networked control systems. IEEE Transactions on Control
Systems Technology, 10(3):438–446, 2002.

[29] W. Zhang. Stabilization of networked control systems over
a sharing link using ALOHA. In Proc. of the 42nd IEEE
Conference on Decision and Control (CDC), volume 1, pages
204–209, 2003.

[30] W. Zhang, M. Branicky, and S. Phillips. Stability of
networked control systems. IEEE Control Systems Magazine,
21(1):84–99, 2001.

A Proof of Theorem 1

The first part of the proof involves converting problem
(16)-(17) into an equivalent auxiliary optimization prob-
lem which has zero duality gap. Then in the second part
we use Lagrange duality arguments to show that (19)
describes an optimal solution for the auxiliary problem.

We begin by a modification to remove the product of the
expectations appearing in the constraints (17). Taking
the logarithm at each side of (17) preserves the feasible
set of variables by monotonicity. Then the logarithm of
the product at the right hand side of (17) becomes a sum
of logarithms, and we can rewrite the optimal random
access design problem equivalently as

minimize
α∈A

m
∑

i=1

Ehi
αi(hi)pi (A.1)

subject to log(ci) ≤ log(Ehi
[αi(hi) q(hi)])

+
∑

j 6=i

log(1− Ehj
[αj(hj)]qji), (A.2)

i = 1, . . . ,m.

Here we make an implicit technical assumption that
the terms Ehi

[αi(hi) q(hi)] and Ehi
[αi(hi)] qij in (A.2),

which in general take values in the unit interval [0, 1]
as all involved variables belong there too, are bounded
away from 0 and 1. Then the logarithms in (A.2) are
well-defined and finite. This does not restrict the feasible
set of solutions, as intuitively each sensor i can neither
choose αi(hi) too close to 0 otherwise it cannot meet its
packet success requirement in (17), nor too close to 1

otherwise it causes significant packet collisions on other
sensors.

Next, we replace the term Ehi
[αi(hi) q(hi)] in constraint

(A.2) by an auxiliary variable βii for i = 1, . . . ,m, and
the terms Ehj

[αj(hj)]qji in (A.2) by variables βji for
j 6= i. Hence we rewrite (A.2) as

log(ci) ≤ log(βii) +
∑

j 6=i

log(1− βji). (A.3)

To force the auxiliary variables to behave like the expec-
tations we introduce additional constraints of the form

βii ≤ Ehi
[αi(hi) q(hi)] (A.4)

βji ≥ Ehj
[αj(hj)] qji (A.5)

for all i, j ∈ {1, . . . ,m}, j 6= i. Each of these variables
are restricted to a subset

βij ∈ B = [βmin, βmax] (A.6)

of the unit interval [0, 1]. In a matrix form β ∈ Bm×m.
These upper and lower bounds guarantee that all loga-
rithms at constraints (A.3) are finite, as we also assumed
for constraint (A.2). Overall we formulate the auxiliary
optimization problem

minimize
α∈A, β∈Bm×m

m
∑

i=1

Ehi
αi(hi)pi (A.7)

subject to log(ci) ≤ log(βii) +
∑

j 6=i

log(1− βji)(A.8)

βii ≤ Ehi
[αi(hi) q(hi)] (A.9)

βji ≥ Ehj
[αj(hj)] qji (A.10)

i, j ∈ {1, . . . ,m}, j 6= i

We argue that this auxiliary problem is equivalent to the
original one in (16)-(17), in the sense that a feasible so-
lution of one problem corresponds to a feasible solution
with the same objective value for the other problem. In-
deed let’s start with a feasible solution α for (16)-(17).
Let us define variables β that make (A.9), (A.10) hold
with equality for all i, j ∈ {1, . . . ,m}, j 6= i. Then the
pairα, β is also feasible for problem (A.7)-(A.10) and has
the same objective. Reversely, consider a feasible pair
α, β for problem (A.7)-(A.10). Without loss we can as-
sume that all constraints (A.9)-(A.10) hold with equal-
ity. Otherwise if, say, an inequality i in (A.9) is strict,
we can increase the value of variable βii till equality in
(A.9) is reached without loss of feasibility in (A.8) and
without changing the objective value in (A.7). A similar
procedure can be performed if some inequality (A.10) is
strict, leading finally to a new feasible point satisfying
(A.9)-(A.10) with equalities. Then it is immediate that
α is also feasible for (17) and has the same objective.
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Based on the established equivalence, in the rest of the
proof it suffices to show that (19) describes an optimal
solution for the auxiliary problem (A.7)-(A.10). The ad-
vantage of formulating this auxiliary problem is that
it has zero duality gap as can be shown by the results
in [25]. To formally state this result, let us denote the
optimal value of this problem by P ∗ (finite by feasibility
Assumption 2) and let us define the Lagrange dual prob-
lem. We associate dual variables λi ≥ 0 with inequalities
(A.8), νii ≥ 0 with (A.9), and νij ≥ 0 with (A.10), for
i, j ∈ {1, . . . ,m}. We write the Lagrangian function as

