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Abstract

A number of reconstruction methods have been proposed recently for acceler-
ated functional Magnetic Resonance Imaging (fMRI) data collection. However,
existing methods suffer with the challenge of greater artifacts at high acceler-
ation factors. This paper addresses the issue of accelerating fMRI collection
via undersampled k -space measurements combined with the proposed Double
Temporal Sparsity based Reconstruction (DTSR) method with the l1− l1 norm
constraint. The robustness of the proposed DTSR method has been thoroughly
evaluated both at the subject level and at the group level on real fMRI data.
Results are presented at various acceleration factors. Quantitative analysis in
terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and qualitative
analysis in terms of reproducibility of brain Resting State Networks (RSNs)
demonstrate that the proposed method is accurate and robust. In addition,
the proposed DTSR method preserves brain networks that are important for
studying fMRI data. Compared to the existing accelerated fMRI reconstruction
methods, the DTSR method shows promising potential with an improvement of
10-12dB in PSNR with acceleration factors upto 3.5. Simulation results on real
data demonstrate that DTSR method can be used to acquire accelerated fMRI
with accurate detection of RSNs.

Keywords: Accelerated functional MRI, l1 minimization, sparse recovery,
compressed sensing, k-t acceleration, undersampling.

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) is a prominent and widely
used noninvasive neuroimaging modality [1, 2, 3]. It is used to understand brain
functions by measuring Blood Oxygen Level Dependent (BOLD) signals. BOLD
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fMRI signals are captured via T2∗ weighted imaging. Achieving high temporal
resolution remains challenging in fMRI. In addition, one of the major challenges
in fMRI is the low sensitivity of BOLD signals leading to images blurred with
motion and other artifacts. Poor sensitivity of BOLD signals leads to lower
Signal-to-Noise Ratio (SNR). Moreover, long scanning times lead to annoyance
in patients. Hence, there is a need to capture images in the shortest possible
time.

Various remedies have been proposed to address high spatio-temporal reso-
lution of fMRI such as development of high magnetic field scanner [4, 5, 6, 7],
coil sensitivity improvement inside fMRI scanner [8], advancements in pulse
sequences [9, 10], usage of parallel imaging [11, 12], and compressed sensing
(CS) based fMRI reconstruction from fewer k-space (spatial Fourier domain)
measurements [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In this paper, we ad-
dress the problem of accelerated fMRI reconstruction without the loss of BOLD
sensitivity in the CS framework.

Compressive sampling involves capturing of less data [23]. Since acquisition
time is directly related to the number of measurements, CS reduces the data
acquisition time in fMRI. CS allows reconstruction of fMRI brain volumes using
less number of k-space measurements that are picked up at a sampling rate
lower than the Nyquist sampling rate, provided some assumptions hold true. In
general, it is assumed that the data is sparse in some transform domain and that
the chosen samples are incoherent [15]. Compressive sensing framework helps
in fMRI reconstruction in two significant ways: 1) It helps in increasing the
statistical power of the BOLD signal [16, 19] because of its inherent denoising
property and 2) it provides improvement in the spatiotemporal resolution of
fMRI data [17, 21, 13, 22, 14, 18, 20, 15, 24, 25].

Various CS based reconstruction methods have been proposed so far for ac-
celerated fMRI reconstruction [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 24]. These
methods can be largely divided into two categories. First category includes on-
line methods that reconstruct fMRI data in real time [13, 14, 15, 16, 17]. These
methods reconstruct brain volume at time t using the volume at time t− 1 by
assuming causality in the reconstruction framework. Second category includes
offline methods that first store k -space data of all fMRI volumes and later, uti-
lize this complete information across both time and space, also called k-t space
data, to reconstruct fMRI data [18, 19, 20, 21, 22, 25, 24].

Many offline reconstruction methods, such as Compressed sensing with wavelet
domain sparsity (CSWD) [19], HSPARSE [20], k-t FASTER [21], and LR+S
[22], have been proposed in the fMRI literature. These methods largely differ
in regularization constraints in CS fMRI reconstruction framework. CS fMRI
solves a set of underdetermined equations that has infinitely many solutions.
In order to recover a unique solution corresponding to the signal of interest,
regularization constraints are added. Often, sparsity in some transform domain
is added as the regularization constraint. Theoretical studies have shown that
it is possible to recover sparse signals by l1 norm minimization [26].

For example, in [19], undersampled fMRI data is reconstructed using com-
pressed sensing with sparsity of fMRI data in the wavelet domain, wherein or-
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thogonal Daubechies wavelet is used as the sparsifying basis. In [19], fMRI data
is reconstructed using l1 norm constraint by assuming sparsity in the temporal
direction. Recently, in [20], both temporal and spatial sparsity are exploited
to recover fMRI data. Here, CS is also utilized to gain high spatial resolution
fMRI and method is named as High Spatial Resolution Compressed Sensing
(HSPARSE) [20].

In [21], k-t FASTER method is proposed that recovers a low rank signal via
iterative hard thresholding of singular values of data matrix in the CS frame-
work. In another work [22, 24], fMRI reconstruction is performed using low-rank
plus sparse (LR+S) decomposition of fMRI signals. Here, an iterative frame-
work is used that reconstructs the low rank and the sparse components of fMRI
data separately.

