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Abstract

We develop a method to approximate the moments of a discrete-time stochastic polynomial system. Our method is built upon Carleman
linearization with truncation. Specifically, we take a stochastic polynomial system with finitely many states and transform it into an infinite-
dimensional system with linear deterministic dynamics, which describe the exact evolution of the moments of the original polynomial
system. We then truncate this deterministic system to obtain a finite-dimensional linear system, and use it for moment approximation by
iteratively propagating the moments along the finite-dimensional linear dynamics across time. We provide efficient online computation
methods for this propagation scheme with several error bounds for the approximation. Our results also show that precise values of certain
moments at a given time step can be obtained when the truncated system is sufficiently large. Furthermore, we investigate techniques
to reduce the offline computation load using reduced Kronecker power. Based on the obtained approximate moments and their errors,
we also provide hyperellipsoidal regions that are safe for some given probability bound. Those bounds allow us to conduct probabilistic
safety analysis online through convex optimization. We demonstrate our results on a logistic map with stochastic dynamics and a vehicle
dynamics subject to stochastic disturbance.
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1 Introduction

Uncertainty is one of the critical issues that make safety as-
surance of cyber-physical systems a difficult task. Handling
uncertainty in automated driving systems is especially chal-
lenging, as motion planning algorithms are required to take
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account of uncertainty in both the measurement and the ac-
tuation mechanisms (Bry and Roy, 2011). Depending on the
dynamical variations in the environment and the vehicle-
controller interaction, the actual trajectory taken by a vehi-
cle may differ substantially from a trajectory that is precom-
puted based on nominal dynamics of the vehicle. Most mo-
tion planning algorithms address this issue by assessing the
collision risk for a set of possible future trajectories of the
vehicle and not just for the nominal trajectory. Moreover,
there are different approaches regarding how the uncertainty
is modeled. A well known approach is based on consider-
ing known deterministic bounds on the disturbance and the
measurement noise (see Althoff and Dolan (2014), and the
references therein). Another approach is to use stochastic
system models to describe the effects of uncertainty.

The effect of uncertainty on the state of a stochastic system
can be quantified through the so-called mean and covari-

Preprint submitted to Automatica 11 July 2023

ar
X

iv
:2

20
1.

08
64

8v
2 

 [
ee

ss
.S

Y
] 

 8
 J

ul
 2

02
3



finite-dim.
polynomial
stochastic

infinite-dim.
linear

stochastic

infinite-dim.
linear

deterministic

finite-dim. linear deterministic

approximation error bounds

prob.
ellipsoid
bounds

Tail Prob. Approx.
Section 5

Carleman lin.
Section 3.2

Expectation

Section 3.3

Truncation

Section 4.1

Truncation Error
Section 4.2 and 4.3

Fig. 1. The different steps of the proposed method

ance propagation method. This method is especially effec-
tive for systems with linear dynamics where the uncertainty
is modeled as additive Gaussian noise. For those systems,
if the initial state distribution is Gaussian, the distribution
of the state at any future time remains Gaussian. Moreover,
the mean and the covariance of the state can be computed
iteratively using linear equations. Previously, Bry and Roy
(2011) and Banzhaf et al. (2018) used this together with
Kalman filters in motion planning tasks.

While mean and covariance propagation is an effective
method for linear Gaussian systems, many cyber-physical
systems involve nonlinearities and the noise cannot always
be modeled to be an additive noise or a Gaussian one.
Our goal is to develop a moment propagation method for
nonlinear systems where the noise can be non-additive and
non-Gaussian. Specifically, our propagation method can
approximate the mean, covariance, and higher moments of
such systems. We consider discrete-time stochastic nonlin-
ear systems with polynomial dynamics, where the coeffi-
cients are randomly varying. Our model can describe both
additive and multiplicative noise. Our propagation method is
based on Carleman linearization with truncation (Steeb and
Wilhelm, 1980). By following the Carleman linearization
technique, we obtain a new dynamical system that describes
how the Kronecker powers of the system state evolve. This
system is linear, but it is infinite-dimensional. The expec-
tation of the states of this linear system correspond to all
moments of the original nonlinear system. By truncating
the expected dynamics of the linear system at a certain trun-
cation limit, we obtain a finite-dimensional linear system.
Using the equations of this finite-dimensional system, our
method iteratively computes the approximate moments of
the nonlinear system up to the provided truncation limit.

The mean, covariance, and higher moments of a system can
provide useful statistical information regarding possible fu-
ture state trajectories and can be used in safety verification.
In this paper, we use our moment approximation method
as a basis to develop a stochastic safety verification frame-
work. Our framework uses tail probability bounds (Gray and
Wang, 1991). We provide hyperellipsoidal safety region, for
which the probability of the system state to be outside that
region is within a given probability bound. Such safety re-
gions are characterized using positive-semidefinite matrices.
Previously, a scenario-based approach was used by Shen et
al. (2020) to obtain similar safety regions for vehicles. This
scenario-based approach is different from our moment-based
approach: it relies on generating sufficiently many sample
state trajectories using the information of the distributions
of random elements in the dynamics. In our approach, we
do not need to generate sample trajectories.

In this paper, we propose a novel tail probability-based safety
verification framework consisting of two phases. The first
one is an offline computation phase to compute the approx-
imate moment dynamics and compute the upper bounds for
their errors. The second phase is a fast online computation
to propagate the moments and their errors through the trun-
cated dynamics, then use them to compute probabilistic el-
lipsoid bounds. A key ingredient in our framework is to ef-
ficiently compute bounds on moment approximation errors.
First, we present the exact approximation error for a partic-
ular moment as a sum. However, for the exact computation,
the number of terms is a quickly growing function of the di-
mension of the system and the time. We provide efficient on-
line computation methods for this propagation scheme with
several error bounds for the approximation. Furthermore, we
develop novel techniques to reduce the offline computation
load using reduced Kronecker power.

Remark that, similarly to Bry and Roy (2011), this paper
focuses on discrete-time systems. We could also take into
account the error due to going from continuous-time to
discrete-time dynamics by incorporating Lagrange remain-
ders in our analysis, but we decided against it to keep the
presentation of our method simple. Remark also that extend-
ing the analysis of Forets and Pouly (2017) on continuous-
time systems by adding general noise with both additive and
multiplicative noise terms is not easily achievable, which
motivated the present work.

We present two case studies to demonstrate various aspects
of our method. Our first case study is on a scalar stochas-
tic logistic map. In particular, we consider uniformly dis-
tributed growth/decay rates in the dynamics. We run mo-
ment approximation and tail probability-based safety anal-
ysis. In the safety analysis, we check the conservativeness
of our tail-probability bounds through Monte Carlo simula-
tions. We observe that our obtained safety regions are quite
tight for small durations. We also observe that our method
is advantageous in terms of speed. It does not require draw-
ing random variables, and as a result, it is much faster than
Monte Carlo simulations even with small number of sam-
ples. Another advantage of our method is that it provides a
theoretical guarantee for obtaining the safety regions.

Our second case study is on a vehicle with kinematic bicycle
model. First, we use second-order Taylor expansion to ob-
tain a discrete-time nonlinear polynomial system describing
the vehicle. Then we use our approximate moment propa-
gation approach to study how the vehicle’s future states are
affected by the uncertainty in the acceleration and in the
initial vehicle state. Our approach uses the moments of the
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initial state of the vehicle and the moments for the acceler-
ation to approximate future moments of the state. Here the
uncertainty in the initial state is caused by the measurement
noise and thus initial state moments are derived from the
statistical properties of the measurement error. On the other
hand uncertainty in the acceleration is related to actuators
and the environment. In a typical control loop, our approach
can be applied in a receding horizon fashion. In particular,
computation is done by first obtaining new state measure-
ments which are used for specifying the moments of the
new “initial” state; then these moments are propagated to
approximately compute the moments of the state associated
with future time instants.

The rest of the paper is organized as follows (see also Fig-
ure 1). Section 2 presents related work on Carleman lin-
earization. In Section 3, we start from a finite-dimensional
stochastic polynomial system, on which we apply the Car-
leman linearization technique to get an infinite-dimensional
linear stochastic system. Then, we turn the linear stochastic
system into a deterministic one by taking expectation. We
present our truncation-based moment approximation method
and study the error it introduces in Section 4. Then, in Sec-
tion 5, we provide probabilistic ellipsoid bounds based on
approximations of the first and second moments. Section 6
presents techniques to reduce the offline computation load
using the concept of reduced Kronecker power. We provide
two numerical examples to demonstrate the applicability of
our approach in Section 7. Finally, in Section 8, we conclude
the paper.

