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Asymptotic spectra of large (grid) graphs with a uniform local

structure (part II): numerical applications
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Abstract

In the current work we are concerned with sequences of graphs having a grid geometry, with a
uniform local structure in a bounded domain Ω ⊂ Rd, d ≥ 1. When Ω = [0, 1], such graphs include
the standard Toeplitz graphs and, for Ω = [0, 1]d, the considered class includes d-level Toeplitz
graphs. In the general case, the underlying sequence of adjacency matrices has a canonical eigenvalue
distribution, in the Weyl sense, and it has been shown in the theoretical part of this work that we
can associate to it a symbol f. The knowledge of the symbol and of its basic analytical features
provides key information on the eigenvalue structure in terms of localization, spectral gap, clustering,
and global distribution. In the present paper, many different applications are discussed and various
numerical examples are presented in order to underline the practical use of the developed theory. Tests
and applications are mainly obtained from the approximation of differential operators via numerical
schemes such as Finite Differences (FDs), Finite Elements (FEs), and Isogeometric Analysis (IgA).
Moreover, we show that more applications can be taken into account, since the results presented here
can be applied as well to study the spectral properties of adjacency matrices and Laplacian operators
of general large graphs and networks, whenever the involved matrices enjoy a uniform local structure.
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1 Introduction

In [1] a large class of (sequences of) graphs has been defined, according to the following structural
properties:
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a) when we look at them from “far away”, they should reconstruct approximately a given domain Ω ⊂
[0, 1]d, d ≥ 1, i.e., the larger is the number of the nodes the more accurate is the reconstruction of
Ω;

b) when we look at them “locally”, that is from a generic internal node, we want that the structure is
uniform, i.e., we should be unable to understand where we are in the graphs, except possibly when
the considered node is close enough to the boundaries of Ω.

In particular, the domain Ω and the internal structure of the graphs in the sequence are fixed, in-
dependently of the index (or multi-index) of the graph uniquely related to the cardinality of nodes: it
follows that the resulting sequence of graphs has a grid geometry, with a uniform local structure, in a
bounded domain Ω ⊂ Rd, d ≥ 1. The domain Ω is assumed to be Lebesgue measurable with regular
boundary, that is a boundary ∂Ω of zero Lebesgue measure, and it is supposed to be contained in the
hypercube [0, 1]d. Such a domain is called regular. When Ω = [0, 1], it has been proven in [1] that such
graphs include the standard Toeplitz graphs (see [33]) and for Ω = [0, 1]d the considered class includes
d-level Toeplitz graphs.

Moreover, given a sequence of graphs having a grid geometry with a uniform local structure in a
domain Ω, the underlying sequence of adjacency matrices shows a canonical eigenvalue distribution, in
the Weyl sense (see [11, 32] and references therein), and it is possible to associate to it a symbol function
f. More precisely, when f is smooth enough, if N denotes the size of the adjacency matrix (i.e. the number
of nodes of the graph), then the eigenvalues of the adjacency matrix are approximately values of a uniform
sampling of f in its definition domain, which depends on Ω (see Definition 2.5 for the formal definition of
eigenvalue distribution in the Weyl sense; the results in Section 5 of [1] for the precise characterization
of f and of its definition domain; and [4] for the definition of its monotone rearrangement).

The knowledge of the symbol and of some of its basic analytical features provides a lot of information
on the eigenvalue structure, of localization, spectral gap, clustering, and distribution type.

The mathematical tools are mainly taken from the field of Toeplitz structures (see [11] and [32, 46, 47])
and of Generalized Locally Toeplitz (GLT) matrix-sequences (see [41, 42, 45]): for a recent account on the
GLT theory and for several useful applications in the approximation of partial differential and fractional
differential operators see [7, 9, 22, 27, 28, 29, 5, 6, 31] and references therein.

Since in this paper we are interested in numerical applications of the theory developed in [1], we first
show that many numerical schemes (see e.g. [13, 14, 44]) for approximating partial differential equations
(PDEs) and operators lead to sequences of structured matrices, which can be written as linear combination
of adjacency matrices, associated with sequences of graphs showing a uniform local structure. More
specifically, if the physical domain of the differential operator is [0, 1]d (or any d-dimensional rectangle) and
the coefficients are constant, then we encounter d-level (weighted) Toeplitz graphs, when approximating
the underlying PDE by using e.g. equispaced Finite Differences (FDs) or uniform Isogeometric Analysis
(IgA). On the other hand, under the same assumptions on the underlying operator, quadrangular and
triangular Finite Elements (FEs) lead to block d-level Toeplitz structures, where the size of the blocks
is related to the degree of the polynomial space of approximation and to the dimensionality d (see [30]).
Finally, in more generality, the GLT case is encountered by using any of the above numerical techniques,
also with non-equispaced nodes/triangulations, when dealing either with a general domain Ω or when the
coefficients of the differential operator are not constant. The given classification of approximated PDE
matrix-sequences is relevant also because the obtained spectral information can be used for guiding the
design of proper iterative solvers (in terms either of preconditioners or of ad hoc multigrid methods) for
the underlying linear systems with large matrix size. In this direction, we provide a series of numerical
examples where the knowledge of the symbol allows to obtain preconditioners for the conjugate gradient
method, which significantly improve the computational cost for solving the involved large linear systems,
and guides the choice of optimal projectors for two-grid and multigrid methods.

The paper is organized as follows. In Section 2 we will first review some basic definitions and notation
from graph theory, from the field of Toeplitz and d-level Toeplitz graphs, and we then provide the
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definitions of canonical spectral distribution, graph Laplacian etc. We also briefly discuss some properties
and tools useful in the study of multigrid methods. Section 3 will constitute the main core of our
work. Here, a number of numerical applications are studied, highlighting the importance of the subject
introduced in [1] both for the discretization of PDEs and the study of elliptic problems in the discrete
settings of weighted graphs. In particular, we numerically prove the relevance of the derived spectral
information for building fast iterative solvers and we present various numerical examples to confirm the
validity of our derivations. Finally, in Section 4 we draw conclusions and discuss possible directions of
research.

2 Background, notation and classes of locally uniform graphs

In this section we recall some basics on graph theory (see, for example, the very recent [36] for a modern
exposition) and introduce definitions, notation and several families of graphs with uniform local struc-
ture, which will be of interest for our numerical applications. Before doing so, we briefly introduce a
multi-index notation that will be used hereafter.

For a fixed integer d ≥ 1, a d-index k is a vector k = (k1, ..., kd) ∈ Zd. Given two d-indices i =
(i1, ..., id) and j = (j1, ..., jd), we write i ⊳ j if ir < jr for the first r = 1, 2, . . . , d such that ir 6= jr and
we write i < j if ir < jr is satisfied for every r = 1, . . . , d. The relations E,⊲,D and ≤, >,≥ are defined
accordingly.

We use bold letters for vectors and vector/matrix-valued functions. The notation 0,1,2, . . . is used
for the d-dimensional constant vectors (0, 0, . . . , 0), (1, 1, . . . , 1), (2, 2, . . . , 2) , . . ., respectively. We intend
every operation on vectors in Zd computed element-wise, so that, for example, the notation i

n
is used for

the vector i
n

=
(

i1
n1
, . . . , id

nd

)

and |i| is used for the vector |i| = (|i1|, . . . , |id|). Finally, given a d-index

n, we write n → ∞ if and only if minr=1,...,d{nr} → ∞.

2.1 Graphs: basics, notation and d-level diamond Toeplitz graphs

We start this subsection by recalling some notation and basic information about graphs and subgraphs.
After this, we introduce the main structures of graphs which will be of interest for numerical application,
namely Toeplitz graphs, d-level Toeplitz graphs and d-level diamond Toeplitz graphs (see [1]).

A (possily infinite) graph is a quadruple G = (V,E,w, κ), where

• V = {v1, v2, . . . , vn, ...} denotes a countable set of nodes, or vertices;

• E = {(vi, vj)| vi, vj ∈ V, ∃ an edge from vi to vj} is the set of edges between nodes;

• w : V × V → R is the weight function and, given two nodes vi and vj , we have w(vi, vj) 6= 0 if and
only if there exists an edge from vi to vj ;

• a potential term κ : V → R.