In this paper, we introduce a novel offline fMRI reconstruction method. In
fMRI, same brain volumes are scanned repeatedly over time in order to study
brain’s function. This fact is used as an advantage in the proposed method
via total variation based regularization [27] because scanning of the same brain
volume over time brings similarity in the temporal direction. In addition, we im-
pose conventional temporal sparsity in the proposed reconstruction framework
and hence, name the proposed method as Double Temporal Sparsity based Re-
construction (DTSR).

We thoroughly evaluate the robustness and the feasibility of the proposed
DTSR method both at subject and group levels of real fMRI data analysis.
The performance of DTSR method has been preliminary evaluated using ret-
rospective undersampling of the fully available fMRI dataset. We compare the
performance of the proposed method with other offline methods such as Com-
pressed Sensing with Wavelet domain Sparsity (CSWD) [19], HSPARSE [20], k-t
FASTER [21], and LR+S [22]. Results demonstrate that DTSR is able to im-
prove BOLD sensitivity both at the individual and at the group level compared
to other methods. Existing reconstruction methods produce greater artifact at
high acceleration factors. The proposed DTSR reconstruction method increases
temporal resolution without affecting the spatial resolution and can be used to
provide accelerated high temporal resolution fMRI reconstruction with accurate
detection of intrinsic brain’s Resting State Networks (RSNs).

Key contributions of this work are summarized as below:

• A double temporal-sparsity based reconstruction framework is proposed
for the robust reconstruction of undersampled fMRI data.

• An algorithm is designed to solve the proposed DTSR reconstruction ap-
proach using the state-of-the-art Alternating Direction Multiplier Method
(ADMM).

• The performance of our proposed method is evaluated on real dataset
using both quantitative and qualitative analysis. Quantitative analysis
in terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and
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qualitative analysis in terms of reproducibility of brain RSNs demonstrate
the robustness and efficacy of the proposed DTSR reconstruction method.

This paper is organized into five sections. In the Materials and Methods sec-
tion, we discuss dataset description and some preliminary theory. In this section,
we also present the proposed DTSR reconstruction method. We present exper-
imental results on fMRI data in Section 3. We provide a thorough discussion
of reconstruction results in section 4. In the end, conclusions are presented in
section 5.

2. Materials and Methods

2.1. Dataset Description

The proposed DTSR method has been evaluated on the freely available Bei-
jing Zang resting state fMRI dataset. This real fMRI dataset is a part of
Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) 1000
functional connectomes project [28].

It consists of an acquisition of 33 axial interleaved ascending brain slices with
a dimension of 64x64 at each time point with Repetition Time (TR) equal to 2
seconds. The fMRI brain data is collected over 225 time points. This dataset
consists of 198 subjects’ resting-state fMRI data, aged between 18 to 26 years
of age and acquired while subjects’ eyes were closed. For more details on this
dataset, please refer to the website1. For this paper, data of first 20 subjects
from the set of 198 Beijing Zang subjects has been downloaded from the 1000
functional connectomes project’s online database.

2.2. Preliminaries

This subsection presents the CS-based fMRI reconstruction problem for-
mulation. Consider a 4-D fMRI dataset Rnx×ny×nz×T , where nz denotes the
number of brain slices with each slice of dimension nx × ny and T denotes the
number of time points. In fMRI, 3-D brain volumes (each volume is made up
of nz number of brain slices) are captured repeatedly over T number of time
points.

Consider a Casorati matrix X = [x1,x2, ...,xT ] ∈ Rn×T of any brain slice,
where n = nx × ny are the number of voxels in that brain slice and T denotes
the total number of time points. Each column xt ∈ Rn of X represents the
brain slice at the tth time point. In accelerated fMRI, less amount of slice
data is captured in the k-space in order to achieve quicker scanning of slices.
This allows capturing of more brain volumes in a given time leading to higher
temporal resolution. Consider Y to be such a compressively sensed k-space data
that can be represented as

Y = ΦFX + ξ, (1)

1http://fcon_1000.projects.nitrc.org/
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where F denotes the 2-D Fourier transform operator applied on the Casorati
matrix X for transforming this data to the k-space domain, Φ is the sensing
matrix that contains information about the partial measurements in the k-space
domain, and ξ ∈ Rn×T denotes the measurement noise. Given a sensing matrix
Φ, the aim of any fMRI reconstruction method is to recover Casorati data matrix
X from partial Fourier measurements Y. Reconstruction is done independently
for all nz brain slices.

The task of computing X from Y is an underdetermined inverse problem. It
is not possible to solve (1) by computing the inverse because the sensing matrix
Φ in the forward equation is usually ill-conditioned due to large undersampling.
Therefore, in general the problem needs to be regularized to find a solution. A
relatively simple solution is a well known sparsity regularization [19].

