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Abstract

Recent control trends are increasingly relying on communication networks and wireless channels to close the loop for Internet-
of-Things applications. Traditionally these approaches are model-based, i.e., assuming a network or channel model they are
focused on stability analysis and appropriate controller designs. However the availability of such wireless channel modeling
is fundamentally challenging in practice as channels are typically unknown a priori and only available through data samples.
In this work we aim to develop algorithms that rely on channel sample data to determine the stability and performance of
networked control tasks. In this regard our work is the first to characterize the amount of channel modeling that is required
to answer such a question. Specifically we examine how many channel data samples are required in order to answer with high
confidence whether a given networked control system is stable or not. This analysis is based on the notion of sample complexity
from the learning literature and is facilitated by concentration inequalities. Moreover we establish a direct relation between
the sample complexity and the networked system stability margin, i.e., the underlying packet success rate of the channel and
the spectral radius of the dynamics of the control system. This illustrates that it becomes impractical to verify stability under
a large range of plant and channel configurations. We validate our theoretical results in numerical simulations.
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facilitate the allocation of communication resources to
optimize control performance in, e.g., power allocation
and scheduling over fading channels [16, 18, 30], or in
event-triggered control [4, 26, 27].

1 Introduction

Wireless communication is increasingly used in au-
tonomous applications to connect devices in industrial
control environments, teams of robotic vehicles, and the
Internet-of-Things. To guarantee safety and control per-
formance it is customary to include a model of the wire-
less channel, for example an i.i.d. or Markov link quality,
alongside the model of the physical system to be con-
trolled. In such modeled-based approaches one can char-
acterize, for example, that it is impossible to estimate
or stabilize an unstable plant if its growth rate is larger
than the rate at which the link drops packets [22, 34, 36],
or below a certain channel capacity [33,38]. Models also

In practice wireless autonomous systems operate under
unpredictable channel conditions following unknown dis-
tributions, which are more often observable via a finite
amount of collected channel sample measurements [20,
31]. The purpose of this work is the analysis of net-
worked control systems when only channel sample data
are available instead of channel models. We use the data
to learn whether a given networked control system is sta-
ble, and we also characterize how the learning procedure
depends on the amount of channel samples and the con-
trol system parameters. To the best of our knowledge,
our paper is the first to consider the sample complexity
analysis of data-based algorithms for networked control,
in contrast to the extensive literature on model-based
approaches mentioned above.
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Learning methods have been used in control problems
most commonly within the reinforcement learning and
approximate dynamic programming literature [7, 37],
where the goal is to learn to control an unknown dynam-
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ical system from data. One specific approach within this
framework is based on learning the system dynamics
model first [23]. This is used for example in analyzing
the sample complexity of the classic multi-armed ban-
dit problem [5,24] and more recently in the quadratic
control of unknown linear systems [1, 11,28, 39]. Other
approaches focus on learning the controller directly as
in policy gradient methods [37]. In contrast our work is
focused on collecting data and learning unknown chan-
nel models instead of system dynamics. In the context
of networked control systems very recent works from
the last two years are proposing data-based approaches
including deep learning for allocating resources and
scheduling [12, 15, 25, 32, 40] as well as for controller
design [6, 35]. A related but broader topic is also the
identification of switched systems [29] where the ma-
trix dynamics are also unknown. To the best of our
knowledge our work is the first to examine the sample
complexity of networked control systems analysis and
the amount of channel modeling needed for such prob-
lems. We also point out that an alternative approach is
to bypass building channel models altogether and learn
solutions directly as in our previous work on power
allocation in [14] and multiple-access in [16,19].

Specifically we consider the stability of a linear dynam-
ical system over a Bernoulli packet-dropping channel
with an unknown success rate (Section 2). Using chan-
nel sample data, i.e., a number of packet successes and
failures, we develop an algorithm to learn whether the
networked control system is stable or not (Section 3). To
do this we utilize confidence bounds obtained by con-
centration inequalities, more specifically, Hoeffding’s in-
equality. As our algorithm depends on random channel
samples there is always a probability of error, i.e., the al-
gorithm returns that the system is stable while the true
system is not. Our algorithm is guaranteed by design
to have low probability of such errors irrespective of the
number of data points provided. On the other hand we
characterize the statistical correctness of the algorithm
(Theorem 1), i.e., the probability of correctly learning
the stability of the networked control system. We further
analyze the amount of channel sample data needed to
correctly learn the system stability with a desired confi-
dence level (Corollary 2).

Our most significant finding is that the sample complex-
ity adversely depends on the system stability margin,
i.e., the underlying packet success rate of the channel
and the spectral radius of the dynamics of the control
system. In other words, a significantly larger number of
samples are needed to learn whether the system is stable
if the networked control system over the channel is closer
to instability. This means that it becomes impractical to
verify stability under a large range of plant and channel
configurations, but the derived sample complexity can
be useful as follows. It describes the amount of channel
samples required if we are willing to verify stability with
high confidence up to a certain system stability margin.
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Fig. 1. Wireless Control System. A sensor measures the state
of a plant perturbed by a random disturbance. The sensor
transmits the measured information over a packet-dropping
wireless channel to a receiver/controller providing control
inputs.

We show that a tighter sample complexity analysis can
be performed for very reliable or very unreliable links
(Section 3.2). We show that the nature of the results re-
mains the same when instead of analyzing stability we
are interested in testing whether the (quadratic) cost
of the networked system is below some test value (Sec-
tion 4). We validate our theoretical analysis in numeri-
cal simulations (Section 5). A preliminary version of the
results appeared in [17].