2 Related Work

The characterization of the dynamics under truncated Car-
leman linearization and the truncation error analysis in Sec-
tion 3 appeared previously in our preliminary conference
report (Pruekprasert et al., 2020).

In this paper, we present new results on tail-probability anal-
ysis and a two-step approximation procedure for confidence
ellipsoid bounds of the system state in Section 5. We inves-
tigate techniques to improve the computational efficiency
of our methods in Section 6. We also provide a new up-
per bound for the approximation error from truncation in
Section 4.3.3, using partial exact computation with indices
on moment coordinates. We illustrate these new results and
techniques in Section 7 through new simulations for a case
study on vehicle dynamics.

The Carleman linearization technique is well-known in the
nonlinear systems literature. For deterministic systems, it has
been used for approximation of nonlinear models by linear
ones (Bellman and Richardson, 1963; Steeb and Wilhelm,
1980; Al-Tuwaim et al., 1998). Recently, Amini et al. (2019)
used a Carleman linearization approach to design state feed-
back controllers for continuous-time nonlinear polynomial
systems, Hashemian and Armaou (2019) used Carleman lin-
earization in model predictive control of continuous-time

deterministic nonlinear systems, and Amini et al. (2021)
obtained error bounds for Carleman linearization with trun-
cation. Furthermore, Amini et al. (2020) proposed control
frameworks based on Carleman linearization. There, an ap-
proach using Carleman linearization with truncation allows
the authors to approximately represent the Hamilton-Jacobi-
Bellman equation (arising in optimal control of nonlinear
systems) as an operator equation in quadratic form. This
representation is then used to derive the approximate value
function of the optimal control system as a quadratic Lya-
punov function. The main advantage of the method is that it
yields an iterative procedure to approximate the value func-
tion that converges to the true value. In our work, we do not
investigate the optimal control problem and we use Carle-
man linearization with truncation to approximate moments
of stochastic systems instead of value functions.

There are fewer results on Carleman linearization for
stochastic systems. Specifically, Wong (1983) investigated
bilinear noise terms in Ito-type stochastic differential equa-
tions and used Carleman linearization to describe how the
moments of the stochastic differential equations evolve.
Furthermore, Rauh et al. (2009) considered continuous-time
nonlinear systems with additive noise and used a Carleman
linearization technique in conjunction with a series expan-
sion approach to approximate such systems with discrete-
time linear systems. They then demonstrated that a Kalman
filter can be used on the obtained linear systems for state
estimation. In addition, Cacace et al. (2014) and Cacace et
al. (2019) proposed Carleman linearization-based sampled-
data filters for nonlinear stochastic differential equations
driven by Wiener noise. More recently, Jasour et al. (2021)
used a technique akin to Carleman linearization in moment
propagation of a class of discrete-time mixed trigonometric
polynomial systems with probabilistic disturbance. They
show that several systems of interest are mixed trigonomet-
ric polynomial of degree 1, for which moment propagation
without error is computationally feasible. The truncation
error analysis in our paper is partly motivated by the work
of Forets and Pouly (2017), which derives tight approxima-
tion error bounds for the truncated Carleman linearization
of deterministic continuous-time systems. We note that de-
riving linear representations of finite-dimensional nonlinear
systems can also be achieved through the use of Koopman
operators (Goswami and Paley, 2017; Mesbahi et al., 2019).
A Koopman operator approach has recently been used in
model predictive control of vehicles with deterministic
nonlinear dynamics (Cibulka et al., 2020).

Notations. We use R and N for the sets of real numbers
and non-negative integers, respectively. We write 1 for the
(1× 1)-matrix

[
1
]
. We denote by M1 ⊗M2 the Kronecker

product of two matrices M1 and M2. We use M [k] to denote
the kth Kronecker power of the matrix M , given by M [0] =
1 and M [k] = M [k−1] ⊗M for k > 0. For a matrix M of
random variables, we write E[M ] for its expectation.
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3 Carleman Linearization for Stochastic Polynomial
Systems

In this section, we present the Carleman linearization
technique to transform a finite-dimensional discrete-time
stochastic polynomial system into an infinite-dimensional
one, then take expectation to get a deterministic system that
describes the evolution of all moments of the system state.

3.1 Discrete-Time Stochastic Polynomial Systems

We consider the following finite-dimensional discrete-time
stochastic polynomial system

x(t+ 1) =

ν∑
i=0

Fi(t)x
[i](t), t ∈ N,

x(0) = xini,

(1)

where x(t) ∈ Rn is the state vector and Fi(t) ∈ Rn×ni

,
i ∈ {0, 1, . . . , ν}, are matrix-valued stochastic processes.
More precisely, we assume given a probability space Ω, then
xini (resp. x(t), Fi(t)) is a measurable function from Ω to
Rn (resp. Rn, Rn×ni

). We consider the scenarios where all
Fi(t)’s have known distributions.

Systems of the form (1) can be used to model dynamics
with both additive and multiplicative noise terms. The vec-
tor F0(t) ∈ Rn represents additive noise, as x[0](t) = 1,
while the matrices F1(t), . . . , Fν(t) characterize the effects
of multiplicative noise. Then, we define

F(t) ≜
[
F0(t) F1(t) · · · Fν(t)

]
∈ Rn×

∑ν

i=0
ni

, (2)

which is a matrix with n rows and
∑ν

i=0 n
i columns.

We make the following assumptions concerning the coeffi-
cient matrices and the random initial state xini.

Assumption 3.1. The vector xini and the matrices F(t),
t ∈ N, are all independent.

Assumption 3.2. The matrices {F(t) | t ∈ N} are identi-
cally distributed.

Note that Assumptions 3.1 and 3.2 are not overly restric-
tive and they hold in fairly general situations as we discuss
in Section 7. Notice also that under Assumption 3.1, matri-
ces Fi(t) and Fj(t) are still allowed to statistically depend
on each other. Moreover, Assumption 3.2 allows us to ob-
tain a “time-invariant” method to compute moments, further
yielding computational advantage.

Example 1. Consider

x1(t+ 1) = a(t)x1(t)x2(t), x1(0) = xini,1,

x2(t+ 1) = a(t)(x1(t) + x2(t)), x2(0) = xini,2,

where xini,1, xini,2, and a(t), t ∈ N, are independent and
identically distributed random variables. By using x(t) =[
x1(t) x2(t)

]⊺
, F0(t) =

[
0 0

]⊺
, F1(t) =

[
0 0

a(t) a(t)

]
, and

F2(t) =

[
0 a(t) 0 0

0 0 0 0

]
, we can rewrite the system as in the

form of (1), i.e.,

x(t+ 1) = F0x
[0](t) + F1x

[1](t) + F2x
[2](t). (3)

Our objective is to approximate the moments of the state of
(1), which we will use in Section 5 to compute probabilis-
tic safety areas for the state x(t) at a given time t. For Ex-
ample 1, given j and t, our objective is to approximate the
moment E[x[j](t)]. Note that the initial moments E[x[j](0)]
can be computed from the probability distribution of xini.

3.2 Carleman Linearization

We use Carleman linearization to obtain an infinite-
dimensional linear system that describes the evolution of
the Kronecker powers of the state vector x(t). By defining

yk(t) ≜
[
x[0](t)⊺ x[1](t)⊺ · · · x[k](t)⊺

]⊺
, (4)

we can rewrite the dynamical system (1) using (2) and (4) as

x(t+ 1) =
[
F0(t) · · · Fν(t)

] [
x[0](t)⊺ · · · x[ν](t)⊺

]⊺
= F(t) yν(t).

Therefore, for all j ∈ N, we have

x[j](t+ 1) = (F(t) yν(t))
[j]. (5)

Then, we introduce Theorem 3.3 to compute (F(t) yν(t))
[j].

Theorem 3.3. Consider F(t) and yν(t) given in equa-
tions (2) and (4), respectively. We have

(
F(t) yν(t)

)[j]
=

jν∑
k=0

 ∑
(i1,...,il)∈Hj,k

Fi1(t)⊗ · · · ⊗ Fij (t)

x[k](t),

for j ∈ N, where

Hj,k ≜

{
(i1, . . . , ij)

∣∣∣∣∣
j∑

l=1

il = k and 0 ≤ il ≤ ν

}
.
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The proof of Theorem 3.3 is presented in Appendix A.

By (5) and Theorem 3.3, we obtain the infinite-dimensional
linear system

x[j](t+ 1) =

jν∑
k=0

 ∑
(i1,...,ij)∈Hj,k

Fi1(t)⊗ · · · ⊗ Fij (t)

x[k](t),

x[j](0) = x
[j]
ini , (6)

which describes the evolution of all Kronecker powers
x[0](t), x[1](t), . . . of the state x(t).