We use the notation G = (V,E,w) whenever the potential term κ vanishes. The non-zero values of the
weight function w are called weights associated with the edge (vi, vj). A walk of length k in G is a set
of nodes vi0 , vi1 , . . . , vik−1

, vik such that, for all 1 ≤ r ≤ k, (vir−1
, vir ) ∈ E. In this paper we work with

undirected and connected graphs, i.e. graphs for which the function w is symmetric (w(vi, vj) = w(vj , vi)
for every vi, vj ∈ V ) and such that for every couple of vertices vi, vj ∈ V there exists a walk from vi to
vj . If w(vi, vj) 6= 0 we write vi ∼ vj and we say that vi and vj are neighbors. Finally, the degree of a
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node vi of an undirected graph, denoted by deg(vi), is defined as

deg(vi) :=
∑

vj∼vi

w(vi, vj).

We are now ready to introduce the main structures of graphs we are interested in for our numerical
applications. We follow the same notation and the same increasing level of complexity proposed in [1],
hence starting with the definition of Toeplitz graphs.

Definition 2.1 (Toeplitz graph). Let n,m, t1, . . . , tm be positive integers such that 0 < t1 < t2 < . . . <
tm < n, and fix m nonzero real numbers wt1 , . . . , wtm . A Toeplitz graph of cardinality n is the graph
Tn〈(t1, wt1), . . . , (tm, wtm)〉 = (Vn, En, w) such that Vn = {v1, . . . , vn} and the weight function w satisfies

w(vi, vj) =

{

wtk if |i− j| = tk,

0 otherwise.

Note that, by construction, the adjacency matrix of a Toeplitz graph, that is the matrix Wn =
(w(vi, vj))

n
i,j=1 = (w|i−j|)

n
i,j=1, is a symmetric Toeplitz matrix. Trivially, there exists a 1-1 correspon-

dence between Toeplitz graphs and (symmetric) Toeplitz matrices.

A generalization of Toeplitz graphs is represented by d-level Toeplitz graphs. In order to introduce
them, we first need to recall the concept of directions associated with a d-index.

Given a d-index tk = ((tk)1, . . . , (tk)d) such that 0 E tk and tk 6= 0, the set

[tk] :=
Ik
/

∼, where i ∼ j iff i = ±j,

where
Ik :=

{

i ∈ Zd | i = (±(tk)1, . . . ,±(tk)d)
}

,

is called the set of directions associated with tk. For α = 1, . . . , |[tk]|, the elements [tk]α ∈ [tk] are called
directions and clearly |[tk]α| = 2. The element in [tk]α whose first nonzero component is positive is
denoted by [tk]

+
α and the other one is denoted by [tk]

−
α .

Definition 2.2 (d-level Toeplitz graph). Let n, t1, . . . , tm be d-indices such that 0 < n, 0 ⊳ t1 ⊳ t2 ⊳ . . . ⊳
tm ⊳n− 1, and let w1, . . . ,wm be m nonzero real vectors such that wk ∈ Rck , with ck = |[tk]|, for every
k = 1, . . . ,m. The components of the vectors wk are denoted as follows:

wk =
(

w[tk]1 , w[tk]2 , . . . , w[tk]ck

)

.

A d-level Toeplitz graph Tn〈{[t1],w1}, . . . , {[tm],wm}〉 is an undirected graph with node set given by
Vn = {vk |1 E k E n} and whose weight function ω satisfies

w(vi, vj) =











w[tk]α if |i− j| = tk and (i − j) ∈ [tk]α = {[tk]+α , [tk]−α }
for some α = 1, . . . , ck;

0 otherwise.

(1)

When every node of a d-level Toeplitz graph is replaced by a fixed, undirected graph of dimension
ν, which we call diamond, the graph assumes a block structure. To properly define this concept, recall
that a linking graph operator for the reference node set [ν] := {1, . . . , ν} is any non-zero Rν×ν matrix, or,
equivalently, the adjacency matrix of a (possibly not undirected) graph. We can then give the following
definition.
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Definition 2.3 (d-level diamond Toeplitz graph). Let d,m, ν be fixed integers and let G ≃ ([ν], E, w) be
a fixed undirected graph which we call mold graph.

Let n, t1, . . . , tm be d-indices such that 0 < n, and 0 ⊳ t1 ⊳ t2 ⊳ . . . ⊳ tm ⊳n− 1. For k = 1, . . . ,m, let
Lk be a collection of linking graph operators for the reference set [ν] such that |Lk| = ck, with ck = |[tk]|
for every k = 1, . . . ,m. We indicate the elements of the set Lk by the following index notation,

Lk =
{

L[tk]1 , L[tk]2 , . . . , L[tk]ck

}

,

Rν×ν ∋ L[tk]α =
(

l[tk]α(r, s)
)ν

r,s=1
for α = 1, . . . , ck.

Finally, consider n copies G(k) ≃ G of the mold graph, which we call diamonds.
A d-level diamond Toeplitz graph, denoted by

TG
n,ν 〈{t1,L1} , . . . , {tm,Lm}〉 ,

is an undirected graph with nodes

Vn =
{

v(k,r) | (1, 1) E (k, r) E (n, ν)
}

and weight function wn : Vn × Vn → R satisfying

wn

(

v(i,r), v(j,s)
)

:=



















w(r, s) if i = j,

l[tk]α(r, s) if |i− j| = tk and (i− j) = [tk]
+
α ,

l[tk]α(s, r) if |i− j| = tk and (i− j) = [tk]
−
α ,

0 otherwise.

To end this section, we now introduce the main character of our numerical application, namely the
graph Laplacian. First, observe that we use the notation C(V ) to denote the set of real-valued functions
on V .

Definition 2.4 (graph Laplacian). Let G = (V,E,w, κ) be an undirected graph with no self-loops (i.e.
w(vi, vi) = 0 for every vi ∈ V ). The graph Laplacian is the symmetric matrix ∆G : C(V ) → C(V )
defined as

∆G := D +K −W,

where D is the degree matrix, K is the potential term matrix, that is,

D := diag {deg(v1), . . . , deg(vn)} , K := diag {κ(v1), . . . , κ(vn)} ,

and W is the adjacency matrix of the graph G, that is,

W =













0 w(v1, v2) · · · w(v1, vn)

w(v1, v2) 0
. . .

...
...

. . .
. . . w(vn−1, vn)

w(v1, vn) · · · w(vn−1, vn) 0













.

Therefore, ∆G appears as follows:

∆G =













deg(v1) + κ(v1) −w(v1, v2) · · · −w(v1, vn)

−w(v1, v2) deg(v2) + κ(v2)
. . .

...
...

. . .
. . . −w(vn−1, vn)

−w(v1, vn) · · · −w(vn−1, vn) deg(vn) + κ(vn)













.
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2.2 Matrix-norms and partial ordering of Hermitian matrices

In this brief subsection, we introduce some notation for matrix-norms which will be employed in the
following sections and we define the partial ordering on the subset of Cn×n formed by Hermitian matrices.
First, given a norm ‖ · ‖ on Cn, it is always possible to consider the induced norm, which will be still
denoted by ‖ · ‖, on the space Cn×n defined as follows:

‖A‖ = sup {‖Ax‖, x ∈ Cn with ‖x‖ = 1} = sup
x 6=0

‖Ax‖
‖x‖ .

In our work we will be mainly interested in the case where the considered norm on Cn is the p-norm, for
some p ∈ [1,∞], which we denote by ‖ · ‖p, if p 6= 2, and by ‖ · ‖, if p = 2. In this last particular case the
norm is also known as spectral norm and the following equality holds

‖A‖ = σmax(A),

where σmax(A) is the largest singular value of A.
We denote the Frobenius norm of a matrix A = (ai,j)

n
i,j=1 by

‖A‖F =

√

√

√

√

n
∑

i=1

n
∑

j=1

|ai,j |2.

Let now A be a Hermitian Positive Definite (HPD) matrix. This assumption will be crucial in what
follows, especially in Section 3, for the definition of our iterative methods. In fact, in this special case, it
is possible to define an inner product on Cn as

〈u, v〉A = uTAv,

which induces the following norm on Cn

‖u‖A =
√

〈u, u〉A =
√
uTAu.

To conclude this subsection, we define the following partial ordering on the subset of Cn×n of Hermitian
matrices. Given two Hermitian matrices A and B we say that A ≥ B (respectively, A > B) if A − B is
Hermitian Positive Semidefinite (HPSD) (respectively, A−B is HPD).

2.3 Spectral symbol and generating function of d-level diamond Toeplitz

graphs

A matrix-valued function f : D → Cν×ν , ν ≥ 1, defined on a measurable set D ⊆ Rm, m ∈ N, is
measurable (resp. continuous, in Lp(D)) if its components fi,j : D → C, i, j = 1, . . . , ν, are measurable
(resp. continuous, in Lp(D)). Let µm be the Lebesgue measure on Rm and let Cc(R) be the set of
continuous functions with bounded support defined over R. We use the notation {Xn,ν} to denote a
sequence of matrices of increasing dimension dn, i.e. such that dn → ∞ as n → ∞, ν being a fixed
parameter independent of n.

