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Abstract
The transformer is primarily used in the field of natural language processing. Re-
cently, it has been adopted and shows promise in the computer vision (CV) field.
Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from
this state-of-the-art technique. In this review, we first recap the core component of
the transformer, the attention mechanism, and the detailed structures of the trans-
former. After that, we depict the recent progress of the transformer in the field of
MIA. We organize the applications in a sequence of different tasks, including classifi-
cation, segmentation, captioning, registration, detection, enhancement, localization,
and synthesis. The mainstream classification and segmentation tasks are further
divided into eleven medical image modalities. A large number of experiments stud-
ied in this review illustrate that the transformer-based method outperforms existing
methods through comparisons with multiple evaluation metrics. Finally, we discuss
the open challenges and future opportunities in this field. This task-modality review
with the latest contents, detailed information, and comprehensive comparison may
greatly benefit the broad MIA community.

Keywords: Deep Learning, Transformer, Attention Mechanism, Convolutional
Neural Network, Medical Image Analysis

1. Introduction

Transformer [1] is one of the most widely used models in the natural language
processing (NLP) field and has achieved great success in many tasks, such as para-
phrase generation [2], text-to-speech synthesis [3], and speech recognition [4]. It is
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designed for transduction and sequence modeling with the remarkable capability of
modeling long-range dependencies with the data. The convolutional-free transformer
is based on the self-attention (attention) mechanism, a successful NLP technique
[5–9] that relates different positions of a single sequence to compute the sequence’s
representation [1]. Unlike the NLP field, the computer vision (CV) field has been
dominated by the convolutional neural network (CNN) [10] for a long time [11–15].
Even if, many trials have been carried out to combine CNN and attention in the CV
field [16, 17] while none of them overperform CNN. Until 2020, Dosovitskiy et al. [18]
proposed a pioneering model and prove that implementing the transformer directly
to sequences of image patches works well for image classification. In detail, the
proposed method split the input image into multiple patches and embeds each of
them linearly. With additional position embeddings added, the resulting vector se-
quences are fed to the transformer encoder. With the solid foundation they set, the
transformer-based method has been widely adopted in the field of CV with superior
performance [19–22].

Medical image analysis (MIA) is an essential branch in the CV field. Medical
imaging utilizes various modalities to create a visual representation of the inside
body [23] and is of great help for further medical diagnosing. There are several
kinds of medical imaging modalities, such as magnetic resonance imaging (MRI),
computed tomography (CT), ultrasound (US), positron emission tomography (PET),
optical coherence tomography (OCT), and digital fundus imaging (DFI). In practice,
MIA is usually performed qualitatively by medical personnel. This may result in vary-
ing interpretations and degrees of accuracy because of varying degrees of reader
experience or varying image quality. Moreover, such image analysis may be time-
and labor-expensive. Due to these, the deep learning (DL) method has been widely
applied in the field of MIA to reduce inter-reader variation as well as reduce time
and manpower costs [24–27]. With the rapid development of the transformer in CV,
the transformer-based method has been widely used in MIA either using the trans-
former solely [28–30] or hybridizing CNN and transformer to capture both local and
global information [31–33]. To help researchers catch up with this emerging research
field, it is timely and important to have a comprehensive review and perspectives on
transformer-based MIA.

In this review, we systematically introduce the transformer technique and its re-
cent progress in the field of MIA, followed by outlooks and perspectives. We first
recap the core component of the transformer, the attention mechanism, and the
transformer itself. Then, we summarize the transformer-based applications in the
sequence of different MIA tasks, including classification, segmentation, captioning,
registration, detection, enhancement, localization, and synthesis, as shown in Fig-
ure 1. For the mainstream classification and segmentation tasks, we further divided
their corresponding works into different medical imaging modalities. There are a total
of eleven modalities in our review, including MRI, CT, X-ray, microscope, endoscopy,
US, dermoscopy, DFI, camera, PET, and OCT, as shown in Figure 2. Finally, the
open challenges and future research opportunities of transformer-based MIA tasks
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Figure 1: MIA tasks included in this review. The tasks are organized in a sequence
of classification, segmentation, captioning, registration, detection, enhancement, lo-
calization, and synthesis [34, 35].

MRI CT X-ray Microscope Endoscopy

US Dermoscopy CameraDFI PET OCT

Figure 2: Examples of modalities included in this work. Sequences are MRI [36],
CT [37], X-ray [29], microscope [38] (left), [39] (right), endoscopy [40], US [41], der-
moscopy [42], DFI [43], camera [44], PET [45], and OCT [46].
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are also discussed.
As this review is being written, we become aware of two similar review works

[47, 48]. The first review overviews the attention mechanism and other components
essential for building the transformer. Then, the transformer architectures designed
for MIA applications are discussed. The transformer-based applications are dis-
cussed task-wise, in which classification and segmentation applications are further
divided into pure and hybrid transformer-based. Extensive discussions are then con-
ducted, including learning manners, model improvements, and performance com-
parison with CNN. The second review starts by illustrating various medical imaging
modalities, followed by an introduction to DL concepts, techniques, and architec-
tures. The different tasks and the transformer-based applications are further dis-
cussed. Finally, research trends, current challenges, and future prospects are dis-
cussed. Here, we would like to highlight a couple of main differences between our
review and others published. First, we cover more than 100 of the latest relevant pa-
pers, providing readers with a view of the latest research progress. We also highlight
the latest transformer models leveraged in MIA, such as the swin transformer [49],
O-Net [50], and transformer-based region-edge aggregation network [51]. The swin
transformer is introduced in great detail as it is widely accepted and well-performed
across different tasks and modalities. Next, our review contains more details. We
include works with more than one modality and summarize them in a one-to-multi
manner. We also summarize the objects researched, the datasets used, and the dis-
ease corresponding to these datasets when applicable. The summary of contents is
coherently performed throughout different tasks. Sufficient details can help new re-
searchers in the field grasp the necessary concepts easier and faster. Finally, instead
of giving a quantitative performance evaluation of the transformer-based method, we
also provide a comprehensive performance comparison between the transformer-
based models and existing state-of-the-art DL methods in MIA. This proves the ef-
fectiveness of the transformer-based method. In summary, our task-modality review
presents updated contents, detailed information, and comprehensive comparison
that will greatly benefit the MIA community.

The rest of this review is organized as follows: In Section 2, we show the method-
ology performed for our systematic review. In Section 3, we recap the principle of
the attention mechanism, the detailed structures of the transformer, and depict how
the transformer is adopted into the MIA field. An introduction to different training
manners and MIA tasks is also included. Section 4 organizes the transformer-based
MIA applications from the perspective of different tasks. To better organize the large
number of works related to mainstream classification and segmentation tasks, we
further categorize them based on the imaging modalities. The objects in the rele-
vant references are tabulated in detail. The datasets used as well as the diseases
corresponding to the datasets are also tabulated when applicable. Moreover, a quan-
titative performance comparison across the transformer-based method and existing
methods are summarized separately. In Section 5, we point out the current chal-
lenges and future opportunities of the transformer-based MIA. A concise and com-
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prehensive conclusion can be found in Section 6.

2. Methodology

With the fast development of the transformer in the CV field, the research on
the transformer has become one of the most popular research directions in the MIA
field. We search on the Scopus database using "transformer" on the "title" field
and "vision" and "medical" on the "title-abs-key" field and the results show that the
number of papers in 2022 is more than four times compared to that of in 2021.
What is more, the number of publications in 2023 is already more than that of 2021.
We thus want to explore several research questions for the transformer-based MIA.
First, on which MIA tasks have the transformer-based been successfully applied?
Second, does the transformer outperforms previous DL methods, such as the CNN-
based method? Finally, what are the current challenges or problems to be solved
and the corresponding potential feasible solutions?

In this systematic review, the relevant references are collected by searching within
the Web of Science and Scopus databases. The search timeframe is from 2021 to
8 Feb 2023. In the Web of Science database, we include keywords including "trans-
former", "classification", "segmentation", "captioning", "registration", "detection", "en-
hancement", "reconstruction", "denoising", "localization", "synthesis", "generation",
and "diagnosis" in the "title" field. We also include the keywords "medical" and "vi-
sion" in the "topic" field. Regarding the Scopus database, we include keywords in the
"TITLE" and "TITLE-ABS-KEY" fields identical to that of the "title" and "topic" fields,
respectively. With papers searched, we then exclude the results that are duplicated.
Then, we remove the records, in which full text is inaccessible. Conference posters,
as well as review, survey, and benchmark papers, are also excluded. Note that the
conference papers are not excluded. The papers submitted on arXiv are also re-
served. Finally, we check the content of the papers to remove papers that are not
vision related. We find that several papers are included even if we include the "vi-
sion" keyword. We also exclude the papers using non-medical datasets. Following
PRISMA [52], we show the flow diagram for our systematic review in Figure 3.

