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Abstract

This paper describes a new method to calculate the stationary scattering matrix and
its derivatives for Euclidean waveguides. This is an adaptation and extension to a pro-
cedure developed by Levitin and Strohmaier which was used to compute the stationary
scattering matrix on surfaces with hyperbolic cusps [1], but limited to those surfaces.
At the time of writing, these procedures are the first and only means to explicitly
compute such objects. In this context the challenge we faced was that on Euclidean
waveguides, the scattering matrix naturally inhabits a Riemann surface with a count-
ably infinite number of sheets making it more complicated to define and compute.
We overcame this by breaking up the waveguide into compact and non-compact com-
ponents, systematically describing the resolvent for the Neumann Laplace operator
on both of them, giving a thorough treatment of the Riemann surface, and then us-
ing a “gluing” construction [2] to define the resolvent on the whole surface. From
the resolvent, we were able to obtain the scattering matrix. The algorithm we have
developed to do this not only computes the scattering matrix itself on such domains,
but also arbitrarily high derivatives of it directly. We have applied this, together with
the finite element method, to calculate resonances for a selection of domains and will
present the results of some numerical calculations in the final section. Whilst this
is certainly not the first, nor only method to compute resonances on these domains,
ie. Levitin and Marletta have done so previously [3] and Aslanyan, Parnovski and
Valiliev before them [4] and other techniques, such as perfectly matched layers may
be adapted for this purpose [5]. The method described here has several advantages
in terms of speed and accuracy and moreover, provides more information about the
scattering phenomena.
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1 Introduction

1.1 Background overview and outline of the paper

Over the course of this paper, a method to calculate the stationary scattering matrix, and
its derivatives for Euclidean waveguides with cylindrical ends will be presented, along with
the results from some numerical calculations making use of it.

We will proceed as follows: For the remainder of this section, we will give the reader
an overview of the background material and introduce the notion of waveguides and scat-
tering matrices. The main body of the paper will introduce and describe each concept
necessary for the end result and ether provide the reader with proofs or references where
appropriate. Section 2 will be devoted to describing the domain of the resolvent function
for the Neumann Laplace operator on R+, the set of real numbers with positive values.
This will be used in section 3 to define and describe the concept of generalised eigen-
functions and the scattering matrix itself, and show how the latter may be obtained from
the former. Section 4 will focus on the Neumann to Dirichlet map, both its definition
and calculation, and its use for computing the scattering matrix. We will then go on to
explain how to compute the scattering or S matrix in section 5, culminating in an explicit
formula for it in equation (23). The method from section 5 will be extended in section 6
to calculate derivatives. With a fast and efficient method of computing the S matrix and
its derivatives, we apply it and produce numerical results. The background to the numer-
ical computations will be presented in section 7 and tabulated data will be presented in
section 8 along with links to some animations.

Waveguides are piece-wise, path connected subsets of Rn that can be written as the union
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1.1 Background overview and outline of the paper

of a compact domain and any number of non-compact, cylindrical ends. The compact
and non-compact parts share a common boundary (see Figure 1). Whilst the ends are
non-compact and infinite, they have a certain regularity that allows explicit calculation on
them, the compact part may have a more complicated geometry which precludes this. The
stationary scattering matrix, in this context, describes the outcome of a scattering event;
the scattering of a wave packet in the compact domain, originating at infinity. In any such
event, a proportion of the incoming wave packet will be transmitted and a proportion
reflected; the coefficients of the scattering matrix contain this information.

The ends of the waveguide can be thought of as the Cartesian product of their boundary
with the positive, real half-line R+. A notable feature of Euclidean waveguides is that the
scattering matrix admits a meromorphic continuation to a certain Riemann surface with
a countably infinite number of sheets [6]. We will present the reader with a proof of this.
The existence of a meromorphic continuation is a property inherited from the resolvent
of the Laplace operator on these domains whose integral kernel is made up a direct sum
involving complex square roots. In order to construct this meromorphic continuation, one
must first construct a meromorphic continuation of the resolvent. To do this, we will use
a well-known “gluing” construction described in detail by Melrose (see [2]) which we have
adapted for waveguides. The construction makes use of the meromorphic Fredholm theo-
rem and the fact that the resolvent, for the Neumann Laplace operator on the ends of the
waveguide, can be easily computed as an integral kernel. The resolvent can then be used
to construct generalised eigenfunctions, a generalisation of the notion of eigenfunctions,
and from them the scattering matrix. This is the first time such techniques have been
explicitly adapted to prove this and, at the time of writing, they remain the only such
method.

The Neumann to Dirichlet map, takes boundary data for solutions to partial differen-
tial equations with Neumann boundary conditions and maps it to the corresponding data
for solutions to the same equations with Dirichlet boundary conditions. It is a vital compo-
nent of this algorithm and we make heavy use of the quick and flexible method developed
by Levitin and Marletta [3] to compute it. They were able to formulate the Neumann to
Dirichlet map in terms of an infinite sum of Dirichlet data of Neumann eigenvalues on the
compact, part of the waveguide. The advantage of this method is that the computation of
the Dirichlet data of Neumann eigenvalues, the most computationally costly step, typically
using the Finite Element Method, has to be performed only once. Though there are other
methods to numerically solve partial differential equations, the point stands. Previously,
if one wished to compute the Neumann to Dirichlet map, multiple numerical solutions
of the underlying pde. would be required each time (See Definition 5 and Section 4.2
which follows it for the contrasting techniques). We will present both methods and we
will also show that the scattering matrix, as well as its derivatives, can be obtained from
this data directly. Levitin and Strohmaier have already used this technique to obtain the
scattering matrix on finite volume, non-compact hyperbolic surfaces [1]. Due to the more
complicated nature of the Riemann surface on which the resolvent sits, the problem of
determining the scattering matrix for waveguides, which we provide a solution to here, is
more complex.

Being in possession of a fast and efficient algorithm to compute the scattering matrix
and its derivatives enables the calculation of resonances which we define to be poles of
the scattering matrix. We are able to do this using a combination of numerical contour
integration and Newton’s method. The time delay and scattering length [7][8] can also be
computed from the scattering matrix.
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1.2 Waveguides

Evans, Levitin and Vassiliev’s 1994 paper [9] proved the existence of embedded eigen-
values (eigenvalues for an operator embedded within its continuous spectrum) for the
Neumann Laplacian on two dimensional waveguides with an obstacle and/or deformation
of the waveguide, so long as the domain has cross-sectional symmetry. This was further
generalised to waveguides with cylindrical ends by Davies and Parnovski [10]. Parnovski
and Levitin have, amongst others, produced two other papers on this topic [11] [12]. Em-
bedded eigenvalues can be calculated numerically with their method and we have included
some examples in the results section. The main focus for our numerical experiments, how-
ever, has been on complex resonances.

Levitin and Marletta [3] and Aslanyan, Parnovski and Vassiliev [4], were able to compute
complex resonances for a collection of waveguides. In Levitin and Marletta’s case, they
computed embedded eigenvalues for a domain with cross-sectional symmetry and observed
them decaying to complex resonances when a small perturbation of the domain destroyed
that symmetry. We have been able to replicate their results for the same domains with
our method, making a slight improvement on accuracy. We have also performed some ad-
ditional numerical calculations of our own, the results of which are presented in section 8.
This is certainly not the only method for computing resonances on Waveguides, perfectly
matched llayers are a feasible alternative [5], though to replicate he results we provide,
existing work will need adaptation.

1.2 Waveguides

Let us denote the waveguide by M ; it is embedded in n-dimensional Euclidean space with
K cylindrical ends. M can be written as M = E ∪X, where X is a compact, piece-wise
connected manifold, with a piece-wise smooth Lipschitz boundary. We can write the ends
(the non-compact part of M) E, whose k connected components will be denoted as Ek,
as follows:

E = Γ× R+ =
K⋃
k=1

[Γk × R+] =
K⋃
k=1

Ek.

Where each Γk ⊂ Rn−1 is a compact and connected domain, with smooth boundary, and
for any i 6= j,

[Γi × R+] ∩ [Γj × R+] = ∅.

Define

Ek = Γk × R+ and Γ = E ∩X = {0} × Γ =
K⋃
k=1

[{0} × Γk] .

We will call the boundary of the whole waveguide M, Σ.

4



1.2 Waveguides

Figure 1: Waveguide

On the ends E we can use separation of variables to deal with the compact Γ and non-
compact R+ individually. Reed and Simon have given a rigorous definition of this in
their text which we will reproduce. The original, with proof, can be found in here [13,
p. 52,II.10]:

Theorem 1. Let 〈M1, µ1〉 and 〈M2, µ2〉 be measure spaces so that L2(M1, dµ1) and L2(M2, dµ2)
are separable.

Then there is a unique isomorphism ∼=, from L2(M1, dµ1)⊗̂L2(M2, dµ2) to
L2(M1 ×M2, dµ1 ⊗ dµ2), where the ⊗̂, denotes the completion of the tensor product, so
that f ⊗ g 7→ fg.

Corollary 2. With the ends of the waveguide E defined as above, we can now write

L2(E) ∼= L2(R+)⊗̂L2(Γ).

∆E , the Laplace operator on L2(E) can now be written in the form

∆E = − ∂2

∂x2
⊗ 1− 1⊗∆Γ, (1)

where ∆Γ is the Laplace operator acting on L2(Γ), 1 ⊗ ∆Γ is the tensor product of ∆Γ

with the identity operator on L2(R+) and − ∂2

∂x2
⊗1 is the tensor product of the differential

operator − ∂2

∂x2
acting on L2(R+) with the identity operator on L2(Γ). The compactness

of Γ means that for any λ in the resolvent set of ∆Γ, L2(Γ) has an orthonormal basis,
consisting of eigenfunctions of (∆Γ−λ)−1. An application of the discrete Fourier transform
yields:

L2(Γ) ∼=
∞⊕
j=0

C = l2.

We conclude that

L2(E) ∼= L2(R+)⊗ L2(Γ) ∼= L2(R+)⊗ l2 ∼=
∞⊕
j=0

L2(R+). (2)
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(∆Ej − λ) acts on each direct summand in (2) by − ∂2

∂x2
− λ + µj , and the µj are the,

not necessarily distinct, Neumann eigenvalues of ∆Γ, enumerated in ascending order and
repeated with multiplicity taken into account. We shall henceforth refer to each of the
summands in Equation 2 as modes. ∆Ej − λ acts on each mode as multiplication by
ξ2 − λ + µj in the Fourier spectral representation (after an application of the Fourier
transform).