We say that {Xn,ν}n is zero-distributed if

lim
n→∞

1

dn

dn
∑

k=1

F (σk(Xn,ν)) = F (0) ∀F ∈ Cc(R), (2)

and we indicate it by {Xn,ν}n ∼σ 0, where σ1(Xn,ν), . . . , σdn
(Xn,ν) are the singular value of Xn,ν , sorted

in non-decreasing order.
Of great importance for our numerical applications is the knowledge of the spectral symbol of a

sequence of matrices, which we now recall.
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Definition 2.5 (Spectral symbol). Let {Xn,ν}n be a sequence of matrices and let f : D → Cν×ν be a
measurable Hermitian matrix-valued function defined on the measurable set D ⊂ Rm, with 0 < µm(D) <
∞.

We say that {Xn,ν}n is distributed like f in the sense of eigenvalues, in symbols {Xn,ν}n ∼λ f, if

lim
n→∞

1

dn

dn
∑

k=1

F (λk(Xn,ν)) =
1

µm(D)

∫

D

ν
∑

k=1

F (λk(f(y))) dµm(y), ∀F ∈ Cc(R), (3)

where λ1(f(y)), . . . , λν(f(y)) are the eigenvalues of f(y) and λ1(Xn,ν), . . . , λdn
(Xn,ν) are the eigenvalues

of {Xn,ν}, sorted in non-decreasing order.

It is easy to show that (see [1, Proposition 4.4]), given a d-level diamond Toeplitz graph
TG
n,ν 〈{t1,L1} , . . . , {tm,Lm}〉, there exists a function f : [−π, π]d → Cν×ν , called the generating function,

such that the adjacency matrix WG
n,ν of the graph satisfies

(WG
n,ν)i,j = f̂ i−j

and, therefore (see [46]), {WG
n,ν} ∼λ f ≡ f , whenever f ∈ L1([−π, π]d).

2.4 Multigrid Methods for Structured Matrices

In the current subsection we summarize the key results on symbol-based multigrid methods for Toeplitz
structures. Throughout the subsection, we consider the case of an invertible matrix An ∈ Cdn×dn and a
vector b ∈ Cdn .

Multigrid methods (MGM) are iterative procedures for large linear systems that create a proper
sequence of linear systems of decreasing dimensions obtained by consecutive projections. First, we focus
on a general coefficient matrix An ∈ Cdn×dn , then we treat in detail the results related to Toeplitz
matrices Tn(f).

Given xn, bn ∈ Cdn , consider a full-rank matrix Pn,k ∈ Cdn×k, k < dn, and let us consider two
stationary iterative methods: the method Vn,pre, with iteration matrix Vn,pre, and Vn,post, with iteration
matrix Vn,post.

Given an initial guess x
(0)
n ∈ Cdn , an iteration of a two-grid method (TGM) is given by the following

steps:

x
(k+1)
n = T GM(An, x

(j)
n , bn)

0. xpre
n = Vνpre

n,pre(An, bn, x
(j)
n ) Pre-smoothing iterations

1. rn = bn −Anx
pre
n

2. rk = PH
n,krn

3. Ak = PH
n,kAnPn,k

4. Solve Akyk = rk
5. x̂n = xpre

n + Pn,kyk

Coarse Grid Correction (CGC)

6. x
(j+1)
n = Vνpost

n,post(An, bn, x̂n) Post-smoothing iterations

7



The Coarse Grid Correction (CGC) depends on the grid transfer operator Pn,k, while step 0. and
step 6. consist, respectively, in applying νpre times a pre-smoother and νpost times a post-smoother of the
given iterative methods.

We base the convergence analysis on the Ruge-Stüben theory [38] for TGM. In particular, we mention
the results in [2, Remark 2.2] and [38, Theorem 5.2], which provide two separate conditions that must be
fulfilled in order to have TGM convergence, namely the “smoothing property” and the “approximation
property”. We highlight that, if such conditions are satisfied, then the resulting TGM is not only
convergent but has also an optimal convergence rate.

The standard V-cycle method is obtained by replacing the direct solution at step 4. with a recursive
call of the TGM applied to the coarser linear system Akℓ

ykℓ
= rkℓ

, where ℓ represents the level. The
recursion is usually stopped at level ℓ when kℓ becomes small enough for solving cheaply step 4. with a
direct solver.

In the case where An = Tn(f), an efficient choice of grid transfer operator is given by Pn,k obtained as
the product between a Toeplitz matrix Tn(p), with p trigonometric polynomial, and the cutting matrix
Kn. That is,

Pn,k = Tn(p)Kn, (4)

where, if the size n of the coefficient matrix is divisible by a factor g ≥ 2, the lower level dimension is
reduced to k = n/g by the cutting matrix

Kn = [δi−gj ]i,j , i = 0, . . . , n− 1; j = 0, . . . , k − 1, δℓ =

{

1 if ℓ ≡ 0 (modn),

0 otherwise
. (5)

The validation of the approximation property depends on the choice of the generating function p,
which has to fulfill specific conditions depending on the zeros of f .

In the case where f is a d-variate function, i.e. Tn(f) is a d-level matrix, we construct Kn as the
tensor product of the cutting matrices Kn1

, Kn2
, . . . , Knd

.
In what follows we provide, in the d-level setting, conditions on p in order to obtain a projector which

is effective in terms of convergence. For the generalization to the case where f is a ν × ν matrix-valued
generating function see [21].

Theorem 2.1 ([2, 23, 26]). Consider a Toeplitz matrix Tn(f) generated by a non-negative trigonometric
polynomial f . Suppose that f(θ) vanishes at exactly one point θ0. Then, the optimality of the two-grid
method applied to Tn(f) is guaranteed if we choose a projection operator of the form (4) associated with
a generating function p such that

lim sup
θ→θ0

|p(η)|2
f(θ)

< ∞, η ∈ Mg(θ),

∑

η∈Ω(θ)

p2(η) > 0,

where

Ωg(θ) =

{

η

∣

∣

∣

∣

ηj ∈
{

θj +
2πk

g
(mod 2π)

}

, k = 0, . . . , g− 1, j = 1, . . . , d

}

and Mg(θ) = Ωg(θ) \ {θ} are the sets of corner and mirror points respectively.

For achieving the optimality of the V-cycle method, the first condition needs to be strengthened, see
[2] for details. Moreover, it was proven in [23] that the coarsening factor g needs to be strictly greater
than 2 for an overall optimal method, otherwise each multigrid iteration would require a computational
cost greater than the cost of the matrix vector product. Finally, we highlight that a coarsening factor
greater than 2 permits to construct less coarser levels before solving the error equation exactly. This
implies that the critical issues (i.e. low rank corrections, increase of the condition number), that could
worsen level after level, are propagated a smaller number of times.
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3 Numerical examples

In this section we provide numerical examples which emphasize the computational help of the theory de-
veloped in [1] for studying many different kinds of discretization of PDEs as well as for studying elliptic
problems in the very general setting of weighted graphs. Using the spectral features of the considered
graphs and in particular the analytical properties of the underlying symbol, we can define appropri-
ate preconditioners for the preconditioned conjugate gradient (PCG) (see [39] for some general theory
on preconditioned Krylov methods) and appropriate projectors for the multigrid method (MGM) (see
[37]), with the aim of making such methods optimal. For the optimality of MGM for unilevel Toeplitz
structures corresponding to approximated differential equations in one dimension see [26]; for multi-level
Toeplitz and non-Toeplitz structures corresponding to approximated PDEs in dimension greater than one
see [2, 40]. Furthermore, we show that without the proposed preconditioning suggested in the present
work, the convergence to the solution of the problem can be very slow, due to the bad conditioning of
the discrete problems under consideration.

First, we show some numerical experiments which exploit the complete power of the graph structures
recalled in Section 2 and the related spectral properties developed in [1]. At this purpose, we first perform
tests in which graphs are used as a discretization of the geometry of a sub-domain of [0, 1]d, d ≥ 1. Then,
we move into a complete graph setting, where the considered graph structure can represent a model for
various type of networks and real-world interactions. For the sake of completeness with respect to the first
part of the present work, we also perform numerical tests concerning examples in [1, Subsections 7.2 and
7.3], which have been already investigated in the relevant literature (see, for example, [15, 17, 18, 19, 20]).