2 Model-based Networked Control

We consider the evolution of a dynamical system over a
packet dropping channel. This is a standard model for
remote estimation or control over a network or a wireless
channel, for example when a sensor measures the state
of the plant and transmits it to a receiver — see Fig. 1
and [22,34,36] for related examples. Our goal is to ana-
lyze the stability properties and the control performance
of the system, hence we assume the dynamics for the sys-
tem are fixed, for example a controller has been already
designed. We assume that the evolution of the system
depends on whether a transmission occurs at time k& or
not, indicated with variables v, € {0,1}. We suppose
the system evolution is described by a switched linear
time invariant model of the form

Axy +wy, ify =0
ka:{ k k Tk (1)

W, iy =1

Here x;, € R™ denotes the state of the overall control
system at each time k. At a successful transmission the
system dynamics are reset to zero, and otherwise when
the transmission fails the dynamics are in open loop de-
scribed by A € R™*™. The open loop matrix A may be
unstable, i.e., the eigenvalue with the largest modulus
may be larger than unity, p(A) = max;—1, _» |\i(A)| >



1. This case motivates the stability analysis. The addi-
tive terms wyg, k > 0 model an independent identically
distributed (i.i.d.) noise process across time according
to some known probability distribution with mean zero
and positive definite covariance W.

We are interested in the performance of the dynamical
system. We will employ the usual quadratic system state
cost at each time step k as =} Q x), where Q is a posi-
tive definite matrix. Intuitively there is a higher penalty
when the state of the system is away from the origin.

The cost over time depends on whether the transmissions
are successful or not over time. In this paper we make the
assumption that ~; is an independent Bernoulli random
variables with a constant success probability ¢, and they
are also independent from the system state xj and noise
wy. This i.i.d. assumption is very crucial for our results
as we discuss in Section 6.

Given the model of the transmission success we can de-
scribe the effect on the performance of the control sys-
tem with the long turn average quadratic cost

MZ

J(q) = hmbup

N—oc0

xk Q xk (2)
k=0

The expectation at the right hand side accounts for the
randomness introduced by the system disturbance and
the channel. We choose to denote this cost as a function
of the success rate of the channel q.

When the channel success rate ¢ is known, we have the
following fundamental result.

Proposition 1 Consider the switched linear system (1)
over an t.i.d. Bernoulli binary channel with a known
success probability q € [0, 1]. Then:

(1) The system is stable, i.e., sup, Ezpzl < oo if and
only if

qg>1-

1
e “

(2) Moreover, if the condition (3) holds, the quadratic
control cost (2) is a strictly decreasing function of
the success rate q given by

J(q) = Tr(PW) (4)

where P is the unique positive definite solution of
the (Lyapunov) matriz equation

P=Q+(1-qATPA. (5)

Proof. The stability condition (3) as well as the expres-
sion for the control cost in (4)-(5) follow from the ran-
dom jump linear system theory [10].

The fact that the control cost (2) is a decreasing function
can be shown as follows. It is straightforward to show
that the solution to the Lyapunov equation (5) can be
written as

P=Y (1-q) (A)TQA’, (6)
=0

where the sum converges due to (3). Plugging in this
expression in (4) yields the expression for the control
cost as

(A)TQAW). (7)

S
=0

Taking the derivative with respect to ¢ verifies that
the function is non-increasing because all terms
Tr((A)TQA'W) are non-negative and is strictly de-
creasing because Tr(QW) = Tr(W'/2QW1/2) > 0 as
both Q, W are positive definite matrices.. |

The above result is a fundamental limit in the sense that
it characterizes the absolute minimum channel success
rate required for stability as a function of the eigenval-
ues of the dynamics A. The proposition also gives an
expression for the control performance as a function of
the system and channel parameters.

However in practice the channel success rate g is un-
known. Instead we may have access to channel sample
data. The problem we would like to answer is twofold:

e Data-driven Stability Analysis: how to check whether
the system is stable or not using the channel sample
data?

e Sample Complexity: what is the confidence of the
method and how does it scale with the amount of
channel samples and the control system and channel
parameters?

3 Sample-based Stability Analysis of Net-
worked Control

Suppose that instead of knowing the packet success rate
q of the channel we have available N samples denoted
by vx,k = 0,..., N — 1 drawn independently from the
Bernoulli distribution with success ¢. In practice this
data is easy to obtain, it suffices to send N packets and
record whether they are received or not. Given this data



the most natural approximation of the true success prob-
ability ¢ is the sample average

1 N-1
in =+ kZ_O - (8)

Indeed this approximation is in some sense optimal 2]

In the case of unlimited data samples the sample average
converges almost surely to the true underlying packet
success rate by the Strong Law of Large Numbers [13,
Ch.2]. Hence in the face of unlimited data, learning the
stability of the control system, i.e., checking whether
(3) holds, would be easy. However this is an asymptotic
analysis. In practice only finite amount of data will be
available and this motivates us to investigate a finite
sample analysis.

For a finite number of samples we argue that instead of
point estimates of the channel success rate, confidence
intervals are more useful. We further characterize the
sample complexity, i.e., how many channel samples are
needed to verify the stability of the system.

Our approach is based on confidence intervals con-
structed by the channel sample data using concentration
inequalities. In particular we may employ Hoeffding’s
inequality.

Lemma 1 [Hoeffding’s inequality, Th. 2.8 [9]] Con-
sider a sequence {yg,k = 0,...,N — 1} of i.i.d. ran-
dom wvariables taking values in [0,1] with mean q. Let
in = % ZkN:_Ol v be the sample average. Then for any
€ > 0 we have that

+¢) < exp{—2Ne?}, (9)
—¢) < exp{—2Ne?}, (10)

where the probability is with respect to the random se-
quence {vr, k=0,...,N —1}.

