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Abstract

In this paper we study the general group classification of systems of linear second-order ordinary
differential equations inspired from earlier works and recent results on the group classification
of such systems. Some interesting results and subsequent Theorem arising from this particular
study are discussed here. This paper considers the study of irreducible systems of second-order
ordinary differential equations.
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1. Introduction

The appearance of systems of ordinary differential equations in the modeling of natural
phenomena has led to a vast interest in the study of their properties and theoretical aspects that
include their algebraic and symmetry properties. The existence of symmetries in a particular
system leads to the possibility of reducing the order of the system or computing a general
solution through quadratures. This has been part of the reason for focusing on such systems
in the current study. We study the general group classification of systems of linear second-
order ordinary differential equations motivated by recent results obtained in [1, 2, 3, 4]. Linear
equations play an important role in many applications where they occur in a disguised form.
When studying their symmetry properties it is always preferred to express them in their simplest
equivalent form. It is important to note here that symmetry properties are invariant with
respect to the change of the dependent and independent variables and hence are not affected
by working with the equivalent form of a given system. The group classification problem
involves classifying given differential equations with respect to arbitrary elements. Here we use
the algebraic algorithm in the group classification approach. This approach was used in the
earlier works [3, 5, 6, 7] and references therein. The algebraic algorithm assists in simplifying
the study of the group classification.

The rest of the paper is organized as follows: Section 2 of the paper gives a background
study of systems of nonlinear equations and describes the concept of a reducible system and
irreducible systems. Furthermore the equivalence transformations and determining equations
are discussed. The present paper focuses on irreducible systems. Section 3 discusses linear
equations where the coefficient matrix B(x) defined in this section is reduced to zero and
the property of the trace of the coefficient matrix C(x) is also discussed. The determining
equations and the commutator tables are computed. Section 4 gives a strategy and detailed
approach for the group classification that uses the algebraic approach using the optimal system
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of subalgebras of the Lie algebras for group classification. Some interesting observations are
made. The main thrust of the paper is in Section 5 where the classes of systems admitting
the associated Lie algebras obtained in Section 4 are delineated. The relationship between the
classification of systems of second-order ordinary differential equations with the classification
of the coefficient matrix A reducing it to the Jordan form is noted. In this Section also lies the
main Theorem and results. Section 6 is the discussion on systems admitting generators of the
form XA defined in Section 5. Finally Section 7 gives the conclusion of the paper and Section
8 is the Appendix where a detailed analysis of matrix equations is given.

2. Background study of systems of the form y′′ = F(x, y)

We give a preliminary study of systems of nonlinear equations by considering a system of
second-order ordinary differential equations of the form

y′′ = F(x,y), (1)

where

y =




y1
y2
...
ym


 , F =




F1

F2

...
Fm


 .

2.1. Equivalence transformations

System (1) has the following equivalence transformations:
(a) a linear change of the dependent variables ỹ = Py with a constant nonsingular m×m

matrix;
(b) the change

ỹi = yi + ϕi(x), (i = 1, 2, .., m);

(c) a transformation related with the change

x̃ = ϕ(x), ỹi = yiψ(x), (i = 1, 2, ..., m),

where the functions ϕ(x) and ψ(x) satisfy the condition

ϕ′′

ϕ′
= 2

ψ′

ψ
. (2)

We call a system of equations (1) reducible if it is equivalent to a system which has a proper
subsystem of fewer dimension or if it is equivalent with respect to a change of the dependent
and independent variables to a linear system

y′′ = Cy, (3)

where C is a constant matrix. In the present paper irreducible systems are considered.

2.2. Determining equations

Determining equations for irreducible systems in matrix form are given by

2ξFx + 3ξ′F+ (((A + ξ′E)y + ζ) · ∇)F− AF = ξ′′′y + ζ ′′, (4)

where the matrix A = (aij) is constant. The associated infinitesimal generator is

X = 2ξ(x)∂x + (Ay + ζ(x)) · ∇,
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where ∇ = (∂y1 , ∂y2, ..., ∂ym)
t. Here ”·” means the scalar product: b·∇ = bi∂yi and the standard

agreement, summation with respect to a repeat index, is used.
Applying the change ỹ = Py where P is a nonsingular m×m matrix with constant entries,

equations (1) become
ỹ′′ = F̃(x, ỹ)

with
F̃(x, ỹ) = PF(x, P−1ỹ).

The partial derivatives with respect to the variables y are changed as follows:

h · ∇ = (Ph) · ∇̃.

Hence equations (4) become

2ξF̃x + 3ξ′F̃+
(
((Ã + ξ′E)ỹ + ζ̃) · ∇̃

)
F̃− ÃF̃− ξ′′′ỹ + ζ̃ ′′ = 0,

where
Ã = PAP−1, ζ̃ = Pζ.