L(α, β, λ, ν) =

m
∑

i=1

Ehi
αi(hi)pi

+

m
∑

i=1

λi

{

log(ci)− log(βii)−
∑

j 6=i

log(1− βji)
}

+

m
∑

i=1

νii(βii − Ehi
[αi(hi) q(hi)])

+

m
∑

i=1

∑

j 6=i

νij(Ehj
[αj(hj)] qji − βji) (A.11)

Here the dual variables take values λ ∈ R
m
+ , ν ∈ R

m×m
+ .

We can rearrange the terms of the Lagrangian in the
form

L(α, β, λ, ν) =

m
∑

i=1

{

Ehi
αi(hi)

[

pi +
∑

j 6=i

νjiqij − νiiq(hi)
]

+
∑

j 6=i

[−λi log(1− βji)− νijβji]

+νiiβii − λi log(βii) + λi log(ci)
}

. (A.12)

This form is useful because each primal variable (αi(hi)
and βji for each i, j) is decoupled from the others, a fact
we will exploit next. Then we can define the Lagrange
dual function

g(λ, ν) = inf
α∈A, β∈Bm×m

L(α, β, λ, ν), (A.13)

as well as the Lagrange dual problem whose optimal
value we denote by D∗ as

D∗ = inf
λ∈R

m
+
, ν∈R

m×m

+

g(λ, ν). (A.14)

Then we can establish the following zero duality prop-
erty about the auxiliary problem (A.7)-(A.10).

Proposition 2 (Strong Duality) Let Assumptions 1
and 2 hold. Then the problem (A.7)-(A.10) has zero du-
ality gap, i.e., P ∗ = D∗. Moreover if α∗, β∗ are optimal
solutions and λ∗, ν∗ are optimal solutions for the dual

problem (A.14), then

α∗, β∗ ∈ argmin
α∈A, β∈Bm×m

L(α, β, λ∗, ν∗). (A.15)

The result follows from [25, Theorems 1 and 4] where
general stochastic optimization problems of the form
(A.7)-(A.10) are examined under non-atomic probabil-
ity measures (Assumption 1) and strict feasibility (As-
sumption 2). The proof is omitted due to space limita-
tions.

The above characterization suggests that we can re-
cover the optimal variables α∗, β∗ of our problem by just
minimizing the unconstrained Lagrangian function. A
technical caveat of (A.15) is that it describes an inclu-
sion only, implying that in general there might be La-
grangian minimizers that are not optimal. The following
lemma excludes such cases by establishing that the La-
grangianminimizers α, which are functions, i.e., infinite-
dimensional variables, are unique up to a set of measure
zero. Moreover the following lemma gives an explicit ex-
pression for these minimizers.

Lemma 1 Consider any dual variables λ ∈ R
m
+ , ν ∈

R
m×m
+ . Then the functions α ∈ A that minimize the

Lagrangian L(α, β, λ, ν) are uniquely defined except for a
set of arguments h ∈ R

m
+ of measure zero, and are given

by

αi(hi;λ, ν) =

{

1 if νiiq(hi) ≥ pi +
∑

j 6=i νjiqij

0 otherwise.
(A.16)

for each i = 1, . . . ,m and for every value hi ∈ R+.

In (A.16) the term αi(hi;λ, ν) denotes the function αi

thatminimizes the LagrangianL(α, β, λ, ν) at given dual
points λ, ν evaluated at an argument hi. The proof can
be found in Appendix B.

