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Abstract

This paper is concerned with the fractional evolution equation with a discrete distribution of

Caputo time-derivatives such that the largest and the smallest orders, α and αm, satisfy the con-

ditions 1 < α ≤ 2 and α−αm ≤ 1. First, based on a study of the related propagation function, the

nonnegativity of the fundamental solutions to the spatially one-dimensional Cauchy and signal-

ing problems is proven and propagation speed of a disturbance is discussed. Next, we study the

equation with a general linear spatial differential operator defined in a Banach space and suppose

it generates a cosine family. A subordination principle is established, which implies the exis-

tence of a unique solution and gives an integral representation of the solution operator in terms

of the corresponding cosine family and a probability density function. Explicit representation of

the probability density function is derived. The subordination principle is applied for obtaining

regularity results. The analytical findings are supported by numerical work.

Keywords: time-fractional diffusion-wave equation, propagation function, Bernstein function,

solution operator, cosine family

1. Introduction

A variety of generalized wave equations has been proposed to model wave propagation in

complex media. One of them is the diffusion-wave equation with the Caputo fractional time

derivative

Dα
t u(x, t) = ∆xu(x, t), α ∈ (1, 2), (1)

which describes evolution processes intermediate between diffusion and wave propagation [1, 2,

3, 4, 5, 6, 7]. It is shown in [2] that the spatially one-dimensional version of Eq. (1) governs the

propagation of mechanical diffusive waves in viscoelastic media exhibiting a power-law creep.

Such waves are of relevance in acoustics, seismology, medical imaging, etc. For example, ex-

perimental evidence reveals that in a complex inhomogeneous conducting medium sound waves

exhibit power-law attenuation (see, e.g., [8] for applications to medical ultrasound). In general,
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fractional derivatives in time reflect hereditary mechanisms of power-law type in diffusion or

wave phenomena, see [5] and the references cited there.

In the attempt to find more adequate models, the single fractional time derivative in Eq. (1)

is often replaced by a discrete or continuous distribution of fractional time derivatives over the

interval (0, 2], see e.g. [4], Chapter 6, and [9, 10, 11]. Concerning the spatial operator, besides the

Laplacian, more general classes of operators have been also considered: the fractional Laplacian

[12, 13], second order symmetric uniformly elliptic operators [14], etc. To cover different spatial

operators, a general unbounded linear operator on a Banach space of functions is taken in, e.g.,

[7, 9, 10, 15, 16].

Assume A is a general linear closed operator densely defined in a Banach space X and con-

sider the fractional evolution equation

Dα
t u(x, t) = Au(x, t), t > 0, x ∈ Rn; u(x, 0) = v(x) ∈ X, ut(x, 0) = 0, (2)

where α ∈ (0, 2] (the second initial condition is assumed only if α > 1). Problem (2) is ex-

tensively studied, see e.g. [15] for some basic definitions and properties. Denote by S α(t) the

solution operator corresponding to problem (2). In the limiting case α = 2 the solution operator

S 2(t) is the strongly continuous cosine function generated by the operator A ([17], Section 3.14).

The following subordination principle holds true [15, 18]: If problem (2) is well posed for

α = 2 then it is well posed for all α ∈ (0, 2) and the solution operators of these two problems are

related by the identity

S α(t) = t−α/2
∫ ∞

0

Φα/2(τt−α/2)S 2(τ) dτ, t > 0, (3)

where Φβ(z), β ∈ (0, 1), is a function of the Wright type, also known as Mainardi function

Φβ(z) =

∞∑

k=0

(−z)k

k!Γ(−βk + 1 − β)
, β ∈ (0, 1). (4)

It is a unilateral probability density function (p.d.f.) in the sense that

Φβ(t) ≥ 0, t > 0;

∫ ∞

0

Φβ(t) dt = 1.

Let us note that function (4) appears also in the fundamental solutions of the spatially one-

dimensional Cauchy and signaling problems for equation (1), cf. [1, 5, 6].

By means of the subordination principle it is possible to construct new solutions from given

ones as well as to study their regularity and asymptotic behavior.

Subordination principle in a general setting of abstract Volterra equations is introduced in

[19], Chapter 4. In the context of fractional evolution equations this principle has been applied

for asymptotic analysis of fractional diffusion-wave equations [20], regularity and representa-

tion of solution of fractional diffusion equations in terms of integrated semigroups [21], inverse

problems [22], study of semilinear equations [23], etc. Generalizations of this principle include

distributed order diffusion equations [24, 25, 26, 27] and regularized resolvent families [28]. Let

us note that the principle of subordination is closely related to the concept of subordination in

stochastic processes [29]. For instance, the subordination results concerning fractional evolution

equations in [7, 25, 27] are presented in such a context.
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In this paper we are concerned with the following multi-term generalization of the fractional

evolution equation (2)

cDα
t u(x, t) +

m∑

j=1

c jD
α j

t u(x, t) = Au(x, t), u(x, 0) = v(x) ∈ X, ut(x, 0) = 0, (5)

where the operator A is a generator of a strongly continuous cosine function. We suppose that

the parameters α, α j, c, c j, satisfy the following restrictions

α ∈ (1, 2], α > α1... > αm > 0, α − αm ≤ 1, c, c j > 0, j = 1, ...,m, m ≥ 0. (6)

The two-term case of problem (5), also referred to as time-fractional telegraph equation, is

studied in several works. For a discussion on the applications and derivation of solutions we refer

to [30] and [4], Chapter 6, as well as to the works [31, 32], [33], and [34, 35], which consider

the particular cases α = 2α1 ∈ (1, 2); α = 2, α1 ∈ (1, 2) and α ∈ (1, 2), α1 = 1, respectively. For

the general case of multi-term time-fractional diffusion-wave equation see e.g. [36] where an

analytical solution is derived, and [37] where a numerical approach for this equation is developed.