This means that the equivalence transformation ỹ = Py reduces equation (4) to the same form
with the matrix A and the vector ζ changed. The infinitesimal generator is also changed as
follows:

X = 2ξ∂x + (Ãỹ + ζ̃) · ∇̃.

3. Systems of linear equations

Systems of linear second-order ordinary differential equations have the following form,

y′′ = B(x)y′ + C(x)y + f(x) (5)

where B(x) and C(x) are matrices, and f(x) is a vector. Using a particular solution yp(x) and
the change

y = ỹ + yp,

we can assume that f(x) = 0 without loss of generality. The matrix B(x) or C(x) can also be
assumed to be zero if the change, y = H(x)ỹ, where H = H(x) is a nonsingular matrix, is
used. In the current paper the matrix B(x) is reduced to zero. In this case the function F in
equation (1) is a linear function of y:

F(x,y) = C(x)y.

Any linear system of second-order ordinary differential equations

y′′ = C(x)y (6)

admits the set of trivial generators

y · ∇, h(x) · ∇,

where h′′ = Ch.
Excluding the trivial generators, the determining equations (4), after their splitting with

respect to y, become
2ξC ′ + CA− AC = ξ′′′E − 4ξ′C, (7)

where E is the unit m×m matrix, and the admitted generator has the form

X = 2ξ∂x + ((A+ ξ′E)y) · ∇.
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3.1. Simplifications of systems

Applying the change of the dependent and independent variables

x̃ = ϕ(x), ỹ = ψ(x)y (8)

satisfying the condition
ϕ′′

ϕ′
= 2

ψ′

ψ
, (9)

system (6) becomes
ỹ′′ = C̃ỹ, (10)

where

C̃ = ϕ′−2

(
C −

ρ′′

ρ
E

)
, ρ =

1

ψ
.

The group classification problem usually becomes simpler after reducing the number of arbitrary
elements. In order to reduce the number of entries of the matrix C̃ one can choose the function
ψ such that1 tr(C̃) = 0. This condition leads to the equation

ρ′′ −
tr(C)

m
ρ = 0. (11)

Notice that a transformation of the form (8) with

ψ = α(x+ β)−1 (12)

conserves the property tr(C) = 0. Here α and β are constants. In fact, if tr(C) = 0, then
because of ρ′′ = 0 we have that tr(C̃) = 0. In particular, the equivalence transformation with

ϕ = ψ =
1

x
(13)

is an involution.

3.2. Determining equations

As noted earlier, for the group classification we can assume that tr(C) = 0. Taking the
trace in (7), one finds that ξ′′′ = 0 or

ξ =
1

2
(k1x

2 + k3) + k2x,

where ki, (i = 0, 1, 2) are constants. Hence, nontrivial admitted generators take the form

X = k1X1 + k2X2 + k3X3 +XA,

where
X1 = x(x∂x + y · ∇), X2 = 2x∂x + y · ∇, X3 = ∂x, XA = (Ay) · ∇.

Notice that the generator X2 can be simplified by subtracting the trivial admitted generator
y · ∇. However, we keep it in the presented form due to the simplicity of the commutator

[X1, X3] = −X2.

1 This change was used in [8] for the case of m = 2
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The determining equations become

(k1x
2 + 2k2x+ k3)C

′ + CA−AC + 4(k1x+ k2)C = 0. (14)

Thus we find that an admitted Lie algebra of nontrivial generators is composed by the generators
X1, X2, X3 and XA.

To study the problem further we need to construct the commutator table of the generators
X1, X2, X3:

X1 X2 X3

X1 0 −2X1 −X2

X2 2X1 0 −2X3

X3 X2 2X3 0

4. Strategy for the group classification

One of the methods for analyzing relations between the constants and undefined functions
consists of employing the algorithm developed for the gas dynamics equations [9]. This algo-
rithm allows one to study all possible admitted Lie algebras without omission. Unfortunately,
it is difficult to implement for system (6). Observe also that sometimes in this approach it is
difficult to select out equivalent cases with respect to equivalence transformations.

In [3, 5, 6, 7]2 a different approach was applied for group classification. We call this approach
an algebraic algorithm. In most applications the algebraic algorithm essentially reduces the
study of group classification to a simpler problem. The reduction occurs because the process
of solving determining equations is split into two steps, where on the first step the constants of
admitted generators are defined using the property for admitted generators to compose a Lie
algebra. In the present paper we follow the algebraic approach.

4.1. Relations between automorphisms and equivalence transformations

Generators of admitted Lie algebras have the form

X = x1X1 + x2X2 + x3X3 +XA.

The commutator of two generators

X = x1X1 + x2X2 + x3X3 +XA1
, Z = z1X1 + z2X2 + z3X3 +XA2

is
[X,Z] = αX1 + βX2 + γX3 + ((A2A1 − A1A2)y) · ∇,

where
α = −2(x1z2 − x2z1), β = −(x1z3 − x3z1), γ = −2(x2z3 − x3z2).