Before proceeding, we recall some notation concerning (proper) subgraphs and the concept of immer-
sion of a d-level Toeplitz graph in a subdomain of [0, 1]d.

Given a graph Ḡ = (V̄ , Ē, w̄, κ̄) and a (proper) subset V ⊂ V̄ , we say that G = (V,E,w, κ) is a
(proper) subgraph of Ḡ, and we write G ⊂ Ḡ if

• V ⊂ V̄ ;

• E = {(vi, vj) ∈ Ē | vi, vj ∈ V } ⊂ Ē;

• w = w̄|E ;

• κ = κ̄|V̊ ,

where the set of nodes
V̊ :=

{

vi ∈ V | vi ≁ v̄j ∀ v̄j ∈ V̄ \ V
}

is called interior of V and its element are called interior nodes.
Finally, given a subgraph G = (V,E,w, κ) of Ḡ = (V̄ , Ē, w̄, κ̄), we can define the boundary of V as

∂V :=
{

vi ∈ V | vi ∼ v̄j for some v̄j ∈ V̄ \ V
}

,

whose elements are called boundary nodes. Note that we do not request that κ = κ̄ on ∂V .

For the concept of immersion, consider a d-level Toeplitz graph Tn〈{[t1],w1}, . . . , {[tm],wm}〉 with
weight function w and a continuous almost everywhere function p : [0, 1]d → R. We then consider the
immersion map ι : Vn → (0, 1)d such that

ι(vj) := j ◦ h = (j1h1, . . . , jdhd) ,

9



where ◦ denotes the Hadamard (component-wise) product and h is the d-dimensional vector

h := (h1, . . . , hd) =

(

1

n1 + 1
, . . . ,

1

nd + 1

)

.

The map ι induces a grid graph G = (V ′
n, E

′
n, w

p) in [0, 1]d, where

V ′
n := {xk = ι(vk) |1 E k E n} , E′

n := {(xi,xj) |wp(xi,xj) 6= 0} ,

wp(xi,xj) := p

(

xi + xj

2

)

w(vi, vj).

To extend this concept to any subdomain Ω of [0, 1]d we simply restrict the set of nodes V ′
n to

V Ω
n′ := V ′

n ∩Ω

and consequently modify the weight function wp to

wΩ,p := wp

|V Ω
n′

×V Ω
n′

.

It is clearly possible to further extend the same idea to the case of d-level diamond Toeplitz graphs.
In this case, however, the choice of the immersion map ι is not as natural as in the previous case and
different choices of the immersion map ι would be able to describe different grid geometries.

3.1 Toeplitz graph with Fourier coefficients immersed in the triangle

In this first numerical example our starting model operator is the classic (semi-positive definite) Laplacian
on a triangular domain with Dirichlet or Neumann boundary conditions (BCs), that is

L : dom(L) ⊂ L2 (D) → L2 (D) , (6)

Lu(x, y) := −
(

∂2
xxu(x, y) + ∂2

yyu(x, y)
)

(x, y) ∈ D, (7)

where D is an equilateral triangle contained in [0, 1]2. As usual, L2 (D) is the space of squares integrable
functions and dom(L) is an appropriate (Sobolev) subspace of L2 (D) such that the formal equation (7)
is well-defined and the BCs are satisfied. For example, in the case of Dirichlet BCs, dom(L) = C∞

c (D) is
the closure of the space of smooth and compactly supported functions in D with respect to the Sobolev
norm. For this numerical test we do not apply a standard discretization scheme.

The idea is to build a full graph-based discretization scheme looking at the operator itself rather than
at the specific numerical approximation method, by using the Fourier coefficients of h(θ) = θ2 defined
on [0, π]. This is due to the fact that, as it was observed in [7, Corollary C.1], when discretizing the
one-dimensional Laplace operator, the sequence of spectral symbols associated to the uniform FD scheme
with (2η + 1)-points converges uniformly to h as η → ∞. This phenomenon is not restrained to the
FD discretization scheme, but it appears in the IgA framework ([24, Theorem 1, Theorem 2 and Lemma
1]) and in the Sinc collocation method as well ([35]), once the class of regularity of the approximating
functions is progressively refined. Let us observe that h is exactly the (inverse and normalized) asymptotic
distribution function, in the Weyl sense, of the one-dimensional Laplace operator on the unit interval. In
some sense, all those methods become “indistinguishable” in the limit of their regularity parameters, from
a spectral point of view, since their sequences of spectral symbols converge to the same function, that is,
the distribution function of the operator they are approximating, as one should expect. Therefore, our
approach is to exploit directly h as a weight function.

As a matter of facts, h(θ) = θ2 is the asymptotic distribution function of the one-dimensional Laplacian
while here we are considering the two-dimensional Laplacian. This is not an issue, since the space of

10



smooth functions of the form g(x, y) =
∑n

k=1 αkg1,k(x)g2,k(y) is dense in L2(D) (for a reference see [12],
for example). Therefore, the two-dimensional Laplacian can be approximated by “splitting” it into two
one-dimensional Laplacians that act separately along the two different axes.

The full graph-based discretization we implement here is then the following: first, fix n = (n, n) and
consider the infinite graph Ḡn given by

Ḡn =
(

T̄n 〈∪∞
k=1 {[k, 0], wk} ,∪∞

k=1 {[0, k], wk}〉
)

,

where T̄n 〈∪∞
k=1 {[k, 0], wk} ,∪∞

k=1 {[0, k], wk}〉 is a 2-level infinite Toeplitz graph characterized by the node
set

V̄n =

{

(xi, yj) =

(

i

n+ 1
,

j

n+ 1

)

: i, j ∈ Z

}

,

and the weight function

w((xi, yj), (xr, ys)) := wk = (−1)k
2

k2
if (|i − r|, |j − s|) ∈ {(k, 0), (0, k)}.

We highlight that (−1)k+1 2
k2 is the k-th term of the Fourier expansion of h(θ) = θ2 on [0, π]. Finally,

consider the subgraph Gn ⊂ Ḡn such that

Gn =
(

TD
n 〈∪n

k=1 {[k, 0], wk} ,∪n
k=1 {[0, k], wk}〉 , κ

)

,

and where the node set of TD
n is given by

Vn = V̄n ∩D.

The potential term κ determines the BCs. If κ = 0 then we call it the Neumann potential : this is related
to the fact that in Rd, the Neumann BCs that characterizes a second-order elliptic differential operator,
as (6)-(7), disappears when passing to the closure of its associated quadratic form, see [16, Theorem
7.2.1]. Instead, if

k((xi, yj)) =
∑

(xr,ys)∈V̄n\Vn

w((xi, yj), (xr, ys)),

then we call it Dirichlet potential. It takes into account the edge deficiency of each node in Gn when
seen as a node in the host graph Ḡn. The Dirichlet potential term arises naturally for example when
discretizing a differential operator with Dirichlet BCs by means of FD schemes, see [7, pp. 40–42]. For
more details about Dirichlet potentials we refer to [36, Section 2.2] and [10, Definition 2.1 and Lemma
A.1]. Look at Figure 1 for a visual representation of the graph.

In the end, we are going to solve the equation

∆Gn
un = bn, (8)

where ∆Gn
is the graph Laplacian associated to Gn. Let us observe that (n+ 1)2∆Gn

approximates L,
see Table 1 for a comparison of the spectra of the discrete and continuous operators.

Remark 3.1. Let us observe that here we allow negative values for the weight function w. This is
not uncommon, since in some applications it is natural to admit graphs with possible negative values
associated to their edges. Nevertheless, if we restrain w to be nonnegative then we can recover again
the same operator ∆Gn

as sum of path graph Laplacians ([25]). For such a construction we refer to [8,
Sections II and III].

We have the following preliminary result.
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Figure 1: Immersion of a 2-level grid graph inside the equilateral triangle D. The white nodes are the
nodes of Vn while the gray nodes belong to V̄n \Vn. The green connections represent the weighted edges
whose end-nodes are both interior nodes of Vn, while the red connections represent the weighted edges
which have at least one end-node that belongs to V̄n\Vn. For the seek of clarity, in the whole figure on the
left we explicitly draw with continuous lines only the edges of distance 1, while a complete representation
of the edges can be seen in the enlargement on the right.