In the papers [38] and [39] a two-term time fractional differential equation is studied in the

abstract setting. Abstract framework for the study of the general multi-term case is developed in

[9, 10, 16]. In [23], a semilinear generalization of equation (5) is studied.

We prove the following subordination identity for the solution operator S (t) of problem (5)

for the multi-term fractional evolution equation

S (t) =

∫ ∞

0

φ(t, τ)S 2(τ) dτ, t > 0, (7)

where S 2(t) is the cosine family generated by the operator A and φ(t, τ) is a probability density

function in τ, that is for any t, τ > 0

φ(t, τ) ≥ 0,

∫ ∞

0

φ(t, τ) dτ = 1. (8)

In fact the function φ(t, τ) is related to the fundamental solution Gc(x, t) of the Cauchy problem

for the spatially one-dimensional version of equation (5) as follows:

Gc(x, t) =
1

2
φ(t, |x|) x ∈ R. (9)

For α < 2 we prove that φ(t, τ) admits an analytic extension to a sector in the complex

plane | arg t| < θ0. This together with (7) implies the analyticity of the solution operator S (t) of

problem (5) in the same sector. In particular, the established analyticity property infers infinite

propagation speed for α < 2 as in the single-term case.

On the other hand, if α = 2, the function φ(t, τ) vanishes for x > t/
√

c. This means that the

propagation speed is finite (= 1/
√

c) and therefore the integral in (7) is also finite.

Further, an explicit integral representation for the p.d.f. φ(t, τ) is derived, which makes for-

mula (7) appropriate for computation of the solution of problem (5) from the cosine family

generated by the operator A.

Our proofs use essentially some facts from the theory of Bernstein functions [40]. We refer

also to [41] for a useful selection of definitions, properties and their application to the proof of
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positivity of the fundamental solution to distributed-order diffusion-wave equations, as well as to

the recent work of the authors [42], where this technique is also exploited.

The rest of this paper is organized as follows. Section 2 is concerned with the propagation

function for problem (5), its properties and explicit integral representation. Subordination prin-

ciple to cosine families is derived in Section 3 and applied to prove regularity of the solution. In

Section 4 a stronger subordination result to S α(t) is briefly presented. Section 5 contains exam-

ples. A selection of definitions and properties concerning Bernstein functions and related classes

of functions is given in an Appendix.

2. Propagation function

Consider first the following problem for the spatially one-dimensional version of the multi-

term equation in (5)

cDα
t w(x, t) +

m∑

j=1

c jD
α j

t w(x, t) = wxx(x, t), x, t > 0, (10)

w(x, 0) = wt(x, 0) = 0, x > 0, (11)

w(0, t) = H(t), w→ 0 as x→ ∞, t > 0. (12)

Here D
β
t , β > 0, denotes time-derivative in the Caputo sense, the parameters α, α j, c, c j, j =

1, ...,m, satisfy conditions (6), and H(t) is the Heaviside unit step function.

The solution w(x, t) of problem (10)-(11)-(12) is referred to as propagation function (cf. [19],

Section 4.5), since it represents the propagation in time of a disturbance at x = 0.

We find the propagation function by the use of Laplace transform

L{ f (t)}(s) = f̂ (s) =

∫ ∞

0

e−st f (t) dt

employing the fundamental formula for Caputo derivatives

L{Dβ
t f }(s) = sβ f̂ (s) −

n−1∑

k=0

f (k)(0)sβ−1−k, n − 1 < β ≤ n, n ∈ N. (13)

By applying Laplace transform with respect to the temporal variable in (10) and (12) and

taking into account initial conditions (11) we obtain using (13) the following problem

g(s)ŵ(x, s) = ŵxx(x, s), ŵ(0, s) = 1/s, ŵ(x, s)→ 0 as x → ∞, (14)

where

g(s) = csα +

m∑

j=1

c js
α j , s > 0, (15)

with parameters α, α j, c, c j, j = 1, ...,m, satisfying (6). Here ŵ(x, s) denotes the Laplace trans-

form of the function w(x, t) with respect to t. Solving problem (14) we deduce

ŵ(x, s) =
1

s
exp

(
−x

√
g(s)

)
. (16)
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2.1. Properties

For our considerations it is essential that the propagation function w(x, t) is nonnegative. This

is fulfilled provided
√

g(s) is a Bernstein function and the proof uses a standard argument based

on the theory of Bernstein functions and related classes of functions (see the proof of Theorem

2.2). For definitions and a selection of properties of Bernstein functions (BF ), completely mono-

tone functions (CMF ), complete Bernstein functions (CBF ) and Stieltjes functions (SF ) see

Appendix. In fact, we prove next a stronger property:
√

g(s) ∈ CBF ⊂ BF .

