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Highlights

An implicit splitting scheme with characteristic boundary conditions for com-
pressible reactive flows on unstructured grids

Michael Pries, Andreas Fiolitakis, Peter Gerlinger

• Improving accuracy and stability of a characteristic based implicit splitting scheme
for unstructured meshes with collocated variables.

• A new, gradient based approach for characteristic boundary conditions suitable for
finite volume algorithms operating on unstructured meshes.

• Analytic reference solutions for characteristic inflow and outflow boundary condi-
tions.

• Detailed analysis and validation of the proposed solution method for generic prob-
lems as well as flows in complex geometries.
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Abstract

The computation of combustion instabilities requires efficient numerical solvers. For low
Mach number compressible flows splitting schemes provide an adequate family of solu-
tion strategies. Here, the set of governing equations is separated into several subsystems,
e.g. into an advective and acoustic subsystem. Advancements for such an algorithm are
presented improving accuracy and stability. Moreover a new, gradient based approach is
given for coupling the splitting scheme with characteristic boundary conditions on collo-
cated unstructured grids. A large number of academic test cases is chosen to demonstrate
the accuracy and performance of the proposed improved numerical scheme. In addition,
the improved solver is tested in a complex, non-reactive LES of a swirl combustor on an
unstructured grid.
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(NSCBC), thermoacoustic instability, reacting flow, multi-species, unstructured mesh,
low Mach number, finite volume, collocated variable arrangement

1. Introduction

The simulation of thermoacoustic instabilities requires the solution of the compress-
ible balance equations for mass, momentum, energy and the transport equations for
species mass fractions at low Mach numbers. Applying classical methods which use den-
sity as primary variable have proven to be inefficient for such low Mach number flows [1].
Two main reasons have been identified [2, 3, 4, 5]. First, in the incompressible limit the
coupling between the fluid density and pressure becomes weak as changes in density are
small. Second, the compressible system becomes stiff at the incompressible limit due to
the large discrepancy between the acoustic and convective time scales [6]. This stiffness
may result in poor convergence and introduces additional numerical errors at low Mach
numbers [3]. A lot of effort has therefore been put into generalizing algorithms designed
for compressible flows to make them applicable to a wide range of flow speeds. A well
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established approach is to rescale the system’s eigenvalues to mitigate their discrepancies
in magnitude through the introduction of a preconditioner [6, 7, 1, 8, 9]. For steady state
problems an overview is given in [10]. The preconditioning approach is also applied to
time accurate simulations as in [11, 12, 13, 14] where an iterative procedure is needed to
ensure accuracy. Algorithms originally designed for solving the incompressible balance
equations often use pressure as a primary variable and continuity is enforced through the
establishment of a pressure field [15]. These methods are known as pressure correction
methods and have also been extended to handle compressible flows with finite acoustic
wave speeds [15, 16, 17, 18, 19, 20, 21, 22, 23]. To assure conservation of the primary vari-
ables these methods often need to be iterated in each time step until a sufficiently small
residuum is achieved. Another approach for solving the compressible and incompress-
ible balance equations splits the system of governing equations into several subsystems
[24, 25] where in general no iterative procedure is needed to ensure accuracy. For in-
compressible flows a prominent example of such a splitting approach is given in [26]. To
apply the splitting approach to compressible low Mach number flows, the compressible
balance equations may be split on the basis of the system’s eigenvalues. The resulting
subsystems are solved independently from each other thus eliminating or mitigating the
discrepancies of the time scales compared to the un-split system. Different approaches
have been followed. In [27, 28] splitting approaches are proposed where the resulting
eigenvalues of each subsystem have a similar order of magnitude. A direct approach to
accomplish this objective is based on the idea of decomposing the eigenvalues directly
into the convective flow velocity and speed of sound. Such an approach is followed by
[29, 30, 31, 32, 33, 34]. This leads to two separate subsystems in the splitting scheme
which are termed advective and non-advective. In [29, 30] the resulting subsystems are
solved directly whereas in [31, 32, 33, 34] a pressure equation for the non-advective sub-
system is derived and solved. The solution approach given in [31] is adopted by others
with subtle modifications. Examples are [35, 36, 37] where the advective subsystem is
solved with an explicit high order scheme and the resulting method is applied to combus-
tion problems including aeroacoustic simulations. It is also adopted in the compressible
variant of the ThetaCOM1 solver as described in [39, 40]. Here, the method of [31] is
extended to multi-species, reacting flows.

By solving the compressible balance equations the acoustic wave speed remains finite
and the propagation of acoustic waves is inherently included. Especially for confined flow
problems accurate prediction of acoustic phenomena can only be achieved by considering
correct interaction of the acoustic waves with the domain boundaries such as walls,
inflows and outflows. One method which addresses this problem are the Navier Stokes
Characteristic Boundary Conditions (NSCBCs) proposed in [41]. The NSCBC-method is
an extension of the characteristic boundary conditions for the inviscid balance equations
given in [42, 43] towards the viscid compressible balance equations. Multiple authors have
adapted the NSCBC approach and consequently the original method has been improved.
In [44, 45] the NSCBC approach is extended towards multicomponent reactive flows
whereas in [46] an extension for real gas flows is presented. In [47, 48] it is shown that
the transverse convective terms which are usually omitted can be of importance and a

1The ThetaCOM solver is a CFD solver optimized for combustion problems which is developed at
the German Aerospace Center (DLR). It operates on collocated, unstructured grids and uses the finite
volume discretisation [38].
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treatment through a relaxation term is proposed.
In this paper we focus on improvements of the semi-implicit characteristic splitting

algorithm given in [31, 39, 40]. This includes the introduction of the total energy as
energy variable instead of specific enthalpy which simplifies the method considerably in
the case of multi-species, reacting flows. Furthermore, we apply an iterative Newton
Raphson method to solve the equations of the advective subsystem in a coupled, implicit
approach. Solving the equations in a coupled manner minimizes the error in species con-
servation. Since the method is no longer semi-implicit as in [39, 40], the present approach
is termed implicit characteristic splitting (ICS). By altering the acoustic subsystem and
re-deriving the pressure correction equation used to advance the solution the stability of
the overall scheme is enhanced without loss of accuracy. Finally, a rigorous treatment of
the NSCBCs is presented for the ICS scheme which overcomes several issues of an earlier
approach given in [40]. The presented approach to the NSCBC can be readily applied
to other solution algorithms operating on collocated unstructured grids. All improve-
ments proposed to the numerical scheme, the suitability of the solution strategies and
the correctness of the suggested approach to the NSCBCs are demonstrated.

