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Abstract 

Background and Objectives: Detection of the R-peak pertaining to the QRS complex of an ECG signal plays 

an important role for the diagnosis of a patient’s heart condition. To accurately identify the QRS locations from 

the acquired raw ECG signals, we need to handle a number of challenges, which include noise, baseline wander, 

varying peak amplitudes, and signal abnormality. This research aims to address these challenges by developing 

an efficient lightweight algorithm for QRS (i.e., R-peak) detection from raw ECG signals. 

 

Methods: A lightweight real-time sliding window-based Max-Min Difference (MMD) algorithm for QRS 

detection from Lead II ECG signals is proposed. Targeting to achieve the best trade-off between computational 

efficiency and detection accuracy, the proposed algorithm consists of five key steps for QRS detection, namely, 

baseline correction, MMD curve generation, dynamic threshold computation, R-peak detection, and error 

correction. Five annotated databases from Physionet are used for evaluating the proposed algorithm in R-peak 

detection. Integrated with a feature extraction technique and a neural network classifier, the proposed ORS 

detection algorithm has also been extended to undertake normal and abnormal heartbeat detection from ECG 

signals. 

 

Results: The proposed algorithm exhibits a high degree of robustness in QRS detection and achieves an average 

sensitivity of 99.62% and an average positive predictivity of 99.67%. Its performance compares favorably with 

those from the existing state-of-the-art models reported in the literature. In regards to normal and abnormal 

heartbeat detection, the proposed QRS detection algorithm in combination with the feature extraction technique 

and neural network classifier achieves an overall accuracy rate of 93.44% based on an empirical evaluation 

using the MIT-BIH Arrhythmia data set with 10-fold cross validation.   

 

Conclusions: In comparison with other related studies, the proposed algorithm offers a lightweight adaptive 

alternative for R-peak detection with good computational efficiency. The empirical results indicate that it not 

only yields a high accuracy rate in QRS detection, but also exhibits efficient computational complexity at the 

order of O(n), where n is the length of an ECG signal.  
 

Keywords: QRS or R-peak detection, feature extraction, ECG analysis, and Max-Min Difference algorithm.



1. Introduction 

Electrocardiogram (ECG) represents the myocardial electrical activities of the heart. ECG signals play a 

significant role in the diagnosis of cardiovascular diseases, such as cardiac arrhythmias, hypertension or 

ischaemic heart diseases. ECG recordings used to be a time consuming process, and require the examination by 

on-site cardiologists to detect and diagnose various heart conditions. Nowadays, mobile ECG sensors, such as 

the Shimmer or Alivecor® sensors [1], are available. These sensors not only are easy to use, but also are 

affordable and efficient in acquiring ECG readings. However, these ECG mobile sensors predominantly use 

only 1 or 2 leads (generally Lead I or Lead II) for ECG recording, instead of using all standard 12 leads.  

Therefore, real-time detection of the QRS positions and abnormality analysis pose a challenging task.  

 

Moreover, interpreting the QRS complex is one of the most important elements in ECG signal processing. In 

particular, the R wave of the QRS complex plays a vital role for diagnosing heart rhythm irregularities as well as 

identifying heart rate variability. However, signal abnormality poses another challenge for QRS detection, since 

the QRS patterns from abnormal ECG signals could be extremely irregular. As an example, an ideal Lead II 

ECG signal usually consists of P, Q, R, S, and T waves. Fig. 1 shows some examples of real-world raw Lead II 

ECG samples from the MIT-BIH Arrhythmia database [2]. As can be seen clearly in Fig. 1, even the normal 

patterns (i.e., a, b, and c signals in Fig. 1) exhibit differences because the ECG signals could be influenced by 

each individual’s physiological condition. Furthermore, the abnormal patterns (i.e., d, e, and f signals in Fig. 1) 

are hardly comparable with the ideal waveforms, since some of the waves could be missing (e.g. the R wave is 

missing resulting in an QS wave in signal d.). On the other hand, other waves with high amplitudes (e.g. the T 

wave) could be mis-identified as the R wave or an QRS pattern. 

 

Fig. 2 (a) shows some detailed normal and abnormal QRS patterns taken from the MIT-BIH Arrhythmia 

database. These QRS patterns look completely different from one to another, and they tend to confuse state-of-

the-art QRS detection algorithms. We have observed that in most cases, the differences in terms of amplitudes 

pertaining to either QR/RS waves or ST waves indicate the most dramatic change in every QRS complex. Fig. 2 

(b) shows the corresponding marked regions of the waves illustrated in Fig. 2 (a). These regions represent the 

difference between the highest and lowest amplitudes in the corresponding QRS complex. 

 

In view of the aforementioned challenges, this research aims to accurately identify the location of the R wave (if 

present) from raw ECG signals by exploiting those features illustrated in Fig. 2 (b) to deal with signal 

abnormality. 
 

Specifically, we propose a sliding window-based Max-Min Difference (MMD) algorithm for robust real-time 

QRS or R-peak detection from raw single lead (Lead II) ECG signals. In comparison with other R-peak 

detection algorithms, the proposed MMD algorithm possesses a low computational cost. The proposed 

algorithm employs a dynamic thresholding method along with an MMD curve generation method for QRS 

pattern detection. This R-peak detection algorithm is evaluated with ECG signals extracted from multiple 

databases including the MIT-BIH Arrhythmia [2], European ST-T [3], MIT-BIH ST Change [4], St.-Petersburg 

Institute of Cardiological Technics 12-lead Arrhythmia [5], and QT [6] databases. To ascertain the efficiency in 

abnormality detection, the proposed algorithm is combined with a feature extraction technique and a neural 

 
Fig. 1 - Normal (a, b, and c) and abnormal (d, e and f) real ECG signals 



 
Fig. 2 - (a) Series of heterogeneous QRS patterns, (b) series of heterogeneous QRS patterns, with the highest 

regional differences of amplitudes marked 

 
 network classifier to perform abnormal heartbeat detection using ECG signals from the MIT-BIH Arrhythmia 

database. 

 

The contributions of this research are summarised as follows. (1) A sliding window-based strategy is employed 

for online real-time ECG analysis. Instead of requiring the whole signal to be stored in memory, it works 

sufficiently well with a small buffer of the signal, in order to have a low computational cost. (2) A novel 

algorithm, i.e., MMD, is proposed for robust QRS detection. The MMD algorithm computes the difference 

between the local minimum and maximum of a small window and slides it along an ECG signal to find the QRS 

complex locations. In comparison with related studies, it has a better trade-off between speed and accuracy, and 

it produces impressive results with a high degree of computational simplicity. (3) Dynamic thresholding is 

proposed to deal with the problem of fluctuating average peak amplitudes in ECG signals. It calculates the 

thresholds by using the current peak location, a few previous QRS locations, and the distances in between. (4) 

The proposed MMD algorithm is evaluated with five ECG databases for QRS detection. In particular, a 

comprehensive evaluation is conducted using the well-known MIT-BIH Arrhythmia database, and the results 

are compared with those from other state-of-the-art algorithms for R-peak detection. In order to further ascertain 

the usefulness of the proposed MMD algorithm, we also perform abnormal/normal heartbeat detection based on 

the QRS detection by incorporating a feature extraction technique and a neural network classifier. Overall, the 

empirical results indicate the superiority of the proposed MMD algorithm over other methods in terms of 

performance and computational cost.  
 