Proposition 2.1. Assume g(s) is defined by (15) with parameters α, α j, c, c j, j = 1, ...,m, satisfy-

ing conditions (6). Then
√

g(s) is a complete Bernstein function.

Proof. Consider first the case αm ≥ 1. Set f (s) = g(s)/s. Since 2 > α, α j ≥ 1 the function

f (s) = csα−1 +
∑m

j=1 c js
α j−1 ∈ CBF as a sum of complete Bernstein functions. Also, s ∈ CBF .

Then, applying property (F) from the Appendix with p = q = 1/2 it follows that
√

g(s) =√
s
√

f (s) ∈ CBF .
In the case αm < 1 we set f (s) = g(s)/sαm . The assumption 0 < α − αm ≤ 1 implies again

f (s) ∈ CBF . Since also sαm ∈ CBF , we obtain in the same way as above
√

g(s) =
√

sαm

√
f (s) ∈

CBF .

Let us note that constraints (6) on the parameters of the problem are essential for the proof of

Proposition 2.1 and, therefore, for deriving most of the results in the present work. To illustrate

this, suppose that the restriction on the distance between the largest and the smallest order of

fractional derivative is violated, i.e. α − αm > 1.

Consider a simple two-term equation for which g(s) = sα + sα1 . If α − α1 > 1 then rep-

resentation g(s) = sα1 (sα−α1 + 1) implies that there exists s0 ∈ C\(−∞, 0] such that g(s0) = 0.

Therefore, g(s)1/2 has a branch point in C\(−∞, 0] and, according to property (G) in the Ap-

pendix, g(s)1/2
< CBF .

Also, the weaker property
√

g(s) ∈ BF , which is sufficient for the proof of Theorem 2.2, does

not hold without a restriction on the distance α − α1. Considering the above two-term example

with different values of the parameters α and α1 such that α− α1 > 1 (e.g. α = 1.9, α1 ∈ (0, 0.5];

α = 1.8, α1 ∈ (0, 0.3]) we obtain by direct computation that the second derivative d2/ds2(
√

g(s))

admits positive values for some s > 0. Therefore, the function
√

g(s) is not concave for all s > 0,

which implies that
√

g(s) < BF .

Proposition 2.1 implies important properties (17) of the propagation function. To the best of

the authors’ knowledge, it is an open problem whether condition α − αm ≤ 1 is necessary for

these properties.

Theorem 2.2. The propagation function w(x, t) satisfies the properties

w(x, t) ≥ 0, wt(x, t) ≥ 0, −wx(x, t) ≥ 0, x, t > 0. (17)

Proof. According to Bernstein’s theorem it is sufficient to prove that the Laplace transforms

of the three functions in (17) are completely monotone. We have from Proposition 2.1 that√
g(s) ∈ BF . Then, by property (C) in the Appendix, the function exp

(
−x

√
g(s)

)
∈ CMF

as a composition of the completely monotone exponential function and the Bernstein function√
g(s). Since 1/s ∈ CMF , by property (B) in the Appendix also

√
g(s)/s ∈ CMF . Then
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ŵ(x, s) = 1
s

exp
(
−x

√
g(s)

)
∈ CMF as well as

L{−wx}(x, s) = − ∂
∂x

ŵ(x, s) =

√
g(s)

s
exp

(
−x

√
g(s)

)
∈ CMF (18)

as products of two completely monotone functions.

Further, (16) and (15) imply limt→0 w(x, t) = lims→∞ sŵ(x, s) = 0, thus

L{wt}(x, s) = sŵ(x, s) − w(x, 0) = exp
(
−x

√
g(s)

)
∈ CMF .

Theorem 2.2 implies that w(x, t) is a nonincreasing function in x and nondecreasing function

in t with limiting values found by applying Tauberian theorems:

lim
t→0

w(x, t) = lim
s→∞

sŵ(x, s) = 0, lim
t→+∞

w(x, t) = lim
s→0

sŵ(x, s) = 1. (19)

Denote by Gc(x, t) and Gs(x, t) the fundamental solutions of the Cauchy and signaling prob-

lems for equation (10) (for definitions see e.g. [1, 6]). The fundamental solutions can be ex-

pressed in terms of the propagation function w(x, t) as follows:

Gc(x, t) = −1

2
wx(|x|, t), x ∈ R; Gs(x, t) = wt(x, t), x > 0, (20)

and therefore Theorem 2.2 implies that they are nonnegative functions. Moreover, it follows

from (20), (19) and (12) that
∫ ∞

−∞
Gc(x, t)dx = 1, t > 0;

∫ ∞

0

Gs(x, t)dt = 1, x > 0. (21)

Further properties of the fundamental solutions reflect those of the propagation function.