Sparse recovery methods assume the desired signal to be sparse over some
known apriori transform basis Ψ and hence, l1 norm in the corresponding do-
main is used as regularization to recover the signal. l1 norm is used as a surro-
gate for standard sparsity inducing l0 norm because regularization over l0 norm
is a non-deterministic polynomial (NP) hard problem. Thus, using sparsity
regularization, fMRI reconstruction problem can be formulated as

X̂ = arg min
X
‖Y −ΦFX‖2F + λ1 ‖ΨX‖1 , (2)

where ‖·‖2F denotes the Frobenius norm that is defined as ‖Y −ΦFX‖2F =
Tr[(Y−ΦFX)T (Y−ΦFX)], Ψ denotes the sparsifying transform basis, ‖·‖1 is
the l1 norm, and λ1 is the regularization parameter that governs the sparsity on
X over the Ψ basis. The first term in (2) is the data fidelity term that minimizes
the variance of noise ξ, while the second term is the sparsity promoting term.
In general, Forbenius norm and l1 norm of any matrix A ∈ Rn×T are defined as

‖A‖2F =

n∑
i=1

T∑
j=1

a2ij and ‖A‖1 =

n∑
i=1

T∑
j=1

|aij | . (3)

2.3. Proposed DTSR Method

Consider the Casorati matrix X for any brain slice, where each column xt
represents the vectorized brain slice captured at the tth time point. Since a
brain slice over adjacent time points may contain less amplitude changes, the
difference of adjacent columns of this Casorati matrix exhibits strong sparsity.
Fig.1 illustrates sparsity of the first difference between two consecutive axial
brain slices. From this figure, it is reasonable to assume that the successive
difference of columns of Casorati matrix is sparse, i.e., the amplitude difference
of slice at time point t and t-1 is sparse. This form of difference sparsity is also
known as total variation in the case of 1-D signal recovery [27]. We call this
sparsity in the context of fMRI as total variation temporal sparsity because it
exploits sparsity in the temporal direction. In addition to this, we also impose
conventional temporal sparsity, i.e., the sparsity of the temporal data in some
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(a) Middle slice at 10 consecutive time points of one subject

(b) Difference images to show total variation temporal sparsity, where difference is
computed over successive slices at t and t-1 time points. First time point of brain

slice is considered without differencing as shown.

Figure 1: Illustration of total variation temporal sparsity on middle slice of one
subject’s fMRI data. Total variation temporal sparsity method arises due to

repeated scanning of the same brain volume in fMRI to study brain’s function.
Scanning of the same brain volume over time brings similarity in the temporal

direction that can be utilized via total variation based regularization.

transform domain and hence, name the proposed method as Double Temporal
Sparsity based Reconstruction (DTSR).

In the total variation temporal sparsity, the difference matrix of X is assumed
to be sparse. This difference matrix is formed by performing the first difference
on the consecutive columns of X. First differencing is performed from 2nd

column onwards. Thus, the DTSR objective function can be formulated as

X̂ = arg min
X
‖Y −ΦFX‖2F + λ1 ‖ΨX‖1 +

λ2

T∑
t=2

|xt − xt−1| ,
(4)

where λ1 and λ2 are non-negative regularization parameters. Since second reg-
ularization term in (4) is non-differentiable, it is not easy to solve DTSR in this
formulation. Thus, (4) is reformulated below with matrix version that provides
efficient solution to this problem.

X̂ = arg min
X
‖Y −ΦFX‖2F + λ2 ‖ΨX‖1 + λ3 ‖XD‖1 . (5)
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Here, D performs first order differencing on the successive columns of the
given matrix X and is defined as:

D =



−1 1 0 . . 0 0
0 −1 1 0 . . 0
0 0 −1 1 0 . .
0 0 . . . . .
. . . . . . 0
0 . . . 0 −1 1
0 0 . 0 0 0 −1


.

The total variation temporal sparsity is illustrated on real dataset in Fig.2a
and Fig.2b that plot sorted values of X and XD, respectively. All 33 slices
of one randomly selected subject’s data is used in these figures. This figure
indicates that the sparsity assumption on XD is reasonably valid.

2.3.1. Algorithm Design

In this subsection, an algorithm is designed to solve (5) using the alternating
direction multiplier method (ADMM) [29]. ADMM is suitable for constrained
optimization problems and is being used extensively since past few years [30, 31,
32, 33]. This technique facilitates solution by decomposing the original objective
function into multiple objective functions that are easy to solve.

Following [29], two auxiliary matrices W ∈ Rn×T and Z ∈ Rn×T are intro-
duced in (5) as

X̂ = arg min
X
‖Y −ΦFX‖2F + λ1 ‖W‖1 + +λ2 ‖Z‖1

s.t. W = ΨX, Z = XD.
(6)

In addition to this, constraints with equality are added for each of the aux-
iliary matrices. Thus, the new objective function is written as:

arg min
X,Z,W

‖Y −ΦFX‖2F + λ1 ‖W‖1 + λ2 ‖Z‖1 +

η1
2
‖W −ΨX−B1‖2F +

η2
2
‖Z−XD−B2‖2F ,

(7)

where η1 and η2 are penalty parameters and, B1 and B2 are the Lagrange
multipliers used to enforce equality between the original and auxiliary matrices.