The Schwartz Kernel Theorem proves existence and uniqueness of an integral kernel for
the Neumann resolvent on a half-line and comes about after a simple calculation. See [14,
Page 22] for an explicit calculation. If we take the domain be R+ with Neumann boundary
conditions at 0, the kernel of the resolvent will be of the form

−ei|x+y|
√
λ

4i
√
λ

+
−ei|x−y|

√
λ

4i
√
λ

. (3)

We should take note of the fact that when x 6= y the kernel is holomorphic when defined
as a function of λ in the branch of the square root where Im(

√
λ) > 0. The anti-diagonal

doesn’t cause problems, because x and y are non-negative. Due to the ellipticity of (∆−λ),
elliptic boundary regularity can be invoked to show that the resolvent kernel is smooth
away from the diagonal also.

The resolvent for ∆E , written as it is in (1), can now be written as

R0(λ) =
⊕
j

rj(λ), (4)

where rj(λ) = 1
ξ2+µj−λ in the spectral representation. This means that equation (3) can

be slightly modified to give the kernel on each mode as

rj(λ) =
−ei|x+y|

√
λ−µj

4i
√
λ− µj

+
−ei|x−y|

√
λ−µj

4i
√
λ− µj

. (5)

The existence of square roots, and their branches, adds extra complexity to this resolvent
kernel. Rather than talking about R0(λ) as being defined on C, we must instead talk
about it being defined on a Riemann surface Z, on which it is single valued function of λ
(see [6]).

2 A description of the domain of our resolvent

We will denote the the Neumann eigenvalues of ∆Γ, enumerated in ascending order with
multiplicity taken into account, by {µj} and the set of such eugenvalues discarding re-
peated entries by {ηj}. This follows a convention of notation established by Christiensen
[6, Page5]. The reason for this is that for each j ∈ N corresponds to a branch point for√
λ− ηj . A complete description of this domain has already appeared in the paper by

Guillopé [15], we will, nevertheless, present a brief overview here.

In section 1.2, we saw that the resolvent for ∆E is made up of the direct sum of the
rj(λ), acting on the direct sum of L2 spaces; equation (5). The Riemann surface for each
individual summand that makes up this resolvent will have a branch at each of the ηj . We
define the physical sheet of Z to be the sheet of the surface, which can be identified with
C\R+, for which all the

√
λ− ηj , have positive imaginary part and identify it with C\R+.

The whole surface Z is made up of a countable number of “sheets” of this nature, each
of which represents a choice as to whether each

√
λ− ηj has a strictly positive imaginary
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part or not.

The resolvent of ∆E is analytic on the physical sheet for values of λ where it is indeed the
resolvent operator and not just a continuation of it. When we wish to extend the resolvent
from the physical sheet to other sheets, we must do so along a path. It is necessary to
have some kind of a coherent system to categorise such paths.

µ1 µ2 µ3 µ4 µ5

Figure 2: Inequivalent paths that lift to paths with endpoints in sheets (1, 2, 3, 4), (1, 3, 4),
and (1), of Z respectively.

A path in Z will remain a path in C\{ηj} under the covering projection. Similarly, a path
in C \ {ηj}, lifts to a path in Z if the location (in terms of which sheet) of the pre-image
of one of the endpoints is known (or given). We note that paths crossing of the intervals
(ηj , ηj+1) on the real line in C \ {ηj} correspond with crossings of the boundaries between
sheets in Z. This means that homotopy equivalent paths in Z originating in the physical
sheet, paths in C \ {ηj}, and sheets of Z are all in one-to-one correspondence with each
other. Each class of paths in C \ {ηj} can be indexed by a finite subset of N that we call
J constructed by counting the number of times the path crosses the nth interval mod 2.
Equivalently J may be defined as follows:

J = {j ∈ N : Im(
√
λ− µj) ≤ 0}. (6)

The monodromy theorem can be used to show that meromorphic continuations along
paths are unique and hence any meromorphic continuation from the physical to a non-
physical sheet is unique no matter which path is taken. Melrose and others have already
demonstrated the existence of analytic continuations for the individual summands rj(λ)
that make up the resolvent kernel for ∆E [2, Page 11]. The “gluing” constructions and
the meromorphic Fredholm theorem are used to prove the existence of a meromorphic
continuation of the resolvent to ∆ on the whole waveguide M (this can be found in more
detail in Melrose’s text and Guilope’s paper [15][2]). This has been adapted by us for
use on Euclidean waveguides with minimal modifications, the full proof of the existence
and uniqueness of a meromorpic continuation of the resolvent on M can be found in the
author’s thesis [14, Page 30].
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3 Generalised Eigenfunctions and the Scattering Matrix

Let χ be a function on the waveguide M with support on E equal to 1 outside a compact
set, and fix an orthonormal basis of Neumann eigenfunctions of ∆Γ, namely {νj(y)}. As
described in section 2, we may identify this sheet with C\minj∈J [µj ,∞). We will generally
be working with either the physical sheet of Z, or the sheet defined by J which we shall
refer to as the non-physical sheet from now on. When identified in this way, every λ in
the non-physical sheet of Z has its counterpart in the physical sheet which is identical as
a complex number, but not as on the Riemann surface.

We can now define:

ϕJ(λ, x, y)=
∑
j∈N

χe−i
√
λ−µjxνj(y)−R(λ)

[
(∆− λ)

(
χe−i
√
λ−µjxνj(y)

)]
. (7)

for λ in the physical sheet, and for λ in the non-physical sheet:

ϕJ(λ, x, y)=
∑
j /∈J

χe−i
√
λ−µjxνj(y)−R(λ)

[
(∆− λ)

(
χe−i
√
λ−µjxνj(y)

)]
+
∑
j∈J

χe+i
√
λ−µjxνj(y)−R(λ)

[
(∆− λ)

(
χe+i
√
λ−µjxνj(y)

)]
. (8)

The formulae in Equations (7) and (8) describe a Generalised Eigenfunction. A gen-
eralised eigenfunction, we define to be a solution of (∆ − λ)ϕJ(λ, x, y) = 0 which is not
square integrable, unlike an eigenfunction which is. A reader may observe the R(λ)(∆−λ)
in the right hand side of the equations above and mistakinly conclude that these two oper-
ators are mutually inverse and so equations (7) and (8) sum to zero. This is not the case,
the reason is that R(λ), unless λ is on the physical sheet, is a meromorphic continuation of
the resolvent and not the resolvent itself, and when λ is in the physical sheet, the resolvent
is only an inverse of (∆ − λ) for L2, square integrable functions. These functions have a
number of properties:

Proposition 3. 1. ϕJ(λ, x, y) is a meromorphic function of λ for any λ ∈ Z and
holomorphic if λ is in the physical sheet.

2. For j ∈ J and λ in the physical sheet of Z;

R(λ)
[
(∆− λ)

(
χe−i
√
λ−µjxνj(y)

)]
∈ L2(R+). (9)

3. There exists a unique, meromorphic SJ,j,k(λ) such that on E, and with λ in the
physical sheet;

ϕJ(λ, x, y)=
∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

SJ,j,k(λ)ei
√
λ−µkxνk(y)

)
(10)

+
∑
j /∈J

Tj(λ)ei
√
λ−µjxνj(y)

and

ϕJ(λ, x, y)=
∑
j∈J

(
ei
√
λ−µjxνj(y) +

∑
k∈J

SJ,j,k(λ)e−i
√
λ−µkxνk(y)

)
(11)

+
∑
j /∈J

Tj(λ)ei
√
λ−µjxνj(y),
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for λ in the non-physical sheet. In the case where λ is in the physical sheet, the
SJ,j,k(λ) are holomorphic.

Proof.

1. Follows from the meromorphicity of the various functions whose products make up
ϕJ(λ, x, y).

2. This is due to the square integrability of the resolvent kernels in the physical sheet.

3. Observe that for any j ∈ J , each summand in equation (7) becomes zero when acted
upon by ∆−λ. Using a simple separation of variables on E we see that any solution
to (∆− λ)F (λ, x, y) = 0, including the one we have, will be of the form,

∞∑
k=1

(
Aj,k(λ)e−i

√
λ−µkx +Bj,k(λ)e+i

√
λ−µkx

)
νk(y). (12)

We can see that in part 2) of the proposition, the requirement that when we subtract

χe−i
√
λ−µjxνj(y) the result be square integrable, means that Aj,k = δj,k.

In order to reconcile equation (12) with equation (7), we rename theBj,k(λ), SJ,j,k(λ)
for k ∈ J . For k /∈ J ande see that the remaining terms;

Bj,k(λ)e+i
√
λ−µkx (13)

are all square integrable as k /∈ J ⇒ Im(
√
λ− µk) > 0.

When we combine the all such summands to get ϕ(λ, x, y), as described in equa-
tion (7), we get

∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

SJ,j,k(λ)ei
√
λ−µkxνk(y)

)
+
∑
k/∈J

∑
j∈J

Bj,k(λ)ei
√
λ−µkxνk(y),

where we can define, for j /∈ J, Tj(λ) =
∑

k∈J Bk,j(λ) to finish. The result for the
non-physical sheet is due to meromorphic continuation.

Those used to dealing with the dynamic scattering matrix defined, for example, in Reed-
Simon [16], should be aware that the two definitions can be proved to be equivalent.
A fundamental property of the generalised eigenfuctions and scattering matrix are their
uniqueness in the L2 norm. This means that SJ(λ) is also uniquely determined by the
geometry of M, the choice of basis for the J Neumann eigenfunctions and J ⊂ N itself.
For any given λ in the non-physical sheet of Z, given by J and identified with a suitable
subset of the complex plane, we shall denote its counterpart in the physical sheet by λ∗.

Theorem 4. SJ(λ∗) = S−1
J (λ)

Proof. Observe that

〈∆ϕj(λ, x, y), ϕJ(λ, x, y)〉 − 〈ϕJ ,∆ϕJ〉 = (λ− λ)〈ϕJ , ϕJ〉 = 0.