⌊

k(n)
dn

⌋

n = 16 n = 32 n = 64

0.1 0.0350 0.0429 0.0153
0.5 0.1177 0.0711 0.0200
0.8 0.1493 0.0821 0.0196

⌊

k(n)
dn

⌋

n = 16 n = 32 n = 64

0.1 0.0536 0.0277 0.0153
0.5 0.0529 0.0297 0.0200
0.8 0.0819 0.0334 0.0196

Table 1: Relative errors between the eigenvalue λ
(n)
k(n) and the corresponding evaluation of the continuous

Laplacian eigenvalue on the equilateral triangle, with Neumann (left) and Dirichlet (right) BCs. The
index k(n) is chosen such that k(n)/dn is constant for every fixed n = (n, n) with n = 16, 32, 64.
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Proposition 3.1. Given the sequence of graph Laplacians {∆Gn
} defined above, it holds that

{∆Gn
} ∼λ f(θ1, θ2) = θ21 + θ22 , (θ1, θ2) ∈ [0, π]2.

Proof. To ease the notation of the proof, we write vr = (xi, yj) and sort them by lexicographic ordering.
Let us consider the graph

Fn =
(

TQ
n 〈∪n

k=1 {[k, 0], wk} ,∪n
k=1 {[0, k], wk}〉 , κ

)

, Q = [0, 1]2,

where the node set of TD
n is given by

V Q
n = V̄n ∩Q.

Clearly, it holds that Gn ⊂ Fn ⊂ Ḡn. Consider now the graph Laplacian associated to Fn with the
Dirichlet potential. We have that ∆Fn

∈ Rn2×n2

and, by Definition 2.4, each element of the main
diagonal is of the form

(∆Fn
)i,i = deg(vr) + k(vr)

=
∑

vs∼vr
vs∈V Q

n

w(vr , vs) +
∑

vs∼vr
vs∈V̄n\V Q

n

w(vr , vs)

=
∑

vs∼vr
vs∈V̄n

w(vr , vs)

= 2
∑

k∈Z

(−1)k
2

k2

=
2π2

3
.

Noticing that
{

2π2

3

}

∪
{(

(−1)k 2
k2 , (−1)j 2

j2

)}

(k,j)∈Z×Z\(0,0)
are the Fourier coefficients of f(θ1, θ2) =

θ21 + θ22 on [0, π]2, and that ∆Fn
is a 2-level Toeplitz matrix whose diagonals of each diagonal blocks are

given exactly by the Fourier coefficients of f, that is, (∆Fn
)i,j :=

(

f̂i−j

)n

i,j=1

, then by standard theory it

follows easily that
{∆Fn

} ∼λ f.

Consider now the sequence of matrices {In(χD)}n such that

In(χD) := diag

(

χD

(

i

n+ 1

))

i=1,...,n

.

It is known (see for example [3, Lemma 2.3]) that

{In(χD)}n ∼λ χD.

Moreover, it is not difficult to see that the sequence {In}n belongs to the wide family of GLT sequences
with symbol χD. Using the property of ∗-algebra of the GLT sequences (see [29, GLT properties, pg.
118-119]) it is immediate to conclude that the sequence {In(χD)∆Fn

In(χD)} satisfies

{In(χD)∆Fn
In(χD)} ∼λ fχD.

Now, ∆Gn
is a principal sub-matrix of ∆Fn

(and of In(χD)∆Fn
In(χD)) for every n; therefore, in light

of [3, Lemma 3.4], we can conclude that
{∆Gn

} ∼λ f|D.

13



For the case κ = 0 the only difference is that now the main diagonal is no longer constant. Nevertheless,
the main diagonal differs from that of ∆Fn

of a term of small norm and this, therefore, does not affect
the resulting symbol function. Proceeding as above we have our conclusion.

Let us now investigate the convergence rate of the discrete solution un to the continuous solution u.
In the following we consider the Dirichlet BCs case, but an analogous study can be done for Neumann
BCs. For this purpose, we consider the function u given by the formula

u(x, y) = y(y −
√
3x)(y +

√
3x−

√
3)

which vanishes on the boundary of the triangleD and satisfies the equation L[u](x, y) = 2
√
3. We compute

the evaluations u(xi, yj) for all (xi, yj) ∈ Vn and we sort them into the vector u∗
n in lexicographic ordering.

Then, we solve the linear system (8) with right-hand side bn equal to the vector of all 2
√
3. In Table 2

and Figure 2 we report the relative error of the discrete solution un with respect to evaluations in u∗
n

and we see that it decreases proportionally to the partial dimension n.

n dn
‖un−u∗

n
‖

‖u∗

n
‖

6 18 0.3157
14 90 0.1131
30 400 0.0638
62 1686 0.0287
126 6920 0.0146
254 28028 0.0071

Table 2: The relative error of the approximation vec-
tor un, solution of (8), with respect to the vector of
evaluations u∗

n of the exact solution increasing n in
the Dirichlet BCs case.

101 102

10-2

10-1

||u
n
-u*

n
||/||u*

n
||

1/n

Figure 2: The log-log scale plot of the 2-norm
relative error increasing n.

In the following, we propose a multigrid strategy to solve the linear system (8) based on the spectral
distribution provided by Proposition 3.1, taking for simplicity Gauss-Seidel both as a pre-smoother and
post-smoother.

Assume that the partial dimension is of the form n = 2t, t ∈ N. The graph Laplacian ∆Gn
has size dn

such that dn < n2. Since the spectral symbol f(θ1, θ2) = θ21 + θ22 has a zero of order 2 in (0, 0), according
to Theorem 2.1 we choose the trigonometric polynomial q(θ) = 4 + 6 cos(θ) + 4 cos(2θ) + 2 cos(3θ) to
construct the grid transfer operator

Pn,k = Tn ((q(θ1))(q(θ2)))Kn

with k =
(

n
g
, n
g

)

, where g represents the coarsening factor. Then, we eliminate from the matrix Pn,k the

rows i = (i1, i2) such that (xi1 , yi2) does not belong to Vn and eliminate the columns j = (j1, j2) such
that (xj1 , yj2) does not belong to Vk.

In Table 3 we numerically show the validity of our proposed methods, reporting the number of
iterations needed for achieving the tolerance ε = 10−6 when increasing the matrix size. In the first and
second columns, we show the results relative to the two-grid and V-cycle methods for g = 2, while in the
third and fourth columns we consider a more aggressive coarsening with g = 4. For g = 2, we see that
the number of iterations needed for convergence remains almost constant, when increasing the size dn.
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The method with g = 4 has a worse convergence rate, but it can be convenient when considering greater
matix-sizes from the computational complexity point of view, as explained in Subsection 2.4.

t dn Two-grid (g = 2) V-cycle (g = 2) Two-grid (g = 4) V-cycle (g = 4)

3 30 9 9 25 25
4 116 10 10 27 27
5 454 10 11 33 33
6 1796 10 11 36 37
7 6920 11 12 38 40
8 28028 11 12 39 41

Table 3: Comparison of the number of iterations, varying t, for the two-grid and V-cycle methods applied
to the linear system in (8) in the Dirichlet BCs case.

In the Neumann BCs case, the matrix ∆Gn
is singular, since the the column vector e of all ones of

dimension dn is an eigenvector for ∆Gn
associated to the null eigenvalue. Then, we consider the matrix

An = ∆Gn
+ 1

dn

eeT and we solve the system Anyn = bn. We have

bn = Anyn = (∆Gn
+

1

dn
eeT )yn = ∆Gn

yn +
1

dn
e(eT yn) (9)

and the latter equality splits bn into the sum of a term in the range of ∆Gn
and a term in the null space

of ∆Gn
. Since the vector bn belongs to the range of ∆Gn

, then eeT yn is the vector of all zeros and yn is
the solution also of system (8).

Note that the matrix eeT is a circulant matrix, hence the addition does not worsen the matrix-vector
product computational cost. Since the matrix An is SPD, we can apply the PCG for solving the linear
system Anyn = bn. In Table 4, we compare the efficiency, in terms of iteration count increasing the
matrix-size, of two different preconditioning strategies. We see from the first iteration column that the
number of iterations needed by the CG method with no preconditioning for reaching the desired tolerance
ǫ = 10−6 increases significantly. The first preconditioning strategy that we use is inspired by circulant
preconditioning. Indeed, we construct the Strang circulant precondioner (plus a rank 1 correction) and
we remove the rows and columns that correspond to the nodes that do not belong to the considered
equilateral triangle. This procedure is far from giving an optimal convergence rate. The last strategy
that we try consists in applying an MGM as preconditioner. In particular, we choose a V-cycle method
with fixed tolerance 10−1 which uses Gauss-Seidel as pre-smoother and post-smoother and the standard
linear interpolation as grid transfer operator. The results are shown in the last column of Table 4, where
the number of iterations needed for the MGM-PCG to reach the tolerance ǫ = 10−6 is almost constant
as dn increases.