2. Related Work 

Computerised ECG analysis has been widely studied, and many advanced methods for QRS detection exist in 

the literature. Wavelet transform (WT) methods have been used in ECG feature extraction along with other 

enhancements [7–10]. Other techniques include Geometric Analysis [11], Difference Operation Method [12], 

Spectral Analysis [13], Cumulative Sums of Squares [14], and Principal Component Analysis [15]. However, 

the majority of these highly accurate QRS detection algorithms employ complex methods, which require 

complex time-frequency domain conversion, e.g. Fourier/Wavelet transform, and complex filtering. Such 

methods require high computational costs and memory resources, which hinder their real-time deployment, 

especially when the computing resources are limited, e.g. running on tablets or mobile devices. As an example, 

the computational complexity of Fourier [16] and Wavelet transforms [17–20] depends heavily on the number 

of segmentations per signal. Increasing the number of segmentations improves signal detection accuracy, at the 

expense of a high computational cost. The finite impulse response filters involve a large number of 

multiplication operations, which in turn results in high computational complexity. Hilbert transform [8, 21, 22] 

comprises costly fast Fourier transform, which also makes it computationally inefficient as compared with time 

domain methods.  

 

To address computational complexity problems, Elgendi et al. [23] presented a thorough revision on the QRS 

detection methodologies for portable, wearable, battery operated, and wireless ECG devices. A variety of 

techniques of QRS detection from raw ECG signals were presented in their studies, including thresholding, 

syntactic methods [24–26], Hidden Markov Models [27], neural networks [28–31], template matching [32], 

matched filters [28, 33], singularity techniques [34] and zero-crossing [35]. According to Elgendi et al. [23], 

thresholding methods appear to be the most computationally efficient for QRS detection using portable battery 



operated devices. However, the empirical results indicate that the initial parameter setting for the thresholding 

methods is very important in determining the performances [23]. 

  

A number of promising solutions such as lightweight QRS detection methods have also been proposed in recent 

years to address the problem associated with a high computational cost of traditional methods. Adeluyi and Lee 

[36] proposed a lightweight algorithm for R-peak detection from ECG signals. Known as R-READER, the 

system relied on the slopes between two neighbourhood signals to identify the R-peak location. Comparing with 

other well-known QRS detection algorithms, such as Pan and Tompkin [37], the system was able to achieve 

96.614% accuracy based on extreme ECG signals from the MIT-BIH Arrhythmia database, and outperformed 

other related methods with a low computational cost. Chiarugi et al. [38] presented another R-peak detection 

algorithm combining the bandpass filter with both the first derivative and multiple thresholds. Christov [39] 

used multiple moving window averages along with the first derivative and multiple thresholds for QRS 

detection, and achieved high numerical efficiency. Elgendi [40] proposed an QRS detection algorithm that 

incorporated the bandpass filter and the first derivative with squaring. The study employed thresholding with 

two moving window averages for QRS detection. Wang et al. [12] proposed a lightweight algorithm for QRS 

detection and subsequent feature extraction. Their work used the bandpass filter, difference operation method, 

and thresholding. Note that the majority of the aforementioned lightweight methods are designed to work on the 

entire ECG signal, as opposed to window-based processing where only a small portion of the signal is stored for 

processing. Therefore, in this research, we aim to address this gap by proposing a lightweight window-based 

method for real-time QRS detection. 

 

On the other hand, wearable energy-efficient ECG monitoring systems have become popular in recent years. 

Miao et al. [41] proposed a wearable context-aware ECG monitoring system integrated with built-in kinematic 

sensors of a smartphone for physical activity recognition and automatic arrhythmias detection. Their work 

employed the built-in kinetic sensors of the smartphone to identify users’ physical activities. Such context 

information was exploited to assist the diagnosis of arrhythmias and identification of common abnormal ECG 

patterns in different activities. Rehman et al. [42] conducted a survey on different types of wearable sensors. 

They discussed the design of ECG and blood pressure wearable sensors, and compared different types of filters 

for noise (e.g. baseline wander noise, muscle noise) removal from raw ECG signals. Wang et al. [43] presented 

a health monitoring system using wearable wireless ECG sensors with dynamic transmission power control.  

They employed 3-Lead electrode placements to identify the best electrode positions. A sensor node was 

deployed to transmit the ECG signals to other devices. To dynamically adjust the transmission power of the 

sensor node and to save energy consumption, a dynamic power adjustment method was proposed [42]. The 

outcome indicated the efficiency of the method in reducing power consumption for activity monitoring. 
 

3. Material and Methods 

In this section, we introduce the proposed MMD algorithm for QRS detection, as well as for abnormality 

detection in combination with a feature extraction technique and a neural network classifier.  

 
3.1. QRS Peak Detection 

There are a number of challenges encountered when detecting QRS or R-peak locations. These include noise, 

baseline wander, varying thresholds, and signal abnormality. In this research, the corresponding strategies to 

solve the abovementioned challenges are discussed, as follows.   

 Firstly, to deal with noise embedded in ECG signals, we use sliding window averaging to smooth the 

signals for QRS detection and analysis, instead of using any bandpass filtering methods. Although this 

process scales down all the peaks, it does not affect the detection rate of the QRS patterns. The sliding 

window average method not only is effective in terms of accuracy, but also is efficient in terms of 

computational cost. 

 Secondly, rapid changes in the baseline of the ECG signal, i.e., baseline wander (see Fig. 4), can have a 

negative impact on the overall detection accuracy. To overcome this problem, we use a simple baseline 

correction algorithm that involves window-based averaging and deducts the local average of the signal from 

the raw signal. 

 Thirdly, finding an optimal threshold for peak detection is challenging because the amplitude difference 

between R wave and P or T waves varies not only for signals collected from different subjects but also for 

those gathered from the same subjects. As a result, dynamic thresholding is proposed in this research to 

identify the appropriate thresholds, i.e., the minimum value that is above all P or T waves, in diverse cases.  

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Olufemi%20Adeluyi.QT.&newsearch=true
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Fig. 3 - A flowchart of the proposed sliding window-based method (Wpos denotes the starting position of 

the window) 

Therefore, the proposed algorithm consists of five key steps: baseline correction (Section 3.1.1), MMD curve 

generation (Section 3.1.2), dynamic threshold computation (Section 3.1.3), R-peak detection (Section 3.1.4), and 

error correction (Section 3.1.5). The flowchart of the proposed method is illustrated in Fig. 3. Each key step is 

discussed in detail, as follows. 
 