Hence, one can notice that the first part of the admitted generators x1X1 + x2X2 + x3X3 is a
subalgebra of the Lie algebra3 L3 = {X1, X2, X3}. Recall that all nonequivalent subalgebras
with respect to automorphisms present an optimal system of subalgebras. An optimal system
of subalgebras of the algebra type VIII in the Bianchi classification was performed in [10].

We further show that the action of equivalence transformations conserving the property
tr(C) = 0 is similar to the action of automorphisms. This property allows one to use an
optimal system of subalgebras of the Lie algebra L3 for group classification.

2See also references therein.
3This Lie algebra corresponds to the algebra type YIII in the Bianchi classification.
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In fact, automorphisms of L3 are

Aut1 : 2x2∂x1
+ x3∂x2

x̄1 = x1 + 2ax2 + a2x3, x̄2 = x2 + ax3;

Aut2 : x̄1 = x1e
a, x̄3 = x3e

−a;

Aut3 : x1∂x2
+ 2x2∂x3

x̄2 = x2 + ax1, x̄3 = x3 + 2ax2 + a2x1.

Here and further on only changeable coordinates of the generator are presented. The equivalence
transformation (8) with

ϕ =
x

1− ax
, ψ = (x+ a)−1

changes the coordinates as follows

(x1X1 + x2X2 + x3X3)(ϕ(x))∂x̄ = x̄2(x3a
2 + 2ax2 + x1)∂x̄ + 2x̄(x2 + ax3)∂x̄ + x3∂x̄

or
x1X1 + x2X2 + x3X3 = (x3a

2 + 2ax2 + x1)X̄1 + (x2 + ax3)X̄2 + x3X̄3.

Hence, this equivalence transformation is similar to the automorphism Aut1. The equivalence
transformation x̄ = ax is equivalent to the automorphism Aut2. The equivalence transformation
x̄ = x− a corresponding to the shift of x is similar to the automorphism Aut3 :

x1X1 + x2X2 + x3X3 = x1X̄1 + (x2 + ax1)X̄2 + (x3 + a2x1 + 2ax2)X̄3.

The use of the optimal system of subalgebras of L3 for the group classification is similar
to the two-step algorithm of constructing an optimal system of subalgebras [11], where on the
first step an optimal system of a fewer dimension subalgebras is constructed.

As mentioned above an optimal system of subalgebras of the Lie algebra L3 was studied in
[10] and it consists of the list:

1. X2;
2. X3;
3. X1 +X3;
4. X2, X3;
5. X1, X2, X3.

(15)

4.2. Classes of systems admitting generators with ξ 6= 0

Using the optimal system of subalgebras (15), we can conclude that all systems of linear
second-order ordinary differential equations (6) admitting generators with ξ 6= 0 are separated
into the classes admitting the following Lie algebras:

1. X2 +XA2
;

2. X3 +XA3
;

3. X1 +X3 +XA1
;

4. X2 +XA2
, X3 +XA3

;
5. X1 +XA1

, X2 +XA2
, X3 +XA3

.

(16)

Here the numeration of matrices Ai is used to ease the tracking of their relations with the
generators Xi.

Except the generators presented in (16), systems (6) can admit several generators of the
form XA. The determining equations in this case are

CA− AC = 0.
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According to the algebraic study considered in the Appendix, the number of equations has
to be even (m = 2n), and excluding the trivial generator y · ∇, the matrix A for one of the
admitted generators of the form XA, can be chosen as A = Bd1 , where

Bd1 =




B1 0 ... 0
0 B1 ... 0
... ... ... ...
0 0 ... B1


 , B1 =

(
0 1
−1 0

)
.

The latter matrices have the properties

B−1

1
= −B1, B

−1

d1
= −Bd1 .

Notice also that in this case the matrix C consists of blocks of the form

Cij =

(
αij βij
−βij αij

)
,

and the determining equations (14) for this generator (Bd1y) · ∇ are reduced to the equations

(k1x
2 + 2k2x+ k3)α

′

ij + 4(k1x+ k2)αij = 0, (k1x
2 + 2k2x+ k3)β

′

ij + 4(k1x+ k2)βij = 0. (17)

In addition we also conclude here that for systems with an odd number of dependent vari-
ables and having nontrivial admitted generators, only these admitted Lie algebras (16) are
possible.

5. Classes of systems admitting Lie algebras (16)

In this section we consider systems corresponding to the Lie algebras presented in (16).

5.1. Systems admitting the generator X2 +XA

For simplifying the determining equations in this case we apply the change (8) with

ϕ = ln(x), ψ = x−1/2.

The determining equations
2xC ′ + CA−AC + 4C = 0,

become

2
d

dx̃
C̃ + C̃A− AC̃ = 0, tr(C̃) =

m

4
.