2. Numerical Method

2.1. Implicit Characteristic Splitting (ICS)-method

Solved are the balance equations for mass, energy, momentum and the transport
equations for species mass fractions. These equations are derived in several textbooks
[4, 49] and given in [50] by

∂ρ

∂t
+
∂ρui
∂xi

= 0, (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

− ∂τij
∂xj

+
∂p

∂xi
= ρfi, (2)

∂ρE

∂t
+
∂uiρE

∂xi
+
∂uip

∂xi
− ∂ujτij

∂xi
+
∂qi
∂xi

= ρuifi + Sr, (3)

∂ρYα
∂t

+
∂ρuiYα
∂xi

+
∂jαi
∂xi

= Sα, (4)

where i, j = 1, 2, 3, α = 1, 2, ..., Ns−1 with Ns being the number of species. Throughout
this work the Einstein notation is used. In Eqs. (1)-(4) and throughout this work, xi
are the spatial coordinates, t the physical time, ρ the density, ui is the velocity vector,
p the pressure, E is the specific total energy and Yα the species mass fraction for the
component α. Additionally, τij defines the viscous stress tensor and qi the vector of
the heat flux. The diffusive mass flux jαi is approximated by a Fickian approach [50].
External volume forces are given by fi whereas Sr denotes radiative sources and Sα the
chemical source term of the species α. The specific total energy is introduced which is
the sum of the specific internal energy e and the specific kinetic energy expressed through

E = e+
1

2
u2i and e =

Ns∑
α=1

Yαeα.
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Further, it is assumed that the fluid is a mixture of thermally perfect gases and therefore
the state equation for an ideal gas can be applied [4, 50]. The characteristic splitting
algorithm proposed in [31] applies the fractional stepping of [24, 25] to split the balance
equations into advective and acoustic subsystems. In [31] the splitting is applied to
the balance equations for continuity, momentum and total enthalpy. An extension for
reactive flows is given in [40]. We apply here the splitting to Eqs. (1)-(4) using total
energy as energy variable. This results in a considerable reduction of complexity for
reactive flows and leads to the advective subsystem

ρ∗ − ρn

∆t
+
∂ρui
∂xi

− ρ
∂ui
∂xi

= 0, (5)

ρu∗i − ρuni
∆t

+
∂ρuiuj
∂xj

− ρui
∂uj
∂xj

− ∂τij
∂xj

= ρfi, (6)

ρE∗ − ρEn

∆t
+
∂ρuiE

∂xi
− ρE

∂ui
∂xi

− ∂ujτij
∂xi

+
∂qi
∂xi

= ρuifi + Sr, (7)

ρY ∗
α − ρY n

α

∆t
+
∂ρuiYα
∂xi

− ρYα
∂ui
∂xi

+
∂jαi
∂xi

= Sα (8)

and the acoustic subsystem

ρn+1 − ρ∗

∆t
+ ρ

∂ui
∂xi

= 0, (9)

ρun+1
i − ρu∗i

∆t
+ ρui

∂uj
∂xj

+
∂p

∂xi
= 0, (10)

ρEn+1 − ρE∗

∆t
+ ρE

∂ui
∂xi

+
∂uip

∂xi
= 0, (11)

ρY n+1
α − ρY ∗

α

∆t
+ ρYα

∂ui
∂xi

= 0. (12)

Here, the discrete time step size is given through ∆t whereas (·)n denotes the current
time level at time t and (·)n+1 the next time level at time t + ∆t. Additionally, with
the splitting procedure an intermediate time (·)∗ is introduced. The advective and the
acoustic subsystems can be solved using appropriate numerical methods, as presented for
the inviscid balance equations as well as the Kapila equations in [29] and [30]. Following
[31] the acoustic subsystem is further transformed using δp = pn+1 − p∗ for the pressure
correction. With the relation

pn+1 − p∗

∆t
=
δp

∆t
= −c2ρ∂ui

∂xi
(13)
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the velocity divergence is replaced in the acoustic subsystem leading to

ρn+1 − ρ∗

∆t
− 1

c2
δp

∆t
= 0, (14)

ρun+1
i − ρu∗i

∆t
− ui
c2
δp

∆t
+

∂

∂xi

(
p∗ + pn+1

2

)
= 0, (15)

ρEn+1 − ρE∗

∆t
− E

c2
δp

∆t
+

∂

∂xi

(
uip

∗ + uip
n+1

2

)
= 0, (16)

ρY n+1
α − ρY ∗

α

∆t
− Yα
c2

δp

∆t
= 0, (17)

where c is the speed of sound. In contrast to prior applications where this splitting has
been used [31, 39, 40] the pressure in Eqs. (15) and (16) is taken at the time levels (·)∗
and (·)n+1

. These measures improve the stability of the overall method as demonstrated
in Sec. 3.3. Consequently, this modification alters the pressure correction equation. To
derive the pressure correction equation, the divergence of Eq. (15) given by