To sum up we have shown in (A.15) that the optimal so-
lution α(.) to problem (A.7)-(A.10) belongs in the set of
Lagrange minimizers at λ∗, ν∗, and by Lemma 1 these
minimizers are unique up to a set of measure zero. As
a result, all these minimizers will have the same objec-
tive and constraint slack in problem (A.7)-(A.10), and
they will all be optimal for this problem. In particular,
the specific minimizer defined by αi(hi;λ

∗, ν∗) given in
(A.16) will be optimal for the problem, and corresponds
exactly to the one given in (19) at the statement of the
theorem. �

B Proof of Lemma 1

Consider the problem of minimizing the Lagrangian
L(α, β, λ, ν) over variables α ∈ A, β ∈ Bm×m. Due to
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the separability of the Lagrangian given in the form
(A.12) over variables α, β, we can separate the problem
into subproblems

argmin
βji∈B

−λi log(1− βji)− νijβji (B.1)

argmin
βii∈B

νiiβii − λi log(βii) (B.2)

argmin
αi∈Ai

Ehi
αi(hi)

[

pi +
∑

j 6=i

νjiqij − νiiq(hi)
]

(B.3)

for i, j ∈ {1, . . . ,m}, i 6= j. Next we need to verify that
(A.16) is optimal for (B.3). Note that without loss of
generality we can exchange the expectation operatorEhi

and the minimization over αi ∈ Ai, which is a function
αi : R+ → [0, 1] defined for any channel value hi ∈ R+,
to equivalently solve

argmin
αi(hi)∈[0,1]

αi(hi)
[

pi +
∑

j 6=i

ν∗jiqij − ν∗iiq(hi)
]

. (B.4)

pointwise at all values hi ∈ R+. This is valid because
any function αi that minimizes (B.3) can differ form
the minimizer in (B.4) at a set of values hi ∈ R+ with
measure at most zero.

Then we can verify that (A.16) is the minimizer in (B.4).
That is because the right hand side in (B.4) is a linear
expression of αi(hi) ∈ [0, 1]. Hence the minimizer αi(hi)
is uniquely defined, and takes values either 0 or 1 except
for the values hi where pi +

∑

j 6=i ν
∗
jiqij − ν∗iiq(hi) = 0.

In the latter case the minimizer is not uniquely defined.
However due to the strict monotonicity assumption for
q(hi) this case occurs for at most one value hi, hence it
is a measure zero event since measure φi is non-atomic
by Assumption 1. This completes the proof.

We also note for future reference the terms β that min-
imize the Lagrangian. Since (B.1), (B.2) are strongly
convex, their minimizers are unique and satisfy the first
order conditions ∂L/∂β = 0, that is

νii −
λi

βii

= 0 (B.5)

λi

1− βji

− νij = 0. (B.6)

respectively subject to the box constraints βji ∈ B for
all i, j ∈ {1, . . . ,m}. As a result the optimal solutions
are given by

βii(λ, ν) =

[

λi

νii

]

B

(B.7)

βji(λ, ν) =

[

1−
λi

νij

]

B

(B.8)

for all i 6= j ∈ {1, . . . ,m}, where [ ]B denotes the projec-
tion to the set defined in (A.6).

C Proof of Theorem 2

A sufficient condition for (27) and (28) is that

lim
t→∞

Ehi
[αi(hi; t)] = Ehi

[α∗
i (hi)] (C.1)

lim
t→∞

Ehi
[αi(hi; t)q(hi)] = Ehi

[α∗
i (hi)q(hi)] (C.2)

hold for all i = 1, . . . ,m. Indeed this immediately implies
(28), while (27) is also implied since the optimal policy
α∗ for problem (16)-(17) needs to be feasible. In the
proof of Theorem 1 we argued that problem (16)-(17)
is equivalent to the auxiliary problem (A.7)-(A.10) with
variables α ∈ A, β ∈ Bm×m. Hence it suffices to show
that the algorithm converges to the optimal solution of
this auxiliary problem in the sense of (C.1)-(C.1).

Recall that after introducing dual variables λ ∈ R
m
+ ,

ν ∈ R
m×m
+ , the Lagrange dual function g(λ, ν) of the

auxiliary problem (A.7)-(A.10) is defined in (A.13). We
begin by arguing that that at each iteration of the al-
gorithm, the dual variables λ(t), ν(t) according to (24)-
(26) move towards a subgradient direction of the dual
function. For convenience let us denote the direction of
the steps at (24)-(25) by the matrix sν(t) ∈ R

m×m de-
fined as

sν,ii(t) = βii(t)− Ehi
[αi(hi; t) q(hi)] (C.3)

sν,ij(t) = Ehj
[αj(hj ; t)]qji − βji(t) (C.4)

for all i 6= j ∈ {1, . . . ,m}, and the steps at (26) by the
vector sλ(t) ∈ R

m defined as

sλ,i(t) = log(ci)− log(βii(t))−
∑

j 6=i

log(1− βji(t)) (C.5)

for all i ∈ {1, . . . ,m}. We argue that sν(t), sλ(t) are
subgradient directions for the dual function at the point
λ(t), ν(t), i.e., that

g(λ′, ν′)− g(λ(t), ν(t)) ≤ (λ′ − λ(t) )T sλ(t)

+Tr( (ν′ − ν(t)) sν (t) ) (C.6)

for all λ′ ∈ R
m
+ , ν′ ∈ R

m×m
+ . This can be shown as

follows.