3. Background

3.1. Attention Mechanism
The attention mechanism is the core component of the transformer. It differen-

tially weights the significance of each part of the input data and allows the inputs to
interact with each other to find to whom they should pay more attention. The atten-
tion mechanism expresses the importance of each input (e.g., token) in the current
context as the attention score. The outputs are the aggregation of these interactions
weighted by the corresponding attention scores. Specifically, with three attention
vectors named query, keys, and values, the mechanism maps a query and a set of
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Figure 3: Flow diagram for our systematic review.

key-value pairs to output. The output is computed by summarizing all values accord-
ing to the weight, which is calculated using a compatibility function of the query with
the related key [1]. The attention mechanism can be divided into scaled dot-product
attention and multi-head attention.

Scaled dot-product attention. Several queries, keys, and values compose the
inputs of the scaled dot-product attention. The queries and keys have a dimension-
ality of dk and the values have a dimensionality of dv. The dot product of all keys
and the query is calculated. The resulting values are divided by a scale factor,

√
dk,

and pass a softmax function. The attention can be calculated through the dot prod-
uct with the values. Practically, a set of queries, keys, and values are packed into
corresponding matrices, Q, K, V, and the outputs matrix can be calculated using the
below formula:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Multi-head attention. The scaled dot-product attention is single-head attention.
In practice, multi-head attention is more often used as it improves the expressive
power of the model and stabilizes training. The multi-head attention allows the model
to jointly attend to information from different representation subspaces at different po-
sitions. Specifically, the queries, keys, and values are projected for h times, where h
is the number of heads. The attention function is performed on each of the projected
results concurrently. The output values are concatenated and projected again to ob-
tain the final results [1]. A concise illustration of the multi-head attention is shown in
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X

head

Attention

Figure 4: An intuitive illustration of the multi-head attention mechanism. The result of
each head is calculated respectively, and the values are then concatenated. X de-
notes the input, WQ, WK , and W V represent the parameter matrices for projections,
and

√
dk stands the scale factor.

Figure 4, and the multi-head attention can be described using the below equation:

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O

where headi = Attention
(
QWQ

i , KWK
i , V W V

i

)
where WQ

i ∈ Rdmodel ×dk ,WK
i ∈ Rdmodel ×dk ,W V

i ∈ Rdmodel ×dv , WO ∈ Rhdv×dmodel are
the parameter matrices for projections, and dmodel is dimensional keys, values, and
queries.

3.2. Transformer
Researchers have proposed several variant models based on the attention mech-

anism, which generally combines the attention mechanism with the recurrent neural
network (RNN), such as LSTM. These models are usually limited in training speed
due to the sequential structure, and the parallel computing ability is limited. Since
the attention model itself can capture global information, a natural question raised is
whether we can remove the RNN structure and rely only on the attention model. The
answer is yes. The transformer is such a novel model utilized to address sequence-
to-sequence tasks, taking a sequence as the input and generating the predicted
probabilities as the output. It is mainly composed of the attention mechanism and
has an encoder-decoder structure, as shown in Figure 5. Both the encoder and de-
coder are tandem by several identical blocks. The blocks are composed of several
parts, including the masked multi-head attention module, multi-head attention mod-
ule, layer normalization, and position-wise feed-forward network. The masked multi-
head attention module employs the attention mechanism up to the current position
and excluded the unpredicted positions till now. Combining the masked multi-head
attention and the position offset of the output embeddings, the predictions for the
position only lie on the outputs at earlier positions can be ensured [1]. The fully
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Figure 5: The encoder-decoder structure in transformer [1]. MHA refers to the multi-
head attention module and Norm represents layer normalization. The output of the
encoder is fed into the MHA in the decoder. Left: encoder, and Right: decoder.

connected feed-forward network consists of two linear layers and a ReLU activation
function in between. The procedure can be expressed using the below equation:

FFN(x) = max (0, xW1 + b1)W2 + b2

Encoder. The transformer encoder consists of N identical blocks. For each block,
there are two main parts and both parts employ the residual connection proposed by
He et al. [53]. The bottom part is composed of a multi-head attention module and
layer normalization. The top part consists of a fully connected feed-forward network
and layer normalization.

Decoder. The transformer decoder is composed of N identical blocks like the
encoder and consists of three main parts in each block. The bottom part is composed
of a masked multi-head attention module and layer normalization. The middle part
consists of a multi-head attention module followed by layer normalization. It is worth
noting that the multi-head attention module in the decoder also takes the encoder’s
output as the input. The top part is composed of a feed-forward network and layer
normalization. The residual connection is implemented for all three parts.

3.3. Transformer in MIA
To employ the transformer in the field of MIA, the input medical images need

to be pre-processed [18] as they are 2D. The pre-processing process can be di-
vided into two main steps, patch generation, and embedding. The patch generation
splits the input image into several patches, and the embedding flattens the patches
and generates patch embeddings. Positional embeddings and class embedding are
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Figure 6: Detailed structure of the transformer used in the MIA field. MHA refers
to the multi-head attention module. Norm represents layer normalization and MLP
illustrates the multilayer perception module.

also added. The processed images are fed into the transformer encoder for feature
extraction. The transformer encoder undergoes slight modification by altering the
sequence of layer normalization. The output from the transformer encoder serves as
the input for the multilayer perceptron head, resulting in the image class prediction.
The detailed structure of the transformer used in MIA is illustrated in Figure 6.

Patch generation. The patch generation receives image x ∈ RH×W×C as the
input, where H and W are the height and the weight of the image, respectively.
The input image is reshaped into a patch sequence xp ∈ RN×(P 2·C), where P is
the dimension of each image patch, and N is the number of patches [18]. The
relationship between N, H, W, and P can be expressed as:

N = HW/P 2

Embedding. The embedding obtains patches as the input. It flattens and maps
them to D dimensions using a linear projection E, where D is the latent vector size
of the transformer layers. The resulting patch embeddings are concatenated with
the class embedding [54] and then the concatenated embeddings are summed with
the position embeddings to retain positional information. The embedding can be
described through the below equation [18]:

y =
[
xclass;x

1
pE;x

2
pE; · · · ;xN

p E
]
+ Epos where E ∈ R(P

2·C)×D,Epos ∈ R(N+1)×D

Transformer encoder. The transformer encoder takes the resulting embeddings
as the input. The overall encoder structure is similar to that in Figure 5 while the layer
normalization is moved before the multi-head attention module and multilayer per-
ceptron module (feed-forward network). The multilayer perceptron module is com-
posed of two linear layers and both of the layers use GELU as the activation function.

Multilayer perceptron head. The output of the transformer encoder is fed into
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Figure 7: The detailed structure of the swin transformer. The swin transformer con-
sists of four stages and two successive swin transformer blocks form a basic unit.
MHA, W-MHA, and SW-MHA denote the multi-head attention module, multi-head at-
tention module with regular windowing configurations, and multi-head attention mod-
ule with shifted windowing configurations, respectively. MLP represents the multi-
layer perception module, and LN is layer normalization. ẑl and zl are the output
features of the W-MHA and the MLP inside block l, respectively. Blue and orange
arrows mean the connection of two parts.

the multilayer perceptron head to get the classification result. At the pre-training
stage, the multilayer perceptron head is composed of one hidden layer, while at the
fine-tuning stage, it consists of a single linear layer.

The transformer faces several challenges in the CV field that stem from the differ-
ences between the CV and NLP fields. For one thing, the scale of visual entities can
vary largely. For another, the resolution of images can be very high. To solve these
problems, the swin transformer has been proposed. The swin transformer builds hi-
erarchical feature maps and calculates the attention only within each local window.
Compared with computing attention globally, the computation complexity is reduced
largely from quadratic to linear. To provide connections between different windows,
a shifted window approach is proposed. The window partitioning is shifted after the
attention is calculated within each window. With such designs, the swin transformer
can not only reduce the computation complexity to linear from quadratic but also
model at various scales with high flexibility. The overall structure of the swin trans-
former is shown in Figure 7. There are four stages in the swin transformer and two
successive swin transformer blocks form a basic unit. The former swin transformer
block has a multi-head attention module with regular windowing configurations, while
the latter consists of a shifted windowing multi-head attention module. The multilayer
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perceptron module consists of two layers with a GELU activation function in between,
and layer normalization is implemented in both of the blocks.

There are distinct advantages of using the transformer model over CNN in the
field of MIA. In the MIA field, many involved images have repetitive patterns or sym-
metrical patterns, such as the microscope image (left) and the CT image shown
in Figure 2. CNN is not sensitive to such symmetrical or repetitive patterns as it
only focuses on local features. In contrast, the transformer can capture these global
features by exploring the relationships among local regions. Take a tumor image
consisting of repetitive normal patterns and a tumor pattern as an example, the cal-
culated attention scores may show high similarities among repeatedly normal re-
gions and low similarities between the tumor region and the normal regions. This
can demonstrate that the transformer is sensitive to repetitive patterns.