The right hand side of the equation above, namely the (λ − λ) is not an issue, as λ is
simply a number in this context and the λ, its complex conjugate, will be in the same

9



sheet of Z as λ.

Green’s second identity can now be invoked to give that∫
Γ

(
∂ϕJ(λ∗, x, y)

∂n
ϕJ(λ, x, y)− ϕJ(λ∗, x, y)

∂ϕJ(λ, x, y)

∂n

)
= 0.

In particular, this means that

∑
j,k∈J

i
√
λ∗ − µk(δk,j − SJ,j,k(λ∗))

∑
l,m∈J

(
δl,m + SJ,m,l(λ)

)∫
Γ
νk(y)νl(y)

−
∑
j,k∈J

(δk,j + SJ,j,k(λ
∗))

∑
l,m∈J

−i
√
λ− µl

(
SJ,m,l(λ)− δl,m

)∫
Γ
νk(y)νl(y)

=
∑
j,k∈J

i
√
λ∗ − µk(δk,j − SJ,j,k(λ∗))

∑
l,m∈J

(
δl,m + SJ,m,l(λ)

)∫
Γ
νk(y)νl(y)

−
∑
j,k∈J

(δk,j + SJ,j,k(λ
∗))

∑
l,m∈J

i
√
λ∗ − µl

(
SJ,m,l(λ)− δl,m

) ∫
Γ
νk(y)νl(y)

= 0

From this, we obtain∑
k,j,m∈J

(
(SJ,j,k(λ

∗)− δk,j)(δk,m + SJ,m,k(λ)) + (δk,j + SJ,j,k(λ
∗))(SJ,m,k(λ)− δk,m)

)
= 0

This is due to the orthonormality of the {νj} and the way in which we have identified our
sheet of Z with a C. Multiplying these out and simplifying shows that, for fixed j,m ∈ J,
gives ∑

k∈J
SJ,j,k(λ

∗)SJ,m,k(λ) = δj,m.

Since SJ(λ) and SJ(λ) are, by construction, the same when λ and λ are in the same sheet
of Z the result follows.

4 The Neumann to Dirichlet map

Given a solution to a pde with Neumann boundary conditions, the Neumann to Dirichlet
map takes the Dirichlet boundary data and maps it to the corresponding Dirichlet bound-
ary conditions for this solution. The Neumann to Dirichlet map will be a vital intermediate
step between the resolvents, which we have extensively covered in previous sections, and
the scattering matrix. On the internal domain, or compact part of the waveguide X, the
Neumann to Dirichlet map can be numerically computed either directly using the Finite
Element Method (4.1) or indirectly using a combination of the Finite Element Method
and Levitin Marletta’s technique (see 4.2). It is an elementary calculation on the “ends”
E. To give a rigorous definition, let X be a Lipschitz domain in Rn, n ≥ 2. Define the
map

N : H−1/2(∂X)→ H1/2(∂X) (14)

acting on g ∈ H−1/2(∂X) by

Dg = ϕ|∂X ,

10



4.1 Calculating the Neumann to Dirichlet map in the internal domain

where ϕ is the solution to the Neumann problem, with g as the boundary derivative. This
is the inverse of the Dirichlet to Neumann map

D : H1/2(X)→ H−1/2(X),

whose action on f ∈ H1/2 is Df = ∂
∂n(HF ). H is an extension of f to a solution of

(∆− λ)(Hf) = 0 on X. [17]

4.1 Calculating the Neumann to Dirichlet map in the internal domain

It is known that the Neumann eigenfunctions of (∆ − λ) on Γ, the common boundary
between X and E, form an orthonormal basis of L2(Γ), with Neumann eigenvalues
µj , j ∈ N [18]. Given a basis of L2(Γ), we may compute the Neumann to Dirichlet map
in matrix form. This is the first step towards viewing the Neumann to Dirichlet map as a
concrete, computable object. With the correspondence between the Neumann to Dirichlet
map, the scattering matrix and the resolvent, computing the Neumann to Dirichlet map
in this way allows us to realise these other objects in a similar manner.

Definition 5. Neumann to Dirichlet map, associated to (∆− λ) on a basis
Let us consider an ordered orthonormal basis of L2(Γ), {νj}∞j=0, and ϕk, such that

(∆− λ)ϕk = 0,
∂ϕ

∂n
|Σ = 0,

∂ϕk
∂n
|Γ = νk. (15)

Σ here denotes the boundary of M, Γ the common boundary by which X is jointed to E.
Then the k, lth element of the Neumann to Dirichlet map, in matrix form, with respect to
basis {νk}, will be given by

〈ϕ|Γ, νl〉L2(Γ).

Obviously, when doing this calculation practically, we must truncate after a finite number
of entries.

4.2 The Levitin-Marletta method for indirect calculation of the Neumann
to Dirichlet map

This technique was devised by Levitin and Marletta in [3]. The following formula for the
k, lth entry of N(λ) acting on a basis of the Neumann subspace of L2(Γ), {φi}∞i=1 is taken
from their paper where it is derived.

Nk,l(λ) =
∞∑
m=1

1

λ− µm
〈φk, Um|Γ〉L2(Γ).〈Um|Γ, φl〉L2(Γ). (16)

Um and µm are the eigenfunctions and eigenvalues of the homogeneous Neumann problem
on X, namely the solutions to;

(∆− µm)Um = 0,
∂Um
∂n

∂X = 0.

Equation (16) gives us a method to compute Nk,l. Truncations of both (17) and (16)
can be computed using the finite element method, but (16) is a significant improvement
over direct calculation, as once we have obtained the eigenvalues and Fourier coefficients
of their associated eigenfunctions, computing N(λ), for any λ we wish, now only involves
matrix multiplication and not numerical solutions of partial differential equations. The
latter is considerably slower, more computationally costly. Levitin and Marletta presented

11



a simple trick or method to further improve the rate of convergence, or accuracy given a
fixed number of eigenvalues and eigenfunctions; the derivation of this can also be found in
their paper. Where λ is fixed and Nk,l(λ̃) a directly computed Neumann to Dirichlet map
we get:

Nk,l(λ) = Nk,l(λ̃) +
∞∑
m=1

λ̃− λ
µ2
m − λµm − λ̃µm + λλ̃

〈νk, Um|Γ〉Γ.〈Um|Γ, νl〉Γ. (17)

This now gives, quadratic, as opposed to linear convergence. This process can be repeated
as many times as one desires to further increase the speed of convergence. In practice, to
do this once is sufficient and any repetitions of this process would greatly complicate our
extension of this algorithm used for calculating derivatives of the scattering matrix.

5 Calculating the scattering matrix

5.1 From the Neumann to Dirichlet map to the S matrix

In 4.2 we described a procedure to calculate the Neumann to Dirichlet map from the the
Dirichlet data of Neumann eigenfunctions on X. Here we will describe a procedure to ex-
tract the the scattering matrix from such data, culminating in a formula for the S matrix
in (see (23)). As usual, we fix a sheet of Z and define J, the indexing set, to be the j ∈ N
such that Im(

√
λ− µj) < 0. We can proceed as follows:

Fix a basis {νj(y)} for the space of Neumann eigenfunctions on Γ, corresponding to Neu-
mann eigenvalues µj . Proposition 3, tels us that that the generalised eigenfunction on
the cylindrical ends E of M , with homogeneous Neumann boundary conditions on the
boundary will be of the form:

ϕJ(λ, x, y) =
∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

SJ,j,k(λ)ei
√
λ−µkxνk(y)

)
+
∑
j∈N\J

Tj(λ)ei
√
λ−µjxνj(y),

At x = 0, ϕJ(λ, x, y) simplifies to

ϕJ(λ, 0, y) =
∑
j∈J

(
νj(y) +

∑
k∈J

SJ,j,k(λ)νk(y)

)
+
∑
j∈N\J

Tj(λ)νj(y).

At x = 0, the normal derivative with respect to x will be

∑
j∈J

(
i
√
λ− µjνj(y)(λ)−

∑
k∈J

i
√
λ− µkSJ,j,k(λ)νk(y)

)
−
∑
j∈N\J

i
√
λ− µjTj(λ)νj(y).

We ought to now be able to see that, on the external domain or “ends” E, the Neumann
to Dirichlet map will be the inverse matrix of the following:

Definition 6.

Ñ(λ) =


i
√
λ− µ1 · · · · · · · · ·

... i
√
λ− µ2 · · · · · ·

...
... i

√
λ− µ3 · · ·

...
...

...
. . .
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5.1 From the Neumann to Dirichlet map to the S matrix

Unfortunately Ñ(λ)−1 is not quite yet the Neumann to Dirichlet map for (∆ − λ) on E,
as such a map only acts on the boundary data of square integrable functions (see equation
(14)), thus we must project out the non square integrable modes of any such generalised
eigenfunction beforehand.

Definition 7. Define

P : L2(Γ) −→ L2(Γ),

to be the projection whose kernel spanned by the Neumann eigenfunctions of Γ associated
to µj for j ∈ J.

Now observe that the internal domain X and the external domain (or ends) E share a
common boundary Γ. This means that, for any generalised eigenfunction defined on M ,
the action of the Neumann to Dirichlet map calculated on X composed with P and the
Neumann to Dirichlet map calculated on E should coincide.

Set

L =
(
PN − PÑ−1

)
. (18)

The matrix L, will have a null-space of dimension |J |. Each element of Ker(L) can be
equated with a one of the |J | summands of ϕ(λ, 0, y), as defined in (7) in terms of some,
possibly unknown, orthonormal basis of Neumann eigenfunctions of ∆Γ.

Applying a singular value decomposition algorithm, or some other procedure to find the
kernel of a matrix, i.e. QR, gives |J | kernel vectors.

Let W the null-space of L

W = {w1, · · · , wJ}.

For each ωj ∈ W we have a representation of a generalised eigenfunction, evaluated at 0,
of the form:

ωj =
⊕
j∈J

(δj,k + Sj,k(λ))
⊕
j∈N\J

Tj(λ). (19)

We could now, in theory, extract the scattering matrix from this, but before we are able to
do such things, and for our scattering matrix to be of any use to us, we need to control the
basis of Neumann eigenfunctions. A numerical algorithm for singular value decomposition
will not necessarily give us SJ(λ) in terms of the basis we want; the basis of Neumann
eigenfunction of Γ that was carefully chosen when we began the calculation of N(λ) in 4.1.