Thus,

C̃ = ex̃ÃC0e
−x̃Ã,

where Ã = 1

2
A, and C0 is an arbitrary matrix with tr(C0) = m/4. It is also assumed that

AC0 − C0A 6= 0,

because otherwise AC − CA = 0 which implies that the matrix C is constant. Note that
because d

dx̃
(tr(C̃)) = 0, we have that tr(C̃) = m/4. The admitted generator is

X = ∂x̃ + (Ãỹ) · ∇̃.

Here the part related with the trivial admitted generator ỹ · ∇̃ is omitted.
Remark. Further classification of systems of second-order ordinary differential equations

of this type is related with the classification of the matrix A, reducing it to one of Jordan forms.
This remark applies to other cases discussed further on.
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5.2. Systems admitting the generator X3 +XA

In this case the general solution of the determining equations is

C = e−xAC0e
−xA,

where C0 is an arbitrary matrix with tr(C0) = 0. It is observed that because d
dx̃
(tr(C)) = 0,

we have that tr(C) = 0. The admitted generator is

X = ∂x + (Ay) · ∇.

5.3. Systems admitting the generator X1 +X3 +XA

For the generator
X1 +X3 +XA = (x2 + 1)∂x + (Ay) · ∇

the determining equations are

(x2 + 1)C ′ + CA−AC + 4xC = 0.

To simplify the determining equations we apply the change (8) with

ϕ′ = (x2 + 1)−1, ψ = (x2 + 1)−1/2.

The determining equations become

d

dx̃
C̃ + C̃A− AC̃ = 0, tr(C̃) = −1.

Hence,
C̃ = e−x̃AC0e

x̃A,

where C0 is an arbitrary matrix with tr(C0) = −1. We point out that because d
dx̃
(tr(C̃)) = 0,

one also has that tr(C̃) = −1. The admitted generator is

X = ∂x̃ + (Aỹ) · ∇̃.

5.4. Discussion on systems admitting one-dimensional Lie algebras from (16)

The study above allows us to conclude that irreducible linear systems (6) admitting a
generator with ξ 6= 0 are equivalent to a system (6) where

C(x) = exAC0e
−xA,

and C0A− AC0 6= 0. The admitted generator is

X = ∂x + (Ay) · ∇.

There is no necessity to take care on tr(C0). It was only necessary for being sure that none of
the linear systems admitting a Lie group is missed.
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5.5. Systems admitting the generators X2 +XA2
and X3 +XA3

The commutator of these generators is

[X2 + (A2y) · ∇, X3 + (A3y) · ∇] = −2(X3 + (A3y) · ∇) + ((A3A2 −A2A3 + 2A3)y) · ∇.

Since the admitted Lie algebra is two-dimensional, then

A3(A2 + 2E)− A2A3 = 0. (18)

As noted above, because the generator X3 +XA3
is admitted, then

C ′ = A3C − CA3,

and then
C = exA3C0e

−xA3 ,

where C0 is an arbitrary matrix with tr(C0) = 0, and it is also assumed that

A3C0 − C0A3 6= 0.

The determining equations for the generator X2 +XA2
are

− 2x(CA3 − A3C) + CA2 − A2C + 4C = 0. (19)

Note that the substitution in this equation x = 0 gives

A2C0 − C0(A2 + 4E) = 0.

Multiplying from the left hand side by exA3 and by e−xA3 from the right hand side, equations
(19) can be rewritten as

2x(A3C0 − C0A3) + 4C0 + C0e
−xA3A2e

xA3 − e−xA3A2e
xA3C0 = 0. (20)

Differentiating (20) and using the property that the matrices exA3 and e−xA3 commute with the
matrix A3, we obtain

2(A3C0 − C0A3) + C0e
−xA3(−A3A2 + A2A3)e

xA3 − e−xA3(−A3A2 + A2A3)e
xA3C0 = 0. (21)

Equation (21) can be rewritten as
CB − BC = 0,

where
B = A2A3 − A3(A2 + 2E). (22)

Due to (18) we have that B = 0. Hence we obtain a system of algebraic equations for the
matrices C0, A2 and A3 given as follows:

A2C0 − C0(A2 + 4E) = 0, (23)

A2A3 −A3(A2 + 2E) = 0, (24)

tr(C0) = 0, A3C0 − C0A3 6= 0. (25)

Since C0 6= 0, then equation (23) gives us that the set of eigenvalues of the matrix A2 has
intersections with the set of eigenvalues of the matrix4 A2 + 4E. Since A3 6= βE (for any β),

4Discussion of solving matrix equations can be found in [12].
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then equation (24) gives us that the set of eigenvalues of the matrix A2 has intersections with
the set of eigenvalues of the matrix A2 +2E. Hence there exists a number λ such that λ, λ+2
and λ+ 4 are eigenvalues of the matrix A2.

For example, if m = 3, one can assume that

A2 =




0 0 0
0 2 0
0 0 4


 .