The scarcity of datasets is a potential issue for the transformer. Training the
transformer requires a large amount of data as it lacks some of CNN’s inherent
inductive biases, such as locality and translation equivariance. It is reported that
training the transformer with less than 100 million images usually obtains a subopti-
mal solution compared to CNN, while the performance of the transformer continues
increasing with the increase of the dataset size. However, the process of creating
a large dataset of medical images is substantially different from nature images due
to various reasons. For instance, it heavily relies on costly equipment to capture
medical images, which subsequently requires human experts for annotation. Addi-
tionally, medical datasets cannot always be made publicly available due to patient
privacy concerns. Therefore, collecting a dataset with more than 100 million images
is a significant challenge in the MIA field, and sometimes there are only thousands
or even hundreds of images in a dataset [55, 56]. In the case of common data short-
age, data augmentation methods are widely implemented in MIA, such as traditional
image transformations like flip [57], or newer image synthesis methods [58–60]. Be-
sides, transfer learning is another widely used technique in the MIA field [58, 61, 62].
Transfer learning allows the model to be pre-trained on a larger dataset, such as
ImageNet, and the learned knowledge from the bigger dataset can be utilized when
training the smaller ones.

3.4. Training Manner
Similar to other DL models, the transformer is trained in different training man-

ners. This can include supervised (full-supervised), unsupervised, semi-supervised,
self-supervised, weakly supervised, et al. The supervised learning manner is the
most widely implemented learning manner and data used for supervised learning
contain full labels for model evaluation. Opposite to supervised learning, unsuper-
vised learning only receives the input data and learns intrinsic data properties by
discovering underlying structures, patterns, or relationships in the data. Weakly-
supervised learning is a learning method between supervised learning and unsuper-
vised learning, in which the learning algorithm is trained using incomplete, impre-
cise, or noisy labeled data. Semi-supervised learning is a combination of supervised
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learning and unsupervised, which uses a large amount of unlabeled data and a small
amount of labeled data for training to improve model performance. Self-supervised
learning enables the model to learn richer and more effective feature representations
by designing specific pretext tasks and using the input data to generate supervisory
signals. The two most widely implemented self-supervised learning algorithms are
DINO [63] and BYOL [64], where DINO utilizes the knowledge distillation technique
and BYOL minimizes the difference in latent representations between augmented
image pairs. The BYOL is composed of two networks, which are the online network
and the target network. The target network is utilized to provide targets for online
network training. The introduction of learning methods outside of supervised learn-
ing can reduce the requirement of the label amount to a large extent and has been
widely implemented in the MIA field.

3.5. MIA Task
There are numerous tasks in the field of MIA. Here, we include classification,

segmentation, captioning, registration, detection, enhancement, localization, and
synthesis in our review. Classification is the process of categorizing images into
distinct classes. Segmentation partitions images into various objects or subgroups
and can be regarded as pixel-level classification. Captioning generates descriptive
language using visual information. Registration involves transforming multiple sets
of data obtained from different sensors, viewpoints, etc. [65] into a unified coordi-
nate system. Object detection predicts the boundary and the classification result
across different objects. It is worth noting that one type of object detection [66] also
performs pixel-level classification, while it is not widely implemented in the MIA field
partly due to computation resource considerations. Localization is a similar task to
object detection while it predicts the object boundary solely. Enhancement works to
enhance patterns and remove noise artifacts, which primarily includes reconstruc-
tion and denoising. Reconstruction enhances image quality by addressing potential
low signal-to-noise ratio, contrast-to-noise ratio, and artifacts [67], while denoising
enhances visual images through noise removal. Synthesis creates desired images,
which is the opposite of classification. A concise graphical illustration for each task
can be found in Figure 1.

4. Applications

We discuss the applications of the transformer in classification, segmentation,
captioning, registration, detection, enhancement, localization, and synthesis tasks.
Given the large number of papers involved in mainstream classification and segmen-
tation tasks, we further categorize them by modalities. There are eleven modalities
included in this work, which are MRI, CT, X-ray, microscope, endoscopy, US, der-
moscopy, DFI, camera, PET, and OCT. It is worth noting that endoscopy includes
colonoscopy, laryngoscopy, etc, and the whole slide image (WSI) is included in the
microscope as it is also referred to as virtual microscope [68]. Besides, magnetic
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Figure 8: The proportion that each modality and object. Left: modality, and Right:
object. There are around 30 objects in "Others", and each one has a small propor-
tion.

resonance angiography is included in the MRI. The objects contained in the selected
references are tabulated in detail. The proportion of each modality and object in all
cited references are summarized in Figure 8. In order to facilitate statistical analysis,
we present complex objects in a "grouped" manner, whereby several small objects
are grouped into the same category. For instance, the colon covers the rectum. Ad-
ditionally, the related datasets corresponding to the works are summarized in the
tables, and the diseases with respect to the datasets are also tabulated when appli-
cable. Diseases are also organized in a “grouped” way when appropriate. For ex-
ample, lung disease can cover tuberculosis, COVID-19, pneumonia, pneumothorax,
etc. The main narrative sequence within each section is that we usually start from
the works using existing transformer models followed by the works with newly devel-
oped models. It is worth noting that we discuss the qualitative results like segmented
masks within the applications for the sake of coherence, while the quantitative per-
formance comparison is illustrated separately in Section 4.4. This can make the
performance comparison between transformer-based models and existing models
more intuitive.

4.1. Classification
Since classification is one of the most widely-studied applications in MIA, we

organize this sub-section in the sequence of different modalities, including X-ray, mi-
croscope, CT, MRI, DFI, dermoscopy, endoscopy, US, PET, camera, and OCT. In
the case of papers containing more than one modality, we put them into the "multi-
ple" category following the OCT. Table 1 summarizes the classification applications
with the transformer. In the classification application, most of the works combine
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the transformer with CNN to capture both local and global information for further
robustness and performance improvement.

X-ray. Many of the researchers use existing transformer models to classify med-
ical X-ray images [28, 29, 69, 77, 79, 81, 82]. The implemented transformer models
include the transformer, the swin transformer, and the DeiT [180]. Besides using
existing transformer models, some researcher aims at combining transformer with
other CNN models. Within these, several papers tandems the CNN and transformer.
For instance, Duong and co-workers [32] constructed a ViT-Eff method, where in-
put images are fed into EfficientNet [181] and the extracted feature maps are then
projected into the transformer, followed by the developed classification head. Simi-
lar works include the PneuNet proposed by Wang et al. [87], in which ResNet and
transformer are tandem, and the Chest L-Transformer [31] that tandems ResNeXt
[182] and transformer. Jalalifar et al. [81] built their method on a DeiT structure and
let it benefits from the teacher-student scheme. The DenseNet [183] is set as the
teacher while the adapted transformer is chosen as the student. Leveraging existing
transformer models or combining the transformer with existing CNN models is intu-
itive and effective. However, the investigation of the model architecture is lacking,
and potential performance improvement may be realized with an in-depth structure
design.

Instead of combining existing models directly, several researchers build their mod-
els from scratch. Jiang et al. [99] designed an MXT method consisting of five stages.
The first four stages are composed of several downsample spatial reduction trans-
former blocks and a multi-layer overlap patch embedding block. The last stage is
composed of two class token transformer blocks and a multi-label attention block. Qi
and co-workers [102] proposed a multi-feature fusion transformer where the cross-
attention mechanism is deployed to learn information from both original images and
corresponding enhanced local phase images. Jiang and Chen [33] developed an
MP-ViT model, where images are fed to the patch fuser after enhancement and layer
normalization. The obtained fusion features are then trained together with smoothed
labels to obtain final prediction results. Park et al. [107] developed a federated split
transformer with the FESTA learning process. In FESTA, the server first initializes
the weights of the transformer as well as task-specific heads and tails for each task.
Then, it distributes the heads and tails weights to each client. For each round, each
client (e.g., hospital) carries out the forward propagation on their head and conveys
the intermediate feature to the server. Finally, the server aggregates and averages
the weights of local heads and tails and distributes the updated global weights back
to the clients.

Microscope. Some researchers utilize the existing transformer models to clas-
sify medical microscope images [110, 112]. For instance, Zeid and co-workers [112]
proposed to use the transformer and the compact convolutional transformer [184],
in which the convolutional tokenizer is implemented instead of the patch-based tok-
enizer. The convolutional tokenization is composed of a convolutional layer, a ReLU
activation function, followed by max pooling and reshaping, and can benefit the
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Table 1: Transformer-based classification applications. The mark "-" shows the cor-
responding information is not publicly available.

