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Abstract

We determine the Lie point symmetries of a class of BBM-KdV systems and establish
its nonlinear self-adjointness. We then construct conservation laws via Ibragimov’s
Theorem.
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1 Introduction

Motivated by the works [4, 5], we introduce the following class of systems

{

F1 ≡ ut + (a + b)vux + (au+ c)vx + ǫutxx + κvxxx = 0

F2 ≡ vt + (bu+ c)ux + (a + b)vvx + λuxxx + σvtxx = 0
, (1)

henceforth simply referred to as BBM-KdV system, a two-component generalization1

of the classic equations [2]

BBM: ut + (u+ 1)ux − utxx = 0 (2)

and
KdV : ut + (u+ 1)ux + uxxx = 0, (3)

with the objective of studying it from the point of view of the group analysis.

1If u = v, the system (1) is reduced to equations ut + [(2a + b)u + c]ux + ǫutxx + κuxxx = 0 and
ut + [(a+ 2b)u+ c]ux + σutxx + λuxxx = 0. Both contain (2) and (3) as special cases.
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In (1), the constants are such that (a + b)c 6= 0 and {ǫ, κ, λ, σ} 6= {0}. Particularly
when a = c = 1 and b = 0, we obtain the already widely investigated systems of
Boussinesq (ǫ = κ = λ = 0, σ = −1/3), Kaup (ǫ = λ = σ = 0, κ = 1/3) and Bona-
Smith (ǫ = σ = λ/2 − 1/6, κ = 0, λ < 0), all of them first-order approximations to
the Euler equations in the framework of hydrodynamics. Useful in situations where
dissipative effects are not significant, these models provide a good description for the
two-dimensional motion of small-amplitude long waves on the surface of an ideal fluid.
In this context, the independent variable x represents the distance traveled along a
fixed depth channel and t the time. The quantities u(t, x) and v(t, x) are related to the
deviation of the surface from its undisturbed level and to the horizontal velocity of the
fluid, respectively. For more information, see [4, 5] and references therein. Relevant
results, including exact solutions, can be found in [1, 6, 7].

It’s well known that evolution equations don’t possess an usual Lagrangian. There-
fore this paper is thus organized: first we determine the Lie point symmetries (Section
2) of the BBM-KdV system and establish its nonlinear self-adjointness (Section 3); we
then construct conservation laws via Ibragimov’s Theorem (Section 4), an extension of
the celebrated Noether’s Theorem to problems with no variational structure. In the
next sections, unless otherwise stated, ci’s are arbitrary constants. All functions are
smooth.

We consider that the reader is familiar with the fundamental concepts of group
analysis. The basic literature used is [3, 8, 9, 10, 11, 12, 13, 14].

2 Lie Point Symmetries Classification

Without many details, applying the standard algorithm presented in [3] and [14], a
differential operator

X = T (t, x, u, v)
∂

∂t
+ X (t, x, u, v)

∂

∂x
+ U(t, x, u, v)

∂

∂u
+ V(t, x, u, v)

∂

∂v

generates the Lie point symmetries of the system (1) if the conditions of invariance (the
so-called determining equations)

Tx = Tu = Tv = Xu = Xv = 0,

ǫXt = ǫXx = σXt = σXx = 0,

Ut = Ux = Uv = Vt = Vx = aU − (au+ c)Uu = 0,

bU + (bu+ c)[Uu + 2(Tt − Xx)] = 0,

κ(Uu + 2Xx) = λ[Uu + 2(Tt − 2Xx)] = 0,

(a + b)[V + (Tt − Xx)v]− Xt = 0

(4)

are satisfied. From (4), it’s easy to see that

T = (a + b)c1t + c2, X = (a + b)(c3x+ c4t) + c5,

U = 2(c3 − c1)(au+ c), V = (a+ b)(c3 − c1)v + c4
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with
b(a− b)(c1 − c3) = 0, ǫc3 = ǫc4 = κ[ac1 − (2a+ b)c3] = 0,

λ[bc1 − (a + 2b)c3] = σc3 = σc4 = 0.

Proposition 1. The Lie point symmetries of the BBM-KdV system are summarized

in Table 1, where

X1 = (a+ b)

(

t
∂

∂t
− v

∂

∂v

)

− 2(au+ c)
∂

∂u
,

X2 =
∂

∂t
, X3 = (a + b)

(

x
∂

∂x
+ v

∂

∂v

)

+ 2(au+ c)
∂

∂u
,

X4 = (a+ b)t
∂

∂x
+

∂

∂v
, X5 =

∂

∂x
.

b = 0 a = b b(a− b) 6= 0

{ǫ, σ} = {0}
X1 (κ = 0)

2X1 +X3 (λ = 0)
X2, X4, X5

3X1 +X3

X2, X4, X5
X2, X4, X5

{ǫ, σ} 6= {0} X1 (κ = 0), X2, X5
X1 (κ = λ = 0)

X2, X5
X2, X5

Table 1.

3 Self-Adjointness Classification

To begin with, let ū and v̄ be the new dependent variables. The formal Lagrangian of
the system (1) is

L = ūF1 + v̄F2.