Since the matrix A2 is diagonal, the general solution of equation (23) and (24) is trivially
obtained (see in [12]):

C0 =




0 0 0
0 0 0
c 0 0


 , A3 =




0 0 0
a 0 0
0 b 0


 ,

where a, b and c are constant. Since conditions (25) are not satisfied for these matrices, then
there are no such generators in the case of m = 3. This is also supported by the study in [4].

Let us also consider as example the case where m = 4. One can assume that the matrix A2

is one of the matrices:




a 0 0 0
0 0 0 0
0 0 2 0
0 0 0 4


 ,




0 1 0 0
0 0 0 0
0 0 2 0
0 0 0 4


 ,




0 0 0 0
0 2 1 0
0 0 2 0
0 0 0 4


 ,




0 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4


 .

Calculations show that all of these cases are reduced to a reducible system: either there is a
subsystem with fewer dimension or the matrix C is constant. Thus for m = 4 there is no such
admitted Lie subalgebra.

5.6. Systems admitting the generators X1 +XA1
, X2 +XA2

and X3 +XA3

The commutators of these generators are

[X1 +XA1
, X2 +XA2

] = −2(X1 +XA1
) + ((A2A1 −A1A2 + 2A1)y) · ∇,

[X1 +XA1
, X3 +XA3

] = −(X2 +XA2
) + ((A3A1 − A1A3 + A2)y) · ∇,

[X2 +XA2
, X3 +XA3

] = −2(X3 +XA3
) + ((A3A2 −A2A3 + 2A3)y) · ∇.

Hence,
A1A2 − A2A1 = 2A1, A1A3 − A3A1 = A2, (26)

A2A3 − A3A2 = 2A3. (27)

The determining equations are

C ′ + CA3 − A3C = 0, 2xC ′ + CA2 −A2C + 4C = 0, (28)

x2C ′ + CA1 − A1C + 4xC = 0. (29)

As shown in the previous section, the general solution of equations (28), (29) and (27) is

C = exA3C0e
−xA3 ,

where the matrices C0, A2 and A3 satisfy conditions (23), (24) and (25).
The remaining determining equations (29) become

S1 = 0,
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where
S1 = 4xC0 − x2(C0A3 − A3C0) + C0e

−xA3A1e
xA3 − e−xA3A1e

xA3C0.

Note that

S ′

1
= 4C0 − 2x(C0A3 − A3C0) + C0e

−xA3(A1A3 −A3A1)e
xA3 − e−xA3(A1A3 − A3A1)e

xA3C0

and

exA3S ′′

1
e−xA3 = −2(CA3 −A3C) + C[(A1A3 − A3A1)A3 − A3(A1A3 −A3A1)]

−[(A1A3 − A3A1)A3 − A3(A1A3 − A3A1)]C.

Conditions (23), (26) and (27) imply that

S ′

1
(0) = 0, S ′′

1
= 0.

Hence
S1(x) = S1(0) = C0A1 − A1C0 = 0.

Thus, we obtain the following conditions for the matrices C0, A1, A2 and A3:

A1A2 − A2A1 = 2A1, A1A3 − A3A1 = A2, A2A3 −A3A2 = 2A3, (30)

A2C0 − C0(A2 + 4E) = 0, C0A1 − A1C0 = 0. (31)

Remark. Defining from these equations A2 = A1A3 − A3A1, and substituting it into the
remaining equations (30) and (31) we obtain only equations for the matrices C0, A1 and A3:

A2

1
A3 − 2A1A3A1 + A3A

2

1
= 2A1, A1A

2

3
− 2A3A1A3 + A2

3
A1 = 2A3, (32)

(A1A3 − A3A1)C0 − C0(A1A3 − A3A1)− 4C0 = 0, C0A1 − A1C0 = 0. (33)

5.7. Summary of the results

We note that if system (6) admits one generator with ξ 6= 0, then without loss of generality
one can assume that ξ = 1.

As a result of this section we derive the Theorem.
Theorem. Irreducible linear systems (6) admitting one- two- or three-dimensional Lie

algebras (16) are equivalent to one of the following cases.
(a) For one-dimensional Lie algebras

C(x) = exAC0e
−xA,

and C0A− AC0 6= 0. The admitted generator is

X = X3 + (Ay) · ∇.

(b) For two-dimensional Lie algebras

X2 +XA2
, X3 +XA3

the system (6) has
C(x) = exA3C0e

−xA3 ,

where the matrices C0, A2 and A3 satisfy the conditions:

A2A3 − A3(A2 + 2E) = 0,

11



and
A2C0 − C0(A2 + 4E) = 0, tr(C0) = 0, A3C0 − C0A3 6= 0.