The result essentially states that there is a low proba-
bility that the sample average deviates much from the
true packet success rate and further provides an explicit
bound on this probability. Note that the result holds re-
gardless of the distribution as long as it has a bounded
support. In the particular case we consider the result
can be strengthened as the distribution of the sum of

2 Tt is easy to show that the sample average is the maximum
likelihood estimate of the underlying channel success rate q.
The likelihood of some success rate g € [0, 1] give the data
Yk, k = 0,..., N —1is given by the probability that the data
would be obtained under this success rate q. That is given
by P(ye,k = 0,...,N —1|q) = g=7% (1 — )N~ 2x ),
Maximizing the likelihood (or its logarithm) readily gives
the sample mean as the most likely packet success.

i.i.d. Bernoulli random variables ), 7% is known to be
binomial so more precise approaches may be employed
— see Section 3.3. Here we opt for the bound above for
simplicity. In numerical simulations in Section 5 we will
also examine its conservativeness.

The important aspect of the above result is that it re-
veals a closed form dependency between the number of
samples IV, the deviation amount &, and the confidence
level which is the bound at the right side of the inequal-
ity. There is a useful direct consequence of this inequal-
ity. Given a desired high confidence level 1 — § where
¢ is a small positive value, for example of the order of
1073, and after collecting N samples, we may derive an
interval where the true underlying mean lies, that is, the
channel success rate in our problem, as follows.

Lemma 2 Consider a sequence {vi, k =10,...,N —1}
of i.i.d. random variables taking values in [0, 1] with mean
q. Let Gy = + Zg;ol Yk be the sample average. Then for
any § € (0,1) it holds that

. log(1/6
(v - D

where the probability is with respect to the random se-
quence {vr, k=0,...,N —1}.

>216, (1)

log(1/9) -

5N Is a sample-
based high-confidence lower bound on the true packet
success rate of the channel. We also note the dependency
on the amount of samples. Doubling the amount of col-
lected channel samples from N to 2N only slightly tight-

ens the lower bound (by a factor of 1/1/2).

In this lemma the quantity ¢y —

3.1 Stability Analysis Using Channel Samples

Let us now return to the main question of this paper.
Given some channel data we would like to verify whether
the system is stable, that is, whether the inequality (3)
holds. We propose to utilize Hoeffding’s inequality. We
can construct an interval where the channel success rate
lies with a desired high confidence using Lemma 2. Then
we can check whether stability holds for all such high-
confidence channel conditions. In particular it suffices to
check whether stability holds for the lower end of this
interval. A symmetric argument can verify instability of
the system. This data-based procedure is summarized in
Algorithm 1.

First we note that it is possible that the algorithm re-
turns a wrong answer, i.e., return ’Stable’ in cases where
the system is unstable and vice versa. Intuitively this
can occur if the sample mean of the data is sufficiently
different from the true mean. However by design we can
guarantee that wrong answers are very unlikely (happen



Algorithm 1 Stability analysis using channel samples

Input: Dynamics A, Confidence level §, Number of
samples N, Channel samples o, . .., yn—1 € {0, 1}V
1: Compute the sample average

2

-1

Tk (12)
0

1

iv =+

E
I

2: Compute the high confidence lower and upper

bounds
. log(1/9)
min — - T AN 13
q in SN (13)
) log(1/6)
max — I a— 14
q qn + SN (14)
3: if 1 — ﬁ < qmin then
4: return ’Stable’
5: else
6: if 1-— ’)(7‘2)2 > (max then
7: return 'Unstable’
8: else
9: return 'Undetermined’
10: end if
11: end if

with probability less than §) and also irrespective of the
number of data points N provided, because of the use
of the confidence intervals. On the other hand the algo-
rithm may not be able to correctly determine stability or
instability for small amount of data, for example, return
"Undetermined’ in cases where the system is actually
stable. The remedy is to draw more samples and check
stability again. By the Strong Law of Large Numbers the
sample mean and the upper and lower high-confidence
bounds will all converge to the true value g and stability
will be asymptotically determined correctly.

Instead of asymptotic performance, our main result is to
analyze the average performance of Algorithm 1 using
a finite number of samples. By average performance, we
mean how often would the algorithm return the correct
or the wrong answer if we were to run it multiple times
over independent data samples. We formalize this next.

Let Ay and Wy denote the events that algorithm pro-
vides a correct answer and wrong answer respectively.
That is, if the system is stable, i.e., condition ¢ > 1 —

—L - holds, then define te event
p(A)

Ay = {{707 cooyN—1y € {0,1}Y 1 Alg. 1 returns ’stable’

(15)

Similarly define the event

Wy = {{70, cooyn—1} € {0,1}Y : Alg. 1 returns ’unstable’}

(16)
The complement of Ay and Wy is the event that the
algorithm returns the answer 'Undetermined’.

Alternatively if the system is strictly unstable, i.e., con-

dition ¢ < 1 — p(ii)? holds, then we have to define the

events as

Ay = {{fyo, oo n—1} € {0,1}Y : Alg. 1 returns ’unstable’}

(17)
and

Wy = {{707 oo n—1) €{0,1}Y . Alg. 1 returns ’stable’}

(18)
For convenience and because of symmetry we use the
same notation for the events in the two cases above, even
though these are distinct events. Alternatively the two
cases could be examined separately. We can state then
the following main result.

Theorem 1 (Sample-based Stability Analysis)
Consider the switched linear system (1) over an i.i.d.
Bernoulli binary channel with an unknown success prob-
ability g € [0,1] and assume ¢ # 1 — ﬁ. Consider
the stability analysis procedure developed in Algorithm 1
using N i.i.d. channel samples drawn with success rate
q. Let Ax denote the event that the algorithm provides
the correct answer as defined in (15) or (17), and let Wy
denote the event that the algorithm provides the wrong
answer as defined in (16) or (18). Then for any N > 1
it holds tha

P(An) >
| Nog(1/5) ]
1—exp{—2NUq—l-l—p(A)2 - 5N ]+
(19)
and
P(Wy) <4 (20)

where the probability is with respect to the random chan-
nel samples.