Having found a basis for the null space of (18), we restrict our attention to the elements
of these vectors that represent the J Fourier modes and discard the rest by means of
application of the operator (1−P ). The image of W under both (1−P ) and (1−P )N(λ)
forms a basis in RJ .

The linear map τ : RJ −→ RJ , defined on the (1− P )wj , by

(1− P )ωj 7→ (1− P )Nωj ,

can now be thought of as the identity map from the basis {(1− P )ω1, · · · , (1− P )ωJ} of
RJ , to basis {(1− P )Nω1, · · · , (1− P )NωJ} of RJ .

13



5.2 Some words on computational cost

τ must be rewritten in terms of the standard basis, whose elements represent the cho-
sen basis of the Neumann eigenfunctions of Γ. Thus, when acting our chosen basis of
L2(Γ), τ can be written as,

τ(λ) = {(1− P )Nω1, · · · , (1− P )NωJ}−1{(1− P )ω1, · · · , (1− P )ωJ}. (20)

Now we note that applying N to each ωj gives:

N(λ)ωj =
⊕
j∈J

SJ,j,k(λ)− δj,k
i
√
λ− µj

⊕
j∈N\J

Tj(λ)

i
√
λ− µj

. (21)

Let us define D(λ, k), k ∈ N to be the |J | × |J | matrix acting on the set of J modes for
which Im(

√
λ− µj) < 0. For the calculation of SJ(λ), we will only be using this with

k = 0.

Definition 8.

D(λ, k) =
∂k

∂λk



i
√
λ− µ1 · · · · · · · · · · · ·

... i
√
λ− µ2 · · · · · · · · ·

...
... i

√
λ− µ3 · · · · · ·

...
...

...
. . . · · ·

...
...

...
... i

√
λ− µ|J |.


One can see now that, as (1− P ) will project out the second direct sum in (21), the map
(1− P )N will be a J × J matrix defined as follows:

τ(λ) = (D(λ, 0) + SJ(λ).D(λ, 0)).(Id + SJ(λ))−1. (22)

This means that finally

SJ(λ) = (τ(λ)−D(λ, 0))−1(−D(λ, 0)− τ(λ)). (23)

5.2 Some words on computational cost

When calculating the S matrix in practice, there are several variables governing compu-
tational cost.

• The number of Neumann eigenvalues of the internal domain taken. This is akin to
truncating in series in equation (17) at m.

• The choice of sheet in Z, namely |J | : In the simplest case, this is simply the number
of ‘ends’ of the domain, though it can be greatly higher.

• The number of modes chosen n. This is akin to the dimension of the matrix N(λ)
where, equation (17) defines it for the k, lth element.

The computational cost of the of computing the S matrix will depend on our choice of
m and n as they are truncations of an infinite series. In 8.3, where the optimum number
of modes and eigenvalues to use for the most accurate result is discussed; it was decided
that 20 modes and 2000 eigenvalues was sufficient, though, in all cases m >> n. This
implies that the computation of N(λ) (see 17), which involves a the multiplication of an
n×m matrix with an m×m diagonal matrix and then multiplication again with an m×n
matrix, will dominate any calculation off computational cost and thus the asymptotic
complexity of the whole operation is that of rectangular matrix multiplication. This was
classically treated as O(m2n), but reducing this continues to be an area of active research
(for example, see [19]).
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6 Derivatives of the S matrix

This section will show that an extension to the above method can be used to calculate
S

(n)
J (λ) = ∂n

∂λnSJ(λ). We will guide the reader through this process which culminates
with an explicit formula in (37). This is an interesting endeavor in its own right but,
our numerical calculations in section 8 make use of the argument principle and Newton’s
method (see Proposition 9), both of which require the first derivative of S. It could, in
theory, also be used to write the scattering matrix as a power series. We will show that
the accuracy of the computation is as accurate as the computation for the original S
matrix and the asymptotic computational cost is no greater. This compares favorably
with the, much cruder, alternative of picking a small h > 0 and dividing the difference
of S(λ + h) and S(λ) by it. We don’t have to worry about the choice of h, the potential
for magnification of errors or the possibility of strange behaviors when λ is a non-trivial
fraction of h away from a resonance.

6.1 A Neumann to Dirichlet map for the system on the external domain

Fix a sheet of Z. If ϕJ(λ, x, y) is a generalised eigenfunction, then
(∆− λ)ϕJ(λ, x, y) = 0. Thus, when we differentiate with respect to λ, we get.

∂

∂λ
(∆− λ)ϕJ(λ, x, y) = (∆− λ)ϕ′J(λ, x, y)− ϕJ(λ, x, y) = 0,

For any n we get

∂n

∂λn
(∆− λ)ϕJ(λ, x, y) = (∆− λ)ϕ

(n)
J (λ, x, y)− ϕ(n−1)

J (λ, x, y) = 0,

where ϕ
(n)
J (λ, x, y) denotes ∂n

∂λnϕJ(λ, x, y) for brevity. One can simply look for a solution
to the resulting system of equations in a similar manner to (15):

(∆− λ)ϕJ(λ, x, y) = 0,
∂ϕJ
∂n
|Σ = 0, (24)

(∆− λ)ϕ′J(λ, x, y)− ϕJ(λ, x, y) = 0,
∂ϕ′J
∂n
|Σ = 0,

...
...

(∆− λ)ϕ
(n)
J (λ, x, y)− ϕ(n−1)

J (λ, x, y) = 0,
∂ϕ

(n)
J

∂n
|Σ = 0, .

On the other hand, since ϕ(λ, x, y) is known on E, we can recall equation (10) and see

ϕJ(λ, x, y) =
∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

SJ,j,k(λ)ei
√
λ−µkxνk(y)

)
+
∑
j /∈J

Tj(λ)ei
√
λ−µjxνj(y),

and deduce that
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6.1 A Neumann to Dirichlet map for the system on the external domain

ϕ′J(λ, x, y) =
∑
j∈J

(
−ix

2
√
λ− µj

e−i
√
λ−µjxνj(y) +

∑
k∈J

[
S′J,j,k(λ)−

xSJ,j,k(λ)

2i
√
λ− µk

]
ei
√
λ−µkxνk(y)

)

+
∑
j /∈J

[
T ′j(λ) +

ixTj(λ)

2
√
λ− µj

]
ei
√
λ−µjxνj(y), (25)

∂

∂x
ϕ′J(λ, x, y) =

∑
j∈J

[
−i

2
√
λ− µj

− x

]
e−i
√
λ−µjxνj(y) (26)

+
∑
j,k∈J

[
i
√
λ− µkS′J,j,k(λ) +

iSJ,j,k(λ)

2
√
λ− µk

− xSJ,j,k(λ)

]
ei
√
λ−µkxνk(y)

+
∑
j /∈J

[
i
√
λ− µjT ′j(λ) +

iTj(λ)

2
√
λ− µj

− xTj(λ)

]
ei
√
λ−µjxνj(y).

At 0 these two generalised functions become:

ϕ′J(λ, 0, y) =
∑
j∈J

(∑
k∈J

S′J,j,k(λ)νk(y)

)
+
∑
j∈N\J

T ′j(λ)νj(y), (27)

∂

∂x
ϕ′(λ, 0, y) =

∑
j∈J

(
1

2i
√
λ− µj

νj(y) +
∑
k∈J

[
i
√
λ− µkS′J,j,k(λ)−

SJ,j,k(λ)

2i
√
λ− µk

]
νk(y)

)

+
∑
j∈N\J

(
i
√
λ− µjT ′j(λ)− Tj(λ)

2i
√
λ− µj

)
νj(y). (28)

We can now see that the external Neumann to Dirichlet map, denoted Ñ1(λ), for the
system will take the form

Ñ1(λ) : l2 ⊕ l2 → l2 ⊕ l2.

Using the Ñ(λ) introduced in Definition 6, the fact that

∂

∂x
ϕ′J(λ, 0, y) = Ñ(λ)ϕ′J(λ, 0, y) +

∂

∂λ
Ñ(λ)ϕJ(λ, 0, y)

in addition to the fact that

∂

∂x
ϕJ(λ, 0, y) = Ñ(λ)ϕJ(λ, 0, y),

we can see that by defining

Ñ(1)(λ) =

(
Ñ(λ) 0
∂
∂λÑ(λ) Ñ(λ)

)
,

then, analogous to (18), the Neumann to Dirichlet map on E for this system will be
PÑ(1)(λ)−1. There is no reason for us to limit ourselves to first derivatives. We should go

further now and do the same thing for ϕ
(n)
J (λ, x, y). It is at this point the we take note

of the fact that each successive differentiation of e±i
√
λ−µx respect to λ, produces a factor

of of x. Since we will be focusing on ϕJ and ∂
∂xϕJ at the boundary, where x = 0, it is

unnecessary to differentiate e±i
√
λ−µx more than once, and all terms that result from such

actions, terms in these summands with a factor of x2 will simply be denoted them as h.o.t.
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6.2 A Neumann to Dirichlet map for the system on the internal domain

We will now introduce some new notation: PÑ(n)(λ)−1 and PN(n)(λ) we define to be the

Neumann to Dirichlet maps for the system of ϕ
(n)
J (λ, x, y) on the external and internal

domains respectively. Differentiating ϕ
(n)
J (λ, x, y) n times gives us:

ϕ
(n)
J (λ, x, y) =

∑
j∈J

[
−x∂

nÑj

∂λn
(λ) + h.o.t

]
e−i
√
λ−µjxνj(y) (29)

+
∑
j,k∈J

x n∑
q=1

(
n

q

)
∂kÑk

∂λk
(λ).S

(n−q)
J,j,k (λ) + S

(n)
J,j,k(λ) + h.o.t

 ei√λ−µkxνk(y)

+
∑
j /∈J

x n∑
q=1

(
n

q

)
∂qÑj

∂λq
(λ).T

(n−q)
j (λ) + T

(n)
j (λ) + h.o.t

 ei√λ−µjxνj(y).