Method Year Modality Object Dataset
transformer [69] 2022 X-ray lung lung disease [70, 71]

swin transformer [28] 2022 X-ray chest lung disease [72–75]
transformer [29] 2021 X-ray chest lung disease [71, 76]

transformer, DeiT [77] 2022 X-ray chest [78]
transformer [79] 2023 X-ray breast breast cancer [80]

DeiT [81] 2022 X-ray chest -
DeiT [82] 2022 X-ray breast breast cancer [83]

ViT-Eff [32] 2021 X-ray chest lung disease [17, 84–86]
PneuNet [87] 2023 X-ray lung lung disease [88–97]

Chest L-Transformer [31] 2022 X-ray chest lung disease [98]
MXT [99] 2022 X-ray chest chest disease [100], [101]

multi-feature fusion transformer [102] 2022 X-ray chest lung disease [74, 89, 103–106]
MP-ViT [33] 2022 X-ray chest lung disease [46]

federated split transformer [107] 2021 X-ray lung lung disease [103, 108, 109]
transformer [110] 2022 Microscope prostate prostate cancer [111]

transformer, compact convolutional
transformer [112]

2021 Microscope colon colorectal cancer [38]

explainable transformer-based [39] 2022 Microscope cell malaria parasite [113, 114]
ensembled swin transformer [115] 2022 Microscope breast breast tumor [116]

IMGL-VTNet [117] 2022 Microscope gastric gastric intestinal metaplasia [118]
AMIL-Trans [119] 2022 Microscope breast breast cancer [120]
Self-ViT-MIL [121] 2022 Microscope breast breast cancer [120]

TransPath [122] 2021 Microscope breast, colon breast cancer [120], colorectal
cancer [123], polyps [124]

Fourier ViT [125] 2022 Microscope breast breast cancer [126]
RAMST [127] 2022 Microscope gastrointestinal -

CWC-Transformer [128] 2023 Microscope breast, lung breast cancer [120], breast
cancer[129]

transformer [130] 2022 CT lung lung disease [37, 131]
transformer [132] 2022 CT lung lung disease [133]
transformer [134] 2021 CT lung -
transformer [135] 2022 CT artery -
transformer [136] 2022 CT lung lung disease [133]
transformer [30] 2021 CT lung lung disease [137, 138]

multi-view convolutional transformer
[139]

2022 CT lung -

DenseTransformer [140] 2022 CT lung lung disease [141]
transformer-based factorized

encoder [142]
2022 CT lung lung disease [143]

multi-granularity dilated transformer
[144]

2023 CT lung lung disease [145]

transformer [146] 2022 MRI pancreas intraductal papillary mucosal
neoplasms [147]

TransMed [148] 2021 MRI head, neck, knee anterior cruciate ligament,
meniscal tears [149]

double-scale GAN [36] 2021 MRI brain [150]
MEST [151] 2022 MRI brain Parkinson’s disease [152]
MIL-VT [153] 2021 DFI retinal retinal disease [154, 155]
VTGAN [156] 2021 DFI retinal retinal disease [157]

MVT-based framework [42] 2022 Dermoscopy skin pigmented skin lesion [158]
O-Net [50] 2022 Dermoscopy skin melanoma [159]

transformer [160] 2022 Endoscopy gastrointestinal gastrointestinal disease [161]
transformer [162] 2022 Endoscopy colon -
transformer [163] 2022 US breast breast disease [35, 164]

multi-scale feature fusion transformer
[165]

2022 US breast -

Advit [166] 2022 PET brain Alzheimer’s Disease [167]
multi-model transformer [44] 2021 Camera toe toe disease [168]

ViT-P [169] 2021 OCT genitourinary genitourinary syndrome [46]

SSBTN [170] 2022 X-ray, Microscope breast, small intestine breast cancer [171], Crohn’s
disease [172]

symmetric dual transformer [173] 2022 X-ray, CT chest lung disease [104, 133]

grouped bottleneck transformer [174] 2022 CT, MRI, Microscope tooth, abdomen, chest,
brain, synapse

[175, 176]

FPViT [177] 2022
Microscope, X-ray,

Dermoscopy, US, CT,
DFI

colon, chest, skin, chest,
breast, abdomen, retinal

[175]

SEViT [178] 2022 X-ray, DFI chest, retinal retinal disease [154], [179]
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model from the inductive bias. Similar works include the explainable transformer-
based model [39], in which the compact convolutional transformer and a gradient-
weighted class activation map technique are implemented to show the attention paid
to different parts by generating a heatmap. Some works made modifications based
on the existing transformer model, such as the ensembled swin transformer pro-
posed in 2022 [115]. The ensembled swin transformer averages the predicted vec-
tors of all individual ones. Tandeming the CNN and transformer is also commonly
used. For instance, the IMGL-VTNet [117] tandems the ResNet and the deformable
transformer encoder. The deformable transformer encoder is composed of a multi-
scale deformable attention module and a feed-forward network. In the multi-scale
deformable attention module, the multi-scale deformable attention function is lever-
aged to produce the feature map via weighted average. Zhang et al. [119] proposed
an AMIL-Trans network composed of two stages. In the first stage, features are cap-
tured using ResNet as well as the efficient channel attention module [185]. In the
second stage, the transformer encoder for discriminant instance features takes the
features as the input and outputs the prediction.

Instead of using the existing models or making minor modifications based on
them, the remaining works constructed the novel models more deeply. Gul et al.
[121] implemented a Self-ViT-MIL method, in which the transformer is first trained in
a self-supervised manner using the DINO training approach. The multiple-instance
learning aggregator is then trained with frozen transformer weights. Wang and co-
workers [122] developed a TransPath model consisting of a CNN encoder, a trans-
former encoder, and a token-aggregating and excitation module. The proposed self-
supervised model is trained using the BYOL. Duan et al. [125] constructed a Fourier
ViT model consisting of two branches. The one branch is composed of two trans-
former encoders and their output information is exchanged with cross attention. An-
other branch normalizes the tokens and performs the 2D discrete Fourier transform.
Elementwise multiplication is then implemented followed by the 2D inverse Fourier
transform. The outputs of two encoders and the Fourier branch are concatenated
before passing the fully connected layer. Lv and co-workers [127] constructed a
RAMST, which can be further divided into the region-level RAMST and the WSI-level
RAMST. Both region-level and WSI-level RAMST are composed of CNN and trans-
former while the WSI-level RAMST consists of an additional CNN branch. A novel
feature weight uniform sampling method is also developed and implemented in both
RAMSTs for patch subset sampling to preserve representative region features. In
2023, the [128] CWC-Transformer is proposed by Wang et al. to solve the prob-
lem of feature extraction and spatial information loss effectively. In the compression
stage, a feature compression method is implemented to extract discriminative fea-
tures and reduce data bias. During the learning phase, the strengths of CNN and
the transformer are extended to enhance the interrelationship between local and
global information.

CT. A majority of researchers utilize developed transformer models to classify
medical CT images [30, 130, 132, 134–136]. A typical example is the medical diag-
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nostic platform developed by Li et al. [134]. The platform is based on the transformer
and can gain more medical information from the traditional image recognition model
by distilling technology. There are a few works that contain novel transformer-based
models. Xiong et al. [139] developed a multi-view convolutional transformer com-
posed of four stages, which are view generation, visual backbone, feature decorrela-
tion, and classifier. The visual backbone introduces the non-local self-attention into
the last layer of ResNet, and the feature decorrelation learns a set of sample weights
for eliminating the dependence between features. Mei [140] married CNN and the
transformer and constructed the DenseTransformer. The CNN and transformer are
combined in three ways, including CNN and transformer in parallel, transformer in
front of CNN in series, and CNN in front of transformer in series. Huang and co-
workers [142] proposed a transformer-based factorization encoder consisting of two
transformer encoders. The former encoder enables the intra-slice interaction via en-
coding feature maps from the same slice, and the latter encoder investigates the
inter-slice interaction via encoding feature maps from different slices. The multi-
granularity dilated transformer [144] developed in 2022 leveraging the local focus
scheme for guiding the deformable dilated transformer. The local focus scheme aims
at discriminative local features more via modeling channel-wise grouped topology,
and the deformable dilated transformer incorporates diverse contextual information.

MRI. Salanitri et al. proposed to leverage the transformer to diagnose intraductal
papillary mucosal neoplasms [146]. Dai and co-workers [148] developed a TransMed
method by connecting the ResNet and the transformer in series. The double-scale
generative adversarial network (GAN) method proposed by Hu et al. [36] is com-
posed of a generator and two discriminators. The local CNN-based discriminator
guides the generator to capture structural representation with inductive bias, while
the transformer-based global discriminator directs the generator to extract compre-
hensive features via leveraging long-range dependencies. The MEST framework
[151] developed in 2022 uses pre-trained VGGNet [186] and attention mechanism
to learn multi-plane dynamic images. Time-series information is used to construct
dynamic functional connection images. Spatial-temporal connectivity transformer is
utilized to solve spatiotemporal redundancy and dependencies, and ensemble learn-
ing is also employed to integrate multimodality data.

DFI. Yu and co-workers [153] developed a MIL-VT network. The MIL-VT uses the
transformer as the backbone and a multiple-instance learning head is proposed to
exploit the feature representations captured by individual patches better. The cross-
entropy loss between the multilayer perceptron head and the label and between the
multiple-instance learning head and label are computed. The VTGAN model [156]
constructed by Kamran et al. is composed of a coarse and a fine generator as well
as two transformers as discriminators. The generators synthesize images according
to the input and synthesized images are fed to the transformer encodes for classifi-
cation. The two encoders also determine whether the synthesized images are from
input or artificially generated.

