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Abstract

We determine the Lie point symmetries of a class of BBM-KdV systems and establish
its nonlinear self-adjointness. We then construct conservation laws via Ibragimov’s
Theorem.
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1 Introduction
Motivated by the works [4], 5], we introduce the following class of systems

{ Fy =u + (a + b)vu, + (au + ¢)vg + €Upypy + KUzpy =0 (1)

Fy = v + (bu + ¢)ug + (a + b)vvg + Migee + 0Vizp =0

henceforth simply referred to as BBM-KdV system, a two-component generalizatio
of the classic equations [2]

BBM: u;+ (u+ 1)ug — Uy =0 (2)

and
KdV: u + (u+ 1ug + tgee = 0, (3)

with the objective of studying it from the point of view of the group analysis.

Hf w4 = v, the system () is reduced to equations u; + [(2a + b)u + c|us + €Uppr + Klzze = 0 and
ug + [(a + 2b)u + cluy + oUtpe + AMigre = 0. Both contain ([2) and (3) as special cases.
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In (), the constants are such that (a + b)c # 0 and {e, k, A\, 0} # {0}. Particularly
when ¢ = ¢ = 1 and b = 0, we obtain the already widely investigated systems of
Boussinesq (¢ =k = A =0, 0 = —1/3), Kaup (¢ = A = 0 =0, K = 1/3) and Bona-
Smith (¢ = 0 = A/2—-1/6, kK = 0, A < 0), all of them first-order approximations to
the Euler equations in the framework of hydrodynamics. Useful in situations where
dissipative effects are not significant, these models provide a good description for the
two-dimensional motion of small-amplitude long waves on the surface of an ideal fluid.
In this context, the independent variable z represents the distance traveled along a
fixed depth channel and ¢ the time. The quantities u(¢, x) and v(¢, z) are related to the
deviation of the surface from its undisturbed level and to the horizontal velocity of the
fluid, respectively. For more information, see [4, 5] and references therein. Relevant
results, including exact solutions, can be found in [I, 6] [7].

It’s well known that evolution equations don’t possess an usual Lagrangian. There-
fore this paper is thus organized: first we determine the Lie point symmetries (Section
2) of the BBM-KdV system and establish its nonlinear self-adjointness (Section 3); we
then construct conservation laws via Ibragimov’s Theorem (Section 4), an extension of
the celebrated Noether’s Theorem to problems with no variational structure. In the
next sections, unless otherwise stated, ¢;’s are arbitrary constants. All functions are
smooth.

We consider that the reader is familiar with the fundamental concepts of group
analysis. The basic literature used is [3|, 8, 9} 10} [IT], 12} 13| [14].

2 Lie Point Symmetries Classification

Without many details, applying the standard algorithm presented in [3] and [14], a
differential operator

X = T(t,x,u,v)% + X(t,x,u,v)aa—x +U(t,x,u,v)% + V(t,x,u,v)%

generates the Lie point symmetries of the system () if the conditions of invariance (the
so-called determining equations)

Te=Tu=T, =X, =&, =0,
eX, =eX, =0X, =0X, =0,
U=U,=U,=V, =V, =ald — (au+ c)U, = 0,
B+ (b + ) Uy + 2(Ts — X,)] = 0,
KUy, +2X,) = AU, + 2(T; — 2X,)] = 0,
(a+0)V+ (Tt — X)v] — X =0

are satisfied. From (4)), it’s easy to see that

T = (a+b)ert + co, X = (a+b)(csz + cat) + c5,
U=2(c3—c1)(au+c), V= "_(a+b)(cs —c1)v+c4
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with
bla—b)(c; —e3) =0, ec3 = ecy = klacy — (2a+ b)es] =0,

Albe; — (a4 2b)es) = oc3 = ocy = 0.

Proposition 1. The Lie point symmetries of the BBM-KdV system are summarized
wn Table 1, where

0 0
X1 (CL+b) (ta —U%> —2<CLU+C)%,
0 0 0
Xy = pre X3 =(a+0) (93% +v%> + 2(au + c)%,
ag 0 0
X4— (a,—l—b)t%—}—a 5 X5 %
b= a= bla—0b) #0
X1 (Ii = 0)
ooy ={0}| 2t X00=0) | JUFN Ty x X
X2a X4a X5 > b >
X1 (k=X=
feob {0} | Xi(r=0), Xo X, | =201y
2 5

Table 1.

3 Self-Adjointness Classification

To begin with, let u and v be the new dependent variables. The formal Lagrangian of
the system () is
ﬁ == TLFl + T)Fg.