ADMM updates variables W, Z, and X alternately in the above defined
augmented Lagrangian function. The minimization over one variable in an
iteration assumes the other two variables to be fixed. Therefore, the above
function can be alternately optimized over each variable separately. This allows
splitting of (7) into different subproblems with three new objective functions
stated as below:

P1 : arg min
W

λ1 ‖W‖1 +
η1
2

∥∥∥W −ΨXj-1 −Bj-1
1

∥∥∥2
F
, (8)
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(a) Decay of coefficients of X

(b) Decay of coefficients of XD

Figure 2: Illustration of sparsity of X and XD, where X represents a brain slice
stacked over all time points and D performs first differencing on the successive

columns of the given matrix X, or in other words performs total variation temporal
sparsity. Fig.2a and Fig.2b plot sorted coefficients of X and XD corresponding to a

real dataset. All 33 slices of one randomly selected subject’s data is used in these
figures. This figure indicates that the sparsity assumption on XD is reasonably valid

because Fig.2b has more sparse coefficients compared to Fig.2a.
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P2 : arg min
Z

λ2 ‖Z‖1 +
η2
2

∥∥∥Z−Xj-1D−Bj-1
2

∥∥∥2
F
, (9)

P3 : arg min
X
‖Y −ΦFX‖2F +

η1
2

∥∥∥Wj −ΨX−Bj-1
1

∥∥∥2
F

+

η2
2

∥∥∥Zj −XD−Bj-1
2

∥∥∥2
F
,

(10)

where j is the iteration number. P1 and P2 subproblems minimize objective
functions over W and Z, respectively, with fixed X. P3 minimizes the objective
function over X with fixed W and Z. Above three subproblems are solved
iteratively along with the update of Lagrange multipliers B1 and B2. The
complete algorithm is summarized in Algorithm 1, while the solution of each
subproblem is explained in the next few subsections.

Algorithm 1 Pseudo code of the proposed DTSR method

1: Initialize λ1, λ2, η1, η2, B0
1, B0

2, X0, j=1
2: while convergence criteria not met do
3: P1-subproblem

Wj = arg min
W

λ1 ‖W‖1 +
η1
2

∥∥∥W −ΨXj−1 −Bj−1
1

∥∥∥2
F
.

4: P2-subproblem

Zj = arg min
Z

λ2 ‖Z‖1 +
η2
2

∥∥∥Z−Xj−1D−Bj−1
2

∥∥∥2
F
.

5: P3-subproblem

Xj = arg min
X
‖Y −ΦFX‖2F +

η1
2

∥∥∥Wj −ΨX−Bj−1
1

∥∥∥2
F

+
η2
2

∥∥∥Zj −XD−Bj−1
2

∥∥∥2
F
.

6: Lagrange multipliers update

Bj
1 = Bj−1

1 + ΨXj −Wj .

Bj
2 = Bj−1

2 + XjD− Zj .

7: j=j+1
8: end while
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2.3.2. P1 and P2 Subproblems

The first two subproblems are l1 minimization problems. For any l1 mini-
mization problem such as

min
P

α ‖P‖1 +
β

2
‖P−Q‖2F , (11)

where P,Q ∈ Rn×T and α, β > 0, the solution is [25]

P = Soft(Q, 2
α

β
A), (12)

where A is a matrix containing all ones and Q on the right hand side in the
above equation is an initial estimate of P. The definition of ‘Soft ’ is

Soft(Q, νA) = sgn(Q)⊗max {0, |Q| − νA} , (13)

where ν = α
β , ⊗ denotes the element-wise product, and |Q| denotes a matrix

with absolute values of Q. A in the above equation ensures soft thresholding on
all elements of Q. For the nonzero elements of Q, sgn(Q) = Q./ |Q|, otherwise
sgn(Q) = 0.

Hence, the closed form solution of W at the iteration number j in the P1-
subproblem is

Wj = Soft((ΨXj−1 + Bj−1
1 ), 2

λ1
η1

A). (14)

Once W at iteration j is estimated from the subproblem P1, the next step is
to estimate Z from the subproblem P2. Using Xj−1 and Bj−1

2 from the previous
iteration, Zj can be obtained via a closed form as

Zj = Soft((Xj−1D + Bj−1
2 ), 2

λ2
η2

A). (15)

2.3.3. P3 Subproblem

This subproblem is quadratic. It can be efficiently solved using the conjugate
gradient algorithm. We used the line search conjugate gradient algorithm as
used in [33].

2.3.4. Update of Lagrange Multiplier Variables

Last step is the update of Lagrange multipliers that is explained in Algo-
rithm 1. Lagrange multipliers help in achieving convergence in the subsequent
iterations. In this algorithm, convergence is checked either by comparing con-
vergence of the objective function in (4) with a threshold or with the maximum
number of iterations reached.
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3. Results

3.1. Implementation Details

3.1.1. Temporal Sparsity Domain

In general, sparsity is imposed in the transform domain Ψ as shown in (2)
and (4). Recently, in our previous work [25], we observed that fMRI data is
more sparse in the temporal Fourier domain, i.e., in the Fourier domain of
every voxel’s time series. Hence, the matrix resulting by computing the Fourier
transform of X along every row leads to a temporal Fourier transformed matrix
that is sparse. In order to demonstrate this, we plot the sorted temporal Fourier
transformed coefficients of matrix X corresponding to the middle slice of one
subject (Refer to Fig.3).