Dermoscopy. In 2022, Aladhadh et al. [42] developed an MVT-based framework
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Figure 9: Structure of the O-Net. O-Net has a novel architecture design and serves
as a universal model for both classification and segmentation. EE, SE, CD, and
SD represent the EfficientNet encoder block, swin transformer encoder block, CNN
decoder block, and swin transformer decoder block, respectively. The gray solid lines
show the skip connection. The green dotted lines depict fusion and unification. CL
means the classification layer. CR represents the classification result and the SR
illustrates the segmentation result.
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based on the transformer. Different data augmentation methods, including image
flip, scaling, rotation, and contrast. Wang and co-workers designed a novel architec-
ture O-Net, which serves as a universal model for both classification and segmenta-
tion. We show the complicated structure of the O-Net in Figure 9. The O-Net has a
circle shape and is composed of four core blocks: EfficientNet encoder block, swin
transformer encoder block, CNN decoder block, and swin transformer decoder block.
Several EfficientNet encoder blocks and swin transformer encoder blocks composed
the encoder, while the remaining two blocks compose the decoder. The encoder and
decoder are connected by several skip connections.

Endoscopy. Hosain et al. [160] proposed to compare the classification perfor-
mance between the transformer and CNN. Tamhane and co-workers [162] developed
a landmark detection pipeline composed of three stages, including preprocessing,
feature extracting, and classifying. The features are extracted using the transformer.
CNN models including ResNet and ConvNeXt [187] are also implemented for perfor-
mance comparison.

US. Gheflati and Rivaz [163] utilize the transformer and compare its performance
with several CNN models. Li et al. [165] developed a multi-scale feature fusion trans-
former by combining CNN and transformer. Short-distance feature interaction block
is designed for the two feature maps within the CNN block, while a long-distance fea-
ture interaction block is developed for the feature maps between stages. Cross-SE
block is introduced in the transformer block, which is mainly composed of the global
average pooling layer and fully connected layer.

PET. Xing and co-workers [166] proposed an Advit model composed of two
branches processing different modalities of PET. For each branch, a 3D-to-2D oper-
ation is implemented to project the 3D PET images into 2D fusion images using the
proposed CNN module. The fused 2D images are then forwarded to the transformer.
The output of two transformers is finally concatenated.

Camera. Qayyum et al. [44] developed a multi-model transformer consisting of
two separate pre-trained transformers. The outputs of both transformers are con-
catenated using pair-wise feature concatenation. The pair-wise feature concatena-
tion is composed of two branches. In the first branch, the output of the second trans-
former is concatenated after the output of the first transformer. Regarding the second
branch, the sequence is inverted. Outputs of two branches are then concatenated,
in which the output of the first branch is placed in the front.

OCT. Wang and co-workers [169] developed a ViT-P architecture, consisting of
a slim model and several transformer encoders in series. The model is mainly com-
posed of four stages, in which each stage consists of the multi-branch convolutional
and channel attention mechanism [188]. Besides, DCGAN [189] and proposed
B-DCGAN are implemented to perform data augmentation. Though their method
shows promising results, we have to point out that the images generated by GAN
are not quantitatively evaluated using metrics like IS [190] and FID [191] thus caus-
ing the performance difficult to represent intuitively.

Multiple. In 2022, Gong et al. [170] developed an SSBTN composed of three
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modules, which are the pretext channel module, the transformer-based transfer mod-
ule, and the downstream channel module. The transformer-based transfer module
uses bi-channel transformer encoders and the loss between two channels is calcu-
lated. Rahhal and co-workers [173] proposed a symmetric dual transformer consist-
ing of two transformers. Original images are fed to one of the transformers with a
class classifier while augmented images are sent to another transformer with a distill
classifier. The outputs of the two transformers are then passed through a weighted
fusion layer. Gao et al. [174] built a grouped bottleneck transformer. The grouped
bottleneck transformer block is composed of two branches, consisting of convolution
operation only and both convolution operation and multi-head self-attention mecha-
nism, respectively. The FPViT network [177] developed by Liu et al. extracts feature
from three different layers from ResNet and input them into the transformer heads at
different scales. The activation vectors are obtained through three transformers and
the ResNet head, and prediction results are made through concatenated vectors.
Almalik and co-workers [178] proposed a SEViT model, which trains separate mul-
tilayer perceptron layers using extracted patch tokens. A self-ensemble of different
multilayer perceptron layers, together with the transformer classifier, enhances the
robustness of the transformer. Besides, the consistency between ensemble predic-
tions is leveraged for detecting adversarial samples.

4.2. Segmentation
Segmentation-related works are also grouped by different modalities in the se-

quence of MRI, CT, endoscopy, X-ray, US, microscope, DFI, camera, and der-
moscopy. For papers containing more than one modality, we place them into the
"multiple" category following the dermoscopy. The transformer-based segmentation
works are organized in Table 2, Table 3, and Table 4 according to different modalities,
respectively. Most of the segmentation works combine the transformer with the U-
Net [192] or its variants like TransUNet [193]. The U-Net is composed of a contracting
path (encoder) following the structure of CNN, and an expansive path (decoder). The
bottleneck layer is implemented between the encoder and decoder. The encoder is
composed of several CNN blocks with the ReLU activation function. The output of
each CNN block passes the max pooling for downsampling. With the downsampling,
the number of feature channels is doubled. As for the decoder, it is composed of sev-
eral upsampling, which halves the passed feature channels and several CNN blocks
with the ReLU activation function. The features in the CNN blocks are concatenated
with the feature obtained from the encoder at different scales. Specifically, the fea-
tures obtained from a certain encoder scale are first cropped because border pixels
are lost during convolution operation. The cropped features are then concatenated
along the channel dimension.

MRI. The U-Net and its variants are widely used to segment medical MRI images.
Within these works, most of the works aim at modifying the encoder, decoder, or the
bottleneck layer [194, 196, 199, 203, 205, 206, 210, 212–219, 221, 223, 224, 226,
228]. Many works utilize several U-Nets when constructing their model [229–231,
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Table 2: Transformer-based segmentation applications for CT and MRI modalities.

Method Year Modality Object Dataset
UTNet [194] 2021 MRI cardiac [195]

MRA-TUNet [196] 2022 MRI cardiac cardiac disease [197, 198]
TransConver [199] 2022 MRI brain brain tumor [200–202]
UTransNet [203] 2022 MRI brain stroke [204]
TransBTS [205] 2021 MRI brain brain tumor [200–202]
METrans [206] 2022 MRI brain stroke [207–209]
SwinBTS [210] 2022 MRI brain brain tumor [200, 202, 211]

BTSwin-Unet [212] 2022 MRI brain brain tumor [200, 201]
AST-Net [213] 2022 MRI brain brain tumor [202]
BiTr-Unet [214] 2022 MRI brain brain tumor [202]

Swin UNETR [215] 2022 MRI brain brain tumor [202]
CST-UNET [216] 2022 MRI brain brain tumor [202]

VT-UNet [217] 2022 MRI brain brain tumor [202]
CSU-Net [218] 2022 MRI brain brain tumor [202]

OSTransnet [219] 2022 MRI bone osteosarcoma [220]
3D PSwinBTS [221] 2022 MRI brain brain tumor [202, 222]

TSEUnet [223] 2022 MRI brain brain tumor [202]
RMTF-Net [224] 2022 MRI brain brain tumor [202, 225]

AMTNet [226] 2023 MRI prostate,
brain brain tumor [202], [227]

transformer-based GAN [228] 2022 MRI brain brain tumor [202]
DUconViT [229] 2022 MRI bone -

CTCL [230] 2022 MRI cardiac cardiac disease [197]
symmetrical supervision transformer

[231]
2022 MRI abdomen,

cardiac
[232, 233]

transformer-enhanced U-Net [234] 2021 MRI cardiac [235]

TransUNet-based [236] 2022 MRI brain,
cardiac

stroke[209]

dual-teacher [237] 2022 MRI cardiac cardiac disease [197]
mmFormer [238] 2022 MRI brain brain tumor [202]

NVTrans-UNet [239] 2023 MRI cardiac [240]
3D transformer [241] 2022 MRI brain Alzheimer’s [242]

iSegFormer [243] 2022 MRI cartilage [244]
transformer-based region-edge

aggregation network [51]
2022 MRI cardiac,

knee
cardiac disease [198]

CESS-ViT [245] 2022 MRI cardiac cardiac disease [197]
uncertainty-aware transformer [246] 2022 MRI cardiac cardiac disease [197]

HybridCTrm [247] 2021 MRI brain [248], neurodevelopmental disorders [249]

statistical features-based [250] 2022 MRI brain,
cardiac

[222], brain tumor [200–202]

feature fusion-based [251] 2023 MRI brain brain tumor [200–202]
UNTER [252] 2022 CT liver liver tumor [253, 254]

CoTr [255] 2021 CT abdomen colorectal cancer, ventral hernia [256]

ITUnet [257] 2022 CT head,
neck

-

TFCNs [258] 2022 CT abdomen,
chest

colorectal cancer, ventral hernia [256], lung
disease [91, 259]

TSE DeepLab [260] 2022 CT sinus,
patellar

-

transformer-UNet [261] 2021 CT lung [227]

AFTer-UNet [262] 2022 CT abdomen,
chest

colorectal cancer, ventral hernia [256],
organs at risk [263, 264]

HT-Net [265] 2022 CT
lung,

kidney,
bladder

kidney tumor [266], lung lesion [267],
bladder cancer [268]