(c) For three-dimensional Lie algebras

X1 +XA1
, X2 +XA2

, X3 +XA3

the system (6) has
C(x) = exA3C0e

−xA3 ,

where the matrices C0, A2 and A3 satisfy the conditions:

A1A2 − A2A1 = 2A1, A1A3 −A3A1 = A2, A2A3 − A3A2 = 2A3,

A2C0 − C0(A2 + 4E) = 0, C0A1 −A1C0 = 0, tr(C0) = 0, A3C0 − C0A3 6= 0.

In particular, systems with an odd number of the dependent variables (m = 2n + 1) and
having nontrivial admitted generators are equivalent to one of the cases presented in the The-
orem.

6. Discussion on systems admitting generators of the form XA

As noted earlier, for systems admitting nontrivial generators of the form XA the number of
the dependent variables is even (m = 2n). If these systems also admit a generator with ξ 6= 0,
then the Lie algebras (16) compose subalgebras of the admitted Lie algebras. In this section
systems admitting a single generator of the form XA are considered. Since systems admitting
the only generator XA were considered in section 4.2, we study two, three and four-dimensional
Lie algebras.

We mentioned in the previous section that if one of the admitted generators has nonzero
coefficients related with ∂x, then one can assume that this generator is X3 +XA3

, and

C(x) = exA3C0e
−xA3 ,

where A3C0 −C0A3 6= 0. Note that the determining equations CA−AC = 0 for the admitted
generator XA leads to the conditions that the equations

(k1x
2 + 2k2x+ k3)(A3C − CA3) + 4(k1x+ k2)C = 0 (34)

have the trivial solution with respect to the constants k1, k2 and k3: k1 = 0, k2 = 0 and k3 = 0.
In fact, substituting C into (34), and using commutativity of exA3 , e−xA3 and A3, we have

(k1x
2 + 2k2x+ k3)(A3C0 − C0A3) + 4(k1x+ k2)C0 = 0.

Splitting this equation with respect to x leads to

k1(A3C0 − C0A3) = 0, k2(A3C0 − C0A3) + 2k1C0 = 0, k3(A3C0 − C0A3) + 4k2C0 = 0.

Since A3C0 − C0A3 6= 0, we find sequentially that k1 = 0, k2 = 0 and k3 = 0.
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6.1. Two-dimensional admitted Lie algebra

A basis of two-dimensional admitted Lie algebras can be chosen in the forms

X3 + (A3y) · ∇, (Ay) · ∇.

The commutator of these generators is

[X3 + (A3y) · ∇, (Ay) · ∇] = ((AA3 −A3A)y) · ∇.

For a two-dimensional admitted Lie algebra we find that

A3A− AA3 = cA, (35)

where c is constant. Since CA− AC = 0, the prohibition on the reduction to fewer dimension
allows us to choose A = Bd1 .

Equation (35) becomes
A3Bd1 − Bd1A3 = cBd1 . (36)

For analyzing the latter equation we represent the matrix A3 in the form

A3 = (Aij) =




A11 A12 ... A1n

A21 A22 ... A2n

... ... ... ...
An1 An2 ... Ann


 ,

where

Aij =

(
aij11 aij12
aij21 aij22

)
.

Multiplying (36) by Bd1 from the right hand side, and using the properties of the matrix Bd1 ,
one finds that

Bd1A3B
−1

d1
−A3 + cE = 0.

The matrix Bd1A3B
−1

d1
also has the block structure

Bd1A3B
−1

d1
= (B1AijB

−1

1
),

where

B1AijB
−1

1
=

(
aij22 −aij21
−aij12 aij11

)
.

Hence equations (36) in the component form are reduced to the equations

aij22 − aij11 + cδij = 0, aij11 − aij22 + cδij = 0, aij21 + aij12 = 0.

Thus we find that c = 0 and

Aij =

(
αij βij
−βij αij

)
,

where αij and βij are real numbers. Due to the commutativity of Bd1 and A3, the condition

C0Bd1 − Bd1C0 = 0

provides that
CBd1 − Bd1C = 0.

13



In fact,

CBd1 −Bd1C = exA3C0e
−xA3Bd1 − Bd1e

xA3C0e
−xA3 = exA3(C0Bd1 − Bd1C0)e

−xA3 = 0.

Thus,
C(x) = exA3C0e

−xA3 ,

where the matrices C0, A and A3 satisfy the conditions

C0Bd1 − Bd1C0 = 0, A3Bd1 − Bd1A3 = 0, A3C0 − C0A3 6= 0.

As an example let us consider n = 2, and the matrices

A3 =




0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0


 , C0 =




c11 c12 c13 c14
−c12 c11 −c14 c13
c31 c32 c33 c34
−c32 c31 −c34 c33


 .

It is trivial to check that if Aij = 0 for i ≤ j, then An
3
= 0, and hence

exA3 =
n∑

j=0

xj

j!
Aj

3.