In order to give a simpler description of the system, we
introduce the matrices Aj,k(t) ∈ Rnj×nk

given by

Aj,k(t) ≜
∑

(i1,...,ij)∈Hj,k

Fi1(t)⊗ · · · ⊗ Fij (t). (7)

Note in particular that H0,0 only contains the empty tuple
and A0,0(t) = 1, as it is the identity of ⊗. We also have

Aj,k(t) = 0 if k > jν, (8)

since Hj,k is then empty. We then introduce, for all N,M ∈
N, the matrix AN,M (t) defined by blocks as:

AN,M (t) ≜


A0,0(t) · · · A0,M (t)

...
. . .

...

AN,0(t) · · · AN,M (t)

 , (9)

which is a matrix of
∑N

i=0 n
i rows and

∑M
i=0 n

i columns.
From (6), for any k ∈ N, we have


x[0](t+ 1)

...

x[k](t+ 1)

 =


A0,0(t) · · · A0,kν(t)

...
. . .

...

Ak,0(t) · · · Ak,kν(t)





x[0](t)
...

x[k](t)
...

x[kν](t)


,

which can be rewritten using (4) and (9) as

yk(t+ 1) = Ak,kν(t) ykν(t). (10)

Notice that is not closed: we need ykν(t) in order to compute
yk(t+ 1). As a result, the linear model describing the system
cannot be written using a finite state space. However, in
Section 4, we can restrict this system to a finite dimensional
one as we are interested in a finite number of moments on
a finite time horizon.

Example 2. For the system (3) in Example 1,

x[2](t+ 1) =(
F0(t)x

[0](t) + F1(t)x
[1](t) + F2(t)x

[2](t)
)[2]

.

By (10), we have

y2(t+ 1) = A2,4(t)y4(t), (11)

where

A2,4(t) =


1 0 0 0 0

F0 F1 F2 0 0

F
[2]
0

F0⊗F1
+F1⊗F0

F0⊗F2+F
[2]
1

+F2⊗F0

F1⊗F2
+F2⊗F1

F
[2]
2

.

Note that we omitted time dependence of F0, F1 and F2 for

brevity. Since F0(t) =
[
0 0

]⊺
, (11) can also be written as


1

x[1](t+ 1)

x[2](t+ 1)

 =


1 0 0 0 0

0 F1 F2 0 0

0 0 F
[2]
1

F1⊗F2
+F2⊗F1

F
[2]
2




1

x[1](t)

x[2](t)

x[3](t)

x[4](t)


.

Recall that our objective is to approximate E[x[j](t)] for
given j and t. In the next section, we will consider a vector
E[yk(t)] which includes all moments E[x[j](t)] where j ≤ k.

3.3 Moment Equations

We now derive the deterministic system that describes the
evolution of the moments of x(t) by taking expectation
in (10). This gives

E[yk(t+ 1)] = E[Ak,kν(t)ykν(t)].

By iteration of (10), we get that ykν(t), t ∈ N, is given by

ykν(t) = Akν,kν2(t− 1) · · ·Akνt,kνt+1(0) · ykνt+1(0).
(12)

It follows from Assumption 3.1 that Ak,kν(t) and ykν(t)
in (10) are mutually independent. To see this, observe that
Ak,kν(t) is composed of the matrices Fi(t), which are in-
dependent of xini and F(t− 1), . . . ,F(0), which determine
ykν(t) as given by (12). It then follows that

E[yk(t+ 1)] = E[Ak,kν(t)]E[ykν(t)].

Here again, to give a simpler description of the system, we
introduce new matrices. Notice that the coefficients of the
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matrix E[AN,M (t)] are products of the moments of coeffi-
cients of F(t) and thus independent of t by Assumption 3.2.

Thereby, we use the notations:

Ei,j = E[Ai,j(t)] ∈ Rni×nj

,

EN,M = E[AN,M (t)] ∈ R
∑N

i=0
ni×

∑M

i=0
ni

,
(13)

emphasizing the fact that both are independent of the time.

Then, from (6), we can obtain the following system.

E[x[j](t+ 1)] =

jν∑
k=0

Ej,kE[x[k](t)], t ∈ N,

E[x[j](0)] = E[x[j]ini ].

(14)

From (7), the matrices Ej,k only depend on the moments
E[Fi(·)], which are independent of t as discussed above. As
a result, the matrices Ej,k can be computed offline.

4 Moment Approximation through Truncation

We will now introduce an approach that allows us to com-
pute approximations of the moments of x(t). This trunca-
tion approach is critical, as an exact computation of the mo-
ments is impossible from a practical point of view. Indeed,
by (4), computing the first k moments at time t amounts to
computing E[yk(t)]. So, by iteration of (14),

E[yk(t+ 1)] = Ek,kν · · ·Ekνt−1,kνtE[ykνt(0)]. (15)

As this indicates, exact computation of the first k moments
requires the knowledge of matrices Ek,kν , Ekν,kν2 , . . .,
Ekνt−1,kνt of exponentially increasing dimensions, making
any practical computation unrealistic.

Thus, in the next section, we compute approximations of the
moments of x(t) by trucating the system (14).

4.1 Approximate Moments and the Truncated System

In this section, we define the system that we use to compute
approximations of the moments of x(t).

We fix the truncation limit NT ∈ N, and define approximate
moments x̃(i)(t) ∈ Rni

, i ∈ 1, . . . , NT, by[
1 x̃(1)(t)

⊺ · · · x̃(NT)(t)
⊺
]⊺

= Et
NT,NT

[
1 E[xini]

⊺ · · · E[x[NT]
ini ]

⊺]⊺
. (16)

Notice that (16) follows the same pattern as (15), but use the
square matrix ENT,NT

. Here, the vector x̃(i)(t) represents
an approximation of the moment E[x[i](t)] that is computed
using only our knowledge of the first NT moments of xini.
Note that the superscript (i) is only for notation purpose,
and it has no relation to the Kronecker power.

By letting

ỹ(t) ≜ [ 1 x̃(1)(t)⊺ x̃(2)(t)⊺ · · · x̃(NT)(t)⊺ ]⊺, (17)

we obtain what we call the “truncated system”, which is a
discrete-time linear time-invariant system given by

ỹ(t+ 1) = ENT,NT ỹ(t), t ∈ N,

ỹ(0) = [ 1 E[xini(t)]
⊺ · · · E[x[NT]

ini (t)]⊺ ]⊺.
(18)

The truncated system allows us to iteratively compute ap-
proximations of the moments of x(t) at consecutive time
instants. Moreover, the approach only requires an offline
computation of the matrix ENT,NT .

Example 3. By considering NT = 2, we may approximate
the first and and the second moments of the system in Ex-
ample 2 by the following truncated system.

ỹ(t+ 1) = [ 1 x̃(1)(t+ 1)⊺ x̃(2)(t+ 1)⊺) ]⊺

= E



1 0 0

0 F1(t) F2(t)

0 0 F1(t)⊗ F1(t)





1

x̃(1)(t)⊺

x̃(2)(t)⊺


= E2,2 ỹ(t),

where x̃(1)(0)⊺ = E[xini(t)]
⊺ and x̃(2)(0)⊺ = E[x[2]ini (t)]

⊺.

4.2 Computation of Truncation Errors

We now consider the error due to the truncation. We consider
j0 ∈ {0, . . . , NT}, and let e(j0)(t) ∈ Rnj0 denote the error
of the j0-th moment, that is,

e(j0)(t) ≜ E[x[j0](t)]− x̃(j0)(t). (19)

First, by (14), we have

E[x[j0](t)] =
j0ν∑
j1=0

Ej0,j1E[x[j1](t− 1)]

=

j0ν∑
j1=0

Ej0,j1

j1ν∑
j2=0

Ej1,j2E[x[j2](t− 2)]

=

j0ν∑
j1=0

Ej0,j1

j1ν∑
j2=0

Ej1,j2 · · ·
jt−1ν∑
jt=0

Ejt−1,jtE[x
[jt]
ini ],
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and similarly, by (16),

x̃(j0)(t) =

NT∑
j1=0

Ej0,j1

NT∑
j2=0

Ej1,j2 · · ·
NT∑
jt=0

Ejt−1,jtE[x
[jt]
ini ].