For α < 2 the propagation function w(x, t) (and hence also the fundamental solutions) admit

an analytic extension to a sector in the complex plane t ∈ C\0, | arg t| < θ0 (the proof is essentially

the same as that of Theorem 3.3). Therefore, for any x > 0 the set of zeros of w(x, t) on t > 0

can be only discrete. This together with (17) and (19) implies that w(x, t) > 0 for all x, t > 0 and

a disturbance spreads infinitely fast.

Theorem 2.3. If 1 < α < 2 then w(x, t) > 0 for all x, t > 0.

On the other hand, in the case α = 2, a disturbance spreads with finite speed as in the classical

wave and telegraph equations. However, in contrast to the classical equations, in the case when

at least one more time-derivative in equation (10) is present, which is of noninteger order, a

phenomenon of coexistence of finite propagation speed and absence of wave front is established.

This is a memory effect, not observed in linear integer-order differential equations (see [19] for

a discussion in the general case of Volterra equations).

We will prove that for α = 2 there is a finite propagation speed 1/
√

c. Define the function

h(s) =
√

g(s) −
√

cs.

Then (16) implies

w(x, t) = L−1

{
1

s
exp (−xh(s)) exp

(
−x
√

cs
)}
= w0(x, t −

√
cx)H(t −

√
cx), (22)
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where

w0(x, t) = L−1

{
1

s
exp (−xh(s))

}
.

Here we have used the propertyL{ f (t − a)H(t − a)}(s) = exp(−as)L{ f }(s). Since h(s), h′(s) ≥ 0

for s > 0 and
√

g(s) ∈ BF , it follows that h(s) ∈ BF . Therefore, w0(x, t) ≥ 0 by the same

argument as in the proof of Theorem 2.2. Formula (22) implies that the propagation function

w(x, t) vanishes for x > t/
√

c, i.e. the propagation speed is 1/
√

c.

Theorem 2.4. If α = 2 then w(x, t) ≡ 0 for x > t/
√

c.

Except in the two classical cases of wave equation (m = 0, α = 2) and classical telegraph

equation (m = 1, α = 2, α1 = 1), lims→∞ h(s) = ∞, which implies that a wave front (jump

discontinuity) at x = t/
√

c is not present (cf. [19], Chapter 5).

The behaviour of the propagation function w(x, t) is illustrated in Figs. 1-3. Three different

cases for the two-term equation are considered: the classical telegraph equation (Fig. 1) which

exhibits finite propagation speed and wave front, an equation with α = 2 and α1 ∈ (1, 2) (Fig. 2)

exhibiting finite propagation speed and absence of wave front, and an equation with α < 2 (Fig. 3)

exhibiting infinite propagation speed. Plots are obtained by numerical computation based on the

explicit integral representation for w(x, t) derived next.

The numerical computations for producing all plots in this work are performed with MAT-

LAB. For the numerical calculation of the improper integrals in (25), (39) and (50) the MATLAB

function “integral” is used.

2.2. Explicit representation

Let us first note that for multivalued functions in C such as sα = exp(α ln s) always the

principal branch is considered in this work.

Applying the complex Laplace inversion formula to (16) yields:

w(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
estŵ(x, s) ds

=
1

2πi

∫ γ+i∞

γ−i∞
exp

(
st − x

√
g(s)

) ds

s
, γ > 0. (23)

Since
√

g(s) ∈ CBF it can be analytically extended to C\(−∞, 0]. Therefore, this holds also

for the function under the integral sign in (23). By the Cauchy’s theorem, the integration on the

contour {s = γ+ir, r ∈ (−∞,+∞)} can be replaced by integration on the contour D−
R
∪D∪D0∪D+

R
,

where (with appropriate orientation)

D = {s = ir, r ∈ (−∞,−ε) ∪ (ε,∞)}, Dε = {s = εeiθ, θ ∈ [−π/2, π/2]},

D+R = {|s| = R, ℜs ∈ [0, γ], ℑs > 0}, D−R = {|s| = R, ℜs ∈ [0, γ], ℑs < 0}.
To prove that the integrals on the arcs D−

R
and D+

R
vanish for R → ∞ it is sufficient to show

that for any x > 0 the function ŵ(x, s) is uniformly bounded on D+
Rn

and D−
Rn

, where Rn → ∞,

and that ŵ(x, s) → 0 for s ∈ D±
R

and R → ∞, see e.g. [43], Chapter 2, Lemma 2. This follows

from the fact thatℜ
√

g(s) ≥ 0 forℜs ≥ 0 and therefore

∣∣∣∣∣
1

s
exp

(
−x

√
g(s)

)∣∣∣∣∣ ≤
1

R
exp

(
−xℜ

√
g(s)

)
≤ 1

R
, s ∈ D±R. (24)
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The integral on the semi-circular contour Dε equals 1/2 when ε → 0. This can be obtained by

applying Jordan’s lemma (or by direct check) and using that

lim
s→0

s

(
1

s
exp

(
st − x

√
g(s)

))
= 1.