3.2 A multigrid method for a Toeplitz graph immersed in the disk

In this subsection we develop and study multigrid methods for the example in [1, Subsection 7.1]. For
the reader convenience, we briefly summarize hereafter the mentioned example.

We consider the operator L,

L : W 1,2
0

(

B1/2

)

→ L2
(

B1/2

)

, (10)

Lu(x, y) := −div [p(x, y)∇u(x, y)] + q(x, y)u(x, y) (x, y) ∈ B 1
2
, (11)
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t dn CG Circulant–PCG MGM–PCG

3 30 30 21 6
4 116 67 30 8
5 454 > 100 42 9
6 1796 > 100 60 9

Table 4: Comparison of the number of iterations, varying t, for the PGC method with no preconditioning,
a circulant preconditioner and the MGM preconditioner applied to the linear system Anyn = bn in the
Neumann BCs case.

where

B1/2 =

{

(x, y) ∈ R2 : 4

(

x− 1

2

)2

+ 4

(

y − 1

2

)2

< 1

}

,

and W 1,2
0

(

B1/2

)

is the closure of the space of smooth and compactly supported functions in the disk with
respect to the Sobolev norm. L is characterized by Dirichlet boundary conditions on the boundary of the
disk B1/2 ⊂ [0, 1]2. Fixing the diffusion term p(x, y) = 1+ (x− 1/2)2+(y− 1/2)2 and the potential term
q(x, y) = exy, the discretization is made by an equispaced two-dimensional central FD approximation
with 5-points. Fix n = (n, n). Then, the resulting graph Gn that approximates the underlying geometry
is given by

Gn =
(

T
B1/2
n 〈{[1, 0], wp} , {[0, 1], wp}〉 , κ

)

,

where T
B1/2
n 〈{[1, 0], wp} , {[0, 1], wp}〉 is a 2-level Toeplitz graph characterized by the node set

V
B1/2
n =

{

(xi, yj) ∈ [0, 1]2 : (xi, yj) ∈ B 1
2

}

, (xi, yj) =

(

i

n+ 1
,

j

n+ 1

)

for i, j = 1, . . . , n,

and the weight function

wp((xi, yj), (xr, ys)) := p

(

xi + xr

2
,
yj + ys

2

)

if (|i − r|, |j − s|) ∈ {(1, 0), (0, 1)}.

The potential term κ is the Dirichlet potential, as we already introduced it in the previous Subsection
3.1. In particular, Gn is a sub-graph of a graph Ḡn, of the same structure of Gn, but whose node set
V̄n is given by all the points (xi, yj) in [0, 1]2 and whose weight function w̄p is obtained by extending p
continuously outside the disk, fixing p(x, y) ≡ 5/2 for every (x, y) ∈ [0, 1]2 \B1/2. We have that

κ(xi, yj) =































κ0(xi, yj) = h2q(xi, yj) if (xi, yj) ∈ V̊
B1/2
n ,

κ1(xi, yj) = h2q(xi, yj) +
5
2 , if ∃! one neighbor

in V̄n \ V B1/2
n ,

κ2(xi, yj) = h2q(xi, yj) +
10
2 , if ∃! two neighbors

in V̄n \ V B1/2
n .

For all the details we refer to [1, Subsection 7.1]. See Figure 3.
The graph Laplacian ∆Gn

, associated to the graph Gn, approximates the normalized operator (n+
1)−2L. By [1, Corollary 5.3] it immediately follows that

{∆Gn
} ∼λ f(x, y, θ1, θ2), (x, y, θ1, θ2) ∈ B1/2 × [−π, π]2
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Figure 3: Immersion of a 2-level grid graph inside the disk B1/2 ⊂ [0, 1]2. The white nodes are the

nodes of V
B1/2
n while the gray nodes belong to V̄n \ V B1/2

n . The potential term of the host graph Ḡn is
determined only by the potential term q from (10) while the potential term κ of the sub-graph Gn is

influenced by the nodes in V̄n \ V B1/2
n on the boundary set ∂V

B1/2
n . This influence is due to the presence

of Dirichlet BCs in (11). The green connections represent the weighted edges whose end-nodes are both

interior nodes of V
B1/2
n , while the red connections represent the weighted edges which have at least one

end-node that belongs to V̄n \ V B1/2
n . The potential term κ sums the weight of a red edge to every of its

end-nodes which belong to V
B1/2
n .

where

f(x, y, θ1, θ2) = p(x, y) (4− f(θ1, θ2))

=
[

1 + (x − 1/2)2 + (y − 1/2)2
]

(4− 2 cos(θ1)− 2 cos(θ2)) , (12)

and because of a symmetric argument, we can restrict f on B1/2 × [0, π]2 without affecting the validity of
the identity (3). Let us define the function g : [−π, π]2 → R

g(θ1, θ2) = 4− 2 cos(θ1)− 2 cos(θ2)

and the function a : [0, 1]2 → R as the composition of the potential term p(x, y) = 1+(x−1/2)2+(y−1/2)2

with the following mapping of the square [0, 1]2 into the disk B1/2

m(x, y) =

(

x

√

1− 1

2
y2, y

√

1− 1

2
x2

)

,

that is,

a(x, y) = p(m(x, y)) = 1 +

(

x

√

1− 1

2
y2 − 1

2

)2

+

(

y

√

1− 1

2
x2 − 1

2

)2

.

Let us first consider the multilevel Toeplitz matrices Tn (g), with n = (n, n). According to the discussion
in Subsection 2.4 and Theorem 2.1, in order to obtain a two-grid method that fulfills the approximation
property for the linear systems

Tn (g)xn = bn

we can choose the following prolongation operator

Pn,k = Tn ((2 + 2 cos(θ1))(2 + 2 cos(θ2)))Kn. (13)
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By Proposition 3.4 in [43], if we prove that

Tn (g) ≤ Tn (g)
1
2 diag

n
(a)Tn (g)

1
2 , (14)

then Pn,k is a suitable prolongation strategy also for the linear systems

Tn (g)
1
2 diag

n
(a)Tn (g)

1
2 xn = bn.

By the Sylvester’s law of inertia, condition (14) is equivalent to

In ≤ diag
n

(a)

and the latter inequality is fulfilled if and only if the function a(x, y) is greater than or equal to 1 on
[0, 1]2, which is trivially verified. According to Proposition 3.5 in [43], in order to choose a relaxation
parameter ω such that the Richardson method satisfies the smoothing property we need to estimate the
following quantity

sup
n

ρ

(

Tn (g)
1
2 diag

n
(a)Tn (g)

1
2

)

= sup
n

∥

∥

∥

∥

Tn (g)
1
2 diag

n
(a)Tn (g)

1
2

∥

∥

∥

∥

2

≤ sup
n

∥

∥

∥Tn (g)
1
2

∥

∥

∥

2

∥

∥

∥

∥

diag
n

(a)

∥

∥

∥

∥

2

∥

∥

∥Tn (g)
1
2

∥

∥

∥

2

<
√
8 · 5

4
·
√
8 = 10.

Then, we can take ω in the interval
(

0, 2
10

]

. In order to study the spectral features of the considered
matrix-sequence we employ the Generalized Locally Toeplitz (GLT) theory tools ([28]). Following the
notation of [1], we use the GLT properties GLT1, GLT3 and GLT4 to show that the subsequent spectral
distribution holds

{

Tn (g)
1
2 diag

n
(a)Tn (g)

1
2

}

n

∼λ a(x, y)g(θ1, θ2),

where, in particular, we exploited the algebra property of GLT sequences, which include Toeplitz and
diagonal-sampling matrix-sequences, provided that they fulfill specific hypothesis. By the very definition
of spectral distribution, it is immediate to see that the latter is equivalent to

{

Tn (g)
1
2 diag

n
(a)Tn (g)

1
2

}

n

∼λ f(x, y, θ1, θ2)

where f(x, y, θ1, θ2) is defined as in (12).
Consider now the multi-index n = (n, n) such that n = 2t, t ∈ N. From the definition of Vn in

equation (3.2), we recall that the dimension dn of the graph Laplacian ∆Gn
is such that dn < n2. Taking

inspiration from all the previous considerations, we propose a two-grid method for the linear system

∆Gn
xn = bn

having a prolongation operator of the form in equation (13). More precisely, as a first step construct

Pn,k = Tn ((2 + 2 cos(θ1))(2 + 2 cos(θ2)))Kn

with k = (n2 ,
n
2 ). Then, eliminate from the matrix Pn,k the rows i = (i1, i2) such that (xi1 , yi2) does not

belong to Vn and eliminate the columns j = (j1, j2) such that (xj1 , yj2) does not belong to Vk. With this
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procedure, the matrix-sizes are consistent and it is also possible to implement a V-cycle algorithm using
the same prolongation/restriction strategy at all levels.