(a) (b)

(c) (d)

Figure 3: Illustration of increased sparsity of fMRI data in the temporal Fourier
Transform domain. One subject’s sorted log magnitude values of coefficients of
matrix X obtained using: (a) no transform; (b) 3-level dB4 wavelet in spatial

direction; (c) 2-D Discrete Cosine Transform in spatial directions; (d) 1-D Discrete
Fourier Transform along the rows of X.
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From these figures, we observe that fMRI data is sparser in the temporal
frequency domain. Hence, in (4), we consider Ψ as the corresponding temporal
Fourier domain sparsifying matrix, i.e., it computes the Fourier transform along
every row of X.

3.1.2. Retrospective Undersampling

In this paper, undersampled k − t space data Y is acquired by retrospec-
tive undersampling of the Fourier transform of the fully available data. Radial
sampling patterns are used to undersample available k-space data as used in
[34, 24, 25]. These patterns represent different sampling masks used for one
brain slice of size nx × ny at one time point with zeros at non-sampled loca-
tions and ones at sampled locations. Sensing matrix Φ in (4) is constructed by
stacking sampling masks of all T time points.

3.1.3. Regularization Parameters

The proposed DTSR method requires seven parameters λ1, λ2, η1, η2, B0
1,

B0
2, and X0 to be initialized as shown in Algorithm 1. η1 and η2 are initialized

as 10−2. Lagrange multipliers B0
1 and B0

2 are initialized to matrices containing
all one’s. We used L-curve method to initialize λ1 and λ2 [35] based on the
maximization of peak signal-to-noise ratio (PSNR) compared to the ground
truth (fully available dataset). With this method, we arrive at the following
values: λ1=λ2=0.5. The fMRI data matrix X0 in subproblem P1 is initialized
using the crude initial estimate obtained via direct inverse Fourier transform
(IFT). Direct IFT method computes IFT of given k− t space data Y as shown
below:

X0 = IFT (Y). (16)

3.2. Related Reconstruction Methods

We compare results of the proposed DTSR method with other offline fMRI
reconstruction methods including CSWD [19], HSPARSE [20], k-t FASTER [21],
and LR+S [22]. Below we present brief overview of each of the reconstruction
methods implemented. We also provide regularization parameter values used in
the simulation of these methods.

3.2.1. CS with Wavelet Domain Sparsity (CSWD) [19]

In this method, compressive sensing based reconstruction of fMRI data is
carried out assuming the fMRI data to be spatially sparse in the wavelet domain
[19]. Hence, fMRI reconstruction is done by using the optimization framework
as explained in (2). Here, Ψ is a wavelet matrix operator. We used Daubechies
orthogonal wavelet ‘db4’ (filter lengths 8) with 3-level decomposition as used in
[19]. We used non-linear conjugate gradient method to solve CSWD [36]. We
used the default value of λ1=0.1 as specified in this method.

12



3.2.2. HSPARSE Method [20]

The HSPARSE method reconstructs fMRI data assuming data matrix X to
be sparse in both the temporal and spatial domains. This method is imple-
mented by solving the below optimization problem [20]:

X̂ = arg min
X
‖Y −ΦFX‖2F + λ3 ‖ΨtX‖1 + λ4 ‖ΨsX‖1 , (17)

where λ3 and λ4 are regularization parameters and, Ψt and Ψs are the temporal
and spatial domain sparsifying basis, respectively. We chose discrete cosine
transform (DCT) for both the temporal and the spatial sparsity as used in [20]
and λ3=0.5 and λ4=0.1 in (17) for simulation. We used the non-linear conjugate
gradient method to solve HSPARSE [36].

3.2.3. k-t FASTER Method [21]

k-t FASTER method reconstructs fMRI data assuming data matrix X to
be low rank. This method is implemented by solving the below optimization
problem [21]:

X̂ = arg min
X
‖Y −ΦFX‖2F s.t rank(X) = r, (18)

where r is the pre-defined rank of X. In k-t FASTER [21], hard thresholding
is applied on the singular values of data matrix X as explained below. First,
singular value decomposition (SVD) of an initial crude estimate of matrix X0

is computed
X0 = USVT . (19)

Next, hard thresholding is applied on the singular values contained in S as

ŝi =

{
|si| − µ i ≤ r

0 i > r
(20)

where µ is a constant, si is the ith singular value of S, and ŝi is updated singular
value after hard thresholding.

The value of constant µ is chosen to be 0.5 as used in [21]. In simulation, rank
r is considered to be equal to the number of time frames. This value provided
least normalized mean square error (NMSE) between the reconstructed and the
original fMRI data considered in this work.

3.2.4. Low Rank plus Sparse (LR+S) Method [22]

This method reconstructs fMRI data using low rank and sparse matrix de-
composition and hence, is solved using the following optimization framework:

L̂, Ŝ = arg min
L,S
‖Y −ΦF(L + S)‖2F + λ5 ‖L‖∗ + λ6 ‖S‖1 , (21)

where λ5 and λ6 are the regularization parameters. The fMRI data matrix X
is reconstructed as:

X̂ = L̂ + Ŝ. (22)
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We empirically selected λ5 = 300 and λ6 = 0.5 that provided us the minimum
NMSE.