UCATR [269] 2021 CT brain -
MMViT-Seg [270] 2023 CT lung lung disease [271, 272]
CCAT-net [273] 2022 CT chest lung disease [37]

CAC-EMVT [274] 2021 CT chest -

MSHT [275] 2021 CT liver,
kidney

kidney tumor [266], liver tumor [253]

RCSHT [276] 2022 CT chest -
design-flexible transformer [277] 2022 CT liver, spine liver tumor [222], [278]

MAPTransNet [279] 2022 CT lung lung tumor [106, 280]
CTUNet [281] 2022 CT pancreas [282]
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234, 236, 237]. For instance, Xiao et al. [237] developed a semi-supervised dual-
teacher architecture, which uses simultaneous dual-teacher to guide the student.
The two teachers use U-Net and Swin-UNet [283] as the backbone and the student
uses the U-Net as the backbone. The U-Net teacher and U-Net student, and two
teachers inside are screened for uncertainty assessment during training. Beyond
single modal, there are also several works aiming at multimodal tasks [238, 239],
such as the multimodal network NVTrans-UNet [239] developed by Li et al. The input
of the NVTrans-UNet is composed of three main parts, including the encoder module,
bottleneck layer, and decoder module. The NVTrans-UNet utilizes the neighborhood
transformer to localize the receptive field of each token to its nearest neighboring
pixel. The multi-modal gated fusion strategy is implemented to adjust the contribution
of feature mapping from each modal. Atrous spatial pyramid pooling is also used
in the bottleneck layer for expanding the receptive field, reducing parameters, and
enhancing extraction ability.

Besides the U-Net-based work, there are several models developed in other
ways. Several works made minor modifications based on the existing model or con-
nect two models in series. For example, Karimi et al. [241] developed a 3D trans-
former, in which the residual connection in the transformer encoder block is removed.
Liu and co-workers [243] proposed an iSegFormer, where the swin transformer and
lightweight multilayer perceptron decoder are combined in series. Some researchers
design their models from scratch [51, 245–247, 250, 251]. For instance, Chen et
al. [51] proposed a transformer-based region-edge aggregation network, where the
multi-level region and edge features are aggregated by multiple transformer-based
inference modules to form multi-level complementary features. These complemen-
tary features are utilized to guide the decoding of the corresponding level region and
edge features. Sun and co-workers [247] developed a multimodal HybridCTrm net-
work, which is composed of two paths. The first path takes the MRI-T1 and MRI-T2
images together, followed by the parallel CNN and transformer, while the second
path takes the MRI-T1 and MRI-T2 images separately. In 2023, a novel method
based on deep semantics and edge information fusion is developed [251]. The pro-
posed method is composed of a semantic segmentation module, an edge detec-
tion module, as well as a feature fusion module. The segmentation module utilizes
the swin transformer as the backbone with shifted patch tokenization strategy. The
CNN-based detection module consists of the proposed edge spatial attention block
for feature enhancement. Semantic and edge features from two modules are fused
by the feature fusion module.

CT. Instead of using existing models to segment CT images, such as the
framework [252] using UNTER [284] as the backbone, major works use U-Net-
based novel networks with different aspects of modifications [255, 257, 258, 260–
262, 265, 269, 270, 273–277, 279, 281]. For instance, Xie et al. [255] designed
a framework CoTr with three parts: A CNN encoder, a DeTrans encoder, and a De-
coder. The DeTrans encoder connects the CNN encoder and the decoder at different
scales. The output of the CNN encoder is flattened before feeding to the DeTrans
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Table 3: Transformer-based segmentation applications for endoscopy, X-ray, US,
microscope, DFI, camera, and dermoscopy modalities.

Method Year Modality Object Dataset
RANT [287] 2022 Endoscopy throat [288]

BiDFNet [289] 2022 Endoscopy colon polyp [40, 290–293]
Patcher [294] 2022 Endoscopy colon polyp [290]

Polyp2Seg [295] 2022 Endoscopy colon polyp [40, 290–293]
TransHarDNet [296] 2022 Endoscopy colon polyp [40, 290–293]
FCBFormer [297] 2022 Endoscopy colon polyp [290, 298]

U-Net [299] 2021 X-ray breast -
temporary transformer [300] 2022 X-ray catheter -

APSegmenter [301] 2022 X-ray spine spinal curvature [302]
Chest L-Transformer [31] 2022 X-ray chest lung disease [98]

federated split transformer [107] 2021 X-ray lung lung disease [303]
TransBridge [304] 2021 US cardiac cardiac disease [41]

TFNet [305] 2022 US breast,
thyroid

breast disease [35], thyroid
disorder [306]

CSwin-PNet [307] 2023 US breast breast disease [35, 164]
RSTUnet-CR [308] 2022 US breast -

dilated transformer [309] 2022 US breast breast tumor [310]
Swin-PANet [311] 2022 Microscope colon, cell colon cancer [312], [313]

multiple-instance transformer [314] 2022 Microscope colon colon cancer [315]
SMESwin Unet [316] 2022 Microscope colon, cell colon cancer [312], [313], [317]

PCAT-UNet [43] 2022 DFI retinal retinal disease [318, 319],
[320]

Polarformer [321] 2022 DFI retinal retinal disease [322–324]

GT-DLA-dsHFF [325] 2022 DFI retinal retinal disease [318, 320, 326],
[327]

versatile transformer [328] 2022 Camera skin -
semi-supervised transformer [329] 2022 Dermoscopy skin melanoma [159, 330, 331]

encoder and the output of the DeTrans encoder is reshaped and then send to the de-
coder. The DeTrans only pays attention to a small set of key positions thus the com-
plexity is reduced largely. Kan and co-workers [257] developed an ITUnet, in which
the feature map of CNN and transformer are added in the downsampling stage. In
the upsampling stage, the segmentation predictions for each feature map obtained
by the up block are generated and utilized to calculate the loss. Li et al. [258] con-
structed a TFCNs model, in which the encoder is constructed by introducing the
transformer into the FC-DenseNet [285]. The RL-Transformer layer is added at the
end of the encoder and the convolutional linear attention block is introduced in the
skip connection to filter non-semantic features by including spatial and channel at-
tention. In 2023, Yang and co-workers [260] developed a TSE DeepLab framework,
which leverages atrous convolution in DeepLabv3 [286] as the backbone to extract
features. The captured features are then converted into visual tokens and then fed
to the transformer. Squeeze and excitation components are also introduced after the
transformer for channel importance sorting.

Endoscopy. Pan et al. [287] proposed a RANT framework, in which the trans-
former and CNN are combined in series. Features are cascaded using reverse at-
tention and receptive field block module. The segmentation results are optimized
using convolutional conditional random fields. Tang and co-workers [289] proposed
a bi-decoder BiDFNet works in both fine-to-coarse and coarse-to-fine ways. The
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BiDFNet is composed of an encoder based on PVTv2 [332] as well as two decoders
connected in series. The adaptive fusion module and the residual connection mod-
ule are implemented in the decoders, and the adaptive fusion module aggregates the
features from different scales effectively. Ou et al. [294] developed a Patcher method,
where the encoder utilizes a cascade of Patcher blocks for expert features capture
at different scales. The Patcher block first segment the input to large patches with
overlapping contexts and then further divided them into small patches. The divided
small patches are next fed to sequential transformer blocks for feature extraction
and the large patches are finally reassembled. The mixture-of-experts-based de-
coder utilizes a gating network to filter a set of suitable expert features for the predic-
tion. Mandujano and co-workers [295] constructed a Polyp2Seg network, which uses
PVTv2 to extract a set of multi-scale features. The extracted multi-scale features are
then compressed and fed into several feature aggregation modules. A multi-context
attention module is implemented to characterize low-level polyp cues and the final
predicted results are obtained by several auxiliary outputs. The TransHarDNet net-
work [333] designed in 2022 combines the transformer and HarDNet blocks [334].
HarDNet Blocks are leveraged to extract spatial and depth information, while the
transformer captures global semantic context information. Several cascaded partial
decoders are implemented to fuse the feature maps and the skip connection with
the receptive field block is implemented between the HarDNet blocks and partial de-
coders. Sanderson et al. [297] designed an FCBFormer architecture consisting of
two branches. The transformer branch extracts the most important features based
on the transformer, while the fully convolutional branch is implemented as a sup-
plementary. The output of the two branches is then concatenated and passes the
prediction head.

X-ray. Saidnassim and co-workers [299] proposed to use the BYOL algorithm for
U-Net-based breast image segmentation. Zhang et al. [300] proposed a temporary
transformer network, which takes both the current and previous frames as the input
to obtain temporary information. The current frame is fed into the CNN and trans-
former, while the previous frame is fed into the CNN only. In 2022, Zhang and co-
workers [301] developed an APSegmenter method in which the transformer-based
Segmenter [20] is utilized to obtain semantic segmentation results. The proposed
adaptive post-processing module is utilized to optimize the results, which takes the
vertebral block boundary in the adhesion region as the input and outputs the ver-
tebral mass without adhesion. The Chest L-Transformer and federated split trans-
former discussed in Table 1 are also leveraged for medical image segmentation.