These expressions evaluated on the boundary become:

ϕ
(n)
J (λ, 0, y) =

∑
j,k∈J

S
(n)
J,j,k(λ)νk(y) +

∑
j /∈J

T
(n)
j (λ)νj(y), (30)

∂

∂x
ϕ

(n)
J (λ, 0, y) =

∑
j∈J

[
−∂

nÑj

∂λn
(λ)

]
νj(y) (31)

∑
j,k∈J

 n∑
q=0

(
n

q

)
∂qÑk

∂λq
(λ).S

(n−q)
J,j,k (λ)

 νk(y)

+
∑
j /∈J

 n∑
q=0

(
n

q

)
∂qÑj

∂λq
(λ).T

(n−q)
j (λ)

 νj(y).

Ñ(n)(λ) will be a block-upper triangular matrix, (Ñj , for j ∈ N has been used above to be

the jth element of the diagonal matrix Ñ so the reader should avoid confusing the two).

Ñ(n)(λ) :
⊕
{0,...,n}

l2 −→
⊕
{0,...,n}

l2,

given by

Ñ(n)(λ) =



Ñ(λ) 0 · · · · · · · · · 0
∂
∂λÑ(λ) Ñ(λ) 0 · · · · · · 0(

2
0

)
∂2

∂λ2
Ñ(λ)

(
2
1

)
∂
∂λÑ(λ)

(
2
2

)
Ñ(λ) 0 · · · 0

· · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · 0(

n
0

)
∂n

∂λn Ñ(λ)
(
n
1

)
∂n−1

∂λn−1 Ñ(λ) · · · · · · · · ·
(
n
n

)
Ñ(λ)


6.2 A Neumann to Dirichlet map for the system on the internal domain

Now we turn our attention towards the internal domain X. N(n)(λ) can be computed with
an extension of Levitin-Matletta’s method. Equation (16) describes the method when used
to compute N(λ). Their “trick” to increase the rate of convergence (17) is unaffected, so
long as it is performed only once.
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6.2 A Neumann to Dirichlet map for the system on the internal domain

The {Um} remain unchanged from (16) and are used to denote the orthonormal Neumann
eigenfunctions and µm, their corresponding eigenvalues. {νj} will denote orthonormal an

basis of L2(Γ) and finally, we will use {Φk} and {Φ(n)
k }, to denote solutions to the following

system:

(∆− λ)Φk(λ, x, y) = 0,
∂Φk

∂n
|Σ = 0,

∂Φk

∂n
|Γ = νk0 (32)

(∆− λ)Φ′k(λ, x, y)− Φk(λ, x, y) = 0,
∂Φ′k
∂n
|Σ = 0,

∂Φ′k
∂n
|Γ = νk1

...
...

(∆− λ)Φ
(n)
k (λ, x, y)− Φ

(n−1)
k (λ, x, y) = 0,

∂Φ
(n)
k

∂n
|Σ = 0,

∂Φ
(n)
k

∂n
|Γ = νkn ,

where k is the n-tuple {k0, k1, . . . kn}.

We begin by fixing λ and will now calculate elements of N(n)(λ) which map to Φ(n),
where kn ∈ N and l ∈ Nn :

N(n),kn,l = 〈Nνkn , νl〉 = 〈Φ(n)
k |Γ, νl〉 = 〈Φ(n)

k |Γ,
∂Φ

(n)
l

∂n Γ
〉

= 〈∇Φ
(n)
k ,∇Φ

(n)
l 〉+ 〈∆Φ

(n)
k ,Φ

(n)
l 〉 = 〈∇Φ

(n)
k ,∇Φ

(n)
l 〉+ λ〈Φ(n)

k ,Φ
(n)
l 〉+ 〈Φ(n−1)

k ,Φ
(n)
l 〉.

Since each Φk can be written as
∑

m Φk〈Φk, Um〉 (the same is true for Φ
(n)
k ), and by

definition, Φk = (∆− λ)−jΦ(n−j), it follows that:

N(n),kn,l =
∑
m

(〈∇Um,∇Um〉+ λ)〈Φ(n)
k , Um〉〈Um,Φ(n)

l 〉+ 〈Φ(n−1)
l ,Φ

(n)
l 〉

=
∑
m

(〈∇Um,∇Um〉+ λ)〈Φ(n)
k , Um〉〈Um,Φ(n)

l 〉+
∑
m

〈Φ(n−1)
k , Um〉〈Um,Φ(n)

l 〉

=
∑
m

(λ− µm)〈Φ(n)
k , Um〉〈Um,Φ(n)

l 〉+
∑
m

〈Φ(n−1)
k , Um〉〈Um,Φ(n)

l 〉. (33)

Green’s second identity, for any j, means that

〈Φj , Um〉 =
∑
m

1

λ− µm
(〈∆Φj , Um〉 − 〈Φj ,∆Um〉) =

∑
m

1

λ− µm
〈νj , Um|Γ〉 (34)

〈Φ(n)
j , Um〉 =

∑
m

1

λ− µm

(
〈∆Φ

(n)
j , Um〉 − 〈Φ(n)

j ,∆Um〉 − 〈Φ(n−1)
j , Um〉

)
.

=
∑
m

1

λ− µm

(
〈νjn , Um|Γ〉 − 〈Φ

(n−1)
j , Um〉

)
.

So then N(n),k,l becomes∑
m

(
〈νk, Um|Γ〉 − 〈Φ

(n−1)
j , Um〉

)
〈Um,Φ(n)

l 〉,

and inductively, we see that

N(n),kn,l =
∑
m

〈νkn , Um|Γ〉〈Um,Φ
(n)
l 〉 =

∑
m

n∑
p=1

(−1)p−1

(λ− µm)p
〈νkn , Um|Γ〉〈Um|Γ, νlp,〉.
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6.3 Extracting S
(n)
J (λ)

Thus the nth block-row forN(n)(λ) is made up of the direct sum of maps defined component-
wise by

η(p)(λ) =
∑
m

(−1)p−1

(λ− µm)p
〈νk, Um|Γ〉〈Um|Γ, νl,〉, (35)

where p runs through 1, . . . n.

Now, for the system, Nn(λ) is a block upper-triangular matrix, acting on Φ⊕ · · · ⊕ Φ(n),
of the same form as Ñ(n)(λ), given by

N(n)(λ) =



η(1)(λ) 0 · · · · · · · · · 0

η(2)(λ) η(1)(λ) 0 · · · · · · 0

η(3)(λ) η(2)(λ) η(1)(λ) 0 · · · 0

· · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · 0

η(n)(λ) η(n−1)(λ) · · · · · · · · · η(1)(λ)

 (36)

We can assert here that the computational cost of such an approach is no greater than
that of crudely approximating the derivatives from first principles. Each of the ηp in
(35), that goes into making up the N(n) matrix (36), comes about in a very similar way
to (17) and has the same computational cost, namely that of n × m by m × n matrix
multiplication. Even though the number of ηp required to make up the block-diagonal N(n)

rises arithmetically with the order of the derivatives, the number of unique ηp required for
the nth derivative is only n + 1. The reader will see in the following subsection, that the
rest of the calculation consists of a series of additions, multiplications, inversions and one
Singular Vaule Decomposition of (in practice) much smaller matrices. There are no issues
relating to the speed of convergence either as the order of the denominators in (35) will
always be greater or equal to 2.

6.3 Extracting S
(n)
J (λ)

The coefficients of ϕ
(n)
J (λ, 0, y) can now be computed by finding a basis for the null space

of
Ln =

(
PN(n) − PÑ−1

(n)

)
.

We will denote such a basis as ω
(n)
1 , . . . ω

(n)
J . Finally, using the same argument made when

calculating S(λ),

τn(λ) = {(1− P )ω
(n)
1 , · · · , (1− P )ω

(n)
J }{(1− P )Nω

(n)
1 , · · · , (1− P )Nω

(n)
J }

−1,

thus

τn(λ) =

D(λ, n)−
n∑
q=0

(
n

q

)
D(λ, q).S(n−q)(λ)

S(n)(λ)−1

=

D(λ, n)−
n∑
q=1

(
n

q

)
D(λ, q).S(n−q)(λ)−D(λ, 0)S(n)(λ)

S(n)(λ)−1.

All of the S
(n−q)
J (λ) are known, having been previously calculated. Finally we can say

that

S
(n)
J (λ) =

(
Id−D(λ, 0)τn(λ)

)−1

.

D(λ, n).τn(λ)−
n∑
q=1

(
n

q

)
D(λ, q).τn(λ).S(n−q)(λ)

 .

(37)
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7 Embedded eigenvalues and resonances

This section will give an overview of embedded eigenvalues, complex resonances and de-
scribe how the scattering matrix can be used to compute the latter. It should be noted
that computational methods are becoming more important generally in science, with new
techniques under continuous development [20], [21], [22].

7.1 Embedded eigenvalues

An embedded eigenvalue of an operator is an isolated point within an operator’s continuous
spectrum which is actually an eigenvalue of finite multiplicity. The paper by Evans, Levitin
and Vassiliev [9] proved the existence of embedded eigenvalues for the Neumann Laplacian
on two dimensional waveguides with an obstacle, and/or deformation of the waveguide so
long as the domain has cross-sectional symmetry.

This was further generalised to waveguides with cylindrical ends by Davies and Parnovski [10].
Parnovski and Levitin have, amongst others, produced two other papers on this topic [11] [12].
More recently, in Levitin and Strohmaier’s paper [1, 6.3] they describe a technique to cal-
culate embedded eigenvalues numerically by looking for real values of λ that make the

sub-matrix of
(
N(λ)− Ñ−1(λ)

)
, obtained by omitting the rows and columns represent-

ing non square integrable modes, singular (see (17) and definition 6 for definitions of
N and Ñ). In this case, non square integrable modes will be the µ < λ, as in such a
situation ei

√
λ−µ will certainly not be in L2 for real λ. An eigenvector corresponding to a

zero-eigenvalue will necessarily represent the boundary data of an eigenfunction and not a
generalised eigenfunction as the Neumann to Dirichlet maps on the internal and external
domains co-inside when acting on that vector and the modes have been chosen deliber-
ately to be in L2. The problem with such an approach is that it is hard to distinguish an
embedded eigenvalue from a resonance very close to the real line [1, 6.3]. Like Levitin and
Strohmaier, we have calculated a small number of embedded eigenvalues, but the main
focus of the numerical calculations in section 8 has been to use the scattering matrix to
locate resonances. The reason for this is that the properties of the scattering matrix lend
themselvs to use in algorithms that are able to “sweep” an area in search of them and this
process can be automated to “zoom in” on any resonances found (see Proposition 9 and
the preceeding and following discussion).