Before applying the proposed MMD algorithm, a sliding window average filtering strategy is first used to filter 
the major spikes, since they highly affect the peak detection process.  Eq. (1) is used to perform the operation. 
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(1) 

where 𝑤 = 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.02) + 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.02)%2   

Note that y(x) indicates the amplitude of the raw ECG signal at sample x; yc(x) represents the filtered output 

signal at sample x; size(y) represents the length of the raw ECG signal, y; i denotes the index of the sliding 

window; fs indicates the sampling frequency of the signal; w represents the filtering window size, which is an 

even number close to the number of samples in 0.02 second; symbol ‘%’ indicates the modulo operation, which 

returns the remainder after dividing one number with another. 

3.1.1 .   Base line Correc tion  

Baseline wander occurs frequently in ECG readings, especially when mobile ECG sensors are used. In this 

research, baseline wander is removed by subtracting the local average of the signal from the raw signal. Eq. (2) 

is used to perform the operation. 
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where 𝑤 = 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.5) + 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.5)%2  

Note that y(x) indicates the raw ECG signal; yb(x) denotes the baseline corrected signal; while the window 

length w is an even number close to the number of samples in half a second. Fig. 4 shows an example of the 

ECG signal with baseline wander (top) and the corrected signal (bottom). Again, symbol ‘%’ indicates the 

modulo operation, which returns the remainder after dividing one number with another. 

3.1.2 .  Max-Min Difference Curve  Genera tion  

The Max-Min Difference Curve (MDC) represents the difference between the highest and lowest amplitudes in 

a window region. Eqs. (3) and (4) are used for MDC generation: 
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(4) 

where 𝑤 = 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.14) + 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.14)%2 

 
 

Note that W(x) represents local window at position x; the window size w is an even number, close to the number 
of samples in 0.14 seconds, since most of the QRS complex fits in this length [44]. Fig. 5 illustrates an example 
of MDC along with the ECG signal. It is noticeable that all peaks in the MDC are positive, and are aligned to the 
QRS complexes of the corresponding ECG signal.  

3.1.3 .  Dynamic Threshold Computation  

As explained earlier, not all peak values in the MDC represent the R-peaks in actual ECG signals. An 

inappropriate threshold could lead to errors in treating a P or T wave as an R wave. The threshold for R-peak 

detection not only varies from time to time, but also from signal to signal. Here, we employ two decision 

making parameters to determine the subsequent occurrence of the QRS complex, i.e., the location threshold 

(tLoc) and the amplitude threshold (tAmp). There are three key procedures: initialisation; updating; and time 

varying threshold selection. We first initialize the variables required for threshold calculation. Then, the 

threshold is updated in each iteration according to its previous values. After that, it is finalised based on the 

current position and other factors. The details of these three procedures are described, as follows. 

 Initialization 

We first set tLoc = 0.2×fs, since the maximum heartbeat per minute can only reach up to 300 (i.e., 0.2 second 

per heartbeat). Then, tAmp is initialized as pf×max(W(x)) for the first iteration, where W(x) is the search 

window; pf is the peak factor representing the minimum factor of previous peaks to be taken as the next 

threshold. Considering that the number of heartbeat per minute cannot be lower than 24 (or 2.5 second per 

heartbeat) and an QRS complex stays for 0.14 second only [44], a fixed window size, w, is defined, as follows: 
 

𝑤 =  𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 2.64) + 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 2.64)%2 (5) 

 

 
Fig. 4 – An example ECG signal with baseline 

wander (top) and the corrected ECG signal 

(bottom) 

 
Fig. 5 - An example ECG signal (top) and the 

corresponding MDC (bottom) 



As mentioned earlier, we assume that the maximum duration for a single heartbeat is no longer than 2.5 second. 

Combining an additional QRS length of 0.14 second, we initialize the window to the closest even number 

equivalent size of 2.64 second of the signal. This setting ensures that the window includes at least one heartbeat. 
 

The start point of the search window, ws, is initialized as follows. 

 

𝑤𝑠 =  𝑟𝐿𝑜𝑐 + 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.14)  
(6) 

 

where rLoc is the location of the current R-peak. The next search window skips the current QRS region, as our 

algorithm detects the start of QRS. Therefore, when the R wave is missing, we skip for a duration of 0.14 

second (i.e., the standard QRS duration). 

 Updating 

After the first n iterations, tAmp and tLoc are updated according to the previous values of mAmp and mLoc using 

Eqs. (7) and (8), respectively. 
 

𝑡𝐴𝑚𝑝(𝑥) =
1

𝑛 + 1
(∑𝑚𝐴𝑚𝑝(𝑥 − 𝑖) + 𝑚𝐴𝑚𝑝(𝑥)

𝑛

𝑖=1

) (7) 

𝑡𝐿𝑜𝑐(𝑥) =
1

2
(

1

𝑛 − 1
(𝑚𝐿𝑜𝑐(𝑥 − 1) −𝑚𝐿𝑜𝑐(𝑥 − 𝑛))) (8) 

 

where n is the recall number representing the number of previous QRS properties to remember; mAmp(x) and 

mLoc(x) are the amplitude and location of the selected peak above the threshold of the MDC at iteration x, 

respectively. 

 Time varying threshold selection 

Subsequently, depending on the position of the current peak, we determine the threshold value. We use linear 

interpolation of values between an upper threshold (ptu) and a lower threshold (ptl) based on the distance 

between the current peak and previously detected QRS location. After one MDC peak is selected as an R peak, 

we update ptu(x) and ptl(x) using Eqs. (9) and (10) respectively.   
 

𝑝𝑡𝑢(𝑥) = 𝑡𝐴𝑚𝑝(𝑥) × 𝑢𝑓                                                                                                                                         (9)                            

𝑝𝑡𝑙(𝑥) = 𝑡𝐴𝑚𝑝(𝑥) × 𝑙𝑓 (10) 

 
Fig. 6 - Time varying dynamic threshold selection 

with respect to the MDC 

 
Fig. 7 - MDC and dynamic thresholds  

 



 
 

Fig. 8 - Flowchart of R detection from the MDC peak 

 

We calculate the peak threshold pt(x) for the current peak x using Eq. (11), as follows: 

 

𝑝𝑡(𝑥) = { 
𝑝𝑡𝑢(𝑥) + (𝑝𝑡𝑙(𝑥) − 𝑝𝑡𝑢(𝑥))×

𝑚𝐿𝑜𝑐(𝑥) −   𝑟𝐿𝑜𝑐(𝑙𝑎𝑠𝑡) − 0.14𝑓𝑠

2𝑡𝐿𝑜𝑐(𝑥) − 𝑟𝐿𝑜𝑐(𝑙𝑎𝑠𝑡) − 0.14𝑓𝑠
         𝐼𝑓 𝑚𝐿𝑜𝑐(𝑥) − 𝑟𝐿𝑜𝑐(𝑙𝑎𝑠𝑡)  <  2× 𝑡𝐿𝑜𝑐(𝑥)

𝑝𝑡𝑙(𝑥)                                                                                                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         

 (11) 

 

where rLoc(last) denotes the last detected R-peak location. 