Consider an iteration of Algorithm 1. The variable α(t)
selected by the algorithm at step (21) is a variable that
minimizes the Lagrangian L(α, β, λ(t), ν(t)) with re-
spect to the variable α ∈ A. This follows directly from
Lemma 1. Similarly the variables β(t) at step (23) min-
imize the Lagrangian function L(α, β, λ(t), ν(t) with
respect to the variable β ∈ Bm×m. This fact is included
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in the proof of Lemma 1 at (B.7)-(B.8). As a result by
the definition of the dual function in (A.13) it follows
that g(λ(t), ν(t)) = L(α(t), β(t), λ(t), ν(t)). Addition-
ally we can substitute the Lagrangian at the right hand
side with the form given at (A.11) to get

g(λ(t), ν(t)) =

m
∑

i=1

Ehi
αi(hi; t)pi + λ(t)T sλ(t)

+Tr(ν(t)sν (t)). (C.7)

Here for convenience we replaced the lengthy parenthe-
ses of (A.11) by the equivalent terms sλ(t), sν(t) defined
in (C.4), (C.5), (C.3).

Next note that at any point λ′, ν′ the dual function
g(λ′, ν′) is by definition (A.13) the minimum of the
Lagrangian L(α, β, λ′, ν′), hence we must have that
g(λ′, ν′) ≤ L(α(t), β(t), λ′, ν′). Using again the notation
sλ(t), sν(t) at the right hand side we get that

g(λ′, ν′) ≤

m
∑

i=1

Ehi
αi(hi; t)pi + λ′T sλ(t) + Tr(ν′sν(t)),

(C.8)

Subtracting (C.7) from (C.8) by sides yields (C.6).

To sum up, at each iteration of the algorithm the dual
variables λ(t), ν(t) move towards a subgradient direc-
tion of the dual function. Additionally the subgradients
are bounded. That is true for sν(t) because all the terms
at the right hand side of (C.3)-(C.4) are between 0 and
1. It is also true for sλ(t) because the logarithms at
the right hand side of (C.5) are finite by the restriction
β(t) ∈ Bm×m defined in (A.6). Under the bounded sub-
gradient condition, convergence of λ(t), ν(t) to the opti-
mal dual variables λ∗, ν∗ for stepsizes as in the statement
of the theorem relies on standard subgradient method
arguments – see, e.g., [2, Prop. 8.2.6] for a proof.

In the rest of the proof, based on the established conver-
gence of the dual variables to the optimal ones, we will
show that the same holds for the primal variable α(.; t)
in the sense of (C.1)-(C.1). Note that at any iteration t
the function αi(.; t) takes the value 1 when νii(t) q(hi) ≥
pi +

∑

j 6=i νji(t)qij and 0 otherwise. Due to the strict

monotonicity of the function q(.) this is a threshold-like
function taking the value 1 when hi ≥ h̄i(t) = q−1(pi +
∑

j 6=i νji(t)qij)/νii(t)). Since we have established that

ν(t) → ν∗, and since the function q(.) is continuous
hence its inverse too, we conclude that the threshold
h̄i(t) converges to h̄∗

i = q−1(pi +
∑

j 6=i ν
∗
jiqij)/ν

∗
ii). By

Theorem 1 this limit value equals the threshold of the
optimal access policy, which is also of a threshold form.

Hence we conclude that αi(.; t) → α∗
i (.) pointwise for all

hi ∈ R+ except perhaps for the point h∗
i , i.e., the opti-

mal threshold point. Since the probability measure φi is

non-atomic the point h∗
i has a probability measure zero.

Hence α(.; t) → α∗(.) almost everywhere. Also both se-
quences of functions αi(.; t) and αi(.; t)q(.) are uniformly
bounded in [0, 1]. By the bounded convergence theo-
rem [3, Theorem 16.5] we conclude that convergence in
expectation, i.e., (C.1) and (C.1), also holds. This com-
pletes the proof. �
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