The default number of iterations used in the non-linear conjugate algorithm
in CSWD [19] and HSPARSE [20] is 20 [36]. Hence, for other reconstruction
methods including DTSR, we have set the maximum number of iterations (re-
quired in optimization) to 20 and the convergence threshold of objective function
to 10−5. Since LR+S [22] method converges in more number of iterations, we
predefined the maximum number of iterations to 100 for this method.

3.3. Quantitative Analysis

In this section, we compare results of the proposed DTSR against the ex-
isting CS-based fMRI reconstruction methods. The Normalized Mean Square
Error (NMSE), PSNR, and Structural Similarity Index (SSIM) are used as re-
construction quality assessment metrics in this paper.

NMSE and PSNR are two well known reconstruction quality assessment
metrics. Given a reference brain slice xt at time point t and it’s reconstructed
estimate x̂t (tth column of X̂), NMSE is calculated as

NMSE = ‖xt − x̂t‖2 / ‖xt‖2 , (23)

where ‖.‖2 denotes l2 norm. Similarly PSNR is calculated as

PSNR = 20log10
255

1
nxny

‖xt − x̂t‖2
, (24)

where nx × ny denotes the size of brain slices. In this work, one slice is being
reconstructed simultaneously over all time points. Hence, NMSE and PSNR
are calculated using (23) and (24) for T number of time points for a given slice
and are subsequently time-averaged. In the following text, NMSE and PSNR
signify average NMSE and average PSNR. In addition, SSIM [37] is also used to
measure the reconstruction quality. SSIM is known to be a better metric than
NMSE and PSNR [37].

Reconstructed (average) NMSE, (average) PSNR, and (average) SSIM re-
sults over all 33 slices of one subject are presented in Table 1 and 2. Results
are tabulated at 6, 12, and 24 number of radial sampling lines. From these
results, we observe that the proposed DTSR performs consistently better than
the existing reconstruction methods. This is to note that the proposed DTSR
method assumes double sparsity in the temporal domain. Hence, it yields better
results compared to the existing methods and also reconstructs fMRI data quite
efficiently at lower number of radial sampling lines.

We observe that NMSE and PSNR are consistently very high at all acceler-
ation factors considered including lower acceleration factors. This implies that
we can reconstruct fMRI data by sampling much lesser measurements in k − t
space with the proposed DTSR method compared to the other methods. Hence,
higher acceleration is possible with the DTSR method that in turn will decrease
the fMRI acquisition time.
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Table 1: Reconstruction results with different methods on real fMRI dataseta

NMSE PSNR

Method 6 lines 12 lines 24 lines 6 lines 12 lines 24 lines
CSWD [19] 0.2574 0.1725 0.1153 4.898 8.3784 11.8714

HSPARSE [20] 0.1801 0.0863 0.0573 8.013 14.401 17.955
k-t FASTER [21] 0.2566 0.1725 0.1155 4.929 8.379 11.8574

LR+S [22] 0.1767 0.0963 0.0544 8.175 13.438 19.071
Proposed DTSR 0.0471 0.0382 0.036 19.64 21.48 21.99

Proposed DTSR with λ2 = 0 0.1264 0.0875 0.0751 11.45 19.63 20.93
Proposed DTSR with λ3 = 0 0.0974 0.0765 0.0479 18.22 20.12 21.15

a Dataset- Beijing Zang resting state fMRI data, subject no. 1, results
averaged over all slices and averaged over all time points.

Table 2: SSIM performance on real fMRI dataa reconstructed with different methods

SSIM

Method 6 lines 12 lines 24 lines
CSWD [19] 0.3455 0.5248 0.7058

HSPARSE [20] 0.5241 0.8045 0.879
k-t FASTER [21] 0.3475 0.5237 0.7052

LR+S [22] 0.5863 0.7878 0.9142
Proposed DTSR 0.9149 0.9323 0.9441

a Dataset- Beijing Zang resting state fMRI data, subject no. 1, results
averaged over all slices and averaged over all time points.

15



Figure 4: Illustration of reconstruction performance (in terms of average PSNR) over
different subjects

Fig.4 presents (average) PSNR results over all slices of fMRI data of 5 sub-
jects. Six radial lines are used for undersampling the k -space data (12.856
acceleration factor). These results indicate that the proposed DTSR method is
robust to subject variability and that the results are reproducible across sub-
jects.

Furthermore, to visually compare the data reconstructed using different
methods, we present reconstructed middle slice (slice no.16 (total slices = 33))
in Fig.5 on one random subject and at one random time point using six radial
lines. From Fig.5, we observe that the reconstruction quality with the proposed
DTSR method is superior compared to the existing methods.

3.4. Qualitative Analysis

In this section, we compare and evaluate the reproducibility of brain RSNs
constructed using the proposed DTSR based reconstruction fMRI data and
using the fully available whole brain resting fMRI dataset. Spatial Independent
Component Analysis (ICA) of the reconstructed fMRI data and the original
fully available fMRI dataset is performed via GIFT toolbox 2. ICA is a data
driven method that has been widely used in resting state fMRI to recover the
set of spatially independent brain RSNs [38, 39, 40, 41, 42].