∂

∂xi

(
ρun+1

i − ρu∗i
∆t

)
− ∂

∂xi

(
ui
c2
δp

∆t

)
+

∂2

xixi

(
2p∗ + δp

2

)
= 0 (18)

is taken as in [31] and the term ∂(ρu1)
n+1/∂xi is replaced by the semi-discrete form of

Eq. (1)

ρn+1 − ρn

∆t
+

1

2

(
∂ρun+1

i

∂xi
+
∂ρuni
xi

)
= 0. (19)

To eliminate ρn+1 Eq. (14) is used. This leads to the pressure correction equation

∂2

∂xixi
δp− ∂

∂xi

(
2ui
∆tc2

δp

)
− 4

c2∆t2
δp

= −2
∂2

∂xixi
p∗ +

4

∆t

(
ρ∗ − ρn

∆t
+

∂

∂xi

(
ρu∗i + ρuni

2

))
. (20)

Equation (20) has a different pressure Laplace term on the right hand side compared to
the pressure correction given in [31]. It can be simplified by using Eq. (5) leading to

∂2

∂xixi
δp− ∂

∂xi

(
2ui
∆tc2

δp

)
− 4

c2∆t2
δp

= −2
∂2

∂xixi
p∗ +

4

∆t

(
ρ∗ + ρn

2

∂uni
∂xi

)
, (21)

where the speed of sound is taken at time level (·)∗.

2.1.1. Discretisation of the advective subsystem

The advective subsystem (Eqs. (5)-(8)) is now expressed as

∂U

∂t
+
∂Fk

∂xk
= S, (22)
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where U = (ρ, ρui, ρE, ρYα)
T

is the vector of the primary variables, Fk represents the
convective and viscous fluxes with k = 1, 2, 3 and S the source terms. Applying the tem-
poral second order implicit Crank Nicolson scheme leads to the semi discrete expression

Un+1 −Un

∆t
= −1

2

(
∂Fn+1

k

∂xk
+
∂Fn

k

∂xk

)
+

1

2

(
Sn+1 + Sn

)
. (23)

With the introduction of the iteration delta Un+1 = Up + ∆Up+1 [51] the system is
expressed as

Up +∆Up+1 −Un

∆t
= −1

2

(
∂Fp+1

k

∂xk
+
∂Fn

k

∂xk

)
+

1

2

(
Sp+1 + Sn

)
, (24)

where the superscript (·)p indicates provisional values of the iterative sequence. The
coupled set of equations can be solved using a Newton Raphson method. This requires
the linearisation

Fp+1
k (U,Uxk

) = Fp
k + [A]

p
k ∆Up+1 + [Bl]

p
k ∆Up+1

xl
(25)

and
Sp+1 (U) = Sp + [C]

p
∆Up+1 (26)

where [A]k, [Bl]k and [C] are Jacobian matrices andUxl
represents the spatial derivatives

of the vector U in direction l = 1, 2, 3. Inserting Eqs. (25) and (26) into Eq. (24) and
rearranging the terms results in

∆Up+1

∆t
+

1

2

∂

∂xk

(
[A]

p
k ∆Up+1

)
+

1

2

∂

∂xk

(
[Bl]

p
k ∆Up+1

xl

)
− 1

2
[C]

p
∆Up+1

= −Up −Un

∆t
− 1

2

(
∂Fp

k

∂xk
+
∂Fn

k

∂xk

)
+

1

2
(Sp + Sn) (27)

which is the semi discrete representation of the Newton Raphson method applied to
solve the advective subsystem. Equation (27) is discretised using a finite volume method
[49]. The objective is to provide a discretisation scheme which is applicable to three-
dimensional unstructured meshes. For this reason the convective and viscous fluxes are
treated differently. The convective flux of a quantity ϕ of the vector U is calculated by∫

∆V

∂uiϕ

∂xi
dV ≈ ϕmum,inm,i = V̇mϕm, (28)

where ∆V represents a discrete control volume enclosed by m = 1, ..., Nfaces discrete
faces and n being the respective face normal vector. The volume flux over such a face is
denoted by V̇ . Reconstruction of the variable value on the cell interface is achieved by a
deferred correction approach [15, 52]

ϕm = ϕu︸︷︷︸
implicit

+
1

2

[
α (ϕd − ϕu) + β

∂ϕu
∂xi

ζi

]
︸ ︷︷ ︸

explicit

(29)
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where ζi is the direction vector between the centres of two control volumes adjacent to a
face. These are denoted by the subscripts (·)d and (·)u representing the downwind and
upwind points with respect to the direction of the vector ui. The parameters α and β
are used to switch between different spatial discretisations. According to the deferred
correction approach the terms of Eq. (29) are either treated implicitly or explicitly.

To compute the divergence of a viscous flux the approximation∫
V

∂

∂xi

(
Γ
∂ϕ

∂xi

)
dV ≈ 1

2
(Γ0 + Γ1)

∂ϕ

∂xi

∣∣∣∣
m

ni,m (30)

is used, where ϕ is any transported quantity, Γ denotes a diffusion coefficient and the
subscripts (·)0 and (·)1 mark the control volumes adjacent to the face (·)m. Here, the
diffusion coefficient at the face of the control volume is computed by averaging. The
scalar product between the gradient of ϕ and the normal vector at the face of the control
volume is evaluated as

∂ϕ

∂xi

∣∣∣∣
m

ni,m =
||n||2
||ζ||2

ϕ1 − ϕ0︸ ︷︷ ︸
implicit

− 1

2

(
∂ϕ

∂xi

∣∣∣∣
1

+
∂ϕ

∂xi

∣∣∣∣
0

)(
ζi −

||ζ||2
||n||2

ni

)
︸ ︷︷ ︸

explicit

 , (31)

where the directional vector ζi is oriented from (·)0 to (·)1. In Eq. (31) a deferred
correction approach [15, 52] is incorporated to account for non orthogonalities of the
unstructured mesh as well as oscillations resulting from the collocated variable arrange-
ment. Equation (31) is split into implicit and explicit parts. The advective subsystem
is solved using a matrix free linear solver such as the Biconjugate Gradient Stabilized
(BCGS)-method [53] which is preconditioned using the Jacobi method [53].