For these matrices one obtains

C1 ≡ C0A3 −A3C0 =




c32 −c31 c34 − c12 c11 − c33
c31 c32 c33 − c11 c34 − c12
0 0 −c32 c31
0 0 −c31 −c32


 6= 0,

and

C = C0 + xC1 + x2




0 0 c31 c32
0 0 −c32 c31
0 0 0 0
0 0 0 0


 .

6.2. Classes of systems admitting three-dimensional Lie algebras

For this case the basis of such algebras consists of the generators

XA, X2 +XA2
, X3 +XA3

.

The commutators of these generators are

[X2 + (A2y) · ∇, X3 + (A3y) · ∇] = −2X3 + ((A3A2 − A2A3)y) · ∇,
[X2 + (A2y) · ∇, (Ay) · ∇] = ((AA2 − A2A)y) · ∇,
[X3 + (A3y) · ∇, (Ay) · ∇] = ((AA3 − A3A)y) · ∇.

Since the admitted Lie algebra is three-dimensional, then

A3(A2 + 2E)− A2A3 = α1A, A2A− AA2 = α2A, A3A− AA3 = α3A.

Choosing the matrix A = Bd1 leads to α2 = 0 and α3 = 0. As shown earlier the condition
that the matrices C0 and Bd1 commute is sufficient for satisfying the determining equations
CBd1 − Bd1C = 0 in this case.
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Hence
C(x) = exA3C0e

−xA3 ,

and the matrices C0, A2 and A3 satisfy the conditions:

A3(A2 + 2E)− A2A3 = α1Bd1 , A2Bd1 − Bd1A2 = 0, A3Bd1 −Bd1A3 = 0, (37)

Bd1C0 − C0Bd1 = 0, A2C0 − C0(A2 + 4E) = 0 A3C0 − C0A3 6= 0, tr(C0) = 0. (38)

Remark. Analyzing the first equation in (37). by multiplying it by Bd1 , and using com-
mutativity of the matrices A2 and A3 with the matrix Bd1 , we obtain

A3Bd1(A2 + 2E)−A2A3Bd1 = −α1E.

Then the general solution of this equation5 is

A3 = Ah −
α1

2
Bd1 ,

where Ah is the general solution of the homogeneous equation

Ah(A2 + 2E)− A2Ah = 0.

Note that for Ah = 0 one has that C(x) is constant, then Ah 6= 0. This implies that the matrix
A2 has an eigenvalue, say λ, such that λ+ 2 is also an eigenvalue of the matrix A2.

6.3. Classes of systems admitting four-dimensional Lie algebras

The basis of such Lie algebras consists of the generators

XA, X1 +XA1
, X2 +XA2

, X3 +XA3
.

The commutators of these generators are

[X1 + (A1y) · ∇, X2 + (A2y) · ∇] = −2(X1 + (A1y) · ∇) + ((A2A1 − A1A2 + 2A1)y) · ∇,
[X1 + (A1y) · ∇, X3 + (A3y) · ∇] = −(X2 + (A2y) · ∇) + ((A3A1 − A1A3 + A2)y) · ∇,
[X2 + (A2y) · ∇, X3 + (A3y) · ∇] = −2(X3 + (A3y) · ∇) + ((A3A2 − A2A3 + 2A3)y) · ∇.

[X1 + (A1y) · ∇, (Ay) · ∇] = ((AA1 −A1A)y) · ∇,
[X2 + (A2y) · ∇, (Ay) · ∇] = ((AA2 − A2A)y) · ∇,
[X3 + (A3y) · ∇, (Ay) · ∇] = ((AA3 − A3A)y) · ∇.

Since the admitted Lie algebra is four-dimensional, then

AA1 − A1A = α1A, A2A−AA2 = α2A, A3A− AA3 = α3A.

Choosing the matrix A = Bd1 leads to α1 = 0, α2 = 0 and α3 = 0.
Therefore

C(x) = exA3C0e
−xA3 ,

and the matrices C0, A1, A2 and A3 satisfy the conditions:

Bd1A1 −A1Bd1 = 0, A2Bd1 − Bd1A2 = 0, A3Bd1 − Bd1A3 = 0,

A1A2 − (A2 + 2E)A1 = β1Bd1 , A1A3 −A3A1 −A2 = β2Bd1 , A2A3 − A3A2 − 2A3 = β3Bd1 ,

A2C0−C0(A2+4E) = 0, C0A1−A1C0 = 0, C0Bd1−Bd1C0 = 0, tr(C0) = 0, A3C0−C0A3 6= 0.

As before the condition that the matrices C0 and Bd1 commute is sufficient for satisfying
the determining equations CBd1 − Bd1C = 0 in this particular case.

5See the details in Appendix.

15



6.4. Systems admitting two generators XA1
and XA2

For completeness we also derive conditions for systems admitting a Lie algebra with basis
generators XA1

and XA2
. Choosing A2 = Bd1 , the determining equations become

CA1 −A1C = 0, CBd1 −Bd1C = 0. (39)

Note that
A1 = PBd1P

−1,

with some nonsingular constant matrix satisfying the condition

PBd1 − Bd1P 6= 0.