Proof. Suppose the system is stable, i.e., according to
Proposition 1 the packet success probability satisfies

q>1—R%ﬁ. (21)

3 here [ ]+ denotes the projection to the positives



The event Ay that Algorithm 1 returns the correct result
is defined by (15), and in this case corresponds to the
case

Ay = {{’)/07...,’}/]\771} S {0,1}N s.t. (22)
. log(1/6) 1

As a result we have that

log(1/4) 1
N =17 p(A)?

P(Ay)=1-P |ij -

(24)

Adding and subtracting q at the right hand side we have
that

P(AN)Zl—P[qANS(]—G—l—i-
(25)

The term in the parenthesis can be in general both neg-
ative or positive, hence we consider two cases.

CaseI: g — 1+ p(114)2 — 4/ logQ(}V/‘s) > 0. This is the case
where the term in the parenthesis in (25) is positive and

we can directly apply Hoeffding’s inequality (Lemma 1)
to get the desired bound (19).

CaseIl: ¢ — 1+ p(,14)2 - IOgQ(}V/é) < 0. In this case the
bound in (19) becomes

P(Ay) > 1—exp{—2N0} =0, (26)
which trivially holds.

Using similar arguments we can show that the algorithm
provides the wrong answer with probability bounded by

1
p(A)?

N 1og<1/a>] ’

2N
(27)

P(Wy) <exp{q —2N Uq -1+

In particular since the term in the absolute value is non-
negative, the bound (20) can be obtained by bounding
this absolute value below by zero.

A symmetric argument verifies the bound (19) when the
system is strictly unstable, i.e., when the packet success
probability satisfies ¢ < 1 — ﬁ. [ |

Some remarks are in order. First, the probability that
the algorithm returns the correct answer grows to one as

1 log(1/4)
50|

the number of samples grows to infinity. This is expected
from the Law of Large Numbers as already mentioned.
But for finite number of samples there will be a prob-
ability the algorithm may not be confident enough to
correctly identify stability. More importantly, this prob-
ability depends on how far the system is from stability,

i.e., the term ’q -1+ ﬁ . The largest the stability

margin the easier it is to get the correct result and vice
versa. As already mentioned, by design the algorithm is
very unlikely to provide a wrong answer as verified by
(20).

The theorem also assumes that ¢ #= 1 — ﬁ, i.e., that
there is a non-zero stability margin in view of Proposi-
tion 1. Technically the reason is that in that case while
gy converges to ¢ it may take values both above and
below the limit ¢ and hence the algorithm may oscillate
between the answers 'Stable’ and *Unstable’ as the num-
ber of samples increases. The assumption is practically
not restrictive, it only excludes a measure zero case for
the channel packet success rate.

The above result is important as it allows us to charac-
terize the finite sample complexity of the algorithm, i.e.,
answer how many channel sample data we need in or-
der to correctly determine stability with a desired high
confidence given the system parameters.

Corollary 2 (Sample Complexity) Consider  the
switched linear system (1) over an i.i.d. Bernoulli binary
channel with an unknown success probability q € [0,1]

and assume q # 1 — ﬁ. Consider the stability anal-

ysis procedure developed in Algorithm 1 using N i.i.d.
channel samples drawn with success rate q and some
parameter § € (0,1). If the number of samples is

2log(1/90)

> T, (28)
(¢g—1+ ﬁ)Q

then the procedure correctly determines the stability or
instability of the system with probability (1 — §).

Proof. Let the number of samples satisfy (28). Then it
holds that

1
p(A)?

> \/21(%(1/5) _ 2\/1@‘%(1/5{ (29)

~1
'q * N ON

which is equivalent to

1 log(1/96) log(1/6)
(RN oo .
(30)



or

1
p(A)?

2
) 1g2<]1V/6)] < —log(1/9).
.

— 2N UqlJr

(31)
Hence by the Theorem 1 we conclude that the Algo-
rithm 1 returns the correct answer with probability at
least 1 — 4. |

The number of samples required depends on the true
channel success rate ¢ which is unknown so it is not di-
rectly useful but provides intuition. We observe from this
result that the sample complexity scales well with the
desired confidence level. An order of magnitude improve-
ment in confidence can be guaranteed with just doubling
the amount of data samples. On the other hand, the sam-
ple complexity does not scale well with the system stabil-

ity margin. Reducing the stability margin |¢— 1+ ﬁ|

by a factor of 3 requires 32 more channel samples.

A plot for this sample relation (28) is given in Fig. 2 as
a function of the system spectral radius p(A) and for a
fixed channel success rate q. For very slow dynamics the
algorithm provides a correct answer trivially even with a
single sample. More importantly the required number of
samples grows unbounded as the stability radius reaches
the critical point of instability, i.e., when ¢ = 1 — ﬁ.
Moreover, if the system dynamics are very fast, then
the algorithm can correctly verify that the system is
unstable with fewer channel samples. Similarly in Fig. 3
we plot the theoretically required number of samples (28)
for a fixed system p(A) as a function of the underlying
packet success rate g of the channel. We observe similar
results, i.e., that the number of samples needs to grow
unbounded close to the critical point where the stability
margin vanishes.

These observations mean that it becomes impractical to
verify stability under all plant and channel configura-
tions, but the above sample complexity can be useful as
follows. It describes the amount of channel samples re-
quired if we are willing to verify stability with high con-
fidence up to a certain system stability margin.