In Table 5 we numerically show the validity of our proposed methods, reporting the number of
iterations needed for achieving the tolerance ε = 10−6 when increasing the matrix size. In the first
column, we show the results relative to the two-grid method with pre-smoother and post-smoother one
iteration of the Richardson method with relaxation parameters 1/5 and 2/15 respectively. In the second
and third columns, we use Gauss-Seidel for the two-grid and V-cycle algorithms respectively. In all cases,
we see that the number of iterations needed for convergence remains almost constant, when increasing
the size dn.

t dn Two-grid/Richardson Two-grid/Gauss Seidel V-cycle/Gauss Seidel
3 60 15 7 7
4 216 15 9 9
5 848 17 10 10
6 3300 17 9 10

Table 5: Comparison of the number of iterations, varying t, for the two-grid and V-cycle methods applied
to the graph Laplacian ∆Gn

.

3.3 Elliptic problems on diamond Toeplitz graphs

All the examples in the previous subsections were about graphs arising from PDEs approximations, and
the PDEs were of the form of elliptic equations on bounded subsets of Rd. For this numerical example,
we move into a complete graph setting, where the graph can model many other different type of real-
world interactions without being necessarily restricted to be the physical approximation of a geometric
overlying domain.

Given a graph G with node set V such that V = V1 ∪ V2, V1 ∩ V2 = ∅, then the model problem we
want to solve is

{

∆Gu(vi) = f(vi) if vi ∈ V1,

u(vi) = h(vi) if vi ∈ V2.
(15)

This kind of problem can be viewed again as an elliptic, nonhomogeneous Dirichlet problem (NHDP),
but on graphs. Indeed, ∆G is positive semi-definite, and if G is a subgraph of a graph Ḡ with node
set V̄ , then we can fix V1 = V̊ and V2 = ∂V , where we recall that the (inner) boundary is defined as
∂V :=

{

vi ∈ V : vi ∼ v̄j for some v̄j ∈ V̄ \ V
}

and V̊ = V \∂V . With this choice, Problem (15) becomes

{

∆Gu(vi) = f(vi) if vi ∈ V̊ ,

u(vi) = h(vi) if vi ∈ ∂V.
(NHDP)

For simplicity, we will assume now that both G and Ḡ have zero potential terms, that is, κ = κ̄ ≡ 0. If
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we explicit now the action of the graph Laplacian, we can see that, for every vi ∈ V̊ ,

∆Gu(vi) =
∑

vj∼vi
vj∈V

w(vi, vj) (u(vi)− u(vj))

=
∑

vj∼vi
vj∈V̊

w(vi, vj) (u(vi)− u(vj)) +
∑

vj∼vi
vj∈∂V

w(vi, vj) (u(vi)− h(vj))

=
∑

vj∼vi
vj∈V̊

w(vi, vj) (u(vi)− u(vj)) + κ̊(vi)u(vi)− g(vi),

where
κ̊(vi) =

∑

vj∼vi
vj∈∂V

w(vi, vj), g(vi) =
∑

vj∼vi
vj∈∂V

w(vi, vj)h(vj).

Observing that
∑

vj∼vi
vj∈V̊

w(vi, vj) (u(vi)− u(vj)) + κ̊(vi)u(vi)

defines the action of the graph Laplacian associated with the graph G̊ :=
(

V̊ , E̊, ẘ, κ̊
)

⊂ G, where

E̊ =
{

(vi, vj) ∈ E | vi, vj ∈ V̊
}

, ẘ = w|E̊ ,

then Problem (NHDP) is equivalent to solve

∆G̊u(vi) = g(vi) + f(vi), vi ∈ V̊ . (NHDP’)

Let us notice that the Dirichlet BCs in Problem (NHDP) have been absorbed by the forcing term g and
the potential term κ̊, and that g ≡ 0 if h ≡ 0 (zero Dirichlet BCs). Since

κ̊(vi) =
∑

vj∼vi
vj∈∂V

w(vi, vj) =
∑

vj∼vi
vj∈V \V̊

w(vi, vj),

again, we recover the Dirichlet potential as in Subsections 3.1 and 3.2. κ̊ accounts for the edge deficiency
of the node vi in V̊ , seen as a node in V . It emerges from the computation of the action of the graph
Laplacian associated to G, when imposing u ≡ 0 on ∂V = V \ V̊ .

For the numerical experiments, owing to the equivalence of (NHDP) and (NHDP’), we work directly
with G̊. Let us fix the mold graph M = ([4], E, w) such that

w(i, j) =

{

j − i if i=1 and j = 2, 3, 4,

0 otherwise.

The diamonds will be denoted by M(k) = (V (k), E(k), wk) ≃ M . We set

L =









10 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0









and G = TM
n,4 〈(1, L)〉 the corresponding 1-level diamond Toeplitz graph, see Figure 4. Finally, we set

20



v(2,1)
v5

v(2,4)
v8

v(2,2)
v6

v(2,3)
v7

v(3,4)
v12

v(3,3)
v11

v(3,2)
v10

v(3,1)
v9

v(1,2)
v2

v(1,3)
v3

v(1,4)
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3 1

2

3

2

113

2

1010

11

Figure 4: Representation of the 1-level diamond Toeplitz graph G = TM
n,4 〈(1, L)〉 for n = 3.

• ∂V = V (1) ∪ V (n), that is, ∂V is given by the nodes that belong to the node sets of the first and
the last diamonds. Remember that V (k) = {v(k,1), v(k,2), v(k,3), v(k,4)};

• h(v(1,1)) = 0.5, h(v(1,2)) = 0.25, h(v(1,3)) = h(v(1,4)) = 0;

• h(v(n,1)) = 0.5, h(v(n,2)) = 0.25, h(v(n,3)) = h(v(n,4)) = 0;

• f(v(k,i)) = sin(ki).

The symbol associated to the graph Laplacian ∆G̊ is given by

f(θ) = D − [W + (L+ L∗) cos(θ) + (L − L∗)i sin(θ)] ∈ R4×4, θ ∈ [−π, π]

where

W =









0 1 2 3
1 0 0 0
2 0 0 0
3 0 0 0









, D =









26 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4









,

which gives in compact form

f (θ) =









26− 20 cos(θ) −1 −2 −3
−1 2 0 − cos(θ) + i sin(θ)
−2 0 2 0
−3 − cos(θ)− i sin(θ) 0 4









.

In order to study the zeros of the four eigenvalue functions of f (θ), we numerically checked that 0 ≤
λ1(f(θ)) < λ2(f(θ)) < λ3(f (θ)) < λ4(f (θ)) for all θ ∈ [−π, π] and we then computed the determinant,
which is equal to det(f(θ)) = 292−292 cos(θ). Hence, we deduce that both the determinant and λ1(f (θ))
have a zero of order 2 in 0. As a consequence, we define a grid transfer operator of the form (4), associated
to the following matrix-valued trigonometric polynomial

p(θ) = (4 + 6 cos(θ) + 4 cos(2θ) + 2 cos(3θ))









2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2









.
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Indeed, the trigonometric polynomial 2 + 6 cos(θ) + 4 cos(2θ)) + 2 cos(3θ) has zeros of order 2 in π/2 and
π, which are the mirror points of 0 if we consider a coarsening factor of 4, as in Theorem 2.1. Moreover,
the matrix









2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2









guarantees a constant convergence rate of the V-cycle method, according to the analysis in [21].
In Table 6 we numerically show the validity of our proposed methods, reporting the number of

iterations needed for achieving the tolerance ε = 10−6 when increasing the matrix size. In this case, we
use the relative error stopping criterion, where the exact solution is computed using the LAMG library
(v.2.2.1), whose run time and storage were empirically demonstrated to scale linearly with the number
of edges [34].

We use one iteration of Gauss-Seidel both as pre-smoother and post-smoother. In the first and second
columns, we show the results relative to the two-grid and V-cycle methods for g = 2, while in the third
and fourth columns we consider a coarsening factor g = 4.