 

An example of how the proposed dynamic thresholding works is shown in Fig. 6. Considering its x
th 

peak, ptu(x) 

and ptl(x) are calculated using Eqs (9) and (10), respectively as discussed earlier. The next search window starts 

from the location of ptu(x), which is rLoc(last)+0.14×fs. Depending on the distance between the last QRS 

location and the location of the current peak on the MDC, we vary the peak threshold from ptu(x) to ptl(x). If it 

is more than twice of the average R-R distance, or 2×tLoc(x), we fix the threshold at ptl(x). When the next peak 

is selected, we update the values and repeat the same process. In Fig. 6, we illustrate the details of this dynamic 

thresholding mechanism. The red lines represent the hypothetical thresholds connecting ptu and ptl. Only one 

point on the line is selected as the peak threshold, pt, depending on the occurrence of the peak on the MDC.  

Fig. 7 shows an example of the MDC along with those selected thresholds (pt), which are connected to form a 

dotted red line.  

3.1.4 .  R-Peak Detect ion  

The MDC peak is either selected or discarded depending on the threshold calculated earlier. The proposed 

algorithm creates a window of MDC starting from ws with a width of w. After that, the following steps are 

performed. 

 Firstly, the local maxima are detected, which have an amplitude larger than pt(x), and are stored as 

mAmp(x) along with location mLoc(x).  

wMaxLoc: the maximum amplitude 

location in the local window. 

wMinLoc: the minimum amplitude location 

in the local window. 

tdiff: the temporary difference between the 

local minimum and maximum amplitudes. 

ndiff: the difference between the local 

minimum and maximum amplitudes. 

w: the window size. 

Rloc: the location of the R wave 

 

 



 If  𝑚𝐿𝑜𝑐(𝑥) −  𝑚𝐿𝑜𝑐(𝑥 − 1) <= 𝑟𝑜𝑢𝑛𝑑(𝑓𝑠 × 0.14)  and 𝑚𝐴𝑚𝑝(𝑥) > 𝑚𝐴𝑚𝑝(𝑥 − 1) , we discard the 

previous R location, and continue with the current iteration x.   

 After the peaks are detected on the MDC, we process the actual signal to obtain the R-peak location.  

 

Fig. 8 depicts a flowchart for finding the R location from the MDC peak, mLoc. The pseudo codes are presented 

in Algorithm 1.  

 

Algorithm 1: R-Peak Detection 

Input:  
mLoc //Location of the peak found on the MDC 

Y(x) //The original ECG signal 

Output:  
rLoc  //Location of the R wave if present, otherwise, the location of the Q wave.  

Begin 

{ 

window=W(mLoc);                              //Create a window 

start=mLoc; 

[wMin, wMinLoc]= min(window);  //Find the value and location of the minimum point in the window 

[wMax, wMaxLoc]= max(window);  //Find the value and location of the maximum point in the window 

If wMinLoc-wMaxLoc<0 then                       //If the minimum point occurs before the maximum point, the 

maximum could be R or T wave  

tdiff=wMax-wMin;   //Save the maximum-minimum difference  

new_window=W(start+wMaxLoc);                //Create a new window from the maximum location 

start=start+wMaxLoc;   //Update the start point of the window 

              [wMin, wMinLoc]=min(new_window);          //Find the value and location of the minimum point in the 

new window 

[wMax, wMaxLoc]=max(new_window);        //Find the value and location of the maximum point in the 

new window 

ndiff=wMax-wMin;    //Calculate the maximum-minimum difference 

If ndiff<tdiff/2 then                                         //If the new difference is less than half of the previous 

difference 

new_window=W(start+wMinLoc-w)          //Create a new window before the current window 

start= start+wMinLoc-w             //Update the start point of window 

[~, wMaxLoc]= max(new_window);           //Find the location of the maximum point in the 

new window 

Endif 

Endif 

rLoc = start + wMaxLoc                                                        //Save the location of the maximum point 

Output rLoc 

} 

End 
 

 
Fig. 10 - Unusually low thresholds on the MDC Fig. 9 - The MDC with an inefficient upper 

threshold (top) and R-peak detection results shown 

on the ECG signal (bottom) 



3.1.5 .  Error Correc tion  

False positive errors are detected, which are mainly caused by large T waves or a low initial upper threshold for 

R-peak detection. Fig. 9 shows an example of unusually low thresholds on the MDC, leading to false positive R-

peak detection. The top diagram in Fig. 9 shows the MDC with a low threshold, and the signal below is the 

corresponding ECG with false positive beat markers. Therefore, we use the following procedure to discard the 

falsely detected T waves and adjust the upper threshold accordingly. 

 

Firstly, we compute the last n differences of the detected R-peak amplitude pairs. The resulting amplitudes, 

which are marked with double arrows in Fig. 10, are calculated using Equation (12). In Fig. 10, a sequence of 

alternating higher and lower peaks above the dynamic threshold line can be observed explicitly. Such a situation 

is only possible if the T peaks have been mistakenly detected as the R peaks continuously. Therefore, in this step, 

we calculate the difference between multiple consecutive peak pairs using Equation (12).  
 

k(i)= rAmp(x-(i-1) ×2)-R(x-(i-1) ×2-1) (12) 

 

The above calculation is repeated until we have at least n×2 elements in rAmp. 

 

 Check if the inequalities, absolute(k(i))>0.25×rAmp(x-(i-1) ×2) and absolute(k(i)-k(i-1))<0.25×rAmp(x-(i-

1) ×2), hold for all i=[1,2,..(n-1)]. We then discard the lower R location in each pair, and update uf using 

Eq. (13). 

𝑢𝑓 = 𝑢𝑓 +
1

2
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (

𝑘(1)

𝑡𝐴𝑚𝑝(𝑥)
) (13) 

 

In our experimental study, we employ three pairs of R amplitudes for error correction (i.e., i = 1, 2, and 3) and 

for adjustment of the upper R threshold factor (uf). 

 

Although the abovementioned error correction operation usually does not affect ECG signals with normal T 

waves, this process is particularly useful for reducing false positives for those signals where the T waves are 

sufficiently large. As an example, ECG signals with considerably large T waves are observed in MITDB, e.g. 

signals 113, 117, 200, 215, 217. These signals generate more false positive results in the absence of the 

abovementioned error correction procedure. To demonstrate this claim, we initialize n=5 and execute our 

algorithm using signal 113 from MITDB.  The outcomes are 393 false positives and 0 false positive without and 

with the error correction procedure, respectively, indicating efficiency of the proposed error correction 

procedure. 

 

Furthermore, we employ the following strategy for performance evaluation of the proposed MMD algorithm. 

The QRS detection results consist of true positive (TP), false positive (FP), and false negative (FN). TP 

represents the total number of QRS complexes that have been accurately identified; FP represents the total 

number of QRS complexes that have been falsely marked even though they are not actually QRS complexes; FN 

represents the total number of QRS complexes that have not been identified at all. We use sensitivity (SN) and 

positive predictivity (PP) for evaluation of QRS detection, as shown in Eqs (14) and (15), respectively. SN 

represents the percentage of correctly detected heartbeats, while PP represents the percentage of detected 

heartbeats that are actually true. The detailed evaluation results for QRS detection are presented and discussed in 

Section 4. 