2.1.2. Discretisation of the pressure correction equation

The discretisation of the pressure correction equation (Eq. (21)) is fully implicit. The
divergence of the convective fluxes is computed by∫

∆V

2

∆tc2
uiδpdV ≈ 4

∆t (c2u + c2d)
ui,mδpmni,m =

4

∆t (c2u + c2d)
V̇mδpm, (32)

where values at the faces are obtained from

δpm = δpu +
1

2
[α (δpd − δpu)] . (33)

In Eq. (33) the parameter α is used to switch between different spatial discretisation
schemes. The Laplace operator in Eq. (21) is computed by∫

∆V

∂

∂xi

(
∂δp

∂xi

)
dV =

∂δp

∂xi

∣∣∣∣
m

ni,m, (34)

where the scalar product of the gradient of the pressure correction and the face normal
vector of the face is given by

∂δp

∂xi

∣∣∣∣
m

ni,m =
||n||2
||ζ||2

(
δp1 − δp0 −

1

2

(
∂δp

∂xi

∣∣∣∣
1

+
∂δp

∂xi

∣∣∣∣
0

)(
ζi −

||ζ||2
||n||2

ni

))
. (35)
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At the inflow and outflow Dirichlet boundary conditions for the pressure correction vari-
able δp are assumed with δp = 0Pa as the pressure is fixed by the NSCBC procedure.
For walls a zero gradient von Neumann boundary condition is applied. The pressure cor-
rection equation is solved using a matrix free linear solver such as the BCGS [53] method.
With a known pressure correction, the pressure and the density are updated first and
subsequently all remaining primary variables are updated according to Eqs. (15)-(17).

2.2. Navier Stokes Characteristic Boundary Condition (NSCBC)-method

For low Mach number compressible flows it is of importance to provide accurate
boundary conditions for acoustic waves crossing the boundaries of the computational
domain. The NSCBCs proposed in [41] have proven to be an accurate and widely used
method. In this section we describe the adaption of the NSCBC-method for the modelling
of subsonic inflow and outflow boundaries in the ICS-method. A key aspect of the NSCBC
procedure is to transform the balance equations (Eqs. (1)-(4)) at the domain boundary
into a locally one-dimensional inviscid (LODI) system which depends on the choice of
variables. The LODI system for pressure as energy variable is derived in [41, 47] and
takes the form

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0, (36)

∂û1
∂t

+
1

2ρc
(L5 − L1) = 0, (37)

∂û2
∂t

+ L3 = 0, (38)

∂û3
∂t

+ L4 = 0, (39)

∂p

∂t
+

1

2
(L5 + L1) = 0, (40)

∂Yα
∂t

+ L5+α = 0, (41)

where no source terms are considered. A LODI relation for temperature can be derived
using Eqs. (36), (40), (41) and the differential form of the state equation for ideal gas
resulting in

∂T

∂t
+
T

pγ

(
−L2 +

1

2
(γ − 1) (L5 + L1)

)
+

Ns−1∑
α=1

pM

ρR

(
1

MNs

− 1

Mα

)
L5+α = 0, (42)

where M is the molecular weight, R the gas constant and γ the ratio of specific heats.
The terms Li can be interpreted as the amplitudes of characteristic waves associated
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with the systems eigenvalues (λ1 to λ5+α) given by [41]

L1 = λ1

(
∂p

∂e1
− ρc

∂û1
∂e1

)
, (43)

L2 = λ2

(
c2
∂ρ

∂e1
− ∂p

∂e1

)
, (44)

L3 = λ3
∂û2
∂e1

, (45)

L4 = λ4
∂û3
∂e1

, (46)

L5 = λ5

(
∂p

∂e1
+ ρc

∂û1
∂e1

)
, (47)

L5+α = λ5+α
∂Yα
∂e1

. (48)

In the LODI system it is assumed that the flow is one-dimensional and normal to the
boundary face. For an arbitrary orientation of the boundary faces a local coordinate
system ei is used at the boundaries. Variables marked by (̂·) indicate variables that
are variant under rotation from the global reference frame xi into the local coordinate
system ei. Further Eqs. (43)-(48) can be rearranged to express the spatial derivatives
with respect to e1 leading to

∂ρ

∂e1
=

1

c2

[
L2

λ2
+

1

2

(
L5

λ5
+
L1

λ1

)]
, (49)

∂û1
∂e1

=
1

2ρc

(
L5

λ5
− L1

λ1

)
, (50)

∂û2
∂e1

=
L3

λ3
, (51)

∂û3
∂e1

=
L4

λ4
, (52)

∂p

∂e1
=

1

2

(
L5

λ5
+
L1

λ1

)
, (53)

∂Yα
∂e1

=
L5+α

λ5+α
. (54)