From (8) and (13), we can observe thatEj,k = 0 for k > jν.
Therefore, we obtain from the two equations above,

e(j0)(t) = E[x[j0](t)]− x̃(j0)(t)

=

j0ν∑
j1=NT+1

Ej0,j1

j1ν∑
j2=0

Ej1,j2 · · ·
jt−1ν∑
jt=0

Ejt−1,jtE[x
[jt]
ini ]

+

NT∑
j1=0

Ej0,j1

j1ν∑
j2=NT+1

Ej1,j2 · · ·
jt−1ν∑
jt=0

Ejt−1,jtE[x
[jt]
ini ]

+ · · ·

+

NT∑
j1=0

Ej0,j1 · · ·
NT∑

jt−1=0

Ejt−2,jt−1

jt−1ν∑
jt=NT+1

Ejt−1,jtE[x
[jt]
ini ]. (20)

As an immediate consequence, we get the following:

Proposition 4.1. Consider the truncated approximation of
the moments of system (1) with truncation limit NT ∈ N. If
j0ν

t ≤ NT, then x̃(j0)(t) = E[x[j0](t)].

Proof. We show that, if j0νt ≤ NT, then e(j0)(t) = 0 and
the proposition holds. To this end, it is enough to show that
all lines of (20) are equal to 0 for any sequence j1, . . . , jt of
relevant indices. Let us pick any ith line and any sequence
j1, . . . , jt. It is enough to show that there exists k ∈ {1, . . . t}
where jk > jk−1ν, so that Ejk−1,jk = 0 by (8), which also
makes the ith line equal to 0. For the sake of contradiction,
we assume that jk ≤ jk−1ν for all k ∈ {1, . . . t}, which
makes ji−1 ≤ ji−2ν ≤ ji−3ν

2 ≤ . . . ≤ j0ν
i−1 ≤ j0ν

t.
However, notice that we have ji−1 ≥ NT+1 > NT ≥ j0ν

t,
which is a contradiction that proves the desired result.

This shows that, for large values of truncation limit NT, the
proposed method computes exact moments E[x[j0](t)] for
small enough j0 and t. Note that this is due to the discrete-
time nature of the finite-dimensional polynomial system (1).
In the continuous-time case, approximation errors cannot be
avoided in general (Forets and Pouly, 2017).

Since E[x[j0](t)] = x̃(j0)(t) + e(j0)(t), if e(j0)(t) could ef-
ficiently be computed, then so would E[x[i](t)], and there
would be no need in using the truncated system. However,
the exact value of e(j0)(t) is generally hard to compute.
Therefore, in the following section, we provide upper bounds
for e(j0)(t).

4.3 Approximation of Error Bounds

We now investigate the approximation error introduced by
truncation. For a given j0 ∈ {0, . . . , NT}, our goal is to
obtain an upper bound on

∥∥e(j0)(t)∥∥∞, which is the error on
the j0-th moment introduced by the truncation (where ∥·∥∞
denotes the infinity norm).

Bounds on
∥∥e(i)(t)∥∥∞ allow us to use various techniques

to study the distribution of the state at future time steps.
We illustrate this in Section 5 by using tail probability ap-
proximations to compute a safety area, for which we know
that the probability of the system landing outside that area
is bounded by a predefined constant.

4.3.1 Global Error Bound

First, let ξ(t) ≜ max
0≤j≤j0νt

∥∥∥E[x[j]ini ]
∥∥∥
∞
. Using ξ(t), we can

derive bounds for e(j0)(t) by first reorganising (20) accord-
ing to the moments of xini, which gives

e(j0)(t) =

j0ν
t∑

j=0

ẼjE[x[j]ini ], (21)

where each Ẽj ∈ Rnj0×nj

is a simple sum of products of
En,m’s, obtained by this reorganisation of (20). All Ẽj can
thus be computed offline (note that Ẽj is dependent on t,
but we keep this implicit for readability).

From this, we can derive a global bound

∥∥∥e(j0)(t)∥∥∥
∞

≤ ξ(t)

j0ν
t∑

j=0

∥∥∥Ẽj

∥∥∥
∞
, (22)

where
∑j0ν

t

j=0

∥∥∥Ẽj

∥∥∥
∞

can be computed offline.

Observe that ξ(t) can be efficiently computed in some cases.
An obvious situation is when the position xini is determined,
in which case we have ξ(t) = max{1, ∥xini∥j0ν

t

∞ }. Another
case is when xini obeys a well-known distribution whose mo-
ments are easy to compute, such as uniform or normal distri-
butions. Another case is when the system satisfies x(t) ∈ R
and xini ∈ [0, 1], in which case

∥∥∥E[x[j]ini ]
∥∥∥
∞

is decreasing

and we have ξ(t) =
∥∥∥E[x[0]ini ]

∥∥∥
∞

= 1.
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4.3.2 Error Bound using Partial Exact Computation with
Block Indices on Moments

We can further refine (21) to consider a single line i ≤ nj0

of the equation, for which we get

e
(j0)
i (t) =

j0ν
t∑

j=0

vj,iE[x[j]ini ], (23)

where vj,i ∈ R1×nj

is the ith row of Ẽj . By repeated appli-
cation of triangle and Cauchy-Schwarz inequalities, we have

|e(j0)i (t)| ≤ ξ(t)

j0ν
t∑

j=0

∥vj,i∥∞ , (24)

where
∑j0ν

t

j=0 ∥vj,i∥∞ can also be computed offline.

This bound can, however, be crude in practice as the norm
gets distributed over all sums and products. We alleviate
this problem in Proposition 4.2 where we compute tighter
bounds while maintaining a reasonable computational cost.

Proposition 4.2. For any subset J ⊆ {0, . . . , j0νt}, we
have the bound

|e(j0)i (t)| ≤
∣∣∣∑
j∈J

vj,iE[x[j]ini ]
∣∣∣+ ξ(t, J)

∑
j ̸∈J

∥vj,i∥∞ ,

where ξ(t, J) = max
j ̸∈J

∥∥∥E[x[j]ini ]
∥∥∥
∞

.

The idea is that J is a set of indices where one should
avoid distributing the norm over the sum. One should pick
J to consist of those indices where the distribution is too
crude and makes the error bound loose. In order for this
method to be computationally efficient, one should pick J
that is of relatively small size, e.g., |J | = O(t). One possible
way to choose J is to fix a size ĵ and return the set of
ĵ indices j where ∥vj,i∥ are the largest; another way is to

return the set of ĵ indices j such that
∥∥∥E[x[j]ini ]

∥∥∥
∞

are the
largest. For example, suppose xini is drawn from a truncated
normal distribution over the interval [0, 1]. Then ξ(t) = 1

and ξ(t, J) =
∥∥∥E[x[jmin]

ini ]
∥∥∥
∞

, where jmin is the smallest

number that is not in J . If J is chosen as the set of first ĵ

indices, then J = {0, . . . , ĵ− 1} and ξ(t, J) =
∥∥∥∥E[x[̂j]ini ]

∥∥∥∥
∞

.

4.3.3 Error Bound using Partial Exact Computation with
Regular Indices on Moment Coordinates

We can further refine (21) and (23) by considering
each element of matrix Ẽj and vector E[x[j]ini ]. Let ṽ =

[
Ẽ0 Ẽ1 · · · Ẽj0νt

]
and ỹ = E

[
x
[0]⊺
ini x

[1]⊺
ini · · · x[j0ν

t]⊺
ini

]⊺
.

In the same way as in (24), we have

|e(j0)i (t)|≤
m∑

k=0

|ṽi,k||ỹk| ≤ max
k≤m

|ỹk| ·
m∑

k=0

|ṽi,k|,

where ỹk is the kth row of ỹ and and ṽi,k is the element at
ith row and kth column of ṽ. Then, in the same way as in
Proposition 4.2, we obtain the following proposition.

Proposition 4.3. For any subset K ⊆ {0, . . . ,m}, we have

|e(j0)i (t)| ≤
∣∣∣ ∑
k∈K

ṽi,kỹk

∣∣∣+max
k ̸∈K

|ỹk|
∑
k ̸∈K

|ṽi,k|.

Again, one possible option of the set K is to fix a size k̂ and
then choose k̂ indices k where |ỹk| are the largest. In the
next section, we will use these error bounds for probabilistic
safety analysis.

5 Ellipsoid Bounds for Probabilistic Safety Analysis

Everything that we have computed up to this point can be
computed offline, as it does not depend on the actual system
state. In this section, we show how to do online computation
of probabilistic safety regions using tail probability analysis.
It crucially relies on approximations of the first and second
moments of the dynamics of the system.

5.1 Tail Probability Approximation

In this section, we use the bounds on the error introduced
by the truncated system, which are derived in Section 4.3,
to give a lower bound on the probability of the system being
inside a given ellipsoid region after t time steps. For any
j0 ≤ NT and i ≤ nj0 , let ϵ(j0)i (t) be an upper bound of
|e(j0)i (t)| obtained by any of the methods in Section 4.3.