3.4.1. Data Preprocessing

fMRI data suffers from low SNR and hence, needs to be preprocessed before
analysis. Preprocessing is performed using SPM12 (Statistical Parametric Map-

2https://www.nitrc.org/projects/gift
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Figure 5: Reconstructed middle slice (slice no.16 (total slices = 33)) using different
reconstruction methods with 6 radial lines. Left to right: original; proposed DTSR;

CSWD; HSPARSE, k-t FASTER; LR+S. A) The reconstructed middle slice obtained
using different methods on the fMRI data of one randomly selected subject and at

one random time point. B) Difference images (Ground truth Reconstructed)
corresponding to the original slice presented in column one of subfigure-(A)

ping)3 and Matlab. The fMRI brain volumes are slice-time corrected using the
middle slice (16, total slices=33) as a reference, realigned to the mean image,
spatially normalized onto the Montreal Neurological Institute (MNI) space (3-
mm isotropic voxels), and are spatially smoothed with a Gaussian kernel (Full
Width Half Maximum (FWHM)=4 mm).

3.4.2. The ICA Model

For the sake of completeness, ICA model as used in fMRI is briefly discussed
in this subsection. Consider matrix S ∈ RT×V , where T is the number of time
points and V is the total number of voxels. After ICA, S can be expressed as:

S = MN, (25)

where M is the T×C mixing matrix and N is the C×V source matrix. C is the
total number of spatially independent component. Each row of source matrix N
represents one spatially independent component and the corresponding column
of the mixing matrix M represents time course of that independent component.
The goal of spatial ICA is to model fMRI data as a mixture of maximally
independent spatial components.

3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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In this paper, the InfomaxICA algorithm [43] is used to obtain ICA compo-
nents and the corresponding time courses. It is one of the most popular ICA
algorithms that is used in fMRI data analysis [44]. The number of spatially in-
dependent components C is predefined to 100 in accordance with the previous
studies [39, 40, 41, 42]. High number of components facilitate good segregation
of cortical and subcortical brain functional networks [39].

To identify brain RSNs among 100 spatially independent components, spatial
distribution of each component can be identified by spatial overlapping with
the available template images of brain RSNs. We identified 51 ICs from the
mean maps of all 20 fully available fMRI subjects after removing the artifact
components. These ICs can be broadly categorized into 10 RSNs: 1. Visual
Network (VN), 2. SomatoMotor Network (SMN), 3. Limbic Network (LN),
4. Dorsal Attention Network (DAN), 5. Ventral Attention Network (VAN), 6.
Default Mode Network (DMN), 7. Frontoparietal Network (FPN), 8. Temporal
+ Frontal Network (TFN), 9. Subcortical Network (SCN), and 10. Cerebellar
Network (CN).

On the fMRI data reconstructed using the proposed DTSR method, we
identified 56 ICs from the mean maps of reconstructed fMRI data of all 20
subjects. We manually arranged these ICs into various RSNs stated above.
The spatial maps of some RSNs discovered by the fully available data and the
DTSR reconstructed data are shown in Fig.6 to Fig.7. Left part of each figure
represents networks identified using the fully available data and the right part
represents networks identified using the DTSR reconstructed data. It is clear
that spatial activation maps of RSNs obtained from the reconstructed data
overlap significantly with the RSNs of the fully available fMRI data. From now
onwards, ICs of DTSR reconstructed data will be mentioned as simply DTSR
ICs (DTSR-ICs) and ICs of fully sampled original data will be mentioned as
raw ICs (RICs). It is noticed that DTSR-IC maps are more enhanced compared
to the RIC maps. This is perhaps due to denoising inherent within the CS
reconstruction framework.

From Fig.5, we note that existing methods result in greater artifact com-
pared to both the original data and the data obtained using the DTSR method.
Further, we evaluated their performance in terms of reproducibility of ICA ac-
tivation maps. One random activation map obtained using existing methods
is presented in Fig.8. From this figure, we observe that false maps are being
detected with CSWD, HSPARSE, k-t FASTER, and LR+S methods that can
lead to misleading findings based on RSNs.

This is to note that the DTSR-ICs of the reconstructed dataset matched
with the RICs of fully sampled original data. Further, three additional ICs
are observed with the DTSR reconstructed data that are not visible with the
IC analysis of the original data. Fig.9 shows that these three ICs are actually
the part of DMN and SMN. This shows that the data reconstructed using the
proposed DTSR method has better RSN construction ability compared to the
raw (original) data. This is to note that every RSN is observed to be present in
all 20 subjects. This observation is in order because DTSR method denoises the
data during reconstruction and hence, provides better network construction.
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Figure 6: Axial view of spatial maps of various RSNs where the left part of each
figure represents networks identified using the fully available (original) data and the
right part represents networks identified using the DTSR reconstructed data. Each

row corresponds to results on one RSN. Number in brackets below each image
represents independent component (IC) number obtained after group ICA.
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Figure 7: Axial view of spatial maps of various RSNs where the left part of each
figure represents networks identified using the fully available (original) data and the

right part represents networks identified using the DTSR reconstructed data.
Number in brackets below each image represents independent component (IC)

number obtained after group ICA.
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Figure 8: Axial view of one random spatial map obtained from the data
reconstructed using existing methods.
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Figure 9: Axial view of spatial maps of various ICs obtained from the DTSR
reconstructed data
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4. Discussion

This study proposes DTSR method that provides accelerated fMRI data re-
construction by imposing double temporal sparsity. Proposed method makes
use of the advantage of repeated scanning of the same brain volume in fMRI
to study brain’s function. Scanning of the same brain volume over time brings
similarity in the temporal direction that can be utilized via total variation based
regularization. In addition to this, we also imposed conventional temporal spar-
sity in the proposed reconstruction framework and hence, name the proposed
method as Double Temporal Sparsity based Reconstruction (DTSR).