Remark 1 The bound in (28) can be thought as asymp-
totically tight in the following sense. For very large values
N by the Central Limit Theorem the variables qmin and
(max are both distributed as normal distributions centered
at the true mean q with a variance o> = q(1 — q)v/N.
The stability test that we conduct checks whether Gmax <
1 —1/p(A)? or Gmin > 1 — 1/p(A)%. Hence it gives the
correct answer with probability P(Ay) =~ 1 — PNy, >
=1+ Scyz ) = 1—exp(—lg—1+ 552/ (a(1—q) VN)?.
From this we conclude that the probability of correct an-
swer increases to unity exponentially with a rate |¢ — 1+

sy * /N
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Fig. 2. Sample complexity according to Corollary 2. For a
channel with fixed success rate ¢ = 0.9 and a desired confi-
dence 1 —§ = 0.99 we plot the theoretically required number
of channel samples N as a function of the system spectral
radius. The required number of samples grows unbounded as
the stability radius reaches the critical point of instability,

i.e., wheng=1— ﬁ, denoted by the dotted line.
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Fig. 3. Sample complexity according to Corollary 2. For a
system with fixed spectral radius p(A) = 2 and a desired
confidence 1 — § = 0.99 we plot the theoretically required
number of channel samples N as a function of the packet
success rate q of the channel. The required number of samples
grows unbounded as the packet success reaches the critical
point of instability, i.e., when ¢ = 1 — denoted by the

dotted line.
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3.2 Sharper sample complexity results for low-variance
channels

The previous analysis uses Hoeffding’s inequality to ob-
tain a sample complexity result for any potential channel
success rate g € [0, 1] we may encounter. In this section
we will show that using sharper concentration inequality
bounds we can obtain more advantageous results in the
case that we are dealing with very reliable or very unre-
liable links (¢ = 0 or g & 1). In particular in these cases
we will show that fewer samples are needed to obtain
high performance in the data-driven stability problem.
This may be practically important in cases where one a
priori knows that we are dealing with very reliable link.

Specifically we can use Bernstein’s inequality [8], which
involves the variance of the random samples (equal to
q(1 — ¢) for our Bernoulli random success samples) and
the fact that they are bounded (by 1 in our case), to
establish that

PGy <qg—¢) <exp (_q(lj_\fz)/jg/?J - (32)

The same bound also holds for the symmetric probability
P(Gn > g + ¢€). Note that this has a different behavior
than Hoeffding’s inequality in Lemma 1.

To achieve the more advantageous results we propose to
employ estimation intervals for the true packet success
rate ¢ that decay faster than before. Specifically consider
Algorithm 1 and change to

. log(1/6

dmin = N — %7 (33)
. log(1/6

qmax = 4N + %a (34)

which decay as 1/N versus the 1/N? that we considered
before. Using the same arguments as in the proof of The-
orem 1, the probability that this new algorithm returns
a correct answer equals

P(AN):I—]P’[QNSq—Hq—1+

p(A)?

Then using Bernstein’s inequality (32), we have that the
probability of correct answer in (35) is larger than 1—§ if

_ 10g(1/5)> /3

2
N -1+ k|- 29"

q(l—q)-i—(‘q—l-l-ﬁ

> log(1/9).
N

(36)
This is equivalent to a second degree polynomial with
respect to N being larger than zero, and after a root

analysis we can find that (36) is satisfied if

2log(1/9)(4 (’q -1+ Ti,)z +3q(1 - Q)>

2
301+ 50)

N >

(37)

From this expression we may discern the following
regime.

Corollary 3 (Sample Complexity for Low-Variance
Channels) Consider the switched linear system (1)
over an i.i.d. Bernoulli binary channel with an unknown

success probability q € [0,1] and assume ¢ # 1 — ﬁ.

Consider the stability analysis procedure developed in
Algorithm 1 with the substitution (33) using N i.i.d.
channel samples drawn with success rate q and some
parameter § € (0,1). If it holds that

1
-1+

el H

q(l—q) <c

for some constant ¢ > 0, then the procedure correctly
determines the stability or instability of the system with
probability (1 — 0) if the number of samples is larger than

log(1/9)
=1+ ;e

N>( (39)

for some constant ¢’ > 0.

Condition (38) essentially means the channel success
rate is as close to 0 or 1 as to the critical rate for sys-
tem stability. From (39) we see again that for channel
rates close to the critical ones for stability we need a lot
of samples. However comparing this with Corollary 2 we
observe an order of magnitude improvement in this scal-
ing law. In other words, we need an order of magnitude
fewer samples to verify very reliable channels.

In the opposite regime where ¢(1 — ¢) is much larger

than ‘q -1+ ﬁ , then the sample complexity of the

~method in this section has the same rate as the method

based on Hoeffidng’s inequality in the previous section.
In other words in that regime we do not gain anything
from reducing the confidence intervals faster.

As a side remark, by reducing the confidence intervals
fast as in this section, we are increasing the probability
of wrong answer as defined in the previous section (event
Whx). Hence in this case we cannot guarantee that for
all N > 1 the probability that the algorithm provides
a wrong answer is bounded by § as before. This is a
shortcoming of this approach and for safety reasons we
focus primarily on algorithms where wrong answers are
provably unlikely.



3.8 Practical Algorithms

In the previous sections we devised confidence intervals
appropriately from concentration inequalities with the
purpose of characterizing the finite sample complexity
of the problem. For example we employed confidence
intervals from Hoeffding’s inequality, because it can be
easily inverted to obtain (a lower bound on) the number
of samples required to verify whether the system is stable
or not. However these general concentration inequalities
are distribution free and hence are conservative.

In practice, we can exploit the known distribution of the
channel sample data, in particular the fact that -y, are
i.i.d. Bernoulli random variables. Hence we can construct
more practical confidence intervals and data-driven anal-
ysis algorithms. We expect such methods to be less con-
servative, that is, provide narrower confidence intervals
with the same amount of data. This in turn translates to
better efficiency of the data-driven stability and analysis
algorithms, i.e., getting the correct answer more often
and with fewer samples.

We see that Zg;ol vk has a binomial distribution with
parameters N and ¢. In particular we can exploit confi-
dence intervals estimating the binomial proportion ¢ [2].
We detail a few methods next.