We define the region we are interested in terms of positive-
semidefinite matrices. A matrix P ∈ Rn×n is positive-
semidefinite if, for all vectors x ∈ Rn, x⊺Px ≥ 0. Such a
P defines a seminorm, called the P -seminorm, by ∥x∥P =
(x⊺Px)1/2. The region defined by ∥x∥P ≤ r is an ellipsoid
(possibly of infinite radius in some dimensions).

Recall that n is the dimension of the state vector x(t) of the
system (1). Let

x(t) =
[
x1(t) x2(t) . . . xn(t)

]⊺
∈ Rn,

where xi’s are scalars. Notice that, for any i, j ∈ {1, . . . , n},
the (ni+ j)-th row of x[2](t) is

x
[2]
ni+j(t) = xi(t)xj(t).
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Hence, we can approximate the expectations E[xi(t)xj(t)]
using x̃(2)(t), which is the approximation of E[x[2](t)] com-
puted with the methods in Section 4.3, as well as its error
bound ϵ(2)(t). For the sake of readability, we use the notation

x̃
(2)
(i,j)(t) = x̃

(2)
ni+j(t),

as it is the approximation of E[xi(t)xj(t)]. Similarly, we use

ϵ
(2)
(i,j)(t) = ϵ

(2)
ni+j(t),

which is the respective approximation error bound. We also
use x̃(1)i (t) and ϵ(2)i (t) to denote the i-th row of x̃(1)(t) and
ϵ(1)(t), respectively.

Now, we assume that we know a global error bound

∥x̃(1)(t)− E[x(t)]∥P ≤ εP,t. (25)

We will discuss the technique to get this bound εP,t later at
the end of this section.

We then introduce Proposition 5.1, which gives a mean to
bound the probability of the system being outside of an
ellipsoid centered around x̃(1)(t).

Proposition 5.1. For given positive-semidefinite matrix P
and α > εP,t,

P(∥x(t)− x̃(1)(t)∥P ≥ α)

≤
∑n

i,j=1 pij(E[xi(t)xj(t)]− E[xi(t)]E[xj(t)])
(α− εP,t)2

,
(26)

where pij is the element on the ith row and the jth column
of the matrix P .

Proof. Since α > εP,t, we get by Markov’s inequality:

P(∥x(t)− x̃(1)(t)∥P ≥ α)

≤ P(∥x(t)− E[x(t)]∥P ≥ α− εP,t)

= P(∥x(t)− E[x(t)]∥2P ≥ (α− εP,t)
2)

≤ E[∥x(t)− E[x(t)]∥2P ]
(α− εP,t)2

=

∑n
i,j=1 pij(E[xi(t)xj(t)]− E[xi(t)]E[xj(t)])

(α− εP,t)2
.

For a fixed matrixP and known values of the approximations
x̃
(1)
i (t), x̃(2)(i,j)(t), and the error bounds ϵ(1)i (t) and ϵ(2)(i,j)(t),

each term of the sum in (26) can be bounded. The derived
bound depends on the signs of pij , ϵ(1)i (t) − x̃

(1)
i (t), and

ϵ
(1)
j (t)− x̃

(1)
j (t). For example, if pij > 0, x̃(1)i (t) ≥ ϵ

(1)
i (t),

and x̃(1)j (t) ≥ ϵ
(1)
j (t), then we have

pij(E[xi(t)xj(t)]− E[xi(t)]E[xj(t)]) ≤
pij(x̃

(2)
(i,j)(t) + ϵ

(2)
(i,j)(t)−

(x̃
(1)
i (t)− ϵ

(1)
i (t))(x̃

(1)
j (t)− ϵ

(1)
j (t))).

(27)

Similar bounds can easily be found in all other cases by
using the following bounds:

|E[xi(t)xj(t)]− x̃
(2)
(i,j)(t)| ≤ ϵ

(2)
(i,j)(t),

|E[xi(t)]− x̃
(1)
i (t)| ≤ ϵ

(1)
i (t).

In particular, if we know exact values for E[xi(t)] and
E[xi(t)xj(t)] (i.e., if NT ≥ 2νt), we have Corollary 5.2.

Corollary 5.2. Consider a positive-semidefinite matrix P .
If NT ≥ 2νt, for any α > εP,t,

P(∥x(t)− x̃(1)(t)∥P ≥ α)

≤
∑n

i,j=1 pij(x̃
(2)
(i,j)(t)− x̃

(1)
i (t)x̃

(1)
j (t))

(α− εP,t)2
,

(28)

where pij is the element on the ith row and the jth column
of the matrix P .

One part that we have left open is how to compute a
value for εP,t. In Section 4.3, we have given bounds
on ∥E[x(t)]− x̃(1)(t)∥∞. This directly gives us bounds
on ∥E[x(t)]− x̃(1)(t)∥P , using the fact that ∥x∥P ≤
λ
1/2
n ∥x∥∞, where λn is the greatest eigenvalue of P . There-

fore, εP,t ≤ λ
1/2
n

∥∥e(1)(t)∥∥∞. Recall that we can compute
an upper bound of

∥∥e(1)(t)∥∥∞ using methods in Section 4.3.

5.2 Computation of Probabilistic Ellipsoid Bounds

Using the bounds above, we explain how to compute prob-
abilistic ellipsoid bounds, i.e., ellipsoid areas in which we
know the system will be with at least a given probability.

The problem we are interested in is the following: given a
probabilistic system as in (1), approximations x̃(1)(t) and
x̃(2)(t) of first and second moments of the system at time
t, bounds on the errors of these approximations, and a con-
stant b ∈ (0, 1), find an ellipsoid in which we know the
system state x(t) will be with probability at least (1 − b).
The ellipsoid is preferred to be as small as possible, to give
a precise bound. The problem to find the smallest ellipsoid
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can be formulated as the following optimization problem:

maximize
P

det(P )

subject to P is positive-definite,∑n
i,j=1 pi,j(E[xi(t)xj(t)]− E[xi(t)]E[xj(t)])

(α− εP,t)2
≤ b,

(29)

for some fixed α > 0, say 1, and pi,j is the element on the
ith row and the jth column of P . From Proposition 5.1,
we have that the system state at time t is in the ellipsoid{
x ∈ Rν

∣∣ ∥x− x̃(1)(t)∥P ≤ α
}

with probability at least
(1− b).

Remark 1. The problem (29) cannot be solved by convex
optimization methods – and therefore not solved online –
because εP,t depends on P and the presence of εP,t makes
it unclear whether the constraint is convex. Moreover, com-
puting εP,t cannot be done online repeatedly.

Hence, we propose a three-step approximate solution for
efficiency. We first solve the problem above, but assume that
all errors are 0 to obtain the matrix Q:

maximize
Q

det(Q)

subject to Q is positive-definite,∑n
i,j=1 qi,j(x̃

(2)
(i,j)(t)− x̃

(1)
i (t)x̃

(1)
j (t))

α2
≤ b,

(30)

where qi,j is the element on the ith row and the jth column
of Q. This makes the problem convex (Boyd and Vanden-
berghe, 2004), so (30) can be solved online. Note that chang-
ing the value of α > 0 does not change the volume of the
ellipsoid

{
x ∈ Rν

∣∣ ∥x− x̃(1)(t)∥Q ≤ α
}

, since the volume
is inversely proportional to det(Q). So, we may use α = 1.

Then, as a second step, we compute a matrix P = sQ where
s is a positive real value that is obtained by solving the
following optimization problem.

maximize
s

det(sQ)

subject to s ∈ R, s > 0,∑n
i,j=1 sqi,jui,j(x̃

(1)(t), x̃(2)(t), ϵ(1)(t), ϵ(2)(t))

α2
≤ b,

(31)

where ui,j is a function of the moment approximations and
truncation error bounds that satisfies

E[xi(t)xj(t)]− E[xi(t)]E[xj(t)]
≤ ui,j(x̃

(1)(t), x̃(2)(t), ϵ(1)(t), ϵ(2)(t)).

Notice that ui,j can always be computed as discussed in
Section 5.1 (e.g., (27)).

The goal of this second step is to enlarge the ellipsoid of Q
obtained from the first step by using a scalar value s. This

Fig. 2. Safe ball (top) and ellipsoid (bottom) bounds for safe
regions with probability 0.9 for the system in Example 4. The
black bounds are tight bounds computed using NT = 16. The red
dashed bound is computed using an approximate dynamics from
Proposition 4.3 with NT = 8 and k̂ = 20.

results in a new ellipsoid P = sQ that satisfies the constraint
of (29) if εP,t = 0. Note that we could also consider an
optimization problem for P that satisfies the constraint of
(29) (if εP,t = 0) directly, but the problem has too many
constraints and is difficult to solve efficiently in practice.