 

100%
TP

SN
TP FN

 


 
(14) 

100%
TP

PP
TP FP

 


 (15) 

                                                                                                           
3.2. Detection of the Locations of P, Q, S and T Waves 

To further demonstrate the potential of the proposed MMD algorithm for abnormality detection in ECG signals, 

we detect the locations of P, Q, S, and T waves based on the detected R-peak locations. Algorithm 2 (in 

Appendix) shows the peak detection procedure for P, Q, S and T waves without compromising computational 

efficiency. The algorithm employs a local extrema search process to identify the locations of P, Q, S and T 

peaks for abnormality detection. The search process finds the local minima and maxima. The algorithm takes a 

raw ECG signal and the R-peak location as the inputs, and provides the estimated peak locations of P, Q, S, and 



 

Fig. 11 - The extracted 16 features for abnormality detection 

 

T waves as the outputs. Although more complex processing for peak detection of P, Q, S and T waves is 

available [45, 46], some of them tend to be computationally expensive. The detection of each wave (e.g. P or T 

wave) also constitutes a research topic on its own [47, 48]. In this research, we employ a comparatively 

lightweight peak detection algorithm (i.e., Algorithm 2) for detection of P, Q, S and T waves. The results 

indicate that it is efficient in accurately recovering the locations of P, Q, S and T waves, without distracting the 

focus of the research on the proposed MMD algorithm for QRS detection too much. Moreover, only the signals 

with accurate QRS detection are employed in this step for peak detection of P, Q, S, and T waves and for 

subsequent abnormality analysis.  

3.3. Feature Extraction and Neural Network Classification 

After recovering the peak locations of P, Q, S, and T waves, we further generate a total of 16 customised 

features for abnormality detection. Fig. 11 lists these 16 features, where features 1 to 11 are marked with dotted 

lines. Features 1 to 5 represent the normalized distances of P-peak R-peak, Q-peak R-peak, R-peak S-peak, Q-

peak S-peak and R-peak T-peak, respectively. Features 6 to 10 indicate the amplitudes of P, Q, R, S, and T 

waves from the baseline. Feature 11 is the normalized distance between the current and subsequent R-peak 

locations. Features 12 to 16 (marked as shaded areas in Figure 11) represent the areas between P, Q, R, S, and T 

waves and the baseline, respectively. The detailed calculations of these features are summarized in Table 1. The 

empirical results indicate the efficiency of the above extracted features, which have also been employed in our 

previous research for abnormality detection from ECG signals [49]. 

 

A feedforward artificial neural network classifier, i.e., the multilayer perceptron [50], is subsequently used for 

abnormal heartbeat detection. The abovementioned 16 features form the inputs. The classifier employs the 

backpropagation algorithm as the learning mechanism [50]. To achieve the best trade-off between classification 

accuracy and computational efficiency, after several trials, the network structure is set to: 16 nodes in the input 

layer (each handles one of the 16 extracted features), 10 nodes in the hidden layer, and 2 nodes in the output 

layer (represent the normal and abnormal classes). The detailed evaluation results and discussion are presented 

in Section 4.  

Table 1:  Definition of the extracted 16 features 

No. Expression Description 

1 (locR – locP)/fs Normalized P-peak R-peak distance. 

2 (locR – locQ)/fs Normalized Q-peak R-peak distance. 

3 (locS – locR)/fs Normalized R-peak S-peak distance. 

4 (locS – locQ)/fs Normalized Q-peak S-peak distance. 

5 (locT – locR)/fs Normalized R-peak T-peak distance. 

6 ampP – ampB 
P-peak amplitude (where ampB refers to the baseline 

amplitude of the signal). 

7 ampR – ampB R-peak amplitude. 

8 ampB – ampQ  Q-peak amplitude. 

9 ampB – ampS S-peak amplitude. 



10 ampT – ampB T-peak amplitude. 

11 (locRafter-locR)/fs Normalized distance between two adjacent R-peaks  

12 |)()(|





kplocP

kplocPi
iampBiy /fs 

Area of P wave (where kp is half of the average P wave 

duration and y(i) is the i
th

 sample of the original signal). 

13 |)()(|





kqlocQ

kqlocQi
iyiampB /fs 

Area of Q wave (where kq is half of the average Q wave 

duration). 

14 |)()(|





krlocR

krlocRi
iampBiy /fs 

Area of R wave (where kr is half of the average R wave 

duration). 

15 |)()(|





kslocS

kslocSi
iyiampB /fs 

Area of S wave (where ks is half of the average S wave 

duration). 

16 |)()(|





ktlocT

ktlocTi
iampBiy /fs 

Area of T wave (where kt is half of the average T wave 

duration). 

 

4. Results 

In this section, an empirical evaluation for QRS detection and abnormality identification to ascertain the 

efficiency of the proposed MMD algorithm and its potential for disease detection using multiple ECG databases 

is presented. A performance comparison between our work and other related studies is included.  

4.1. Experimental Data 

We employed raw single lead ECG data samples extracted from five different databases in the PhysioNet [51] 

databank for evaluation. The test databases employed were the MIT-BIH Arrhythmia Database (MITDB) [2], 

the European ST-T Database (EDB) [3], the MIT-BIH ST Change Database (STDB) [4], the St.-Petersburg 

Institute of Cardiological Technics 12-lead Arrhythmia Database (INCARTDB) [5] and the QT Database 

(QTDB) [6]. We used the first lead (i.e., Lead II) from each ECG recording for evaluation in this study. 

4.2. Evaluation Results 

4 .2 .1 .  QRS Detec tion  

We carried out the first set of experiments with the MIT-BIH Arrhythmia database [2]. Table 2 shows the 

signal-wise detailed results of multiple algorithms including Pan and Tompkins algorithm [37], Wavelet 

transform method by Li et al. [52], difference operation method by Wang et al. [12], and the JQRS method [53, 

54]. The window with a fixed size of 80 ms around the R peak is considered as true positive for the MIT-BIH 

Arrhythmia database. This is because in the MIT-BIH Arrhythmia database, the S wave is marked as the QRS 

location when the R wave is missing, while our algorithm marks the Q position as the QRS location under the 

same situation.  

 

As illustrated in Table 2, our proposed algorithm is comparable with other related state-of-the-art algorithms 

reported in the literature for R-peak detection. Our algorithm works very efficiently, except for Signals 105 and 

207, where it yields some false positive results due to noise. True positive is calculated based on a tolerance 

window of 80 ms for all the algorithms, in order to have a fair comparison. Our proposed algorithm works not 

only for normal heartbeats but also for those with abnormalities. Examples of some abnormalities extracted 

from the MIT-BIH Arrhythmia database along with the detected R-peaks by our algorithm are depicted in Fig. 

12. As indicated in Fig. 12, in most cases, our algorithm correctly identifies the QRS locations owing to the use 

of the MMD (i.e., the regional difference between the minimum and maximum amplitudes), which remains the 

highest on the QRS locations (as evidenced in Fig. 2 (b)) for all these cases. 