Calculated the adjoint equations

oL
Ff = = t + (a + b)vu, + (bu + ¢)v, + buv, + €Uy + Mgy = 0
Uu
oL ’
Fy = 5, = U + (au + ¢)t, + (@ + b)vv, — buu, + Ky, + 00y = 0
v

where §/du and 0/dv are Euler-Lagrange operators, we assume that
Fil@ao=(ew) = MF1L + NFy,  Fyl@ap=(py) = PP+ QF;. (5)
Here M, N, P and (@ is a set of coefficients to be determined and

o =p(t,z,u,v), =1t z,u,0) (6)



two functions that not vanish simultaneously. As

Ff ) =(ow) = Dip + (a+b)vDyp + (bu + ¢) D) + bpv, + €D D2 + AD31p
and

Fyl@o=ow) = Db + (au+ ¢) Dyp + (a+ b)vDyth — bpu, + kD30 + o DDy,
from () it’s possible to conclude that M = ¢,, N = ¢,, P =1, Q = ¢, and

¢ + (a+b)vp, = ep, =0,
U+ (au + ), = 1, =0,
bp = (au + c)p, — (bu + )iy,
Oy — Py = (€ = )y = Ky — M, = 0,
EPuy = Puv = Pww = 0.

Hence

o= (cit+c)av+ f(u) — gz, ©=c3v+ (1t + cx)au+ cict + ¢4

with
bCl = bCQ — €C; — 0C1 = (6 - O')Cg = O,

ef"(u) = kf'(u) — Aeg = 0,
bf(u) = (au+ ) f'(u) — (bu + ¢)cs.

Proposition 2. The BBM-KdV system is nonlinearly self-adjoint. The substitutions
@) are as follows.

i) If b =0,

w = (c1t + co)av + cseln(au + ¢) — c1x + ¢4, ¥ = czav + (1t + e2)(au + ¢) + ¢

where
¢1 =0, to {e, 0} # {0},
co =0, to e # o,
c3 =0, to {e, k, A} # {0}.
i) If a = b,
v =(au+c)ciln(au+c¢) + 2], ¥ =crav+c3
where

C1 = 07 to {67 K, )\} # {0}7
co =0, to k #0.

iii) Let b(a — b) # 0.



iii.a) Ifa =0,
© = cre?/C — ca(bu+2¢), = cbv+c3

where

c =0, to {e,k} # {0},
co =0, to kK # —A\.

iii.b) If a # 0,

¢ = ci(au+ )" + co[b*u+ (2b — a)c], ¥ = ca(a —b)bv + c5

where

c =0, to {e,k} # {0},
¢ =0, to Aa # (k+ A\)b.

Remark. Actually, the system () is quasi self-adjoint. It becomes strictly self-adjoint
in only two circumstances: a = 2b and k = \; or b =0 and € = 0.

4 Conservation Laws

In view of Proposition 2, the components of the conserved vector C' = (C*,C%) as-
sociated to X, a Lie point symmetry admitted by the system (II), are according to
Ibragimov’s Theorem given by

C' = (o — €DypD )W + (¢ — aDap D)W

and

C* = [(a+b)vy + (bu + c) + e(pDy D, + Dy D,) + )\(@DDi — D,YD, + Diw)]W“ﬂL
+ [(au+ c)p + (a + b)vy + 0(¥D; D, + DiDyt)) + k(D2 — DypD, + D2p)]W*,

with
We=U—-Tu; — Xu,, W'=YV —Tuv, — Xv,.
We find the conservation laws corresponding to each generator of Table 1. In most
cases, however, we are led to trivial vectors or the vectors

C'=u+ €Uy, C%=(au-+c)v+ Ky,
and
C'=2(v+ 0vy), CF = (a+ b)v® + (bu + 2¢)u + 2\ gy

that can be obtained from the first (when b = 0) and second equation of the BBM-KdV
system by simple integration (obvious conservation laws). The really interesting cases
we list below.



Proposition 3. i) Let b = 0.

i.a) From X1, 2X; 4+ X3 and X,, we obtain

C' = 2(uv — euyv,),

C* = cu® + (2au + c)v? — (A2 + kv?) + 2[u(Mug + evy), + v(eu; + Kvg )]

when € = 0.
i.b) For e =k =0, Xy also provides

1 a
t — 1 2 2
C a(au + ¢)In(au + ¢) + 2C(v ovy),

2
C* = (au+ c¢)[In(au + ¢) + 1]v + a—: (% + O”Um)

when A =0 and

C' = 2[t(au + c)v — zu),
C* = tle(au + 2c)u — adu?] + 2(au + ¢)[(atv — 2)v + Mz,

when o = 0.
ii) Let a = b.
ii.a) From X; and 3X; + X3, we obtain

C" = (au + 2c)u — aeu?,

C* =2(au+ ¢)[(au + ¢)v + ey,

when K = 0.
ii.b) X also provides
1
C' = ~(au+ c¢)*In(au + ¢) + a(v® — ov?),
a

N ) 2av?
C* = (au+ ¢)*[2In(au + ¢) + 1]v + 2av 3 + oV

when e =k =\ = 0.
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