US. Deng et al. [304] proposed a TransBridge model, in which both the en-
coder and decoder are based on CNN, while the transformer encoder is used to
skip-connect them at different scales. Within the transformer encoder, an embed-
ding layer is implemented by using shuffled group convolution and dense patch di-
vision. Wang and co-workers [305] constructed a TFNet model, where the channel
attention mechanism is introduced for solving the channel modeling defect. A loss
function based on KL distance is also proposed to modify the predicted results by
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Figure 10: Segmentation results on the BUSIS dataset [310] using MedT [335], di-
lated transformer (DT) [309], U-Net [192], U-Net++ [336], and SAUnet [337]. GT
represents the ground truth.
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calculating the variance between the results of the main classifier and the auxiliary
classifier. In 2023, Yang et al. [307] built a CSwin-PNet model. An interactive chan-
nel attention module using channel-wise attention and an SFF module is developed
for feature region emphasize and feature supplementary during fusion, respectively.
Besides, a boundary detection module is also utilized to extract the boundary infor-
mation. Zhuang and co-workers [308] designed an RSTUnet-CR model consisting
of a shared encoder, a segmentation decoder, and a consistency regularization de-
coder where long-distance dependence is established using the residual swin trans-
former block. The dilated transformer model proposed in 2022 [309] uses a dilation
convolution block to connect the encoder and decoder. The encoder contains the
multi-head attention mechanism and the decoder is mainly composed of deconvolu-
tion. As shown in Figure 10, the dilated transformer performs better compared with
other state-of-the-art methods. Among all methods, the dilated transformer and the
SAUnet [337] perform better due to low false positives, meaning that the boundaries
can be distinguished precisely. Within the two methods, the dilated transformer can
capture information in more detail. Take the fourth row as an example, the dilated
transformer can distinguish the invaginated part at the top tumor better. Though the
dilated transformer outperforms other models, we also observed that it can some-
times produce unideal results. Several examples would be the first, seventh, and
eighth rows, in which an isolated extra object is mistakenly created. This means
the ability to differentiate textures with subtle differences still has a margin to be
improved.

Microscope. In 2022, Liao et al. [311] proposed a Swin-PANet model follow-
ing the coarse-to-fine as well as dual supervision strategy. The developed Swin-
PANet consists of a prior attention network and a hybrid transformer network. The
swin transformer-assisted prior attention network carries out intermediate supervi-
sion learning, while the hybrid transformer network with enhanced attention blocks
implements direct learning. Besides, the skip connection is employed to connect
the encoder and decoder of the hybrid transformer network. Qian and co-workers
[314] developed a multiple-instance transformer where the transformer is incorpo-
rated into the multiple-instance learning framework. The self-attention establishes
the relationship among different instances. Deep supervision is implemented to
overcome the annotation limitation existing in weakly-supervised methods. Wang
et al. [316] developed a SMESwin Unet model based on their proposed MCCT. The
MCCT is designed to fuse multi-scale semantic features and attention maps based
on the channel-wise cross-fusion transformer [338]. Superpixel is introduced by di-
viding the pixel-level feature into district-level and external attention is leveraged to
introduce the correlations among all data samples.

DFI. Chen and co-workers [43] designed a PCAT-UNet model containing two
main components named patches convolution attention transformer block and fea-
ture grouping attention module. Both encoder and decoder are composed of sev-
eral patches convolution attention transformer blocks and the outputs of the feature
grouping attention modules are fed into the patches convolution attention transformer
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Figure 11: Segmentation results on the Synapse dataset [256] using UNet, Tran-
sUNet [193], and ST-Unet [376].

blocks. The segmentation map of each layer is predicted using the fused enhanced
feature map. Feng et al. [321] proposed a Polarformer network mainly composed
of the learnable polar transformation module as well as the CNN-transformer mod-
ule. The polar transformation module carries out a differentiable log-polar trans-
form, while the CNN-transformer module captures features and consolidates global
attention. A segmentation head is implemented to output the confidence scores
and transmute the predictions back to the Cartesian coordinate system. Li and co-
workers [325] developed a GT-DLA-dsHFF model, in which a global transformer and
dual local attention network are introduced for global information integration and lo-
cal vessel information extraction, respectively. Besides, a deep-shallow hierarchical
feature algorithm is used to fuse features.

Camera. The versatile transformer [328] developed by Junayed et al. is com-
posed of the dual encoder, the feature versatile block, and efficient decoder archi-
tecture with skip connections. The dual encoder is based on CNN and transformer
to extract features, and the feature versatile block is implemented to distribute and
integrate obtained features between the encoder and decoder. A squeeze and ex-
citation block component is also introduced in the decoder to capture channel-wise
dependencies as well as the significant feature correlations.

Dermoscopy. Alahmadid and co-workers [329] proposed a transformer consist-
ing of a supervised stream and an unsupervised stream. The supervised stream
combines CNN and transformer and the output features of CNN and transformer are
fused. Specifically, the transformer output is reshaped into the same spatial dimen-
sion as the CNN, and then two features are concatenated. The fused features are
then fed to the decoder module for semantic segmentation learning. The unsuper-
vised stream is composed of a supplementary decoding head and utilizes the unsu-
pervised technique for encoder module enrichment. A surrogate task is designed on
top of the CNN and transformer representations.
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Table 4: Transformer-based segmentation applications for multiple modalities.

Method Year Modality Object Dataset

MISSFormer [339] 2022 CT, MRI, DFI abdomen, cardiac,
retinal

colorectal cancer, ventral hernia [256],
cardiac disease [340], retinal disease [318]

Dual encoder
transformer-CNN [341]

2022 CT, MRI abdomen, cardiac colorectal cancer, ventral hernia [256],
cardiac disease [340]

ConTrans [342] 2022
Endoscopy,

Dermoscopy, CT,
Microscope

cell, skin, chest,
colon

polyp [40, 290, 291, 293], melanoma
[159, 330], pigmented skin lesion [158],
lung disease [343], colon cancer [312],

[344], cancer [345]

ScaleFormer [346] 2022 CT, MRI, Microscope abdomen, cell,
cardiac

[313, 347], cardiac disease [197]

EMSViT [348] 2022 MRI, CT abdomen, brain colorectal cancer, ventral hernia [256],
brain tumor [201, 202]

TransCUNet [349] 2022 Microscope, Endoscopy,
Dermoscopy

colon, cell, skin colon cancer [312], polyp [291], [313, 350],
melanoma [159]

CATS [351] 2022 CT, MRI abdomen, brain,
prostate

brain tumor [202], vestibular schwannomas
[352], [353]

D-former [354] 2022 CT, MRI abdomen, cardiac brain tumor [202], cardiac disease [197]

APT-Net [355] 2022 Dermoscopy,
Endoscopy, Microscope

skin, colon melanoma [159, 331], polyp [40, 290–293],
colon cancer [312]

TransNorm [356] 2022 CT, Dermoscopy,
Microscope

abdomen, skin, cell colorectal cancer, ventral hernia [256],
melanoma [159, 330, 331], myeloma [357]

SwinPA-Net [358] 2022 Colonoscopy,
Microscope, Camera

colon, cell polyp [40, 290–293], [344]

GPA-TUNet [359] 2022 CT, MRI abdomen, cardiac colorectal cancer, ventral hernia [256],
cardiac disease [197]

ConvWin-UNet [360] 2023 Microscope, CT kidney, abdomen colorectal cancer, ventral hernia [256],
[361]

PCT [362] 2023 US, Microscope,
Dermoscopy

parotid, skin, cell [313], melanoma [159]

DS-TransUNet [363] 2022
Endoscopy,

Dermoscopy,
Microscope

colon, skin, cell colorectal cancer [40], colon cancer [312],
polyp [290–293], [344], melanoma [330]

DSTUNet [364] 2022 MRI, CT abdomen, cardiac cardiac disease [197], colorectal cancer,
ventral hernia [256], cardiac disease [340]

MT-UNet [365] 2022 CT, MRI abdomen, cardiac colorectal cancer, ventral hernia [256],
cardiac disease [340]

ViTBIS [366] 2021 CT, MRI abdomen, brain brain tumor [201, 202], colorectal cancer,
ventral hernia [256]

TDD-UNet [367] 2022 CT, X-ray lung lung disease [88, 272]
SwinE-Net [368] 2022 Endoscopy, MRI colon, brain polyp [40, 290–293]

USegTransformer [369] 2022 Dermoscopy, MRI, CT,
Microscope

brain, lung, cell, skin,
chest

pigmented skin lesion [158], lung lesion
[267], brain tumor [225], [344], melanoma

[330], lung disease [343]
SegTransVAE [370] 2022 CT, MRI kidney, brain kidney tumor [266], brain tumor [202]

MedT [335] 2021 US, Microscope brain, colon, cell intraventricular hemorrhage [371, 372],
colon cancer [312], [313, 350]

medical transformer [373] 2023 MRI, US, Camera prostate, cardiac,
tongue

[374]

CTC-Net [375] 2023 CT, MRI abdomen, cardiac colorectal cancer, ventral hernia [256],
cardiac disease [197]