Integration on the contour D yields after letting ε→ 0 and R→ ∞:

1

2πi

∫

D

1

s
exp

(
st − x

√
g(s)

)
ds =

1

π

∫ ∞

0

1

r
ℑ exp

(
irt − x

√
g(ir)

)
dr.

Here we have used the fact that
√

g(s∗) =
(√

g(s)
)∗

, where ∗ denotes the complex conjugate.

Applying the formula for real and imaginary parts of the square root of a complex number we

obtain the following result.

Theorem 2.5. The propagation function w(x, t) admits the integral representation:

w(x, t) =
1

2
+

1

π

∫ ∞

0

exp(−xK+(r)) sin(rt − xK−(r))
dr

r
, x, t > 0, (25)

where

K±(r) =
1√
2

((
A2(r) + B2(r)

)1/2 ± A(r)

)1/2

(26)

with

A(r) =ℜg(ir) = crα cos(απ/2) +

m∑

j=1

c jr
α j cos(α jπ/2),

B(r) = ℑg(ir) = crα sin(απ/2) +

m∑

j=1

c jr
α j sin(α jπ/2).

To check that the obtained integral in (25) is convergent we note that K±(r) > 0, K±(r) ∼ rαm/2

as r → 0 and K±(r) ∼ rα/2 as r → ∞. Therefore, the function under the integral sign in (25) has

an integrable singularity at r = 0, while at r → ∞ the term exp(−xK+(r)) ensures integrability

not only of this function, but also of its derivatives with respect to t. Therefore, w(x, t) is well

defined and infinitely differentiable in t function.

Corollary 2.6. In the single-term case m = 0 and c = 1 the propagation function w(x, t) admits

the integral representation:

w(x, t) =
1

2
+

1

π

∫ ∞

0

exp
(
−xrα/2 cos(απ/4)

)
sin

(
rt − xrα/2 sin(απ/4)

) dr

r
, x, t > 0. (27)

Based on (27) and (20), representations for the fundamental solutions Gc(x, t) and Gs(x, t)

can be easily derived after differentiation under the integral sign. The obtained in this way

representations are different from those given in the works [1, 5, 6]. However, a numerical check

shows that the different representations give identical results.
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3. Subordination to cosine families

Assume A is a closed linear unbounded operator densely defined in a Banach space X. Let A

generates a cosine family. This means that the second-order Cauchy problem

utt(x, t) = Au(x, t), t > 0; u(x, 0) = v(x) ∈ X, ut(x, 0) = 0, (28)

is well posed. Denote by S 2(t) the cosine family generated by the operator A, that is the solution

operator for problem (28). The Laplace transform of the cosine family S 2(t) generated by the

operator A is given by ∫ ∞

0

e−stS 2(t) dt = s(s2 − A)−1. (29)

For details on cosine families we refer to [17], Section 3.14.

We are concerned with the following problem for the multi-term time-fractional equation

cDα
t u(x, t) +

m∑

j=1

c jD
α j

t u(x, t) = Au(x, t), t > 0; u(x, 0) = v(x) ∈ X, ut(x, 0) = 0, (30)

where the parameters α, α j, c, c j satisfy restrictions (6).

It is convenient to rewrite problem (30) as an abstract Volterra integral equation and use the

definitions and some results from [19]. Applying Laplace transform we obtain from (30) by the

use of (13) the integral equation

u(x, t) = v(x) +

∫ t

0

k(t − τ)Au(x, τ) dτ, (31)

where the scalar kernel k(t) is defined by its Laplace transform

k̂(s) = 1/g(s) (32)

with function g(s) defined in (15).

We will call problem (30) well posed if the corresponding Volterra integral equation (31) is

well posed. In this case the resolvent for problem (31) coincides with the solution operator of

problem (30). Denote by S (t) this solution operator. Applying Laplace transform in (30) or (31)

it follows ∫ ∞

0

e−stS (t) dt =
g(s)

s
(g(s) − A)−1, (33)

where g(s) is the function defined in (15).

Next the subordination relation (7) will be proved. Let us define an operator-valued function

T (t) as follows

T (t) =

∫ ∞

0

φ(t, τ)S 2(τ) dτ, t > 0, (34)

where S 2(t) is a cosine family generated by the operator A and the function φ(t, τ) is related to

the propagation function w(x, t) via the identity

φ(t, τ) = −wx(x, t)|x=τ, t, τ > 0. (35)
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The defined in this way function is p.d.f. in τ. Indeed, Theorem 2.2 implies that φ(t, τ) ≥ 0.

Moreover, ∫ ∞

0

φ(t, τ) dτ = −
∫ ∞

0

wx(x, t) dx = w(t, 0) − w(t,∞) = 1

where the boundary conditions (12) are taken into account.

Application of the Laplace transform in (34) gives by the use of (18) and (29)

∫ ∞

0

e−stT (t) dt =

∫ ∞

0

φ̂(s, τ)S 2(τ) dτ

=

√
g(s)

s

∫ ∞

0

exp
(
−τ

√
g(s)

)
S 2(τ) dτ

=
g(s)

s
(g(s) − A)−1. (36)

Comparing (36) to (33), it follows by the uniqueness of the Laplace transform that T (t) = S (t).