 

Moreover, we compared the proposed MMD algorithm with the most recent state-of-the-art JQRS method using 

five databases for QRS detection. Overall, a set of 1,232,138 heartbeats from five different databases was used 

for evaluation. The detailed comparison between our algorithm and the JQRS method is shown in Table 3. Our 

algorithm achieves an overall average sensitivity of 99.62% and an average positive predictivity of 99.67%, and 

outperforms the JQRS method consistently. Our results pertaining to QTDB show a very low false positive rate, 

leading to an overall highest positive predictivity of 99.91%. In addition, the performances of both our algorithm 

and the JQRS method pertaining to INCARTDB are comparatively low, due to the fact that the signals in 

INCARTDB contain more noise and are less enhanced as compared with those in QTDB and STDB. 



 

Fig. 12 - Examples of abnormal signals extracted from the MIT-BIH Arrhythmia database with the 
corresponding QRS positions detected by the proposed algorithm. These abnormal signals include (a) a poor 
quality signal due to noise interference; (b) premature ventricular contraction beats; (c) premature ventricular 
contraction combined with normal heartbeats; (d) right bundle branch block beats, with the x axis 
representing samples of the raw signals and the y axis indicating the signal amplitude in mV. 

 

We also compared our algorithm with some related methods described in Elgendi et al. [23] for R-peak 

detection, as shown in Table 4. Since most of these related methods employ the MITDB database for evaluation, 

we present the results for the same database for comparison. The proposed algorithm achieves comparable 

performance using lightweight methods, at a fraction of latency and resource demands. 
 

Table 3:  Comparison between the proposed MMD algorithm and the JQRS method 

Database # beats 
MMD JQRS [53, 54] 

TP FP FN SN PP TP FP FN SN PP 

MITDB 109809 109432 369 389 99.65 99.66 108571 412 923 99.16 99.62 

EDB 790495 788746 2208 1749 99.78 99.72 787953 2608 2612 99.67 99.67 

STDB 70755 70696 170 59 99.92 99.76 70373 385 407 99.42 99.46 

INCRDB 174644 172276 1205 2368 98.64 99.31 157547 6999 18355 89.57 95.75 

QTDB 86435 86320 78 115 99.87 99.91 86409 118 584 99.33 99.86 

Total 1232138 1227470 4030 4680 99.62 99.67 1210853 10522 22881 98.15 99.14 

 

Table 4: Performance comparison with related methods for R-peak detection 

Publication Methodologies Beats SN PP 

Pan and Tompkins [37] 
Bandpass filter + first derivative + squaring + moving 

average + multiple thresholds 
116137 99.76 99.56 

Li et al. [52] Wavelet transform + digital filter + singularity + thresholds 104182 98.89 99.94 

Afonso et al. [25] Filter bank + thresholds 90909 99.59 99.56 

Benitez et al. [22] First derivative + Hilbert transform + threshold 109257 99.13 99.31 

Moraes et al. [55] 
Low pass filter + first derivative + modified spatial velocity + 

threshold 
109481 99.69 99.88 



Christov [39] Multiple moving averages + first derivative + thresholds 109494 99.76 99.81 

Martinez et al. [10] Wavelet transform + Multiple thresholds + zero Crossing 109428 99.8 99.86 

Chiarugi et al. [38] Bandpass filter + first Derivative + thresholds 109494 99.76 99.81 

Arzeno et al. [56] First derivative + Hilbert transform + thresholds 109517 99.68 99.63 

Wang et al. [12] Bandpass Filter + Difference Operation + thresholds 108517 99.86 99.95 

Chouhan et al. [57]  Digital filters + threshold 102654 99.55 99.49 

Elgendi et al. [58] Digital filters + thresholds 44677 97.50 99.90 

Ghaffari et al. [59] Continuous Wavelet transform + threshold 109837 99.91 99.72 

Zheng and Wu [20] 
Discrete Wavelet transform + Cubic Spline Interpolation + 

moving average + threshold 
N/R 98.68 99.59 

Elgendi [40] 
Bandpass filter + first derivative + squaring + thresholding 

using two moving averages 
109985 99.78 99.87 

Chouakri et al. [18] 
Wavelet transform + histogram + moving average + two 

thresholds 
109488 98.68 97.24 

Zidelmal et al. [60] 
Wavelet transform + coefficients multiplication + two 

thresholds 
109494 99.64 99.82 

Rodríguez et al. [15] 
Bandpass filter + first Derivative + Fast Fourier transform + 

adaptive threshold 
44715 96.28 99.71 

The proposed approach 
Moving average filter + dynamic thresholding + MMC 

generation  
109809 99.65 99.66 

 

4.2.2 .  Abnormal i ty  Detec tion  

Integrated with a feature extraction technique and a neural network classifier, the proposed MMD algorithm was 

extended for normal and abnormal heartbeat detection. The MITDB database was employed for abnormality 

detection. We combined all types of abnormality annotations in this database as a single abnormal class. Overall, 

we used 37492 normal and 34414 abnormal heartbeats for evaluation using 10-fold cross validation. Table 5 

summarises the experimental results. 

Table 5:  Confusion matrix for the classification results of normal/abnormal heartbeat detection 

 True Normal True Abnormal Class Precision 

Predicted Normal 95.50% 8.80% 91.50% 

Predicted Abnormal 4.50% 91.20% 94.52% 

Class Recall 93.86% 92.40% Overall Accuracy 

Total 37492 heartbeats 34414 heartbeats 93.44% 

 

As shown in Table 5, the proposed MMD algorithm combined with a lightweight feature extraction technique 

and neural network classifier yields an accuracy rate of 93.44% for abnormality detection. The empirical results 

further indicate the superiority and efficiency of the proposed MMD algorithm for abnormal heartbeat detection. 

In future work, we aim to employ more complex processing techniques for P, Q, S and T peak detection in order 

to achieve further improvement. 

4.2.3 .  Complexi ty  Evaluat ion  

We further demonstrated computational efficiency of the proposed algorithm in comparison with other related 

methods, i.e., JQRS [53, 54] and the algorithm of Pan and Tompkins [37], for R-peak detection. The 

computational cost was based on experiments conducted using MATLAB on a PC with 2.5 GHz CPU. Four 

databases, i.e., MITDB, EDB, STDB, and INCERTDB, were employed for evaluation. For a comparison, the 

related QRS detection methods such as JQRS [53, 54] and Pan and Tompkins [37], along with our proposed 

algorithm were all implemented in MATLAB. The same test databases shown in Table 6 were used for 

evaluation. 
 

We applied the JQRS method [53, 54] and the algorithm of Pan and Tompkins [37] on a 5-second sliding 

window to each signal from the test databases for comparison of computational efficiency. Note that these 

conventional methods [53, 54, 37] were not designed for sliding window based analysis. Table 6 shows the 



computational costs. Comparatively, these conventional methods not only have higher computational costs but 

also produce a comparatively larger number of false positive results for R-peak detection. This could be due to 

the fact that these conventional methods were not designed for sliding window based analysis, and might require 

the entire ECG signal for analysis, in order to obtain a good frequency resolution as opposed to a small sliding 

window-based processing approach. On the contrary, the proposed MMD algorithm obtains optimal 

computational efficiency and shows great robustness in dealing with real-time QRS detection with impressive 

performance. Overall, its computational complexity is at the order of O(n), where n is the length of an ECG 

signal. 