Let P = sQ be obtained from solving (31). For the final
step, we compute εP,t or its over-approximation using the
methods in the previous sections. Recall that, from (25), we
have ∥x̃(1)(t)− E[x(t)]∥P ≤ εP,t. Hence, we enlarge the
ellipsoid of P by using the bound εP,t, and take the ellipsoid{
x ∈ Rν

∣∣∣ ∥x− x̃(1)(t)∥P ≤ α+ εP,t

}
. (32)

By (25), Proposition 5.1, and (31), the system state x(t) will
be in the ellipsoid (32) with probability at least (1− b).

Example 4. Figure 2 shows the safe regions with probability
0.9 for the system in Example 1 at time steps t ∈ {0, 1, 2, 3}.
More precisely, we defined x1(0) (resp. x2(0)) as a Gaus-
sian random variable with mean 1 (resp. 0.8) and standard
deviation 0.1, and a(t) as independent and identically dis-
tributed random variables following a uniform distribution
on [0.3, 0.4]. The safe regions are plotted in comparison to
10000 Monte Carlo simulations. Both plots are computed
as described above; however, the regions in the top one are
computed by restricting to p11 = p22 and p12 = p21 = 0.
(i.e., ball-shaped regions). The black solid bounds are com-
puted usingNT = 16; therefore, they are tight bounds where
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the error e(1)(t) = 0 (see Proposition 4.1). The red dashed
bound at t = 3 is computed using a truncated dynamics and
the upper bound of the moment approximation errors as in
Proposition 4.3, where NT = 8 and the set K consists of
k̂ = 20 indices k where |ỹk| are the largest. Notice that the
bound computed using the truncated dynamics (the red one)
is an over-approximation of the tight bound (the black one).
Notice also that the areas of the ellipsoids are smaller than
those of the ball-shaped regions (e.g., at t = 2, the area of
the ball is 0.36, while that of the ellipsoid is 0.07).

Remark 2. Note that we are in general not interested in
optimizing all dimensions of P . For example, if a system
has (x, y, θ) as coordinates, we may be only interested in
finding a bound for (x, y). Maximizing det(P ) under the
constraints in (30) can lead to a P with a large unit ball in
the θ dimension, but small in the x and y dimensions, while
there may be a better P when considering just (x, y). If
I ⊆ {1, . . . , n} is the set of dimensions of interest, our goal
is to maximize det(PI) under the constraints above, where
PI is the submatrix of P whose indices are in I .

6 Smaller matrices with reduced Kronecker powers

The main bottleneck of our method is the size of the matrix
E we compute offline. One reason for this is due to dupli-
cations of computations. Indeed, the Kronecker power of a
vector contains several times the same element. For example,

the Kronecker square of the vector x =
[
a b

]⊺
is given by

x[2] =
[
a2 ab ba b2

]⊺
and ab = ba appears twice. In this

section, we describe a reduced Kronecker power whose ele-
ments are the same as the normal Kronecker power, but with-
out any duplication. For example, the reduced Kronecker

square of x above will be x⟨2⟩ =
[
a2 ab b2

]⊺
.

It should be noted that the notion of reduced Kronecker pow-
ers was also presented by Bellman (1970) and Carravetta et
al. (1996) but used for different problems. In this work, we
need to efficiently represent those reduced Kronecker pow-
ers, and also accommodate the previous sections with this
notion. This requires the development of an operation cor-
responding to matrix multiplication (see (35) below) in or-
der to propagate moments. Formally, we need to manipulate
polynomials in a clever way, and this is one of our novelties
compared to the literature.

Fix a vector x =
[
x1 . . . xn

]⊺
∈ Rn. Each element of a

reduced Kronecker power of x will correspond to a n-tuple
of natural number (m1, . . . ,mn), this element being given
by xm1

1 . . . xmn
n . The degree of such an n-tuple is given by

the sum of its elements
∑n

i=1mi. Denote the set of n-tuples
of degree m by In,m. This set can be totally ordered by
lexicographic order, that is, (m1, . . . ,mn) < (m′

1, . . . ,m
′
n)

if there is k such thatmk < m′
k and for all j < k,mj = m′

j .
For example, I2,2 = {(2, 0) > (1, 1) > (0, 2)}.

The m-th reduced Kronecker power of x is then given by:

x⟨m⟩ =
[
xm1
1 . . . xmn

n | (m1, . . . ,mn) ∈ In,m
]⊺
. (33)

This means that the first element of x⟨m⟩, namely xm1 , is
given by the largest element of In,m, namely (m, 0, . . . , 0),
the second element, namely xm−1

1 x2, is given by the second
largest element of In,m, namely (m−1, 1, 0, . . . , 0), and so

on. As claimed earlier, the reduced square of x =
[
a b

]⊺
is

indeed x⟨2⟩ =
[
a2 ab b2

]⊺
.

Using this reduced Kronecker power, we can describe our
original system in the form

x(t+ 1) =

ν∑
i=0

F̂i(t)x
⟨i⟩(t), t ∈ N,

x(0) = xini.

(34)

Compared to (1), where Fi is a matrix of size n × ni, F̂i

is of size n× |In,i| obtained from F by summing columns.
For example, if (1) is of the form:

[
x1(t+ 1)

x2(t+ 1)

]
=

[
a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

]
x1(t)

2

x1(t)x2(t)

x2(t)x1(t)

x2(t)
2

 ,

Then (34) is of the form:

[
x1(t+ 1)

x2(t+ 1)

]
=

[
a1,1 a1,2 + a1,3 a1,4

a2,1 a2,2 + a2,3 a2,4

]
x1(t)

2

x1(t)x2(t)

x2(t)
2

 .
(35)

Everything we described in the previous sections can be
accommodated with this new power, reducing the size of
the vectors and the matrices involved. More details on the
saved space will be given in the experiment section.

In terms of implementation, this power relies on manipu-
lating and generating the elements of In,m on the lexico-
graphic order. This can be done by representing the n-tuples
as monomials and most calculations can be done using ab-
stract polynomials operations. In our implementation, we
heavily used the python package numpoly 1 .

1 https://pypi.org/project/numpoly/
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Fig. 3. Moment approximations for stochastic logistic map.

7 Experimental Results

In this section, we provide two numerical examples and ex-
perimental results to illustrate our techniques. All experi-
ments are run on a standard laptop computer (MacBook Pro,
M1 chip, 16G memory).

7.1 Stochastic Logistic Map

Consider the stochastic logistic map as studied by Athreya
and Dai (2000), which is given by

x(t+ 1) = r(t)x(t)(1− x(t)), t ∈ N,
x(0) = x0,

where x0, r(0), r(1), . . . are mutually independent random
variables; x0 takes values in [0, 1] and r(t) all take values
in [0, 4]. The scalar x(t) ∈ [0, 1] represents the population
of a species subject to growth rate r(t). This system can
equivalently be represented by (1) with ν = 2, F0(t) = 0,
F1(t) = r(t), and F2(t) = −r(t). For experiments, we
chose all r(t) to be uniformly distributed over the interval
[0.4, 0.6], and x0 to follow a normal distribution of mean
0.5 and standard deviation 0.1 truncated to [0, 1].

7.1.1 Moment Approximation via Truncated System

We first compare our moment approximations for different
truncation limits to the true value of the moments (com-
puted using our method with NT = 256, which gives the
true value by Proposition 4.1). In Figure 3, we plot the first
and second moments of the truncated system with different
truncation limits NT, and larger NT is required to obtain
good approximations of higher moments. This is a natural
consequence, as truncation discards more information on the
dynamics of higher moments.

Fig. 4. Error bound on moment approximations.

7.1.2 Error Bound on Moment Approximations

Next, we evaluate our approximation method of error bounds
for moments. Figure 4 shows error bounds given by Proposi-
tion 4.2 with different sizes of J , with parameters NT = 16,
t = 4, and j0 = 2. The set J contains the indices j where
∥E[x[j]0 ]∥ are the largest. We observe that the error bound
quickly decreases as |J | increases. This supports our expec-
tation that we can use our error bounds for tail probability
analysis with larger parameters (t, NT, and ν). Note that we
cannot expect to get much more precise than the bound for
|J | = 30, since we get the exact error bound for |J | = 33.