The fact that φ(t, τ) is a p.d.f. has the following implication: if S 2(t) is a bounded cosine

family, such that ‖S 2(t)‖ ≤ M, t ≥ 0, then the same holds for S (t). Indeed, from (34) it follows

‖S (t)‖ ≤
∫ ∞

0

φ(t, τ)‖S 2(τ)‖ dτ ≤ M

∫ ∞

0

φ(t, τ) dτ = M, t ≥ 0. (37)

Now we are ready to formulate our main result.

Theorem 3.1. If A is a generator of a bounded cosine family S 2(t) in X then problem (30) admits

a bounded solution operator S (t). It is related to S 2(t) via the subordination identity

S (t) =

∫ ∞

0

φ(t, τ)S 2(τ) dτ, t > 0. (38)

The function φ(t, τ) is a p.d.f. in τ (i.e. conditions (8) hold) and admits the following integral

representation

φ(t, τ) =
1

π

∫ ∞

0

exp
(−τK+(r)

) (
K+(r) sin

(
rt − τK−(r)

)

+ K−(r) cos
(
rt − τK−(r)

)) dr

r
, t, τ > 0, (39)

where K±(r) are the functions defined in (26).

Proof. The strict proof of the existence of solution operator S (t) follows from Theorem 4.3 (iii) in

[19]. The conditions of this theorem are satisfied since
√

g(s) ∈ BF and L−1{1/
√

g(s)} ∼ tα/2−1,

as t → 0, thus it is locally integrable.

The integral representation (39) for the function (35) is obtained after easily justified differ-

entiation under the integral sign in (25).

Plots of the p.d.f. φ(t, τ) related to some two-term equations are shown in Figs. 4 and 5. The

numerical computations are based on the integral representation (39).

In the case α = 2 identity (35) and Theorem 2.4 imply that φ(t, τ) ≡ 0 for τ > t/
√

c. Therefore

in this case the integral in (38) is finite.
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Corollary 3.2. Let α = 2. Under the hypotheses of Theorem 3.1 the subordination relation (38)

has the form

S (t) =

∫ t/
√

c

0

φ(t, τ)S 2(τ) dτ, t > 0. (40)

For θ ∈ (0, π) let us denote by Σ(θ) the sector in the complex plane

Σ(θ) = {z ∈ C\{0}, | arg z| < θ}.

Taking into account the asymptotic expansions of the functions K±(r), it is clear that the

function under the integral sign in (39) can be infinitely differentiated in t. Therefore, this should

hold also for the function φ(t, τ). In the next theorem we prove a stronger regularity property in

the case α < 2.

Theorem 3.3. Assume 1 < α < 2 and let

θ0 =
(2 − α)π

2α
− ε, (41)

where ε > 0 is arbitrarily small. For any τ > 0 the function φ(t, τ) as a function of t admits

analytic extension to the sector Σ(θ0) and is bounded on each sector Σ(θ), 0 < θ < θ0.

Proof. First note that α > 1 implies θ0 < π/2. It suffices to prove that for any τ > 0 the Laplace

transform φ̂(s, τ) of the function φ(t, τ) admits analytic extension for s ∈ Σ(π/2 + θ0), such that

sφ̂(s, τ) is bounded for s ∈ Σ(π/2 + θ), 0 < θ < θ0, (see e.g. [19], Theorem 0.1).

Indeed, since
√

g(s) ∈ CBF , it can be extended analytically to C\(−∞, 0]. Therefore this

holds also for the function

φ̂(s, τ) =

√
g(s)

s
exp(−τ

√
g(s)).

For s ∈ Σ(π/2 + θ), θ < θ0, the definition (15) of g(s) together with the property | arg(s1 + s2)| ≤
max{| arg s1|, | arg s2|} and (41) implies

| arg
√

g(s)| ≤ α

2
| arg s| < π/2 − εα/2.

Therefore,

∣∣∣sφ̂(s, τ)
∣∣∣ =

∣∣∣∣
√

g(s) exp
(
−τ

√
g(s)

)∣∣∣∣ ≤ ρ exp
(
−τρ cos

(
arg

√
g(s)

))
≤ ρe−aρ ≤ (ea)−1,

where ρ =
∣∣∣
√

g(s)
∣∣∣ and a = τ sin(εα/2) > 0.

Theorem 3.4. Let 1 < α < 2. Under the hypotheses of Theorem 3.1 the solution operator S (t)

of problem (30) admits analytic extension to the sector Σ(θ0), where θ0 is defined in (41).

Proof. Since S 2(t) is bounded, according to Theorem 3.3 the function under the integral sign in

(38) is analytic in t ∈ Σ(θ0) and the integral is absolutely and uniformly convergent on compact

subsets of Σ(θ0). Therefore, S (t) given by (38) is analytic in Σ(θ0).

Theorem 3.4 is in agreement with Theorem 3.3. in [15], where the same property is estab-

lished for the solution operators S α(t) of problem (2).
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4. Subordination to Sα(t)

In fact, the solution operator S (t) of problem (30) is not only subordinate to the cosine fam-

ilies S 2(t), but also to the solution operator S α(t) of problem (2), which is a stronger result (see

the remark below). The proof follows the same steps as in the case α = 2 above. We only need

to prove the following property of g(s).