2.2.1. NSCBC-method for the ICS-Scheme

In Fig. 1 the propagation directions of the characteristic waves together with the asso-
ciated amplitude variations for inflow and outflow boundaries are shown. Characteristic
waves leaving the domain can be calculated from inside the domain using Eqs. (43)-(48),
whereas waves that enter the domain most often are specified using relaxation relations
for the wave amplitude variations L1 to L5+α. A detailed overview on the specification
of the wave amplitude variations of the characteristic boundary conditions used here is
given in Tab. 1. In Tab. 1 the relaxation parameters are denoted by σ, M is the Mach
number and L a characteristic length of the domain considered. The index (·)∞ denotes
reference values of a variable which must be specified. Most often, the approach to
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incorporate the NSCBCs relies on a separate formulation of the set of balance equa-
tions at the boundaries. Prior to the internal points, the variables at the boundaries are
advanced in time by solving this set of balance equations to provide boundary values.
A detailed description is given in [41]. In terms of a finite-volume solver operating on
unstructured grids this approach is intricate. Therefore in this work, a simpler approach
to include the NSCBCs into the ICS-method is pursued. The main idea is to incorporate
the NSCBCs based on the gradients in the control volumes adjacent to the boundary
faces. These gradients are calculated through Eqs. (49)-(54) thus implicitly incorporat-
ing the NSCBCs through the specification of the wave amplitude variations L1 to L5+α.
The required boundary face values are spatially extrapolated based on the gradients by
reversing the Gauss theorem on a discrete level. Unlike the conventional approach, a
separate advancement in time of the variables at the boundaries is not required. Using
the Gauss theorem the gradient is expressed as

∂ϕ

∂xi
=

1

∆V
(ϕmnm,i + ϕbnb,i) , (55)

where ϕm denotes the value on a face of the control volume inside the computational
domain and ϕb the unknown value at the face of a boundary treated with the NSCBCs.
Similarly nm,i denotes the face normal vector for a face of the control volume inside the
computational domain whereas nb,i is the normal vector of the boundary face treated
by the NSCBCs. With the known gradient and under the assumption that the control
volume at the boundary has only one boundary face that is treated by the NSCBCs
Eq. (55) can be used to determine the boundary face value ϕb. To this end Eq. (55) is
multiplied with the vector li and rearranged for the unknown boundary face value ϕb

Table 1: Definition of wave amplitude variations for different inflow and outflow configurations.

non-reflecting inflow stiff inflow* non-reflecting outflow

L1 Eq. (43) Eq. (43) K(p− p∞), K = σ(1−M2)c/L
L2 σ2(T − T∞) (γ − 1)L1 Eq. (44)
L3 σ3(u2 − u2,∞) 0 Eq. (45)
L4 σ4(u3 − u3,∞) 0 Eq. (46)
L5 σ5(u1 − u1,∞) L1 Eq. (47)
L5+α σ5+α(Yα − Yα,∞) 0 Eq. (48)

* i.e. constant temperature, velocity and composition
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Figure 1: Propagation directions of characteristic waves at inflows and outflows for a subsonic flow.
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leading to

ϕb =
1

nb,klk

(
∆V

∂ϕ

∂xi
li − ϕmnm,ili

)
. (56)

In Eq. (56) the vector li is the directional vector connecting the centre of the bound-
ary control volume to the centre of the boundary face. Using this method all primitive
variables can be computed. From these primitive variables the conservative variables
are calculated and applied as Dirichlet boundary conditions for each time step during
the solution process. During a time step these values are kept constant. The remain-
ing difficultly is to specify the characteristic waves on an unstructured mesh. For this
purpose a Least-Squares-Gradient [54] approach can be used for outgoing characteristic
waves. In this way only values from the interior of the domain are considered. Incoming
characteristic waves are modelled depending on the type of boundary (cf. Tab. 1). To
preserve the one dimensional character of the LODI relations at the boundary faces the
computations are carried out on a local coordinate system whose e1-axis vector is aligned
with the normal vector of a boundary face.

3. Results

The ICS-method as well as the approach to the NSCBCs has been verified and vali-
dated extensively. This includes individual order of accuracy analysis for the advective
and acoustic subsystems using the method of manufactured solution as well as analytic
reference solutions. In both cases the formal second order spatial accuracy is achieved.
The verification procedure also includes order of accuracy studies of the overall method’s
temporal and spatial error using well known benchmark problems. In addition, incom-
pressible and compressible benchmark problems including the Lid-Driven Cavity prob-
lem, laminar and turbulent channel flows, incompressible and compressible boundary
layers, the converging-diverging nozzle and a thermoacoustic resonator (Rijke-tube) are
used to validate the method for which excellent results are achieved. Even for more com-
plex problems such as a lifted turbulent H2/N2 jet flame in a vitiated coflow (cf. [55])
and the non-reacting flow of a swirl combustor (cf. [56]) excellent results are achieved
compared to experimental data as well as to results of an incompressible flow solver.
Further, the increase of stability of the proposed modifications is investigated. For the
validation of the NSCBCs numerous individual tests are devised, where newly derived
one dimensional analytic solutions are used. These analytic solutions give further insight
into the properties of the amplitude variations of the NSCBC-method. Selected results
of these studies are shown in the following sections to prove the accuracy and suitability
of the proposed method and its modifications.

3.1. Spatial order of accuracy

The validity of the overall method for low and moderate flow speeds is evaluated using
an inviscid test case. A two-dimensional domain with height and width of L = 0.1m is
initialized with a core flow and a superimposed isentropic vortex (cf. [57]). The initial
vortex position at t = 0 s is x1,c = x2,c = 0.05m which is the centre of the domain.
The upper and lower boundaries of the domain are defined to be symmetric whereas
the left and right boundaries are set to be periodic allowing the vortex to travel several
times through the computational domain. Two cases are considered that differ in the
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Figure 2: Numerical error ϵ of the transported variables over the discretisation length. The magnitude
of the errors for each variable is normalized with the magnitude of error on the coarsest grid for each
variable. ( ) nominal second order, ( ) Ma = 0.05, ( ) Ma = 0.5.

Mach number of the core flow (Ma = 0.05 and Ma = 0.5). The simulations are run
on successively finer grids and are stopped after the vortex has travelled a total of one
domain length. All convective terms are discretised by a central scheme whereas for
the temporal discretisation the Crank Nicolson scheme is used. The numerical error ϵ
is calculated by the L2-norm using the analytic solution as a reference. In Fig. 2 the
resulting numerical error ϵ for the transported variables is plotted over the discretisation
length h. For each variable the magnitude of error is normalized by the error on the
coarsest grid. The results confirm that the formal spatial second order of the method is
reached for all transported variables.