7.1.3 Tail Probability Analysis

Lastly, we provide a result on tail probability analysis via
the method in Section 5. We computed the error bound
for 0 ≤ t ≤ 5 using Proposition 4.2 with NT = 16 and
|J | = 6t, where J contains the indices j where ∥E[x[j]0 ]∥ are
the largest. Figure 5 summarizes the results of the analysis.
Red intervals indicate the 95%-probability neighborhoods
of x̃(1)(t) computed by using Proposition 5.1. Blue intervals
with a solid line indicate the region where 95% of 10000
Monte Carlo simulations closest to its mean belong. Dotted
intervals indicate the range of 10000 Monte Carlo simula-
tions. We observe that the size of safety intervals given by
our tail probability analysis is reasonably small. It becomes
cruder in later time steps. This is expected, as the approxi-
mation error of moments, which is a bottleneck in refining
the error bounds, becomes larger as time progresses (cf. ap-
proximate 2nd moment in Fig. 3).

There are two major advantages of our method compared to
Monte Carlo simulation. One is that our technique computes
moment approximations much faster (even for large NT and
a small number of samples) because we do not rely on gen-
erating random numbers. This advantage is highlighted in
Table 1, which contains the online computation times for
Monte Carlo simulations and our approach, averaged over
100 runs. The offline computation of our approach takes
0.014 seconds for NT = 256. Another advantage is that our
safety interval gives a theoretical guarantee on probabilistic
safety that cannot be achieved by Monte Carlo simulations.

7.2 Application to Automated Driving

Our second example is an application to automated driving.
For safety guarantees, autonomous vehicles need to predict
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Table 1. Comparison of online computation times.

Method Monte Carlo Moment propagation

Parameters
num. samples NT

10 104 4 16 64 256

Time (µs) 4.4e103 2.8e105 49 51 57 67

Fig. 5. Tail probability analysis with Monte-Carlo simulation and
moment propagation with truncation limit NT = 16.

their future positions. One way to achieve this is set-based
reachability, as advocated by Althoff and Dolan (2014). To
use their method, they must consider systems with bounded
disturbances and use linearization around an equilibrium,
that is, they approximate a polynomial system by a linear
one, using Lagrange remainders. Our method is based on
Carleman linearization, which allows taking the effect of
higher dimensions of the system into account more precisely
than Lagrange remainders. Moreover, our approach is prob-
abilistic, while theirs is set-based, so the two approaches
give different types of guarantees.

We consider a scenario in which, at each time step, the ve-
hicle measures its current position with some known sensor
error distributions, computes moments of its current state,
and predicts its future positions up to t steps ahead in time
by applying the truncated system to these moments.

7.2.1 Vehicle Dynamics

More precisely, we consider the kinematic bicycle model of
a vehicle from Kong et al. (2015), which we rewrite as the
following equivalent polynomial system

ṗx(t) = v(t)c(t), ṗy(t) = v(t)s(t),

ψ̇(t) =
v(t)

ℓ
sinβ, v̇(t) = a(t),

ċ(t) = −s(t)v(t) sinβ
ℓ

, ṡ(t) =
c(t)v(t) sinβ

ℓ
,

for t ≥ 0, where px(t) ∈ R and py(t) ∈ R represent the X–
Y coordinates of the mass-center of the vehicle, v(t) ∈ R
denotes its speed, ψ(t) its inertial heading, and a(t) ∈ R
its acceleration. The constants β ∈ R and ℓ > 0 respec-
tively denote the angle of velocity and the distance from the
vehicle’s rear axle to its mass-center. The scalars c(t) and
s(t) are auxiliary variables that are introduced to obtain the
polynomial model above from the original model of Kong

Fig. 6. First moment approximation of vehicle dynamics.

et al. (2015) (which involves trigonometric terms), using the
same techniques as Carothers et al. (2005).

The second-order Taylor expansion of the model above gives
the following discrete-time approximation:

px(t+∆) = px(t) + ∆c(t)v(t)

+
∆2

2

(
a(t)c(t)− s(t)v2(t) sinβ

ℓ

)
,

py(t+∆) = py(t) + ∆s(t)v(t)

+
∆2

2

(
a(t)s(t) +

c(t)v2(t) sinβ

ℓ

)
,

ψ(t+∆) = ψ(t) + ∆
v(t)

ℓ
sinβ +

∆2

2

a(t)

ℓ
sinβ,

v(t+∆) = v(t) + ∆a(t),

c(t+∆) = c(t)−∆
s(t)v(t) sinβ

ℓ

− ∆2

2

(
c(t)v2(t) sin2 β

ℓ2
+
a(t)s(t) sinβ

ℓ

)
,

s(t+∆) = s(t) + ∆
c(t)v(t) sinβ

ℓ

+
∆2

2

(
−s(t)v

2(t) sin2 β

ℓ2
+
a(t)c(t) sinβ

ℓ

)
,

where ∆ > 0. To describe the evolution of the vehicle states
at times 0,∆, 2∆, . . ., we write this system in the form of (1).
In particular, consider the discrete-time instant t ∈ N corre-
sponding to the continuous time t∆. By letting

x(t) ≜ [px(t), py(t), ψ(t), v(t), c(t), s(t)]
⊺,

we obtain (1) with ν = 3 and the coefficientsF0(t), . . . , F3(t)
depend on ∆, β, ℓ, and a(t). We consider the setting
where the acceleration values a(0), a(1), . . . are indepen-
dent uniformly-distributed random variables over [0.9, 1],
∆ = 0.1, β = π/8, ℓ = 2.5, and, for the initial state,
px(0), py(0), v(0), ψ(0) are independent Gaussian ran-
dom variables with mean 0 and standard deviation 0.1, and
c(0) = cos(ψ(0) + β) and s(0) = sin(ψ(0) + β).

7.2.2 Experimental Results

Figure 6 shows the expected trajectory of the vehicle as ap-
proximated by our method for different truncation limits, as
well as the empirical distribution computed by 10000 runs
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Fig. 7. Distance to the mean of the empirical distribution.

Fig. 8. The ellipsoids of the safe region for time step 2 and
probability bound 0.9 computed using (32) and Proposition 4.3
with k̂ = 900 and different truncation limits NT. Using NT = 18,
we obtain the region computed using the exact first and second
moments (see Proposition 4.1).

Fig. 9. The computation time for the error bounds on the approx-
imations for E[px], E[py], E[p2x], E[p2y], and E[pxpy], at t = 2,
using Proposition 4.3 with NT = 8 and different sets K, where
each of the set K contains k̂ indices k where |ỹk| are the largest.

Fig. 10. The ellipsoids of the safe region for time step 2 and
probability bound 0.9 computed using (32) and Proposition 4.3
with NT = 7 and different sets K. Each ellipsoid is computed
using the set K consisting of k̂ indices k where |ỹk| are the largest.
Using NT = 18, we obtain the region computed using the exact
moments (see Proposition 4.1).

of Monte Carlo simulation and the mean of that distribution.
Figure 7 shows the distance between x̃(1)(t) and the mean
of the empirical distribution for the same truncation limits.
Figures 6 and 7 show that larger truncation limits give trun-

Fig. 11. Comparison between Kronecker powers and reduced ones

cated systems that follow the empirical distribution closer.
It also shows that, for a fixed truncation limit, the distance
to the empirical system grows larger with time.

Figure 8 shows the ellipsoids of the safe region at time
step 2 with probability bound 0.9 computed using (32) and
Proposition 4.3 with different truncation limits NT. We can
see that a larger NT gives a more precise bound.

Figure 9 shows the computation time (averaged over 1000
runs) for the error bounds on moment approximation at time
step 2 computed using Proposition 4.3 with different sizes
of the sets K. This result shows that, as expected, the com-
putation time increases linearly with the size of K.

Figure 10 also shows the ellipsoids of the safe region at time
step 2 with probability bound 0.9, but with different index
sets K. We can see that the larger K is, the closer the el-
lipsoids get to that obtained with the exact computation us-
ing NT = 18 and Proposition 4.1 (the black dashed bound).
Note that the set K containing all 33,649 indices means that
it contains all moments needed for an exact computation of
the upper bound of truncation error at t = 2 using (20) and
the reduced Kronecker powers in Section 6. In other words,
the red dotted bound is the tightest bound we can obtain us-
ing our method for the truncation limit NT = 7. We note
that the bound computed with k̂ = 900 is very close to this
tightest bound and their computation is much faster.

7.3 Comparison of Kronecker Powers and Reduced Kro-
necker Powers

In Section 7.2, we used the reduced Kronecker powers de-
scribed in Section 6 to generate the matrices E(NT, NT).
Here, we illustrate the gain, both in time and space, obtained
by using reduced Kronecker powers instead of non-reduced
ones. The comparison results are compiled in Figure 11.