Proposition 4.1. If g(s) is defined as in (15) with parameters α, α j, c, c j, j = 1, ...,m, satisfying

(6), then g(s)1/α ∈ CBF .

Proof. For the proof we adapt a method proposed in [41]. It is sufficient to show that

f (s) =
g(s)1/α

s
∈ SF . (42)

Since 0 < α − αm < 1 the function

f α(s) =
g(s)

sα
= c +

m∑

j=1

c js
α j−α

is a Stieltjes function. Moreover, s1/α ∈ CBF for α > 1. This together with the first composition

property in (D) from the Appendix gives (42).

Let us note that the property g(s)1/α ∈ CBF is stronger than the property g(s)1/2 ∈ CBF
proven in Proposition 2.1. This follows from the representation g(s)1/2 = (g(s)1/α)α/2 as a com-

position of two complete Bernstein functions, which by the second property in (D) from the

Appendix is again a complete Bernstein function.

Theorem 4.2. Assume problem (2) has a bounded solution operator S α(t). Then problem (30)

admits a bounded solution operator S (t), which is related to S α(t) by the subordination identity

S (t) =

∫ ∞

0

ψ(t, τ)S α(τ) dτ, t > 0, (43)

where the function ψ(t, τ) is a p.d.f. in τ.

Proof. The strict proof follows from Proposition 4.1 and Theorem 4.3 (iii) in [19]. Here we will

give only the main steps. The function ψ(t, τ) is defined as the inverse Laplace transform

ψ(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞

g(s)1/α

s
exp

(
st − τg(s)1/α

)
ds, γ, t, τ > 0. (44)

By Proposition 4.1 and Bernstein theorem ψ(t, τ) ≥ 0. Moreover,

∫ ∞

0

ψ(t, τ)dτ =
1

2πi

∫ γ+i∞

γ−i∞
est g(s)1/α

s

∫ ∞

0

exp
(
−τg(s)1/α

)
dτds

=
1

2πi

∫ γ+i∞

γ−i∞

est

s
ds = 1.

Therefore,ψ(t, τ) is a p.d.f. in τ and the boundedness of S (t) follows easily from the boundedness

of S α(t) as in the previous section.
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To prove that the operator S (t) defined in (43) is the solution operator of problem (30), we

need to check (33). Indeed, since (see e.g. [15])

∫ ∞

0

e−stS α(t) dt = sα−1(sα − A)−1, (45)

then (44) and (45) imply

∫ ∞

0

e−stS (t) dt =

∫ ∞

0

ψ̂(s, τ)S α(τ) dτ

=
g(s)1/α

s

∫ ∞

0

exp
(
−τg(s)1/α

)
S α(τ) dτ

=
g(s)

s
(g(s) − A)−1.

Theorem 4.2 implies that the solution operator S (t) has (at least) the same regularity as S α(t).

This result is in agreement with Theorem 3.4 in [16].

5. Examples

Two simple examples of application of Theorem 3.1 are given in this section. Let us note that

the function φ(t, τ) in the subordination identity (38) does not depend on the operator A.

First, let X = Lp(R), 1 ≤ p < ∞. Define the operator A by means of (Au)(x) = u′′(x), with

domain D(A) = {u ∈ X : u′, u′′ ∈ X, u(±∞) = 0}. Then A generates a bounded cosine family

given by the d’Alembert formula

(S 2(t)v)(x) =
1

2
(v(x + t) + v(x − t)) . (46)

Inserting (46) in the subordination formula (38) we obtain for the solution of problem (30)

u(x, t) = (S (t)v)(x) =

∫ ∞

0

φ(t, τ)(S 2(τ)v)(x) dτ =
1

2

∫ ∞

−∞
φ(t, |ξ|)v(x − ξ) dξ. (47)

In this way the representation (9) of the fundamental solution of the spatially one-dimensional

Cauchy problem is established. It is remarkable that, due to the specific form of the d’Alembert

formula (46), the convolution in time in subordination relation (38) is transformed to a convolu-

tion relation for the space variable in (47).

For the second example, assume Ω ⊂ Rn is an open set and let X = L2(Ω). Let A be the

Laplace operator with Dirichlet boundary conditions: A = ∆x, D(A) = H1
0
(Ω) ∩ H2(Ω). It is

known that the operator A generates a bounded cosine family, see e.g [17], Section 7.2.

If {−λn, ϕn}∞n=1
is the eigensystem of the operator A, then 0 < λ1 ≤ λ2 ≤ ..., λn → ∞ as

n → ∞, and {ϕn}∞n=1
form an orthonormal basis of L2(Ω). The cosine family S 2(t) admits the

following eigenfunction decomposition

S 2(t)v =

∞∑

n=1

vn cos(
√
λnt)ϕn, (48)
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with vn = (v, ϕn), where (., .) is the inner product in L2(Ω)

Therefore, applying Theorem 3.1 we obtain the solution of problem (30) in the form:

S (t)v =

∞∑

n=1

vnun(t)ϕn, (49)

where the eigenmodes un(t) admit the integral representation

un(t) =

∫ ∞

0

φ(t, τ) cos(
√
λnτ) dτ. (50)

The eigenmodes un(t) can be numerically computed by the use of (50) and (39).