Table 6:  Comparison of the average CPU time elapsed (in seconds) for R-peak detection 

Databases JQRS [53, 54] Pan and Tompkins [37] The proposed MMD algorithm 

MITDB 19.1097 12.12012 10.23568 

EDB 42.12465 34.51354 31.64323 

STDB 14.32272 10.4369 9.578125 

INCERTDB 10.79729 8.016667 7.815833 

 

5. Discussion 

In this research, we propose a sliding window-based MMD algorithm for robust real-time R-peak detection from 
raw single lead ECG signals. In comparison to other R-peak detection algorithms, the proposed MMD algorithm 
has a low computational cost. Evaluated with five well-known databases, the proposed algorithm outperforms 
other state-of-the-art methods, such as JQRS, consistently. Some theoretical comparison between the proposed 
MMD algorithm and other related research is conducted below.  

As the state-of-the-art methods, JQRS [53, 54] and the algorithm of Pan and Tompkins [37] have been widely 
used for QRS complex detection. The algorithm of Pan and Tompkins [37] includes the following procedures, 
i.e., resampling, mean subtraction, bandpass filter, differentiation, squaring, moving-window integration and a 
complex dual-thresholding process. However, some of the above processes, such as resampling, bandpass 
filtering, and dual-thresholding, require high computational costs and memory resources. 

JQRS [53, 54] embeds a window-based peak energy detector. Instead of using the bandpass filter, it employs a 
QRS matched filter for pre-processing. It also uses heuristic and search-back strategies to deal with flat lines and 
missed beats, respectively. Although JQRS is more complex in comparison with the proposed MMD algorithm, 
it is not designed for sliding window based analysis and may require the entire ECG signals for R-peak 
detection analysis in order to obtain reliable competitive detection accuracy. 

Rodríguez et al. [15] implemented a QRS detector which includes the processing of bandpass filter, 
differentiation, Hilbert transform and adaptive thresholding, whereas Li et al. [52] employed wavelet transforms 
for R-peak detection. Although both wavelet and Hilbert transforms are effective techniques for time-frequency 
analysis and are capable of characterizing the local regularity of signals, both techniques are computationally 
costly and inefficient for real-time ECG analysis compared with the proposed method.  

Elgendi [40] employed an optimized knowledge-based QRS detector which included three stages, i.e., pre-
processing (bandpass filter and squaring), generating blocks of interest and thresholding. The decision-making 
of the last two steps was also supported by a knowledge base. Their work was motivated by the assumption that 
a QRS detector employing the prior knowledge of the ECG features was inclined to possess better 
performances. However, their algorithm requires a time-consuming brute-force search based optimization 
process beforehand to identify complex optimal parameter settings.  

In comparison with the above R-peak detection methods, this research proposes a novel MMD algorithm with 
dynamic thresholding for robust QRS detection. Instead of requiring the whole signal to be stored in memory, it 
employs a sliding window-based strategy and uses a small buffer of the signal for online real-time ECG 
analysis. In order to further ascertain the usefulness of the proposed MMD algorithm, it has been further 
extended for abnormal/normal heartbeat detection with the integration of a feature extraction technique and a 
neural network classifier. The empirical results indicate that the proposed algorithm shows great superiority over 
other methods in terms of R-peak detection accuracy and computational efficiency. 

6. Conclusions 

We have proposed the MMD algorithm for QRS detection based on single lead (mostly Lead II) ECG signals in 

this study. It consists of five key steps, namely baseline correction, Max-Min Difference curve generation, 

dynamic threshold computation, QRS detection, and error correction. The main contribution of the proposed 

MMD algorithm is its lightweight real-time QRS detection scheme without compromising detection accuracy. 

The proposed MMD algorithm is useful to provide accurate QRS detection from diverse cross-domain ECG 



signals with efficient computational complexity. Evaluated using five well-known databases, the proposed 

MMD algorithm achieves impressive performances in comparison with those from other related models for R-

peak detection using both normal and abnormal ECG signals. Integrated with a feature extraction technique and 

a neural network classifier, the proposed MMD algorithm has been further extended for abnormal/normal 

heartbeat detection. The empirical results indicate the efficiency and superiority of the proposed MMD 

algorithm for abnormality detection. However, its performance degrades when noisy signals, especially with 

high amplitude spikes, are used. 

 

For further work, we will conduct a comprehensive investigation to overcome the noise problem. We will also 

extend the proposed algorithm to undertake more complex heart disease detection problems, e.g. the obtained R-

R interval results can be used directly for determining R-R interval related heart abnormality. In addition, the 

proposed algorithm can be integrated with more complex mobile ECG feature extraction algorithms to find the 

base position of a heartbeat for a detailed analysis to determine the P and T wave positions along with their 

durations and shapes. Ultimately, we aim to embed the proposed algorithm into mobile devices as a base QRS 

detector to promote early detection of heart diseases. 
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Table 2: Performance comparison between MMD and other QRS detection algorithms on MIT-BIH arrhythmia database 

Signal # beats 
MMD (proposed) Pan and Tompkins [37] Wang et al. [12] Li et al. [52] JQRS [53, 54]  

FP FN SN PP FP FN SN PP FP FN SN PP FP FN SN PP FP FN SN PP 

100 2273 0 2 99.91 100.00 0 0 100.00 100.00 0 1 99.96 100.00 0 0 100.00 100.00 0 0 100.00 100.00 

101 1865 0 0 100.00 100.00 5 3 99.84 99.73 0 1 99.95 100.00 1 0 100.00 99.95 4 1 99.95 99.79 

102 2187 0 0 100.00 100.00 0 0 100.00 100.00 0 1 99.95 100.00 0 0 100.00 100.00 0 1 99.95 100.00 

103 2084 0 2 99.90 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 5 99.76 100.00 

104 2230 3 3 99.87 99.87 1 0 100.00 99.96 2 0 100.00 99.91 8 2 99.91 99.64 13 23 98.97 99.41 

105 2572 73 4 99.84 97.16 67 22 99.13 97.40 0 17 99.34 100.00 15 13 99.49 99.42 27 2 99.92 98.96 

106 2027 0 19 99.07 100.00 5 2 99.90 99.75 0 6 99.70 100.00 2 3 99.85 99.90 0 65 96.79 100.00 

107 2137 0 71 96.78 100.00 0 2 99.91 100.00 0 3 99.86 100.00 0 0 100.00 100.00 0 2 99.91 100.00 

108 1763 13 3 99.83 99.26 199 22 98.61 88.71 6 0 100.00 99.66 13 15 99.15 99.26 27 7 99.60 98.49 

109 2532 0 1 99.96 100.00 0 1 99.96 100.00 0 3 99.88 100.00 0 0 100.00 100.00 0 9 99.64 100.00 