Calculated the adjoint equations











F ∗

1 ≡ −
δL

δu
= ūt + (a+ b)vūx + (bu+ c)v̄x + būvx + ǫūtxx + λv̄xxx = 0

F ∗

2 ≡ −
δL

δv
= v̄t + (au+ c)ūx + (a+ b)vv̄x − būux + κūxxx + σv̄txx = 0

,

where δ/δu and δ/δv are Euler-Lagrange operators, we assume that

F ∗

1 |(ū,v̄)=(ϕ,ψ) =MF1 +NF2, F ∗

2 |(ū,v̄)=(ϕ,ψ) = PF1 +QF2. (5)

Here M , N , P and Q is a set of coefficients to be determined and

ϕ = ϕ(t, x, u, v), ψ = ψ(t, x, u, v) (6)
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two functions that not vanish simultaneously. As

F ∗

1 |(ū,v̄)=(ϕ,ψ) = Dtϕ+ (a+ b)vDxϕ+ (bu + c)Dxψ + bϕvx + ǫDtD
2
xϕ+ λD3

xψ

and

F ∗

2 |(ū,v̄)=(ϕ,ψ) = Dtψ + (au+ c)Dxϕ+ (a + b)vDxψ − bϕux + κD3
xϕ + σDtD

2
xψ,

from (5) it’s possible to conclude that M = ϕu, N = ϕv, P = ψu, Q = ψv and

ϕt + (a+ b)vϕx = ǫϕx = 0,

ψt + (au+ c)ϕx = ψx = 0,

bϕ = (au+ c)ϕu − (bu+ c)ψv,

ϕv − ψu = (ǫ− σ)ϕv = κϕu − λψv = 0,

ǫϕuu = ϕuv = ϕvv = 0.

Hence

ϕ = (c1t+ c2)av + f(u)− c1x, ψ = c3v + (c1t+ c2)au+ c1ct+ c4

with
bc1 = bc2 = ǫc1 = σc1 = (ǫ− σ)c2 = 0,

ǫf ′′(u) = κf ′(u)− λc3 = 0,

bf(u) = (au+ c)f ′(u)− (bu+ c)c3.

Proposition 2. The BBM-KdV system is nonlinearly self-adjoint. The substitutions

(6) are as follows.

i) If b = 0,

ϕ = (c1t+ c2)av + c3c ln(au+ c)− c1x+ c4, ψ = c3av + (c1t + c2)(au+ c) + c5

where










c1 = 0, to {ǫ, σ} 6= {0},

c2 = 0, to ǫ 6= σ,

c3 = 0, to {ǫ, κ, λ} 6= {0}.

ii) If a = b,
ϕ = (au+ c)[c1 ln(au+ c) + c2], ψ = c1av + c3

where
{

c1 = 0, to {ǫ, κ, λ} 6= {0},

c2 = 0, to κ 6= 0.

iii) Let b(a− b) 6= 0.
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iii.a) If a = 0,

ϕ = c1e
bu/c − c2(bu+ 2c), ψ = c2bv + c3

where
{

c1 = 0, to {ǫ, κ} 6= {0},

c2 = 0, to κ 6= −λ.

iii.b) If a 6= 0,

ϕ = c1(au+ c)b/a + c2[b
2u+ (2b− a)c], ψ = c2(a− b)bv + c3

where
{

c1 = 0, to {ǫ, κ} 6= {0},

c2 = 0, to λa 6= (κ+ λ)b.

Remark. Actually, the system (1) is quasi self-adjoint. It becomes strictly self-adjoint
in only two circumstances: a = 2b and κ = λ; or b = 0 and ǫ = σ.

4 Conservation Laws

In view of Proposition 2, the components of the conserved vector C = (Ct, Cx) as-
sociated to X , a Lie point symmetry admitted by the system (1), are according to
Ibragimov’s Theorem given by

Ct = (ϕ− ǫDxϕDx)W
u + (ψ − σDxψDx)W

v

and

Cx = [(a+ b)vϕ+ (bu+ c)ψ + ǫ(ϕDtDx +DtDxϕ) + λ(ψD2
x −DxψDx +D2

xψ)]W
u+

+ [(au+ c)ϕ+ (a+ b)vψ + σ(ψDtDx +DtDxψ) + κ(ϕD2
x −DxϕDx +D2

xϕ)]W
v,

with
W u = U − T ut − Xux, W v = V − T vt − X vx.

We find the conservation laws corresponding to each generator of Table 1. In most
cases, however, we are led to trivial vectors or the vectors

Ct = u+ ǫuxx, Cx = (au+ c)v + κvxx

and
Ct = 2(v + σvxx), Cx = (a+ b)v2 + (bu+ 2c)u+ 2λuxx

that can be obtained from the first (when b = 0) and second equation of the BBM-KdV
system by simple integration (obvious conservation laws). The really interesting cases
we list below.
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Proposition 3. i) Let b = 0.

i.a) From X1, 2X1 +X3 and X2, we obtain

Ct = 2(uv − ǫuxvx),

Cx = cu2 + (2au+ c)v2 − (λu2x + κv2x) + 2[u(λux + ǫvt)x + v(ǫut + κvx)x]

when ǫ = σ.

i.b) For ǫ = κ = 0, X1 also provides

Ct =
1

a
(au+ c) ln(au+ c) +

a

2c
(v2 − σv2x),

Cx = (au+ c)[ln(au+ c) + 1]v +
av

c

(

av2

3
+ σvtx

)

when λ = 0 and

Ct = 2[t(au+ c)v − xu],

Cx = t[c(au+ 2c)u− aλu2x] + 2(au+ c)[(atv − x)v + λtuxx]

when σ = 0.

ii) Let a = b.

ii.a) From X1 and 3X1 +X3, we obtain

Ct = (au+ 2c)u− aǫu2x,

Cx = 2(au+ c)[(au+ c)v + ǫutx]

when κ = 0.

ii.b) X1 also provides

Ct =
1

a
(au+ c)2 ln(au+ c) + a(v2 − σv2x),

Cx = (au+ c)2[2 ln(au+ c) + 1]v + 2av

(

2av2

3
+ σvtx

)

when ǫ = κ = λ = 0.
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