Exact method. An exact method, also known as
Clopper-Pearson pearson, aims to invert the binomial
distribution in order to obtain a confidence interval.
This is for example the method used in Matlab functions
”binofit”, ”paramci” to find binomial confidence inter-
vals. Given a sequence of packet successes or failures,
we can provide confidence intervals about the packet
success rate as follows.

N-1
Gmin = min {é €10,1]: F(Y_ msN,g) <1 5} :
k=0

(40)

N—-1
fmax = Mmax {q €[0,1]: F(>_ w;N,q) > 5} , (41)
k=0

where F(r; N, §) is the Binomial distribution with pa-
rameters IV, ¢ at the pointsr = 0, 1,..., N. We note that
this approach has again the guarantee that the proba-
bility of getting a wrong answer is by design less than
d for any sample size N as in (27). A drawback of this
method is that it is still practically conservative, in the
sense that it gives wide confidence intervals.

Approximate method. A very common approximate
method for finding binomial confidence intervals is using
the normal approximation, also called the Wald interval.
This method exploits the fact that by the Central Limit

ZkN;UI ("e—q

Theorem m) behaves like a standard normal

distribution in the limit. Hence this method proposes
intervals

(1 —gn)
N 9
(1 —gn)
N b)

Gmin = (jN - 2(5) (42)

Qmax = qAN + Z((S) (43)

where z is the 1 — § quantile of the standard normal
distribution. This method is approximate and does not
have the guarantee that the probability of a wrong an-
swer is by design less than § for any sample size N as
in (27). However practically it works well for sufficiently
large number of samples and for probabilities ¢ away
from the extreme 0 and 1 in the sense that it does not
give very conservative confidence intervals.

We can hence plug in the confidence intervals produced
by any of these methods in the stability analysis and
control performance algorithms of Section 2. We will do
that in Section 5 numerically.

3.4 Analysis for General Linear Systems

The stability condition (3) of Proposition 1 in reality
holds for more general networked control architectures.
In particular suppose we are interested in controlling a
general linear plant with dynamics

Tpy1 = Axy, + Buy + wy, (44)

and we employ a controller of the form u; = K2 where
K is a standard LQR controller gain and Zj is an esti-
mator built at the controller side based on information
sent from the sensor at the other side. In particular sup-
pose the sensor transmits state measurements x; over
the unreliable link and the estimator evolves as

Ady_y, ifyp =0
@k:{ Th=1, W7k (45)

T, iy =1

Then for Bernoulli packet dropping channels it is known
that condition (3) is again necessary and sufficient for
stability of the system [21]. As a result we may use ex-
actly Algorithm 1 to examine the stability of this con-
trol system over an unknown channel from channel data
samples.

Going even further, the system described in (1) is simple
in the sense that the closed loop dynamics are ideally
zero. More generally the approach can be extended to
dynamics described by a switched linear time invariant
model of the form

Aczp +wg, ify=1
Th+1 = { (46)

Apxp+wg, ify =0



Here the system dynamics are described by the matrix
A, € R™™"™ where ’¢’ stands for closed-loop, and other-
wise by A, € R™*" where ’0’ stands for open-loop. We
assume that A. is asymptotically stable, implying that if
system successfully transmits at each time step the state
evolution xy, k > 0 is stable. The open loop matrix A,
may be unstable.

Under an i.i.d. channel with success rate ¢ it is well

known that the system is stable, i.e., lim sup,_, .o Expzi <

o0, if and only if the following condition holds

p(aAc@act(1-q)a,24,) <1, (47)

where p(.) denotes the spectral radius and ® the Kro-
necker product. The result follows from the random
jump linear system theory [10], and Proposition 1 is
a special case. The method presented in Algorithm 1
can be extended to this more general case. For a fixed
number of samples we can construct an interval where
the true packet success rate ¢ lies with a desired high
confidence level. Then we can check whether the above
stability condition (47) holds for all values ¢ in the
interval. If this holds, we can declare stability. Symmet-
rically, if for all values of the packet success ¢ within the
high-confidence interval the above condition (47) does
not hold, then we can declare instability. As before, as
the number of samples increases the probability that
this procedure provides the correct answer increases to
one. The caveat is that the above stability condition
(47) is in general non-convex in the variable ¢ € [0, 1], so
checking whether it holds for all values ¢ in an interval
may be computationally demanding. In special cases the
procedure may be simplified, for example when A, = 0
this boils down to the simple case we have examined in
this paper.

In this paper for simplicity of exposition we examine the
simple system dynamics (1). We point out that there
is an extensive literature on more general model-based
analysis of networked systems, e.g., when other phenom-
ena are taken into account or different sensing and con-
troller structures [21] and we believe our analysis can be
extended in such scenarios.

4 Control Performance Analysis Using Channel
Samples

Beyond verifying stability we may be interested in col-
lecting channel samples in order to verify the control
performance of the system over the unknown channel,
supposing the system is stable. Formally, given a finite
number of channel samples we are interested in verifying
with accuracy whether the control cost of the system is
below some required bound J(g) < Jyeq. Similar to the
previous section we can define the event that an algo-
rithm returns the correct answer and the event that the
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Algorithm 2 Performance verification

Input: Dynamics A, Noise covariance W, Desired cost
level J;eq, Confidence level 6, Number of samples IV,

Channel samples 7y, . .., yn_1 € {0,1}
1: Compute the sample average

1N71
qN:NkZ_O’yk

2: Compute the high confidence lower and upper
bounds

(48)

log(1/9)
2N

log(1/)

S 60)

Gmin = max{0, jn — } (49)

Qmax = Hlil’l{]., (jN +

3: if there exists a matrix P such that

Tr(PW) < Jreqs (51a)
P=Q+ (1—qun)ATPA, (51b)
P >0. (51c)
then
4: return 'Cost is less than Jyeq’
5: else
6: if there exists a matrix P such that
Te(PW) > Jreqs (52a)
P=Q+ (1 — quax)ATPA, (52b)
P >0. (52¢)
then
7 return 'Cost is larger than Jyeq’
8 else
9: return 'Undetermined’
10: end if
11: end if

algorithm returns a wrong answer and hence character-
ize the performance of the algorithm.