3.2. Temporal order of accuracy

The temporal error is investigated using the one-dimensional, acoustic, inviscid and
isentropic wave equation which can be derived from the linearised Euler equations [58].
The domain for the simulations has a length of L = 0.1m and is discretised with Np =
3200 grid points. A large number of grid points is needed to ensure a small spatial
error compared to the temporal error. Two cases with different reference flow velocities
u0 = 0m/s (case 1) and u0 = 20m/s (case 2) are considered. For each case simulations
are run for consecutively smaller time step sizes ∆t. For the temporal discretisation
the Crank Nicolson scheme is used whereas the convective terms are discretised using a
central scheme. At the end of the simulation the magnitude of the normalized numerical
error ϵ is evaluated for the transported variables using the L2-norm and plotted over the
time step size ∆t in Fig. 3. The results are in accordance with the findings in [31] where
a temporal order slightly less than second order was achieved.
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Figure 3: Numerical error ϵ of the transported variables over the time step for the linear wave cases 1
and 2. The magnitude of errors for each variable is normalized by the error at the largest time step.
( ) nominal second order, ( ) case 1, ( ) case 2.

3.3. Improved stability of the ICS-method

To improve the stability of the ICS-method the pressure in Eqs. (15) and (21) is
taken at time level (·)∗ and not at (·)n as in [31, 39, 40] (cf. Sec. 2.1). The inviscid,
isentropic wave test case is used to demonstrate the improvements in stability. For the
present case a pressure wave travelling in positive x1-direction is considered. The domain
length is L = 0.1m with Np = 1600 grid points. Periodic boundary conditions are used
at x1 = 0m and x1 = L. Investigating the stability, simulation results for two variants
of the ICS-scheme are compared. For simulation results denoted with method 1 the ICS-
method with the modified Eqs. (15) and (21) as described in Sec. 2.1 is used. Simulation
results denoted by method 2 use Eqs. (15) and (21) with the pressure gradient on the
right hand side kept at time level (·)n instead of (·)∗ as described in [31, 39, 40]. In all
cases the simulations are conducted with time step sizes of ∆t1 = 2.5 ns and ∆t2 = 25ns.
Each simulation is run until the simulation time t = 0.5ms is reached. The resulting
pressure waves for the different simulations are plotted in Fig. 4. It can be observed that
for the ∆t1 = 2.5 ns the simulations for method 1 and method 2 show identical results.
For the simulations with ∆t2 = 25ns the results differ. The pressure wave from method
1 still shows a smooth solution comparable to the results for ∆t1 = 2.5 ns. In the vicinity
of x1 = 0.045m some small wiggles are observable. The results of method 2 however
display large instabilities upstream of x1 = 0.045m. Additionally the minimum pressure
amplitude is also decreasing while for method 1 the pressure amplitude remains constant.

3.4. Validation of a subsonic, partially non-reflecting outflow

For a one-dimensional case, under the constraints of linear acoustics the response
of the NSCBC-system at a subsonic, partially non-reflecting outflow boundary can be
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Figure 5: Semi-infinite, one-dimensional domain for the analytic solution of the NSCBCs. a) outflow
located at x1 = 0m. b) inflow located at x1 = 0m. The pressure fluctuation is defined as p′ = p − p0
with the reference pressure p0.

calculated analytically. Here, the approach given in [59] is used and extended for an
arbitrary convective flow. Therefore, a semi-infinite, one-dimensional domain as shown
in Fig. 5a is considered for the analytic reference solution. The domain extends to
infinity for negative values of x1 whereas the outflow is placed at x1 = 0m. Solving
the linearized Eqs. (37) and (40) velocity and pressure waves propagating towards the
outflow are expressed by

u′(x1, t) =
P

ρ0c0
e
iω

(
(M0+1)t− x1

c0

)
(57)

and

p′(x1, t) = P e
iω

(
(M0+1)t− x1

c0

)
, (58)

where i is the imaginary unit, M0 = u0/c0 is the reference Mach number, P the pres-
sure amplitude and ω = 2πf the angular velocity for the frequency f = c0/λ with the
wavelength λ. Equations (57) and (58) are used to replace the derivatives in Eq. (47)
which is then, together with L1 = Kp′ inserted into Eq. (40) to calculate the pressure
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Figure 6: Magnitude and phase angle of the reflection factor for the outflow boundary as a function
of K. ( ) analytic magnitude, ( ) analytic phase angle, ( ) numerical magnitude, ( ) numerical
phase angle.

fluctuations at the outflow resulting in

p′(0, t) = A0e
−K

2 t +
P

1 + K
2ω(M0+1)i

(
eiω(M0+1)t − e−

K
2 t
)
, (59)

where K and A0 are case dependent constants. By using Eq. (47) and L1 = Kp′ the re-
flection factor Rout = L1/L5 is calculated where (under the assumption that all transient
terms have decayed) its magnitude |Rout| and its phase angle ψout are given by

|Rout| =
1√

1 +
(

2(M0+1)ω
K

)2 (60)

and

ψout = π − arctan

(
2(M0 + 1)ω

K

)
. (61)

To validate the implementation of the NSCBC outflow, simulations with varying K are
performed on a quasi one-dimensional domain of length L = 50m using the fully three-
dimensional unstructured solver. The simulation domain is initialized with an isentropic
pressure wave packet travelling from the stiff inflow at x1 = −L towards the partially
reflective outflow at x1 = 0m. The remaining lateral boundaries of the domain are set to
symmetric. All simulations are run until the initialized waves have reached the outflow
boundary and have been reflected. Data sampling is started after all transient terms
have decayed. The reflection factors and phase angles resulting from the simulations
as well as the analytic reference solution are plotted in Fig. 6. For large values of K
the incoming waves are totally reflected with a phase angle of π and a reflection factor
magnitude of |Rout| = 1. For small values ofK the outflow becomes less reflective whereas
the phase shift approaches limK→0 ψout(K) = π/2. The simulation results are in good
agreement with the analytic solution. Especially for the simulations with K ≥ 10000 1/s
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the agreement is very good. For smaller values of K and thus less reflection of the
incident waves a small deviation from the analytic solution is found. This is especially
visible for the phase angle. A possible cause are the transient terms which have not fully
decayed for small values of K and are neglected in the derivation of the reflection factor
Rout.