We compared the following performance indicators, for
NT ∈ {2, . . . , 7}:

• The time to compute E(NT, NT).
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• The size of the compressed data file (pickled npz format
in Numpy/Python) containing E(NT, NT).

• The number of rows of E(NT, NT).
• The time required to compute ỹ(10).

We remark that using reduced Kronecker powers signifi-
cantly improves the performance in all aspects, making both
the online and the offline computations much faster, and the
memory load much lighter. Furthermore, we also note that
the computation of E(8, 8) using non-reduced Kronecker
powers reached an out-of-memory error after several hours
of computation, while we could compute E(25, 25) in less
than an hour with reduced ones.

8 Conclusions

In this paper, we have proposed a method to approximate the
moments of a discrete-time stochastic polynomial system.
This method is built upon a Carleman linearization approach
with truncation, where approximate moments are obtained
by propagating initial moments through a finite-dimensional
linear deterministic difference equation. We have presented
guaranteed bounds on the approximation errors. We have
then used the approximate moments and the approximation
error bounds together with a convex optimization technique
to provide probabilistic safety analysis. We have demon-
strated our method on a stochastic logistic map and a vehicle
model with stochastic acceleration inputs.

Our moment approximation method is applicable to systems
with both additive and multiplicative noise. Furthermore, it
provides probabilistic guarantees even when the dynamics
and the noise probability distributions are complicated. Our
method involves computations in two phases: an initial off-
line computation phase where the approximate moment dy-
namics are obtained, and an online computation phase that
involves propagation of the initial moments through the ob-
tained dynamics. The online phase is very fast and we have
shown in our numerical examples that our method can pro-
vide moment approximations in much shorter times com-
pared to the Monte Carlo approach based on repeated simu-
lations. For the offline computations, we have investigated a
technique to improve the efficiency by using the symmetry
of Kronecker powers and reducing the sizes of the matrices
involved in the computations.

While in this paper we have addressed only polynomial sys-
tems, our method can also be applied to certain nonpolyno-
mial systems. In some cases, nonpolynomial dynamics can
be transformed to polynomial ones by introducing auxiliary
variables, as illustrated in one of our numerical examples.
In other cases, polynomial approximations can be useful.

We have used the approximated moments of the system’s
state for computing tail-probability bounds of the state be-
ing outside of ellipsoidal safety regions. As pointed out by
Schmüdgen (2017) and John et al. (2007), approximate mo-
ments of random variables can be useful for approximating

probability distributions. One of our future research direc-
tions is to investigate approximation of the probability distri-
bution of the system state using its approximated moments.
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A Proof of Theorem 3.3

First, we have the simple observation in Lemma A.1.

Lemma A.1. The sets Hj,k satisfy the recursive formula

Hj+1,k =

ν⋃
n=0

{n} ×Hj,k−n,

with the convention that Hj,k = ∅ for k < 0.

Next, we show in Lemma A.2 that Theorem 3.3 holds for
j = 2. We omit t for simplicity.

Lemma A.2.
(
F0x

[0] + F1x
[1] + . . .+ Fνx

[ν]
)[2]

=

2ν∑
k=0

 ∑
(i1,i2)∈H2,k

Fi1 ⊗ Fi2

x[k].

Proof. Recall that Kronecker product has the mixed-product
property (i.e., (A ⊗ B)(C ⊗ D) = AC ⊗ BD), but not
commutative property ((A⊗ B) = (B ⊗ A) may not hold)
(see Section 13.2 of Laub (2005))). Then, this lemma holds
by Equation (A.1).

Now, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. The theorem obviously holds for j =
0 and j = 1, and also holds for j = 2 by Lemma A.2. We
will show the case where j > 2 by induction. We assume
that the theorem hold for j = n, and consider the inductive
case where j = n + 1 in Equation (A.2), where we write⊗n

m=1 Fim for Fi1 ⊗ . . . ⊗ Fim for brevity. Note that the
last line holds by adding terms that correspond to the same
moment x[k] (such terms span diagonals in the large sum in
Equation (A.2)) and by Lemma A.1. Therefore, the theorem
holds for j = n+ 1, which concludes the proof.
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(
F0x

[0] + F1x
[1] + . . .+ Fνx

[ν]
)[2]

= F0x
[0] ⊗

(
F0x

[0] + . . .+ Fνx
[ν]
)
+ F1x

[1] ⊗
(
F0x

[0] + . . .+ Fνx
[ν]
)
+ . . .+ Fνx

[ν] ⊗
(
F0x

[0] + . . .+ Fνx
[ν]
)

= (F0 ⊗ F0)x
[0+0] + (F0 ⊗ F1)x

[0+1] + (F0 ⊗ F2)x
[0+2] + . . .+ (F0 ⊗ Fν)x

[0+ν]

+ (F1 ⊗ F0)x
[1+0] + (F1 ⊗ F1)x

[1+1] + . . .+ (F1 ⊗ Fν−1)x
[1+(ν−1)] + (F1 ⊗ Fν)x

[1+ν]

+ (F2 ⊗ F0)x
[2+0] + . . .

+ . . .+ (Fν ⊗ F0)x
[ν+0] + . . .+ (Fν ⊗ Fν)x

[ν+ν]

=
∑

(i1,i2)∈H2,0

(
Fi1 ⊗ Fi2

)
x[0] +

∑
(i1,i2)∈H2,1

(
Fi1 ⊗ Fi2

)
x[1] + . . .+

∑
(i1,i2)∈H2,2ν

(
Fi1 ⊗ Fi2

)
x[2ν] =

2ν∑
k=0

 ∑
(i1,i2)∈H2,k

Fi1 ⊗ Fi2

x[k].

(A.1)

(F0x
[0] + F1x

[1] + . . .+ Fνx
[ν])[n+1]

= (F0x
[0] + F1x

[1] + . . .+ Fνx
[ν])⊗ (F0x

[0] + F1x
[1] + . . .+ Fνx

[ν])[n]

= (F0x
[0] + F1x

[1] + . . .+ Fνx
[ν])⊗

nν∑
k=0

 ∑
(i1,...,in)∈Hn,k

Fi1 ⊗ . . .⊗ Fin

x[k]

= F0x
[0] ⊗

nν∑
k=0

 ∑
(i1,...,in)∈Hn,k

Fi1 ⊗ . . .⊗ Fin

x[k] + . . .+ Fνx
[ν] ⊗

nν∑
k=0

 ∑
(i1,...,in)∈Hn,k

Fi1 ⊗ . . .⊗ Fin

x[k]

=
∑

(i1,...,in)∈Hn,0

(
F0 ⊗

n⊗
m=1

Fim

)
x[0+0] +

∑
(i1,...,in)∈Hn,1

(
F0 ⊗

n⊗
m=1

Fim

)
x[0+1] + . . .+

∑
(i1,...,in)∈Hn,nν

(
F0 ⊗

n⊗
m=1

Fim

)
x[0+nν]

+
∑

(i1,...,in)∈Hn,0

(
F1 ⊗

n⊗
m=1

Fim

)
x[1+0] +

∑
(i1,...,in)∈Hn,1

(
F1 ⊗

n⊗
m=1

Fim

)
x[1+1] + . . .+

∑
(i1,...,in)∈Hn,nν

(
F1 ⊗

n⊗
m=1

Fim

)
x[1+nν]

+ . . .

+
∑

(i1,...,in)∈Hn,0

(
Fν ⊗

n⊗
m=1

Fim

)
x[ν+0] +

∑
(i1,...,in)∈Hn,1

(
Fν ⊗

n⊗
m=1

Fim

)
x[ν+1] + . . .+

∑
(i1,...,in)∈Hn,nν

(
Fν ⊗

n⊗
m=1

Fim

)
x[ν+nν]

=

(n+1)ν∑
k=0

 ∑
(i1,...,in+1)∈Hn+1,k

Fi1 ⊗ . . .⊗ Fin+1

x[k].

(A.2)

17


	Introduction
	Related Work
	Carleman Linearization for Stochastic Polynomial Systems
	Discrete-Time Stochastic Polynomial Systems
	Carleman Linearization
	Moment Equations

	Moment Approximation through Truncation
	Approximate Moments and the Truncated System
	Computation of Truncation Errors
	Approximation of Error Bounds

	Ellipsoid Bounds for Probabilistic Safety Analysis
	Tail Probability Approximation
	Computation of Probabilistic Ellipsoid Bounds

	Smaller matrices with reduced Kronecker powers
	Experimental Results
	Stochastic Logistic Map
	Application to Automated Driving
	Comparison of Kronecker Powers and Reduced Kronecker Powers

	Conclusions
	References
	Proof of Theorem 3.3