111 2124 0 1 99.95 100.00 1 0 100.00 99.95 0 1 99.95 100.00 1 1 99.95 99.95 0 2 99.91 100.00 

112 2539 2 0 100.00 99.92 0 1 99.96 100.00 1 0 100.00 99.96 2 1 99.96 99.92 0 0 100.00 100.00 

113 1795 0 2 99.89 100.00 0 0 100.00 100.00 9 0 100.00 99.50 2 0 100.00 99.89 0 0 100.00 100.00 

114 1879 4 1 99.95 99.79 3 17 99.10 99.84 0 1 99.95 100.00 3 0 100.00 99.84 3 7 99.63 99.84 

115 1953 0 2 99.90 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 

116 2412 3 16 99.34 99.88 3 22 99.10 99.88 0 17 99.30 100.00 0 1 99.96 100.00 2 24 99.00 99.92 

117 1535 1 0 100.00 99.93 1 1 99.93 99.93 2 0 100.00 99.87 1 0 100.00 99.93 0 0 100.00 100.00 

118 2275 0 0 100.00 100.00 1 0 100.00 99.96 10 0 100.00 99.56 1 0 100.00 99.96 0 0 100.00 100.00 

119 1987 0 0 100.00 100.00 1 0 100.00 99.95 0 0 100.00 100.00 1 0 100.00 99.95 0 2 99.90 100.00 

121 1863 1 2 99.89 99.95 4 7 99.62 99.79 0 2 99.89 100.00 2 1 99.95 99.89 0 1 99.95 100.00 

122 2476 0 0 100.00 100.00 1 1 99.96 99.96 0 0 100.00 100.00 0 0 100.00 100.00 0 1 99.96 100.00 

123 1518 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 3 99.80 100.00 

124 1619 0 0 100.00 100.00 0 0 100.00 100.00 1 0 100.00 99.94 0 0 100.00 100.00 0 11 99.32 100.00 

200 2601 1 4 99.85 99.96 6 3 99.88 99.77 5 0 100.00 99.81 0 1 99.96 100.00 2 3 99.88 99.92 

201 1963 0 51 97.47 100.00 0 10 99.49 100.00 0 20 98.99 100.00 1 12 99.39 99.95 0 67 96.59 100.00 

202 2136 0 3 99.86 100.00 0 4 99.81 100.00 1 0 100.00 99.95 0 1 99.95 100.00 0 11 99.49 100.00 

203 2982 12 66 97.83 99.60 53 30 98.99 98.22 16 2 99.93 99.46 2 24 99.20 99.93 10 60 97.99 99.66 

205 2656 0 6 99.77 100.00 0 2 99.92 100.00 0 16 99.40 100.00 0 1 99.96 100.00 0 7 99.74 100.00 

207 1862 224 10 99.39 87.97 4 4 99.79 99.79 0 1 99.95 100.00 2 3 99.84 99.89 303 57 96.94 85.61 

208 2956 4 29 99.03 99.86 4 14 99.53 99.86 0 14 99.53 100.00 0 4 99.86 100.00 3 438 85.18 99.88 

209 3004 3 0 100.00 99.90 3 0 100.00 99.90 1 0 100.00 99.97 0 0 100.00 100.00 1 0 100.00 99.97 

210 2647 3 40 98.51 99.89 2 8 99.70 99.92 0 14 99.47 100.00 3 3 99.89 99.89 3 35 98.68 99.89 

212 2748 0 0 100.00 100.00 0 0 100.00 100.00 1 0 100.00 99.96 0 0 100.00 100.00 0 0 100.00 100.00 

213 3251 0 5 99.85 100.00 1 2 99.94 99.97 0 3 99.91 100.00 0 0 100.00 100.00 0 6 99.82 100.00 

214 2262 0 4 99.82 100.00 2 4 99.82 99.91 0 4 99.82 100.00 – – – – 0 10 99.56 100.00 

215 3363 0 2 99.94 100.00 0 1 99.97 100.00 0 4 99.88 100.00 – – – – 0 2 99.94 100.00 

217 2208 0 6 99.73 100.00 4 6 99.73 99.82 0 2 99.91 100.00 1 1 99.95 99.95 0 6 99.73 100.00 

219 2154 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 3 99.86 100.00 

220 2048 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 0 0 100.00 100.00 

221 2427 0 0 100.00 100.00 2 0 100.00 99.92 0 1 99.96 100.00 0 7 99.71 100.00 0 16 99.34 100.00 

222 2484 1 6 99.76 99.96 101 81 96.71 95.93 0 5 99.80 100.00 1 9 99.64 99.96 1 6 99.76 99.96 

223 2605 0 2 99.92 100.00 1 0 100.00 99.96 1 0 100.00 99.96 0 2 99.92 100.00 0 6 99.77 100.00 

228 2053 19 19 99.07 99.07 25 5 99.75 98.78 0 2 99.90 100.00 3 7 99.66 99.85 11 4 99.81 99.47 

230 2256 0 0 100.00 100.00 1 0 100.00 99.96 2 0 100.00 99.91 0 0 100.00 100.00 0 0 100.00 100.00 

231 1886 0 0 100.00 100.00 0 0 100.00 100.00 0 15 99.21 100.00 0 0 100.00 100.00 0 0 100.00 100.00 

232 1780 2 0 100.00 99.89 6 1 99.94 99.66 0 0 100.00 100.00 0 0 100.00 100.00 2 0 100.00 99.89 

233 3079 0 7 99.77 100.00 0 1 99.97 100.00 0 9 99.71 100.00 0 0 100.00 100.00 0 16 99.48 100.00 

234 2753 0 0 100.00 100.00 0 0 100.00 100.00 0 1 99.96 100.00 0 0 100.00 100.00 0 4 99.85 100.00 

 



Appendix  
 

Algorithm 2: Peak detection for P, Q, S and T waves from each detected R wave 

Input:  
Y(x) //The original ECG signal 

locR //Location of R 

qrsT //QRS distance threshold 

pT //P distance threshold 

tT //T distance threshold 

Output:  
locP  //Location of the P  

locQ  //Location of the Q  

locS  //Location of the S  

locT  //Location of the T  

ampP  //Amplitude of the P  

ampQ  //Amplitude of the Q  

ampS  //Amplitude of the S  

ampT  //Amplitude of the T  

Begin 

//Search the left-hand side of the R location for the minimum value within the half QRS distance threshold range 

locQ = location of minimum in Y(locR - Round(qrsT/2) : locR);  

//Search the right-hand side of the R location for the minimum value within the half QRS distance threshold range 

locS = location of minimum in Y(locR : locR + Round(qrsT/2)); 

//Search the left-hand side of the Q location for the maximum value within the P distance threshold range 

locP = location of maximum in Y(Q - pT : locQ); 

//Search the right-hand side of the S location for the maximum value within the T distance threshold range 

locT = location of maximum in Y(S : tT); 

ampQ = Y(locQ); 

ampS =  Y(locS); 

amp = Y(locP); 

ampT = Y(locT); 

End 