In particular, in the one-dimensional case, Ω = (0, 1), the eigensystem is λn = n2π2, ϕn =√
2 sin(nπx), n = 1, 2, .... In Fig. 6 we present plots of the first four eigenmodes un(t) for the

two-term one-dimensional equation, which are computed using formula (50).

6. Conclusions

Subordination principle is derived for the fractional evolution equation with a discrete distri-

bution of Caputo time-derivatives such that the largest and the smallest orders, α and αm, satisfy

the conditions 1 < α ≤ 2 and α − αm ≤ 1. The subordination identity splits the solution into

two parts. The first part (the p.d.f.) depends only on the parameters of the distribution of time-

fractional derivatives and the second part is the cosine family generated by the spatial operator

A. The probability density function is closely related to the fundamental solution of the corre-

sponding one-dimensional Cauchy problem. An explicit representation of this function is given

and its regularity is studied and applied to obtain regularity results for the solution of the general

problem.

An interesting phenomenon is established in the case α = 2 and at least one more time-

derivative of noninteger order: coexistence of finite wave speed and absence of wave front. This

is a memory effect, not observed in linear integer-order differential equations.

The proofs in this work are essentially based on the fact that the function
√

g(s) is a Bernstein

function, which is ensured by the assumption α − αm ≤ 1. Whether and to what extent this

condition can be relaxed is, to the best knowledge of the authors, an open problem.

The obtained results can be generalized to the case when the orders of fractional derivatives

are continuously distributed over an interval (a, b) ⊂ (0, 2] with b − a ≤ 1.

Appendix

Here we list definitions and some properties of special classes of functions related to Bern-

stein functions.

A function ϕ : (0,∞)→ R is said to be completely monotone function (ϕ ∈ CMF ) if it is of

class C∞ and

(−1)nϕ(n)(λ) ≥ 0, λ > 0, n = 0, 1, 2, ... (51)

The function λα−1, α ∈ [0, 1], and the exponential function exp(−aλ), a > 0, are basic examples

of completely monotone functions.
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The characterization of the class CMF is given by the Bernstein’s theorem (see e.g. [29])

which states that a function is completely monotone if and only if it can be represented as the

Laplace transform of a non-negative measure (non-negative function or generalized function).

The class of Stieltjes functions (SF ) consists of all functions defined on (0,∞) which can be

written as a restriction of the Laplace transform of a completely monotone function to the real

positive semi-axis. Obviously, SF ⊂ CMF . The function λα−1, α ∈ [0, 1], is a basic example of

Stieltjes function.

A non-negative function ϕ on (0,∞) is said to be a Bernstein function (ϕ ∈ BF ) if ϕ′(λ) ∈
CMF ; ϕ(λ) is said to be a complete Bernstein functions (CBF ) if and only if ϕ(λ)/λ ∈ SF . We

have the inclusion CBF ⊂ BF . The function λα, α ∈ [0, 1], is a basic example of a complete

Bernstein function.

A selection of properties is listed next:

(A) The class CMF is closed under point-wise addition and multiplication.

(B) If ϕ ∈ BF then ϕ(λ)/λ ∈ CMF .

(C) If ϕ ∈ CMF and ψ ∈ BF then the composite function ϕ(ψ) ∈ CMF .

(D) Let ϕ ∈ CBF . If ψ ∈ SF then ϕ(ψ) ∈ SF ; if ψ ∈ CBF then ϕ(ψ) ∈ CBF .

(E) For not identically vanishing functions ϕ and 1/ϕ: ϕ ∈ CBF if and only if 1/ϕ ∈ SF .

(F) Let p, q ∈ (0, 1) and p + q ≤ 1. Then ϕ
p

1
.ϕ

q

2
∈ CBF for all ϕ1, ϕ2 ∈ CBF .

(G) If ϕ ∈ SF or ϕ ∈ CBF then it can be analytically extended to C\(−∞, 0] and

| argϕ(z)| ≤ | arg z|, z ∈ C\(−∞, 0].

For proofs and more details on these special classes of functions we refer to [40], see also [41].
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Figure 1: Propagation function w(x, t) for the classical telegraph equation as a function of x for different values of t.
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Figure 2: Propagation function w(x, t) for a two-term equation (5) with α = 2, α1 = 1.5, as a function of x for different

values of t.
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different values of t.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
τ

0

0.1

0.2

0.3

0.4

0.5

0.6

φ

α=1.9      
c=0.001;   c

1
=1

t=2

1.7

1.5

1.2

α
1
=0.9

Figure 5: Probability density function φ(t, τ) for a two-term equation (5) with α = 1.9 as a function of τ for t = 2 and

different values of α1.
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Figure 6: Eigenmodes un(t), n = 1, 2, 3, 4, for the two-term one-dimensional equation with α = 1.8, α1 = 1.5.
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