3.5. Validation of a subsonic, partially non-reflecting inflow

As demonstrated for the outflow boundary condition, a corresponding test case is
selected for a subsonic, partially non-reflecting inflow boundary. Again, a semi-infinite,
one-dimensional domain is considered for the analytic reference solution. As indicated by
Fig. 5b the inflow is located at x1 = 0m and the domain extends to infinity for positive
values of x1. Comparable to the outflow in Sec. 3.4 the analytic solution of the linearized
Eqs. (37) and (40) is given by

u′(x1, t) = − P

ρ0c0
e
iω

(
(1−M0)t+

x1
c0

)
(62)

and

p′(x1, t) = P e
iω

(
(1−M0)t+

x1
c0

)
, (63)

For the velocity fluctuations of the inflow

u′(0, t) = A0e
− σ5

2ρ0c0
t − P

ρ0c0 +
σ5

2iω(1−M0)

(
e−

σ5
2ρ0c0

t + eiω(1−M0)t
)

(64)

is obtained, where σ5 and A0 are case dependent constants. With Eqs. (43) and L5 = σ5u
′

the reflection factor Rin = L5/L1 is calculated where (under the assumption that all
transient terms have decayed) its magnitude |Rin| and its phase angle ψin are given by

|Rin| =
1√

1 + 4
(u0−c0)

2ω2ρ2
0

σ2
5

(65)

and

ψin = arctan

(
2
(u0 − c0)ωρ0

σ5

)
. (66)

The NSCBC inflow is validated performing simulations with varying σ5 on a quasi one-
dimensional domain of length L = 50m using the fully three-dimensional unstructured
solver. Again, the simulation domain is initialized with an isentropic wave package. This
wave package travels from the outflow at x1 = L towards the partially reflective inflow
at x1 = 0m where it is reflected. To match the derived analytic reference solution the
wave amplitude variations L2 to L4 and L5+α are set to zero during the simulations.
The remaining lateral boundaries of the domain are symmetric. All simulations are run
until the initialized waves have reached the inflow boundary and have been reflected.
Data sampling is started after all transient terms have decayed. The resulting reflection
factors and phase angles from the simulations and the analytic reference solutions are
plotted in Fig. 7. In Fig. 7 it is shown that the incoming waves are completely reflected
for large values of σ5 with a magnitude of the reflection factor of limσ5→∞|Rin(σ5)| = 1
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Figure 7: Magnitude and phase angle of the reflection factor for the inflow boundary as a function of σ5.
( ) analytic magnitude, ( ) analytic phase angle, ( ) numerical magnitude, ( ) numerical phase
angle.

and a phase angle of limσ5→∞ψin(σ5) = 0. For small values of σ5 the boundary is non
reflective as the magnitude of the reflection factor results in limσ5→0|Rin(σ5)| = 0. The
phase angle approaches limσ5→0ψin(σ5) = −π/2. Comparing the analytic solution to the
results computed by the ICS-method an overall good agreement is observed. However,
unlike the outflow where for large values of K the analytic solution is matched perfectly
the phase angle for the inflow appears to slightly differ over the whole range of σ5-values.
For stiffer inflows and therefore large σ5-values the magnitude of the reflection factor
also shows slight deviations from the analytic solution.

3.6. Temperature fluctuations at a subsonic, partially non-reflecting inflow

As for the velocity fluctuation in Sec. 3.5 an analytic solution for the temperature
fluctuation at an partially non-reflecting inflow can be derived. Therefore, Eq. (42) is
used assuming L2 = σ2T

′, L5 = σ5u
′ and constant composition which yields

∂T ′(0, t)
∂t

− T0σ2
p0γ

T ′(0, t) =

1− γ

2γ

T0σ5
p0

u(0, t)′ + iω
1− γ

γ

T0c0
p0

(M0 − 1)P eiω(1−M0)t. (67)

From Eq. (67) it can be a priori concluded that in order for the temperature fluctuation
to remain bounded σ2 must be either negative or L2 = −σ2T ′ (for positive σ2) must be
assumed. Otherwise, the temperature fluctuations will grow over time. Solving Eq. (67)
with help of Eqs. (62), (63) and (64) the analytic solution for the temperature fluctuations
is given by

T (0, t)′ = A1e
T0σ2
γp0

t − γ − 1

2γ

T0
p0

[
σ5

(
Γ0

(
e−

σ5
2ρ0c0

t − e
T0σ2
γp0

t
)

− Γ1

(
eiω(1−M0)t − e

T0σ2
γp0

t
))

− Γ2

(
eiω(1−M0)t − e

T0σ2
γp0

t
)]

(68)
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Figure 8: Temperature fluctuations for the two different assumptions of L2 (in both cases σ2 is positive).
( ) analytic solution ( ) numerical solution.

with

Γ0 =
A0 − Γ3

−T0σ2

γp0
− σ5

2ρ0c0

, Γ1 =
Γ3

iω (1−M0)− T0σ2

γp0

,

Γ2 =
2iω (1−M0)P

iω (1−M0)− T0σ2

γp0

, Γ3 =
2Piω (1−M0)

2ρ0c0iω (1−M0) + σ5

and A0 and A1 being constants depending on the initial conditions. Figure 8 demon-
strates the behaviour of T ′ over time for the two different assumptions L2 = σ2T