7.2 Complex resonances

The scattering matrix, and its derivatives, can be used to calculate complex resonances on
any sheet of Z. Previous work on this topic has focused on on either providing asymptotic
bounds for the number of resonances ([6], [23], [24], [25], [26]), or their calculation ( [3],
[27], [4], [28], [29], [30], [31], [1]). For the remainder of this paper, we will focus on the
latter. As was alluded to previously, reason we have gone down this route is because the
numerical technique we have just constructed is absolutely conducive to this. Levitin and
Strohmaier have already used the scattering matrix to locate resonances on surfaces with
hyperbolic cusps [1]; as we now are in possession of the scattering matrix for Euclidean
waveguides, we will do the same for them.

We define a resonance here to be a pole of the scattering matrix. The relationship between
the resolvent, the Neumann to Dirichlet map and the scattering matrix means that poles
of the resolvent coincide with zeros of the determinant of the the inverse of the scattering
matrix, and their multiplicities will be the same.

Theorem 4 can be used to show that every pole of SJ(λ), on the sheet J of Z, coincides
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with a zero of SJ(λ∗) in the physical sheet and vice versa. We have used λ∗ to denote the
canonical projection of λ to the physical sheet; when both λ and λ∗ are identified with a
subset of the complex plane, they will be in the same location. Since the resolvent and
scattering matrix are holomorphic in the physical sheet, it can’t have poles there, and we
will have no zeros in a non-physical sheet of Z. This means we can now make use of the
argument principle to locate resonances, and locating resonances in a non-physical sheet
of Z has been reduced to locating zeros in the physical sheet. The argument principle
together with the Jacobi formula gives:

Proposition 9. Let C be a contour in a non-physical sheet of Z, J with winding number
one and let # be the counting function # : C 7→ N which counts the number of poles
enclosed by C. Then

#(C) =
1

2πi

∮
C

Tr(SJ(λ)−1.S′J(λ)).

This approach was featured in the paper by Davies and Aslanyan, but not applied to the
scattering matrix [27]. If a contour can be found that contains one or more zeros, we can
subdivide then integrate over the subdivisions and repeat the process until a small enough
contour has been found containing a single resonance. Simpson’s method for numerical
integration will suffice for this. Once we are sufficiently close to any resonances we may
find, Newton’s method can then be used to obtain their location to a desired level of
accuracy. We can then multiply the scattering matrix SJ(λ) by (λ0 − λ)−1, where λ0

is the location of the zero, then apply Newton’s method again, repeating if necessary
to find its order. This process can be automated to such an extent that one need only
feed parameters for a search area into a script, wait, and then be rewarded with a list of
locations for any resonances found.

8 Conclusion and presentation of results

We will conclude by presenting the reader with the results of some numerical calculations.
In 8.1 we will replicate and improve somewhat the accuracy of the calculations produced
by Aslanyan, Parnovski and Vassiliev [4], and Levitin and Marletta [3]. In 8.2 - 8.5 we
will discuss the finite element method mesh refinement, number of eigenvalues and and
modes needed to obtain a desired accuracy and discuss where to “cut” the internal do-
main from the ends. All resonances up to this point will have been calculated for the
sheet J = {1} (see 6), but in 8.6, we will track the location of a resonance and observe it
cross from the sheet J = {1} to J = {2} as the domain is changed. In 8.7 we will present
some tabulated results and graphs describing the motion of resonances in an area as the
domain is continuously changed. 8.9 gives a brief overview of time delay and scattering
length and we will finalise the paper by linking to some animations of plots of various res-
onances as the domain is continuously changed before suggesting additional areas of study.

All of the finite element method data used to obtain these results has been produced
in FreeFem++ [32]. FreeFem++ was chosen at the time because it is free and open
source, with no restrictions on installation and use. It has proved itself to be reliable and
with good documentation. FreeFem++ contains methods to produce triangulations (or
tetrahedralisation if working in 3-D) for domains given to it by the user in the form of pa-
rameterised curves, implements both the finite element method for solving PDEs and the
implicitly restarted Arnoldi method for finding eigenvalues and eigenvectors by making use
of the ARPACK subroutine [33] [34]. Though the results have not been presented here,
it was able to perform similar calculations in three dimensions for ends with rectangular
cross sections and circular cross-sections and could theoretically work for domains with
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8.1 Cylinders with a circular obstacle

arbirtarily drawn cross sections and domains with potentials. If the reader wishes to com-
pare finite element method software, the site http://feacompare.com has an exhaustive
list that, at the time of writing, numbered 78. Boundary element method techniques could
also be used in place of the finite element method here. In certain circumstances they may
have several advantages [21]. At this stage, we have not explored this option any further
because, for each domain, calculation of numerical solutions to pdes is only required once,
and for the two dimensional domains we have presented results for here, the compute time
has been “tolerable”, around five minutes for each domain. This will certainly change
if higher dimensional domains are used with more complicated geometries. The method
of particular solutions [35] is another computational technique that has been generating
significant interest of late, and where software to implement it is starting to become easily
available (see https://github.com/ahbarnett/mpspack).

The code used to extract the scattering matrix and its derivatives, from the output of the
finite element method (then later search for resonances) was written in Wolfram Mathe-
matica and has been subsequently rewritten in Sage. It is available at
https://bitbucket.org/greg5783/smcalc2/. It was important to use a software pack-
age that was able to perform linear algebaic operations on vectors and matrices with
complex values. MATLAB could also be used for this. Sage was found to have a slight
speed advantage over Mathematica provided care was taken to write efficient code. Sage
is more complicated to use, for example when parallelising operations (in mathematica,
one only has to decorate the entire script with parallel() and parralelisation of any and
all ensuing operations is implemented automatically in an optimised way.

8.1 Cylinders with a circular obstacle

Figure 3: One of our triangulated interior domains produced by FreeFEM++ [32]. The
waveguide is composed of this interior domain, with the two ends the same width as the
interior domain joined on the left and right sides.

The first thing we wanted to do once we had a working algorithm was replicate the results
of our predecessors and try to improve their accuracy. Amongst other things, Levitin
and Marletta looked at an infinite rectangle of width 2, with a single circular obstruction
(See Figure 3). The radius of this obstruction, R, is varied along with δ, the position of
its centre (vertical displacement) relative to the centre line of the rectangle. When the
vertical displacement is 0, there exist embedded eigenvalues. The embedded eigenvalues
decay to a resonances when the vertical displacement δ becomes non-zero [3]. With the
parameterisation of λ 7→ λ2, they presented a number of values for these resonances.
We have performed our calculation to the highest accuracy our method and available
hardware afforded us, namely 2000 eigenvalues, 20 modes (see 8.3) and a mesh refinement
of 80 (see 8.2), and have displayed ours and our predecessors’ results in Table 4 below.
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8.2 Some notes on mesh refinement

Any additional eigenvalues, modes and mesh refinements after these values did not affect
the results. We have been able to offer a slight improvement on the number of decimal
places.

R δ Our calculation Levitin-Marletta Aslanyan et al

0.3 δ = 0 1.50497 1.50486 1.5048

0.3 δ = 0.1 1.50783 + 0.0001205i 1.5078 + 10−4i 1.5102 +×10−4i

0.3 δ = 0.2 1.51651 + 0.0004740i 1.5165 + 5× 10−4i 1.5188 = 5× 10−4i

0.5 δ = 0 1.39138 1.39134 1.3913

0.5 δ = 0.1 1.39785 + 0.0009255i 1.3979 + 9× 10−4i 1.3998 + 9× 10−4i

0.5 δ = 0.2 1.41779 + 0.0039101i 1.4178 + 3.90× 10−3i 1.4196 + 3.93× 10−3i

Table 1: This table displays our own results alongside those of Levit-Marletta and
Aslanyan, Parnovski and Vassiliev. Greyed out figures portray a lower level of confidence
in their accuracy on our part.

8.2 Some notes on mesh refinement

Figure 4: Some internal domains for R = 0.3, δ = 0.1 with mesh refinement of 10 and 80
respectively.

We have looked at the effects of mesh refinements on the accuracy of the results obtained.
Whilst it should be obvious that the more refined the mesh becomes, the more accurate
the result, we have tabulated the results of some experiments to demonstrate just to
what extent. The standard method for producing a triangulated domain in FreeFem++
is to draw the outline as a union of parameterised curves, then use the program’s own
triangulation algorithm after specifying the number of points on each such curve. Our
scale of mesh refinement was taken to be the number of such points per unit length on the
boundary. Using the same domain as 3, we have tabulated some results for the calculation
of these resonances using 2000 eigenvalues and 20 modes for each connected component
of Γ (see Figure 4). The reader can see from Table 2 and Table 3 how the result stabilises
as the mesh refinement increases.
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8.3 Some notes on the number of eigenvalues

Mesh refinement R = 0.3 δ = 0.1 R = 0.3 δ = 0.2

10 1.50943 + 0.0001157i 1.51791 + 0.0004530i
15 1.50847 + 0.0001185i 1.51708 + 0.0004657i
20 1.50821 + 0.0001193i 1.51684 + 0.0004691i
25 1.50805 + 0.0001198i 1.51670 + 0.0004712i
30 1.50797 + 0.0001200i 1.51663 + 0.0004722i
35 1.50793 + 0.0001202i 1.51660 + 0.0004727i
40 1.50790 + 0.0001203i 1.51657 + 0.0004731i
45 1.50788 + 0.0001203i 1.51655 + 0.0004734i
50 1.50786 + 0.0001204i 1.51654 + 0.0004736i
55 1.50785 + 0.0001204i 1.51653 + 0.0004737i
60 1.50785 + 0.0001204i 1.51652 + 0.0004738i
65 1.50784 + 0.0001204i 1.51651 + 0.0004739i
70 1.50783 + 0.0001205i 1.51651 + 0.0004740i
75 1.50783 + 0.0001205i 1.51651 + 0.0004740i
80 1.50783 + 0.0001205i 1.51651 + 0.0004740i

Table 2: This table shows the location of the resonances calculated as the number of mesh
refinements is increased. The domain is unchanged from 3, R denotes the radius of the
obstacle and δ, the distance it is off-centre by.