In all cases, we see that the number of iterations needed for convergence remains almost constant,
when increasing the size dn.

t dn Two-grid (g = 2) V-cycle (g = 2) Two-grid (g = 4) V-cycle (g = 4)

4 1016 5 6 16 16
5 4088 5 6 20 22
6 16376 5 6 19 23
7 65528 5 6 19 24
8 262136 5 6 20 25

Table 6: Comparison of the number of iterations, varying t, for the two-grid and V-cycle methods applied
to the graph Laplacian ∆Gn

.

3.4 FEM and IgA approximations of elliptic PDEs

In this subsection we perform some numerical tests concerning examples reported in [1, Subsections 7.2,
7.3]. For the sake of completeness we briefly recall the setting.

We consider the model problem
−∆u = g in Ω, (16)

where Ω = (0, 1) and g ∈ L2(Ω). We first approximate (16) by using quadratic FEs over the uniform
mesh with stepsize 1

n+1 , where we choose as FEs basis the quadratic C0 B-spline basis over the knot

sequence { 1
n+1 ,

1
n+1 ,

2
n+1 ,

2
n+1 , ...,

n
n+1 ,

n
n+1}. Fixed n = (n, n) and proceeding as in [30], it is possible to

show that, in this case, the approximation of the operator −n−1∆ is given by the graph Laplacian ∆Gn

of a 1-level diamond Toeplitz graph TG
n,2〈(1, L1)〉, where

W =

(

0 2
2 0

)

is the adjacency matrix of the mold graph G and

L1 =

(

0 0
2 2

)

.
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Note that (see [1]) we have a nonzero potential term which depends on the choice of the boundary
conditions.
It is then easy to see that the sequence {∆Gn

} satisfies

{∆Gn
} ∼λ f(θ),

where f : [−π, π] → C2×2 is given by

f(θ) =
1

3

{(

4 −2
−2 8

)

+

(

0 −2
−2 −4

)

cos(θ) +

(

0 −2
2 0

)

i sin(θ)

}

.

It is now well known from the relevant literature (see [15, 17, 18, 19, 20]) that an optimal preconditioner
for the linear system

∆Gn
un = gn (17)

is given by the matrix Sn = Cn(f) +
1
2nee

T , e being the column vector of dimension 2n of all ones. This
is numerically confirmed in Table 7.

t dn(n = 2t) CG PCG

6 64 95 4
7 128 > 100 4
8 256 > 100 4
9 512 > 100 5
10 1024 > 100 5
11 2048 > 100 5

Table 7: Comparison of the number of iterations, varying t, by the CG method and the PCG method
with preconditioner Sn with tolerance 10−6.

If we now consider the discretization of (16) arising from an IgA approach as in [1, Subsection 7.3] (see
also [20]), the discretizing operator ∆Gn is not the graph Laplacian of one of the structures described in
Section 2; however, the difference is due to the presence of local perturbations near the boundary nodes
which do not affect the symbol function. In particular, it happens that the sequence {∆Gn} has the same
symbol function as the graph Laplacian of the 1-level Toeplitz graph

Hn =

(

Tn

〈(

1,
30

240

)

,

(

1,
48

240

)

,

(

1,
2

240

)〉

, κ

)

, κ ≡ 0,

that is
{∆Gn} ∼λ f(θ),

with f(θ) = 160
240 − 60

240 cos(θ) − 96
240 cos(2θ) − 4

240 cos(3θ). By direct computation, it is easy to see that f

has a unique zero of order 2 at 0. It follows that, if we choose p(θ) = 2− 2 cos(θ), we deduce that f(θ)
p(θ) is

monotonic decreasing in [0, π], globally even, and

lim
θ→0

f(θ)

p(θ)
= 1.
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The previous formula suggests as preconditioner for the PCG the matrix Pn = Tn(2−2 cos(θ)), for which,
following the theory developed in [17], we have

lim
n→∞

λmin(P
−1
n An) = min

θ∈[0,π]

f(θ)

p(θ)
=

f(π)

p(π)
=

2

15

lim
n→∞

λmax(P
−1
n An) = sup

θ∈[0,π]

f(θ)

p(θ)
= lim

θ→0

f(θ)

p(θ)
= 1.

As we show in Table 8, the PCG with preconditioner Pn = Tn(2 − 2 cos(θ)) for the solution of the
linear system (17) is in fact optimal.

t dn(n = 2t) CG PCG

7 128 72 20
8 256 > 100 20
9 512 > 100 21
10 1024 > 100 21
11 2048 > 100 22
12 4096 > 100 22

Table 8: Comparison of the number of iterations, varying t, for the IgA example by the CG method and
the PCG method with preconditioner Pn with tolerance 10−6 .

In what follows, we show an implementation of the MGM with a projector matrix whose choice
depends on the analytic properties of the symbol function f . We consider now the same examples as
above in this subsection. In particular we emphasize that our analysis allows us to define a projector for
which the MGM turns out to be an optimal method when solving system (17). Further, since the discrete
operator ∆Gn is HPD, we use the Richardson method both as pre-smoother and post-smoother.
We start with the IgA example and assume that n = 2t − 1, t ≥ 1. Following the ideas of Subsection
2.4, we can build our projector as Pn = Tn(p(θ))Kn, with p(θ) = 2+ 2 cos(θ) and Kn the cutting matrix
defined as in (5). Recall that f has a unique zero in [0, π] attained at 0. It follows that the trigonometric
polynomial p defined above is such that

lim
x→0

p2(π − x)

f(x)
< ∞

and
p2(x) + p2(π − x) > 0 ∀x ∈ [0, π],

where the two conditions above insure the optimality in light of Theorem 2.1. As noted above, we know
that ∆Gn has not the structure of the graph Laplacian of a Toeplitz graph. We denote by Rn the
difference ∆Gn − ∆Hn, where ∆Hn is the graph Laplacian of the Toeplitz graph Hn in the previous
subsection, which is a low rank correction. In order to ensure convergence, in numerical examples we use
0 < ω < 2

Mf+ρ(Rn)
as the scalar parameter in Richardson method one iteration of the Richardson method

with relaxation parameters 0.7149 and 1.4299 respectively, where Mf ≈ 0.5333 is a maximum value of
f(θ) and ρ(Rn) ≈ 0.8654 is the spectral radius of Rn, thus satisfying condition in Proposition 3.5 in [43].
In Table 9 we numerically show the validity of our proposed methods.
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t dn(n = 2t − 1) Two-grid Method

7 127 8
8 255 8
9 511 8
10 1023 8
11 2047 8
12 4095 8

Table 9: Number of iterations, varying t, for the two-grid method applied to the IgA example with
tolerance 10−6.

An analogous study can be carried for the discretization via the FEM approach.

In this case we assume n = 2t, with t integer. By direct computation, it is possible to show that the
same projector Pn can be used also in this situation; we only need to pay attention to the dimension
of the projector (which is going to be 2n × n due to the block structure of the matrix involved) and,
as above, we use both as pre-smoother and post-smoother one iteration of the Richardson method with
relaxation parameters 0.25 and 0.50 respectively. In Table 10, we show the optimality of the considered
method.

t dn(n = 2t) Two-grid Method

7 128 9
8 256 9
9 512 9
10 1024 9
11 2048 9
12 4096 9

Table 10: Number of iterations, varying t, for the two-grid method applied to the FEs example with
tolerance 10−6.

4 Conclusions

In the present work we have treated sequences of graphs having a grid geometry, with a uniform local
structure in a bounded domain Ω ⊂ Rd, d ≥ 1. When Ω = [0, 1], such graphs include the standard
Toeplitz graphs and, for Ω = [0, 1]d, the considered class includes d-level Toeplitz graphs. In the general
case, the underlying sequence of adjacency matrices has a canonical eigenvalue distribution, in the Weyl
sense, and it has been shown in the theoretical part of this work that we can associate to it a symbol
f, also in the case of variable coefficients in connection with the notion of Generalized Locally Toeplitz
sequences.

Here we have given practical evidence that the knowledge of the symbol and of its basic analytical
features provided enough information on the eigenvalue structure in terms of localization, spectral gap,
clustering, and global distribution, in order to design efficient numerical methods for the corresponding
large linear systems and for approximating in a fast way the eigenvalue of continuous differential opera-
tors. Tests and applications have been taken from the approximation of differential operators via (local)

25



numerical schemes such as Finite Differences (FDs), Finite Elements (FEs), and Isogeometric Analysis
(IgA), where the differential operator domains are of non-cartesian nature.

Nevertheless, more applications can be taken into account, since the results presented here can be
applied as well to study the spectral properties of adjacency matrices and Laplacian operators of general
large graphs and networks, whenever the involved matrices enjoy a uniform local structure. The extension
of the study concerning this last issue will be a specific direction to be investigated in future works.
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