Compressed sensing is used to recover undersampled data captured at dif-
ferent acceleration factors, although inherently weak BOLD signals in resting
state fMRI prohibits the use of higher acceleration factors [17, 21]. However, in
this work, we have been able to achieve robust and reproducible results with a
higher acceleration factor of 12.856 (corresponding to 6 radial lines). In addi-
tion, results at lower acceleration factors are improved compared to the existing
methods [19, 20, 21, 22].

We have thoroughly evaluated the robustness and the feasibility of the pro-
posed DTSR method both at the subject and the group levels of real fMRI data.
The performance of DTSR method has been evaluated using retrospective un-
dersampling of the fully available fMRI dataset. We compared the performance
of the proposed method with other offline methods such as Compressed Sensing
with Wavelet domain Sparsity (CSWD) [19], HSPARSE [20], k-t FASTER [21],
and LR+S [22]. Reconstruction reliability increases with increasing number of
radial lines (lower acceleration factors). Table 1 and 2 show that error increases
with decreasing number of radial lines. However, the proposed DTSR method
is equally reliable at lower number of radial lines, i.e., at higher acceleration
factors. Comparison with other methods shows that DTSR method produces
lowest error (0.0471) at a high acceleration factor of 12.856 (corresponding to 6
radial lines). Further, results presented in Fig.5 demonstrate that the existing
reconstruction methods produce greater artifact at this high acceleration factor.

The robustness and the reliability of the proposed method are further as-
sessed using both quantitative and qualitative analyses on real fMRI data. Re-
sults from the quantitative analysis show that the NMSE of the proposed recon-
struction method is less compared to that of the other reconstruction methods
(Table 1). Thus, it is noted that the incorporation of total variation along with
sparsity as used in the proposed DTSR method improves reconstruction results
significantly. The proposed DTSR reconstruction method produces significantly
high values of PSNR and SSIM, and lower values of NMSE compared to the
other existing methods (Table 1 and 2).

Two observations are in order from the qualitative results (Fig.5-6): (i) in-
trinsic resting state networks are consistent and comparable to the fully sampled
fMRI data. Hence, crude estimate of regularization parameters is sufficient for
reconstruction; and (ii) the fidelity of the proposed method in maintaining tem-
poral information is established via consistency of results and via observation
of all RSNs.

22



In summary, the proposed DTSR reconstruction method maintains tempo-
ral resolution even at higher acceleration factors without affecting the spatial
resolution and can be used to provide accelerated fMRI reconstruction with ac-
curate detection of intrinsic brain’s Resting State Networks (RSNs). Moreover,
the proposed DTSR method is able to improve BOLD sensitivity both at the
individual and at the group level compared to the existing methods.

Limitations and Future Work

This work has proposed DTSR reconstruction method that exhibits better
accelerated reconstruction performance compared to the existing methods using
radial sampling pattern. However, 3D radial Cartesian sampling grid is more
practical from the point of view of compressed data acquisition in scanner [21].
In future, we will use realistic sampling patterns to undersample data.

Secondly, use of both parallel imaging and CS fMRI may give excellent high
spatio-temporal fMRI quality such as that observed in the context of dynamic
MRI [45, 46, 47]. Thus, further studies may be undertaken to enhance the
performance of DTSR method by using it in conjunction with existing parallel
fMRI imaging methods [11, 12].

Thirdly, CS has been widely used to improve fMRI acquisition time. Hence,
using this in conjunction with other high spatial resolution techniques, such as
super-resolution technique [48] or simultaneous multi-slice imaging [49], may
provide high spatio-temporal fMRI [20]. In the future, we will explore acceler-
ated reconstruction from the perspective of improving spatial resolution.

Fourth, time complexity of DTSR is high because it involves multiplication
of large X and D matrices. In the future, we will use GPU based computation
to lower the computational time complexity.

Finally, further evaluation of the proposed method on prospective under-
sampled fMRI data will help to check its robustness in real scenarios.

5. Conclusions

In this paper, we have introduced a novel accelerated fMRI reconstruction
method that exploits the advantage of scanning the same brain volumes in fMRI
over a number of time points via double temporal sparsity constraints. The
proposed DTSR reconstruction method can be used to acquire high temporal
resolution fMRI data in smaller times comparable to those of lower resolution
fMRI data along with accurate detection of intrinsic resting state brain net-
works. The performance of the proposed method has been evaluated using
retrospective undersampling of the fully available real fMRI dataset. Code of
proposed DTSR method can be obtained from (http://in.mathworks.com/
matlabcentral/fileexchange/63768-dtsr-fmri-reconstruction).
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