The first equation in (39) can be also rewritten in the form

P−1(CA1 − A1C)P = (P−1CP )Bd1 − Bd1(P
−1CP ) = 0.

7. Conclusion

We have given a general study of the group classification of systems of linear second-order
ordinary differential equations and found that irreducible linear systems (6) admitting one-
two- or three-dimensional Lie algebras (16) are equivalent to one of the following cases given in
subsection (5.7), that is, (a), (b) and (c). This result has been stated as a Theorem in Section
5 of the paper. The results were discussed and in two or more of the cases which had the
admitted generators of the form XA the study was similar to that done in the earlier studies in
[1, 2, 3, 4]. A detailed discussion on systems admitting generators of the formXA has been given
in Section 6 of the paper. We note that the further classification of systems of second-order
ordinary differential equations of the type (6), considered here, is related with the classification
of the matrix A, reducing it to the Jordan form.

8. Appendix

Here analysis of matrix equations is discussed.

8.1. Algebraic background

8.1.1. Equations CB −BC = 0

Assume that there exists a constant real-valued m×m matrix B such that

CB − BC = 0.

Notice that since the matrix B is real-valued, then for a complex eigenvalue λ of the matrix
B there is a conjugate eigenvalue λ̄. We call a matrix C a reducible matrix if there exists a
nonsingular real-valued matrix P such that

PCP−1 =

(
G1 G2

0 G3

)
,

where G1 and G3 are squared matrices with dimG3 ≥ 1.
It is shown in this section that for an irreducible matrix C with m ≥ 3 the matrix B can

be assumed to be one of the matrices: either B = αE or

B =




B0 0 ... 0
0 B0 ... 0
... ... ... ...
0 0 ... B0


 , B0 =

(
α β
−β α

)
, (40)
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where E is the unit matrix, α and β are real numbers.
Let the matrix B have at least one eigenvalue λ1 such that λ1 (and its conjugate λ̄1 in the

case of complex λ1) differs from other eigenvalues, then by virtue of the decomposition theorem
(see p.160 in [13]) there exists a nonsingular real-valued matrix P such that

B = P−1

(
B1 0
0 B2

)
P,

where the matrices B1 and B2 are square matrices which have no common eigenvalues.
Using the change

ỹ = Py,

and because of the equality

PCP−1(PBP−1)− (PBP−1)PCP−1 = 0,

one can assume that

B =

(
B1 0
0 B2

)
.

Let

C =

(
C1 C2

C3 C4

)
,

then

CB − BC =

(
(C1B1 − B1C1) (C2B2 − B1C2)
(C3B1 − B2C3) (C4B2 − B2C4)

)
= 0.

Hence, one obtains that

C2B2 − B1C2 = 0, C3B1 − B2C3 = 0.

Since B1 and B2 have no common eigenvalues, these equations imply that (see p.196 in [12])

C2 = 0, C3 = 0.

This means that a system of ordinary differential equations (6) with the matrix C is reducible.
Thus, for irreducible systems the matrix B has only one eigenvalue, say λ (and its conjugate λ̄
in the case of complex λ).

Further analysis6 gives that for irreducible to fewer dimension systems the matrix B is
equivalent to a diagonal matrix. This means that the matrix B can be only of the following
two types: either B = αE or B = Bd. Moreover, if the matrix B is of the second type, then
the matrix C has a block structure of the form (m = 2n)

C =




C11 C12 ... C1n

C21 C22 ... C2n

... ... ... ...
Cn1 Cn2 ... Cnn


 , (41)

where

Cij =

(
αij βij
−βij αij

)
,

αij and βij are real numbers.

6Symbolic computer calculations were applied for this analysis.
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8.1.2. Analysis of the matrix equation AG−G(A + 2E) = αE

Here we consider the matrix equation

AG−G(A + 2E) = αE, (42)

where the matrix G and A are real-valued m×m matrices and α is a real number. The matrix
A is assumed to be given, the matrix G is unknown.

One can check that G = −α
2
E is a particular solution of this equation. Hence, the general

solution of equation (42) is (see [12])

G = Gh −
α

2
E,

where Gh is the general solution of the homogeneous equation

AG−G(A+ 2E) = 0. (43)

If the matrices A and A+ 2E have distinct sets of eigenvalues, then the general solution of
the homogeneous equation is unique (see [12]): Gh = 0.

8.2. Solution of the matrix ordinary differential equation

The solution of the Cauchy problem of the matrix ordinary differential equation (see p.175
in [14])

X ′ = A(x)X +XB(x), X(0) = C0

is given by the formula
X = Y C0Z,

where
Y ′ = A(x)Y, Y (0) = E, Z ′ = ZB(x), Z(0) = E.
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