Mesh refinement R = 0.5 δ = 0.1 R = 0.5 δ = 0.2

10 1.39874 + 0.0009122i 1.41857 + .00385170i
15 1.39822 + 0.0009199i 1.41811 + 0.0038854i
20 1.39805 + 0.0009225i 1.41796 + 0.0038971i
25 1.39797 + 0.0009237i 1.41789 + 0.0039021i
30 1.39793 + 0.0009243i 1.41786 + 0.0039049i
35 1.39791 + 0.0009247i 1.41784 + 0.0039063i
40 1.39789 + 0.0009249i 1.41782 + 0.0039075i
45 1.39788 + 0.0009251i 1.41781 + 0.0039083i
50 1.39787 + 0.0009252i 1.41781 + 0.0039089i
55 1.39786 + 0.0009253i 1.41780 + 0.0039092i
60 1.39786 + 0.0009254i 1.41780 + 0.0039095i
65 1.39786 + 0.0009254i 1.41779 + 0.0039097i
70 1.39785 + 0.0009255i 1.41779 + 0.0039098i
75 1.39785 + 0.0009255i 1.41779 + 0.0039101i
80 1.39785 + 0.0009255i 1.41779 + 0.0039101i

Table 3: Like Table 2, this table shows the location of the resonances calculated as the
number of mesh refinements is increased. The domain is still unchanged from 3, R still
denotes the radius of the obstacle and δ, the distance it is off-centre by.

8.3 Some notes on the number of eigenvalues

In subsection 8.1, we mentioned that we used 2000 eigenvalues but gave no justification
for this. Here we will present the reader with some graphs and charts to demonstrate
convincingly, why we chose this number. We have tabulated data describing what hap-
pens when number of eigenvalues is increased. We also present some convergence graphs
that track the value of the leading coefficient of the scattering matrix as the number of
eigenvalues increases for a selection of the domains at a randomly chosen point.
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8.3 Some notes on the number of eigenvalues

Number of eigenvalues R = 0.3 δ = 0.1 R = 0.3 δ = 0.2

200 1.50783 + 0.000120482i 1.51651 + 0.000474043i
300 1.50783 + 0.000120482i 1.51651 + 0.000474043i
400 1.50783 + 0.000120482i 1.51651 + 0.000474045i
500 1.50783 + 0.000120482i 1.51651 + 0.000474045i
600 1.50783 + 0.000120482i 1.51651 + 0.000474045i
700 1.50783 + 0.000120482i 1.51651 + 0.000474045i
800 1.50783 + 0.000120483i 1.51651 + 0.000474045i
900 1.50783 + 0.000120482i 1.51651 + 0.000474045i
1000 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1200 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1400 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1600 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1800 1.50783 + 0.000120483i 1.51651 + 0.000474046i
2000 1.50783 + 0.000120483i 1.51651 + 0.000474046i

Table 4: This table shows the effect of increasing the number of eigenvalues on the accuracy
of some selected resonances. We have used a mesh refinement of 80 here and 20 modes.
The domain is from 3, R denotes the radius of the obstacle and δ, the distance it is
off-centre by.

Number of eigenvalues R = 0.5 δ = 0.1 R = 0.5 δ = 0.2

200 1.39785 + 0.000925529i 1.41779 + 0.00391010i
300 1.39785 + 0.000925538i 1.41779 + 0.00391011i
400 1.39785 + 0.000925536i 1.41779 + 0.00391013i
500 1.39785 + 0.000925536i 1.41779 + 0.00391013i
600 1.39785 + 0.000925536i 1.41779 + 0.00391014i
700 1.39785 + 0.000925536i 1.41779 + 0.00391014i
800 1.39785 + 0.000925537i 1.41779 + 0.00391014i
900 1.39785 + 0.000925536i 1.41779 + 0.00391014i
1000 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1200 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1400 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1600 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1800 1.39785 + 0.000925537i 1.41779 + 0.00391014i
2000 1.39785 + 0.000925537i 1.41779 + 0.00391014i

Table 5: This table shows the effect of increasing the number of eigenvalues on the calcu-
lated position of some selected resonances. The domain remains the same, R denotes the
radius of the obstacle and δ, the distance it is off-centre by.

From this it might seem like it is unnecessary to use many eigenvalues, however the number
of eigenvalues does have a significant impact on the coefficients of the scattering matrix as
can be seen in Figure 5. We have picked, as an example, the domain where R = 0.3 and
δ = 0.1 with a mesh refinement of 80. We have plotted the real and imaginary components
of the leading coefficient of the scattering matrix at the value 1 + 0.1i. This is typical
behavior for any arbitrarily chosen point.
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8.4 Some notes on the “length” of the domains

Figure 5: The real and imaginary components of the first coefficient of the scattering
matrix plotted against the number of eigenvalues and eigenvectors used to compute it.

8.4 Some notes on the “length” of the domains

The reader should recall that the waveguide is made up of a compact part, on which we
have applied the finite element method, and the non-compact ends. The choice as to where
the compact part finishes and the ends begin is somewhat arbitrary. It does, however,
have an impact on the accuracy of any calculations. In practice, if the compact part if
taken to be too large, the internal Neumann to Dirichlet map becomes ill conditioned
and a source of major inaccuracy. If the compact part is cut too short then the effect of
the obstacle is not completely captured. We settled on the lengths we did after careful
experimentation. It should be noted here that all domains for which we have furnished
results are comparatively simple, so performing these kind of experiments are “affordable”
in terms of compute time; for more complicated and higher dimensional domains, it is a
potential vulnerability of the method and extreme care must be taken to ensure that the
matrix inversions are well conditioned.

8.5 The importance of the number of modes and choice of auxiliary point

It should be noted that the number of modes and the auxiliary point (the λ̃ from 17
used to speed up convergence) chosen had an undetectable effect on the accuracy of the
calculations, so long as the choice was “sensible”. It should also be noted that increasing
the number of modes is the most computationally costly action we can take, in theory as
well as practice, and should be minimised. For the rest of the results presented, we have
used 20 modes for each end, 1000 eigenvalues and a mesh refinement of 30.

8.6 Observing a resonance transition from one sheet to another

This subsection will present the first explicit calculation of the scattering matrix beyond
the first non-physical sheet J = {1} of Z (Z was defined by equation (6) in section 2). We
will be looking at the same domain as we did in 3, with the same conventions; an infinite
rectangle in R2 of width 2 with a single, circular ‘obstruction’ of radius R who’s centre
is moved up by δ from the middle of the waveguide. In 3 we used the parameterisation
λ 7→ λ2 to enable the comparison of our results with other peoples’, from now on we will
no longer do this. Of particular interest here is the case where R = 0.2. As δ increases
from 0.6 to 0.7 the resonance moves from the sheet J = {1} to J = {2} as can be seen in
Table 6. This was the first circumstance where such a phenomena has been observed.
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8.7 Adding “Ends” to a Circle

R = 0.2 J = {1} J = {2}
δ = 0 2.4036 -

δ = 0.1 2.40712 + 0.00006i -

δ = 0.2 2.41709 + 0.00021i -

δ = 0.3 2.43170 + 0.00040i -

δ = 0.4 2.44777 + 0.00059i -

δ = 0.5 2.46101 + 0.00053i -

δ = 0.6 2.46725 + 0.00013i -

δ = 0.7 - 2.46475 + 0.00063i

Table 6: Resonances for the domain R = 0.2 showing the resonance moving to a different
sheet of Z as δ increases from 0.6 to 0.7

We will also include some contour plots of the absolute value of the determinant of the
scattering matrix for this occurrence. We can observe that the “tail” of the resonance is
visible on both sheets prior to the resonance crossing over.

Figure 6: Contour plots of the absolute value of the the determinant of SJ(λ). The reso-
nance can be seen crossing from sheet J = {1} to J = {2} as δ is increased from 0.6 to
0.7. R = 0.2 throughout.

8.7 Adding “Ends” to a Circle

In this example, we have added a single, infinite rectangular ‘end’ to a circle of radius 2
and the width of the ‘end’ has been varied. We have searched for resonances, on sheets
J = {1}, J = {2} and J = {3}, within in the search area given by:

{λ : 0 ≤ Re(λ) ≤ 15,−3 ≤ Im(λ) ≤ 3}, (38)

and recorded the results the results found in Table 8. The choice of sheets and and search
area on which to look for resonances was somewhat arbitrary, though we believe they
provide a wide enough ‘field of vision’ to observe interesting phenomena, but are limited
enough to minimise compute time and cost. We have chosen this as an example because we
feel it interesting to observe that when the width of the end is close to zero, the resonances
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8.7 Adding “Ends” to a Circle

are very close to the Neumann eigenvalues of the circle of radius 2, of which we have given
the first 9 non-zero examples in Table 7. When the width of the end is continuously
increased, they migrate away from these values in distinct paths. We are confident of
the accuracy of the resonances calculated to least three decimal places, though we have
included the fourth place in a lighter shade for the reader’s information. In addition to
this, we have plotted them on graphs in Figure 8 with colour coded markers indicating
the respective sheet of Z they reside on; black for J = {1}, red for J = {2} and green for
J = {3}. In the case of varying widths, the paths taken by the resonances as the widths
increase are clearly visible, and we have included them.

0.8476 2.3323 3.6709 4.4130 7.0698 7.1068 10.2911 11.2442 12.3059

Table 7: Neumann eigenvalues for a circle of radius 2.

Figure 7: An example of some internal domains produced by FreeFEM++ for these cal-
culations.