The proposed procedure is again based on high confi-
dence bounds on the true channel success rate. Intu-
itively with the collected samples we can construct a
high-confidence lower bound on the channel success q.
Since the function J(gq) is non-increasing according to
Proposition 1, we can check whether the control system
performance under this high confidence lower bound on
q is lower than the desired cost value Jycq. This is shown
in Algorithm 2.

Theorem 4 Consider the switched linear system (1)
over an i.i.d. Bernoulli binary channel with an unknown
success probability q € [0,1] and assume ¢ > 1 — ﬁ.



Let ¢* be the optimal solution to the problem

minimize q (53a)
subject to Tr(PW) < Jreq, (53b)
P=Q+(1-qATPA, (53c)
P-0,0<G<1, (53d)

and assume q % q*. Consider the control cost analysis
procedure developed in Algorithm 2 using N i.i.d. channel
samples drawn with success rate q and some parameter
5 € (0,1). Then:

(1) for any number of samples N the procedure returns
a wrong answer with probability less than ¢,
(2) if the number of samples is

2log(1/6
> 2los(l/o), (54)
(¢—a%)
then the procedure returns a correct answer with
probability at least (1 — §).

The proof is included next and is primarily based on
similar arguments as in the previous section.

Proof. We consider the case where the cost of the sys-
tem is indeed lower than the desired value, i.e., J(q) <
Jreq — & symmetric argument verifies the case when the
cost is larger that the desired value. Note by Proposi-
tion 1 and the expression for the control cost J(q) given
in (2), we have that the value ¢ is feasible for problem
(53), and since ¢* is the optimal solution for problem
(53), this is implies that ¢ > ¢*, and since we have as-
sumed that ¢ # ¢*, we have that ¢ > ¢*.

Proof of (2): First we show that the algorithm returns the
correct answer with high probability. Following the same
arguments as in the proof of Theorem 1 and Corollary 2
and since ¢ > ¢*, if the number of samples satisfies (54),
then the event ¢* < @gumin occurs with high probability
(at least 1 — ¢§). Then since ¢* is the optimal solution to
problem (53), this also implies that the data-dependent
random variable g, is feasible for problem (53) with
high probability. Hence there exists a matrix Py, = 0
such that Py, = Q+(1—¢) AT Ppuin A and Tr(Ppin W) <
Jreq- This matrix makes also problem (51) feasible, and
this proves that the algorithm returns the correct answer
with high probability (at least 1 — ).

Proof of (1): Second we will show that the algorithm
returns the wrong answer with low probability. For that
we make use of the following fact:

Fact: If problem (52) is feasible, then gmax < ¢*.

We have also argued that ¢* < ¢. So if problem (52)
is feasible, then we combine the last two statements to
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conclude that gmax < ¢. As a result the event that (52)
is feasible implies the event that gmax < ¢. Hence we
can bound the probability that the algorithm returns
the wrong answer as

P((52) feasible) S P(Qmax S q) S 5 (55)
where the latter follows by Hoeflding’s inequality
(Lemma 2).

To complete this proof we need to prove the above Fact.
Note that if problem (52) is feasible, then that means
that the cost of the system on a channel with rate guay is
larger than Jieq, i-€., J(¢max) = Jreq- On the other hand
by design of problem (53) we have that ¢* = argmin{q :
J(q) < Jreq}. Combining the two statements we con-
clude that J(gmax) > Jreq > J(¢*). Finally we have
shown in Proposition 1 that the function J(q) is strictly
decreasing. Hence ¢max < ¢* and this concludes the
above fact. [ ]

The problem (53) essentially searches for the minimum
channel quality value that makes the control cost smaller
than the desired bound, i.e., ¢* = argmin{q € [0,1] :
J(q) < Jreq}.- We note that the optimization problem
(53) is not jointly convex in the variables ¢, P but can
be solved with bisection. In contrast both problems (51)
and (52) can be solved as convex optimization problems.

Interestingly the proposed cost performance analysis has
qualitatively the same form of sample complexity as the
stability analysis according to Corollary 2, even though
these are two different questions. More specifically we
see that what matter is the difference between the chan-
nel conditions ¢ and the solution to the problem (53).
Again we see that properties of the networked system
over the channel adversely affects the required amount
of samples.

We note here that unlike the stability verification ques-
tion of the previous section, here even if the system un-
der consideration is asymptotically stable (p(A) < 1),
testing whether its performance satisfies a desired value
may still require a very large number of samples.

5 Numerical simulations

We consider a system of the form (1) with spectral radius
p(A) = 2 that evolves over a Bernoulli channel with
success rate ¢ = 0.9. For this values the system is stable
because (3) holds. For 1000 trials we draw N = 20001.i.d.
channel samples according to the success rate ¢q. For each
trial we run the stability test described in Algorithm 1.

In Fig. 4, for different trials we plot the value of the high-
confidence lower bound ¢;, on the true packet success



rate ¢ computed by Algorithm 1 as the number of sam-
ples N grow. These lower bounds converge to the true
packet success, also plotted in the figure. We also plot
the minimum packet success rate required for stability
which is 1 —1/p(A)? as described in Proposition 1. Algo-
rithm 1 checks stability by checking whether the lower
bounds exceed the minimum packet success rate. As the
number of channel samples grows, on average more of
the lower bounds exceed the threshold and the algorithm
correctly verifies the stability of the system. In Fig. 4
this takes about 300 channel data samples.