′ and
L2 = −σ2T ′ (in both cases σ2 is positive). Along with the imaginary part of the analytic
solutions, results from two corresponding numerical computations are given using the
fully three-dimensional solver. The simulations are conducted on a quasi one-dimensional
domain of length L = 10m until a physical time of t = 25ms is reached. For both
simulations an upstream propagating pressure disturbance is initialized. The coupling
parameters at the inflow at x1 = 0m are chosen to σ5 = 100000 kg/(m2s2) and σ2 =
100000 kg/(Kms3). All remaining wave amplitude variations are set to zero. At x1 = L
a partially reflective outflow is set whereas the remaining lateral boundaries are set to
be symmetric. Figure 8a displays the simulation with L2 = σ2(T − T0) whereas Fig. 8b
shows the simulation with L2 = −σ2(T −T0). As can be seen in Fig. 8a the temperature
grows exponentially over time which ultimately leads to divergence of the simulation.
Additionally, the numerical solution of the ICS-method and the analytic solution start
to deviate at about t > 12.5ms. This is related to the fact that the assumption of linear
acoustic used to derive the analytic solution is only valid for small fluctuations of tem-
perature and does not hold anymore. The temperature plot of Fig. 8b does not show
such behaviour and a good agreement between the analytical and the numerical solution
is observed.

3.7. Isothermal Non-Reacting flow of a swirl combustor

To demonstrate the ICS-method’s capability to efficiently solve low Mach number
flows on complex unstructured meshes the non-reacting flow of a swirl combustor is
computed. The swirl combustor is based on an industrial gas turbine combustor and is
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Figure 9: Average axial velocity profiles of the isothermal swirl burner at different heights. ( )
compressible, ( ) incompressible, ( ) experiment.

thoroughly investigated through experimental measurements and numerical simulations
at multiple operating conditions [56, 60, 31, 61, 62, 63, 64]. For the simulations, the com-
bustor is discretised by a hybrid mesh containing six million grid points. Simulations are
conducted using the ICS-method and the incompressible ThetaCOM [38] solver in order
to provide a numerical reference solution. The results are compared against each other
as well as against measurement data. For both unsteady LES-simulations the WALE [65]
model is used as a subgrid scale model. Identical time steps sizes (∆t = 0.1µs) are used
resulting in a convective Courant-Friedrich-Lewy (CFL) number of CFLc = 0.065 and for
the compressible case in a acoustic CFL number of CFLa = 13. Only the non-reacting
flow is considered. The fluid is air at a temperature of T = 320K. In Figs. 9-14 the
velocity statistics of both simulations as well as Laser Doppler velocimetry (LDV) mea-
surements are compared. The velocity profiles are extracted across the centre of the com-
bustion chamber at different heights above the base plate (i.e. at 1.5, 5, 15, 25, 35mm,
cf. [56, 31]). A good agreement with the measured data is obtained for both simulations.
Some larger discrepancies with the measurement data are observed mainly in the vicinity
of the injector. As stated by [31] this may be related to uncertainties resulting from the
LDV measurements. Further downstream the simulation data are in better agreement
with the measurement data. Small differences are observed comparing the incompressible
and compressible solver results, where the compressible solver shows a overall slightly
better agreement with the measured data. In comparison to [31] the present ICS-method
provides better results away from the injector. This applies in particular to the mean
tangential velocity where the steep gradient is matched exactly.
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Figure 10: Axial RMS velocity profiles of the isothermal swirl burner at different heights. ( ) com-
pressible, ( ) incompressible, ( ) experiment.
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Figure 11: Average radial velocity profiles of the isothermal swirl burner at different heights. ( )
compressible, ( ) incompressible, ( ) experiment.
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Figure 12: Radial RMS velocity profiles of the isothermal swirl burner at different heights. ( )
compressible, ( ) incompressible, ( ) experiment.
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Figure 13: Average tangential velocity profiles of the isothermal swirl burner at different heights. ( )
compressible, ( ) incompressible, ( ) experiment.
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Figure 14: Tangential RMS velocity profiles of the isothermal swirl burner at different heights. ( )
compressible, ( ) incompressible, ( ) experiment.
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4. Summary and Conclusion

In applying earlier variants of the characteristic splitting [31, 39, 40] several issues
concerning accuracy and stability were encountered. First, problems in species conserva-
tion have been observed resulting from the segregated solution approach in the advective
subsystem. Second, stability problems were encountered for large time step sizes. Third,
the NSCBC strategies for the characteristic splitting [39] revealed some issues. Here we
propose several improvements to the method addressing these issues:

• The stability of the overall scheme has been considerably improved by modifying the
discrete approximation of the pressure gradient in the acoustic subsystem. This
results in a different formulation of the pressure correction equation and allows
higher overall time steps improving the overall efficency.

• A coupled scheme for the advective system is introduced. This coupled scheme
is solved iteratively thus increasing the accuracy for simulations involving multi-
species flows. For this iterative solution approach a Newton Raphson method is
outlined.

• A correct treatment of the NSCBCs is demonstrated and tested for the ICS-method
on the basis of newly derived analytic reference solutions. Using the derived ana-
lytic solutions it is also demonstrated that the L2 amplitude variation needs to be
handled with care. The presented treatment can be applied readily to other solution
algorithms operating on unstructured grids with a collocated variable arrangement.

In addition to these improvements the method is simplified considerably for multi-species,
reacting flows through the introduction of total energy as energy variable. The modifi-
cations to the characteristic splitting introduced by this change of variable are outlined.
Summarizing, the improved splitting scheme with increased stability and (to our knowl-
edge) new approach for including NSCBCs presents a promising method for solving the
compressible balance equations for multi-species, reacting flows on unstructured meshes
at low Mach numbers.
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