J = {1}
w = 0.1 w = 0.2 w = 0.5 w = 1

0.8496 + 0.0206i 0.8541 + 0.0408i 0.8753 + 0.0992i 0.9255 + 0.1957i
2.3388 + 0.0416i 2.3525 + 0.0807i 2.413 + 0.1848i 2.5431 + 0.3334i
3.6742 + 0.0145i 3.6814 + 0.0265i 3.7091 + 0.0512I 3.7577 + 0.0802i
4.4246 + 0.0664i 4.4480 + 0.1285i 4.5452 + 0.3009I 4.7425 + 0.5764i
7.0947 + 0.0022i 7.0946 + 0.0011i 7.0947 + 0.0004i 7.8573 + 1.0573i
7.1124 + 0.1328i 7.1721 + 0.2541i 7.4065 + 0.5657i 10.7726 + 0.1699i
10.3293 + 0.1186i 10.4037 + 0.2071i 10.6664 + 0.2940i 12.2884 + 0.8945i
11.2547 + 0.0572i 11.2733 + 0.1151i 11.368 + 0.35467i 12.0991 + 0.3521i
12.3122 + 0.0263i 12.3237 + 0.0502i 12.3567 + 0.1348i 14.7205 + 0.6654i
14.1139 + 0.1527i 14.1949 + 0.2766i 14.4649 + 0.5345i

w = 1.5 w = 2 w = 2.5 w = 3

0.9900 + 0.3010i 1.0710 + 0.4264i 1.1752 + 0.5898i 1.3176 + 0.8290i
2.6965 + 0.4627i 2.8746 + 0.5614i 3.0696 + 0.5767i 3.1713 + 0.4476i
3.8154 + 0.1224i 3.9000 + 0.2054i 4.0569 + 0.3750i 4.5055 + 0.5486i
4.9403 + 0.8597i 5.0970 + 1.1417i 5.1843 + 1.3491i 5.3676 + 1.4029i
7.1276 + 0.0014i 7.1757 + 0.0151i 9.2528 + 2.4257i
8.2933 + 1.6165i 8.6102 + 2.1380i
10.7234 + 0.0883i 11.9290 + 0.0758i
12.0129 + 0.1897i 13.780 + 2.6635i
13.1459 + 2.0493i
14.5252 + 0.3368i
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8.7 Adding “Ends” to a Circle

J = {2}
w = 0.1 w = 0.2 w = 0.5 w = 1

10.2536 + 0.11562i
11.2435 + 0.01777i
14.2167 + 0.42736i

w = 1.5 w = 2 w = 2.5 w = 3

7.2439 + 0.4698i 4.6065 + 0.4829i 2.3695 + 0.3389i 2.6042 + 0.6511i
7.7433 + 0.9299i 11.0769 + 0.08842i 4.9869 + 0.8324i 5.5217 + 1.2393i
10.9022 + 0.7275i 11.8264 + 1.38616i 7.1156 + 0.0011i 7.1356 + 0.0192i
11.1970 + 0.1239i 8.3670 + 1.44198i 9.1096 + 1.9492i

10.9968 + 0.0355i 14.1616 + 2.7545i
12.7631 + 2.1634i

J = {3}
w = 0.1 w = 0.2 w = 0.5 w = 1

w = 1.5 w = 2 w = 2.5 w = 3

10.3673 + 0.2721i 7.0639 + 0.2546i 7.6306 + 0.7147i
14.7867 + 0.8682i 11.831 + 0.0873i 11.6268 + 0.0988i

11.161 + 1.0833i 12.4059 + 2.0430i

Table 8: Resonances calculated when a singe rectangular ‘end’ is added to a circle of
radius 2 in two dimensions when λ is in the sheets J = {1}, J = {2} and J = {3} of Z as
indicated. ω denotes the width of the end which increases from 0.1 to 3.
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8.7 Adding “Ends” to a Circle

w = 0.1 w = 0.2

w = 0.5 w = 1.0

w = 1.5 w = 2.0

w = 2.5 w = 3.0

Figure 8: Some colour-coded plots of the location of resonances. In this instance the width
of a single end is changed. The larger markers are the resonances for the domain indicated,
the smaller markers are the entire family of domains with varying widths. This allows the
reader to visualise the paths the resonances take as the width of the end increases. Similar,
but not identical, paths can be observed with higher numbers of ends.
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8.8 Animated motion of resonances as the domain is continuously altered

8.8 Animated motion of resonances as the domain is continuously altered

Due to the speed of the method it has been possible to animate the motion of the res-
onances as the domains are continuously changed. An animation of the results found
in 8.7 can be found in the link below along with many more. Of particular interest to the
reader are occurrences where resonances cross sheets, higher order resonances bifurcate,
resonances loop etc. The same colour coding convention applies in the animations as in
Figure 8. Many other similar animations have been produced

• Varying the width of one rectangular end
https://www.youtube.com/watch?v=6AryY-dHRAM

• Varying the width of two equispaced rectangular ends
https://www.youtube.com/watch?v=GRl3vY2IkOY

• Varying the size of a centrally placed circular ‘obstruction’, one end of width 1
https://www.youtube.com/watch?v=T6Xap-VQHmQ

• Varying the size of a centrally placed circular ‘obstruction’, two equispaced ends of
width 1
https://www.youtube.com/watch?v=WhcdPBotn9A

• Varying the size of a centrally placed circular ‘obstruction’, three equispaced ends
of width 1
https://www.youtube.com/watch?v=UP4P9xW7ATI

• Varying the angle between two rectangular ends of width 1
https://www.youtube.com/watch?v=8HDXRFmqxfU

• Moving a circular ‘obstruction’ of radius 0.5 in the x axis, 3 equally spaced ends of
width 1. https://www.youtube.com/watch?v=B8WmXaDo0bs

• Moving a circular ‘obstruction’ of radius 0.5 in the y axis, 3 equally spaced ends of
width 1. https://www.youtube.com/watch?v=WncB1xoSSzs

If the reader has any difficulty in accessing these videos, then they can be provided, on
request, by other means.

8.9 Time delay and scattering length

The notions of time delay and scattering length hail from dynamic scattering theory;
they can both be calculated using the scattering matrix. Reed and Simon mention time
delay briefly in their text [16]. Müller and Strohmaier have also covered time delay and
scattering length in their paper [36], where they give results that relate the time delay
to the geometry of the internal domain. In this section, we will apply this to a pair of
the domains featured above. It should be noted that the λ in this context will be a real
number less than µ1, representing the energy of the system and not an element of the Z.
The Appendix of Müller and Strohmaier’s paper provides an overview of the time delay
in this setting [37]. We will take the (non standard) definition to be:

Definition 10. Time delay

T (λ) = −2
√
λS−1(λ).S′(λ)

when λ = 0, we define this to be the scattering length.
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8.10 Limitations and future directions

Wigner and Eisenbud were the first to present the time delay in this manner for potential
scattering and T (λ) is often called the Eisenbud-Wigner time delay operator [7][8]. Müller
and Strohmaier have, amongst other things, proved this formula for the case of manifolds
with cylindrical ends and, in the case of a single end

T (0) = 2
Vol(X)

Vol(Γ)
.

We will pick a selection of our single ended domains from above and plot their time delay
as λ approaches 0.

Figure 9: Circle of radius 2, with end width
1.5. T (0) should theoretically be 25.1327.

Figure 10: Circle of radius 2 with end
width 1, obstacle radius 0.5. T (0) should
theoretically be 11.781.

8.10 Limitations and future directions

We will finish by informing the reader of the limitations of what we have done as things
stand and, give some suggestions for further work in this immediate area.

• The algorithm is currently limited to Neumann or Acoustic waveguides in Euclidian
space; it can be extended, with minimal additional theoretical work, to those with
Dirichlet or mixed boundary conditions, as well as those with non-Euclidian metrics
on either the internal domain or the ends. There is also the possibility to look at
potentials supported on the internal domain.

• Applying this method to higher dimensions and more complicated domains is possi-
ble, though the computational cost will rise very significantly and greater care needs
to be taken with accuracy.

• Continuing to use the current method as it is to either search for interesting phenom-
ena with respect to the distribution of resonances as David Borthwick has done for
hyperbolic surfaces [28], or perform domain optimisation and create domains from
givern patterns of resonances.

• Adopting the boundary element method [21] in place of the finite element method
or adopt finite element method techniques that minimise dispersion error and try to
improve accuracy yet further [38].

9 References

[1] M. Levitin and A. Strohmaier, “Computations of eigenvalues and resonances on per-
turbed hyperbolic surfaces with cusps,” 2019.

32



References

[2] R. Melrose, Geometric Scattering Theory. Stanford Lectures: Distinguished Visiting
Lecturers in Mathematics, Cambridge University Press, 1995.

[3] M. Levitin and M. Marletta, “A simple method of calculating eigenvalues and res-
onances in domains with infinite regular ends,” Proceedings of the Royal Society of
Edinburgh: Section A Mathematics, vol. 138, pp. 1043–1065, 10 2008.

[4] A. Aslanyan, L. Parnovski, and D. Vassiliev, “Complex resonances in acoustic waveg-
uides,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 53, no. 3,
pp. 429–447, 2000.

[5] T. Jiang and Y. Xiang, “Perfectly-matched-layer method for optical modes in dielec-
tric cavities,” Physical Review A, vol. 102, Nov 2020.

[6] T. Christiansen, “Some upper bounds on the number of resonances for manifolds with
infinite cylindrical ends,” Annales Henri Poincare, vol. 3, no. 5, pp. 895–920, 2002.

[7] E. P. Wigner, “Lower limit for the energy derivative of the scattering phase shift,”
Phys. Rev., vol. 98, pp. 145–147, Apr 1955.

[8] L. Eisenbud, Dissertation, Unpublished. PhD thesis, Princeton University, 1948.

[9] D. V. Evans, M. Levitin, and D. Vassiliev, “Existence theorems for trapped modes,”
Journal of Fluid Mechanics, vol. 261, pp. 21–31, 2 1994.

[10] E. B. Davies and L. Parnovski, “Trapped modes in acoustic waveguides,” Quart. J.
Mech. Appl. Math., vol. 51, no. 3, pp. 477–492, 1998.

[11] H. Hawkins and L. Parnovski, “Trapped modes in a waveguide with a thick obstacle,”
Mathematika, vol. 51, no. 1-2, pp. 171–186 (2005), 2004.

[12] E. R. Johnson, M. Levitin, and L. Parnovski, “Existence of eigenvalues of a linear
operator pencil in a curved waveguide—localized shelf waves on a curved coast,”
SIAM J. Math. Anal., vol. 37, no. 5, pp. 1465–1481 (electronic), 2006.

[13] M. Reed and B. Simon, I: Functional Analysis. Methods of Modern Mathematical
Physics, Elsevier Science, 1981.

[14] G. Roddick”, “Computation of scattering matrices and resonances for waveguides,”
”6” ”2016”.
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