We record the responses of the algorithm as 'Unsta-
ble’, ’Stable’, "Undetermined’. Across all trials we aver-
age how many times the algorithm returns the correct
answer 'Stable’. This is an empirical evaluation of the
correctness of the algorithm, similar to the theoretical
bound described by Theorem 1 (cf. (19)). In Fig. 5 we
plot both the empirical average correctness of the algo-
rithm as well as its theoretical bound as a function of
the number of channel samples drawn. First, we observe
that the theoretical bound indeed is a lower bound on the
average correctness of the algorithm. We note also that
the bound is not tight. That means that fewer channel
samples are actually required to learn whether the sys-
tem is stable or not than what is predicted by our theo-
retical bound. The reason is that Hoeffding’s inequality
is not tight, as already mentioned after Lemma 1. Em-
pirically however the rate at which the algorithm cor-
rectly learns the system stability as the number of sam-
ples grows seems to match the rate at which the the-
oretical bound grows. Hence numerically it seems that
our bound captures the complexity with respect to the
number of samples. Note here that the spikes appearing
in the figure are not noise due to the random samples,
they appear beacause the number of packet successes is
a discrete variable, not continuous.

Then in Fig. 6 we compare different algorithms for pro-
ducing high confidence intervals. In particular we com-
pare Algorithm 1 which is based on Hoeffding’s inequal-
ity with the algorithms described in Section 3.3 derived
based on the binomial distribution. In particular we con-
sider the algorithm based on exact confidence intervals
and the algorithm based on normal approximation. We
perform again an empirical evaluation of the rate of cor-
rectness of the algorithm. For multiple trials we draw
N i.i.d. channel samples according to the success rate ¢
and we record the responses of the algorithms as "Unsta-
ble’, ’Stable’, "Undetermined’. Across all trials we aver-
age how many times each algorithm returns the correct
answer 'Stable’. We observe that the algorithm based
on Hoeffding’s inequality is the most conservative one.
The algorithm based on exact confidence intervals has
better performance, i.e., requires fewer samples on av-
erage, while the algorithm based on normal approxima-
tion provides the best performance empirically. On the
other hand we observe that the average correctness of
all algorithms seem to increase at similar rates with the
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Fig. 4. We consider a system and channel that lead to sta-
bility. For different trials we plot the value of the high-con-
fidence lower bound on the true packet success rate g com-
puted by Algorithm 1 as the number of samples N grow.
These lower bounds grow on average above the minimum
packet success rate required for stability as described in
Proposition 1, also plotted. As the number of channel sam-
ples grows, on average the algorithm correctly verifies the
stability of the system.

Rate of Correct Answer of Stability Test for p(A):Z, q=0.9
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— Empirical average
= = =Theoretical bound
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09 f 3
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Fig. 5. We consider a system and channel that lead to sta-
bility. As the number of channel samples grows, the proba-
bility that Algorithm 1 correctly verifies the stability of the
system grows. The theoretical bound by Theorem 1 is below
the empirical bound obtained by simulation.

number of samples.

In Fig. 7 we empirically plot how often the stability veri-
fication algorithms returns the wrong answer, i.e., return
that the system is 'Unstable’ while the system is stable,
across a large number of iterations and number of chan-
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Fig. 6. Comparison of stability verification algorithms using
different confidence interval methods. We compare meth-
ods based on Hoeffding;s inequality, the exact method, and
the normal approximation method (Section 3.3). We empir-
ically plot how often the stability verification algorithms re-
turns the correct answer across a large number of iterations
and number of channel samples. The normal approximation
method gives the least conservative results and is more sam-
ple efficient.

nel samples. The normal approximation method often
gives the wrong answer and especially for few number
of samples. On the other hand, both the method based
on Hoeffding’s inequality and the exact method give the
wrong answers with probability less than the desired
confidence (§ = 1072 here). We note that for this figure
we chose a system that has very small stability margin
over the channel (specifically 1 —1/p(A)? ~ 0.49 is close
to ¢ = 0.5 here). This shows that even in such extreme
scenarios the method has guaranteed low probability of
error (except for the normal approximation method for
small number of samples).

6 Discussion

The assumption that the collected channel samples are
i.i.d. following a Bernoulli distribution is crucial in the
above results. In practice, only the channel sample data
is available and no a priori knowledge about their distri-
bution class, e.g., whether they are i.i.d., as in this paper,
or whether they are correlated or even non-stationary.
This is an important practical concern. For example, if
we utilize the stability test developed in Algorithm 1 un-
der i.i.d. channel assumptions on data that is not i.i.d.
the probability of error in the procedure does not neces-
sarily obey the bounds given in Theorem 1 above. Ide-
ally, we would like a more robust sample-based stability
analysis. This is the topic of future work.
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Fig. 7. Comparison of stability verification algorithms using
different confidence interval methods. We compare meth-
ods based on Hoeffding’s inequality, the exact method, and
the normal approximation method (Section 3.3). We empir-
ically plot how often the stability verification algorithms re-
turns the wrong answer across a large number of iterations
and number of channel samples. The normal approximation
method often gives the wrong answer and especially for few
number of samples.

7 Conclusions

In this paper we consider networked control systems
over unknown channels. We utilize a learning proce-
dure based on channel sample measurements to analyze
whether the system is stable or not over a given channel,
and we also analyze its control performance in terms of
a quadratic control cost. As the stability analysis proce-
dure is based on random samples there is a probability of
error and we characterize this probability as a function
of the true channel model, the system dynamics, and the
number of collected channel samples. In particular we
illustrate both theoretically and in simulations that the
number of channel samples required adversely depends
on the networked system stability margin, measured by
the difference between the system spectral radius and
the unknown channel packet success rate.

Future work involves the analysis of more complex chan-
nel models and the corresponding sample complexity, as
well as controller synthesis for networked control systems
over unknown channels using channel samples collected
online as the system is controlled.
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