ST-Unet [376] 2023 Dermoscopy, CT skin, abdomen
colorectal cancer, ventral hernia [256],
pigmented skin lesion [158], melanoma

[330]
MS-TransUNet++ [377] 2022 MRI, CT prostate, liver liver tumor [253], prostate cancer [378]

O-Net [50] 2022 Dermoscopy, CT skin, abdomen melanoma [159], colorectal cancer, ventral
hernia [256]

TMSS [379] 2022 PET, CT head, neck tumor [380]

TransDeepLab [381] 2022 CT, Dermoscopy abdomen, skin colorectal cancer, ventral hernia [256],
melanoma [159, 330, 331]

transformer [382] 2023 CT, MRI abdomen colorectal cancer, ventral hernia [256],
[232]

ECT-NAS [383] 2021 CT, MRI abdomen, cardiac cardiac disease [197], [384], [232]
SMIT [385] 2022 CT, MRI abdomen colorectal cancer, ventral hernia [256]

progressive sampling
transformer [386]

2022 Microscope, Endoscopy colon, cell colon cancer [312]; polyp [291], [313, 350]

X-Net [387] 2021 Microscope, Endoscopy colon, cell [344, 388], polyp [290]
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Figure 12: The structure of the MS-TransUNet++ [377]. The representative Tran-
sUNet++ implements the transformer blocks into the U-Net intuitively and uses multi-
ple skip-connection to bridge the features at different resolutions. The orange, green,
and blue blocks illustrate CNN-based blocks. The gray blocks represent the trans-
former layers consisting of efficient multi-head self-attention (EMSA). The orange
arrows show the downsampling operation, the green arrows represent the upsam-
pling operation, and the dotted lines show the skip connection.

Multiple. A large part of the work for coping with several modalities is U-shaped
or its variants [50, 335, 339, 341, 342, 346, 348, 349, 351, 354–356, 358–360, 362–
370, 373, 375, 377, 379, 387]. Yuan et al. [375] developed a CTC-Net, where two
encoders are designed by the swin transformer and residual CNN to capture comple-
mentary features. The cross-domain fusion block is used to concatenate these fea-
tures. The correlation between features from the ResNet and transformer domains is
calculated and channel attention is employed to extract dual attention information. A
feature complementary module is constructed by incorporating cross-domain fusion,
feature correlation, and dual attention. Zhang et al. developed an ST-Unet [376]
which leverages the swin transformer to extract features. Features of each encoder
stage are then enhanced by the developed CLFE module and concatenated with
the current ones, followed by the up-sampling. The CLFE utilizes the self-attention
block to learn the global feature information of a certain layer and fuse and learn the
information with the tokens of the previous layer to obtain the enhanced multi-layer
feature information. Cross-layer features are finally obtained for decoding feature
enhancement. The segmented results across ST-Unet and other models can be
found in Figure 11. It can be seen that for images with clear visual and semantic
relationships, U-Net, TransUNet, and ST-Unet exhibit accurate segmentation. How-
ever, ST-Unet outperforms other methods for images with discreet visual relation-
ships due to better global context encoding and semantic discrimination, and other
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methods can perform over- and under-segmentation. It is worth noting that due to
insufficient semantic information and blurred boundaries, sometimes all the above-
mentioned methods cannot produce outstanding results. An example of this would
be the pancreas in the first and third rows. Wang and co-workers [377] designed
a representative architecture MS-TransUNet++. The MS-TransUNet++ implements
the transformer blocks into the U-Net intuitively and uses multiple skip-connection
to bridge the features at different resolutions. We show the structure of the MS-
TransUNet++ in Figure 12 for a more intuitive explanation. The MS-TransUNet++
has a U-shape and several constructed transformer layers are inserted between the
encoder and decoder. Skip connections on different feature scales are implemented
densely across different CNN blocks. The O-Net introduced in Table 1 can also seg-
ment images using a separate output head, as shown in Figure 9. The end-to-end
multimodal TMSS network [379] proposed in 2022 is composed of a transformer en-
coder and CNN decoder. The transformer encoder takes the projected features from
multimodal images and electronic health records.

There are a few works that are not based on U-Net [381–383, 385, 386]. For
instance, Jiang et al. [385] proposed an SMIT method to perform self-supervised
learning for the transformer. The proposed method combines a dense pixel-wise
regression pretext task with masked patch token distillation. Two transformers are
utilized in the proposed method, serving as student and teacher, respectively. The
parameters of teacher network parameters are updated using an exponential moving
average with momentum. In 2022, Jiang and co-workers [386] introduced a progres-
sive sampling transformer, in which a gated position-sensitive axial attention mech-
anism is introduced in the attention module. Iterative sampling for sampling position
updating is also added to ensure the attention stays on the region to be segmented.

4.3. Miscellaneous
Miscellaneous works are discussed in a sequence of captioning, registration, de-

tection, enhancement, localization, and synthesis. It is worth noting that we do not
further divide the included works by different imaging modalities due to the small
number of works. The summary of the transformer-based miscellaneous applica-
tions can be found in Table 5.

Captioning. Most captioning works modify different parts of the transform from
NLP [389, 391, 392, 394, 396, 397, 399]. For instance, Hou et al. [392] proposed
a RATCHET network, in which the image is fed into a DenseNet-based encoder
and its output passes the masked multi-head attention module. The text tokens are
fed for embedding and then pass the transformer decoder. Their method performs
well and is capable of generating correct keywords for the given images, as shown
in Figure 13. Li and co-workers [397] proposed a CGT network, which can re-
store a sub-graph from clinical relation. The restored triples are injected into the
visual features as prior knowledge to drive the decoding procedure. Then, the visi-
ble matrix is utilized to limit the impact of knowledge during encoding. Reports are
predicted by the encoded cross-modal features via a transformer decoder. In 2022,
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Table 5: Transformer-based miscellaneous applications.

Task Method Year Modality Object Dataset
Captioning transformer [389] 2022 X-ray chest [390]
Captioning CEDT [391] 2022 X-ray chest chest disease [86], [390]
Captioning RATCHET [392] 2021 X-ray chest [393]
Captioning TranSQ [394] 2022 X-ray chest [390, 395]

Captioning multicriteria supervised
transformer [396]

2022 X-ray chest [390, 395]

Captioning CGT [397] 2022 DFI retinal [398]

Captioning KdTNet [399] 2022 Endoscopy,
X-ray

gastrointestinal,
chest

[390]

Captioning SGT [400] 2022 Endoscopy kidney, small
intestine

[401]

Captioning MCGN [333] 2022 X-ray chest [395]

Captioning Eddie-Transformer [402] 2022 X-ray chest chest disease [86], [390],
lung disease [403]

Registration TD-Net [34] 2022 MRI brain Alzheimer’s [404]
Registration SymTrans [405] 2022 MRI brain Alzheimer’s [404]

Registration TransMorph [406] 2022 MRI, CT brain, chest,
abdomen, pelvis

[150, 407]

Registration FTNet [408] 2022 MRI brain Alzheimer’s [404], [409]

Registration Swin-VoxelMorph [410] 2022 MRI brain Alzheimer’s [411],
Parkinson’s disease [152]

Registration Xmorpher [412] 2022 CT cardiac [413, 414]
Registration C2FViT [415] 2022 MRI brain Alzheimer’s [404], [416]
Detection swin transformer [417] 2023 X-ray breast [418]
Detection DETR-based [419] 2023 Microscope cell [420]
Detection NucDETR [421] 2022 Microscope cell [422], cancer [423]
Detection lightweight transformer [424] 2022 X-ray breast breast cancer [425]

Detection MS Transformer [426] 2022 CT lung, bone, kidney,
lymph

pulmonary nodules, bone
lesions, kidney lesions,

lymph node enlargement
[427]

Detection SFOD-Trans [428] 2022 CT vein [429]

Detection federated split transformer
[107]

2021 X-ray lung lung disease [95]

Enhancement SSTrans-3D [430] 2023 CT brain -
Enhancement 3D CVT-GAN [45] 2022 PET brain -
Enhancement GVTrans [431] 2021 MRI brain [150, 432]
Enhancement RSTUnet-CR [308] 2022 US breast -
Enhancement TED-Net [433] 2021 CT liver metastatic lesion [434]

Enhancement SIST [435] 2022 CT
head, chest,

abdomen, spine,
lung

acute cognitive or motor
deficit, high-risk for
pulmonary nodules,

metastatic liver lesions
[436]

Enhancement Eformer [437] 2022 CT liver metastatic lesion [434]

Localization transformer graph network
[438]

2022 CT artery coronary plaque [439]

Synthesis ResViT [440] 2021 MRI, CT brain, pelvis [150], brain tumor [202],
[441]
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Stable right greater than left upper lobe
fibrotic changes. New opacity in the left
mid-to-low lung raises concern for
infectious process versus possibly
asymmetric edema. Recommend follow up
to resolution.

Diffuse bilateral parenchymal opacities, similar
compared to the prior exam, with new focal
opacity in the left upper lung field. Findings
could reflect multifocal infection, though a
component of pulmonary edema is also
possible.

Cardiomegaly and pulmonary edema which
may have progressed since prior although
some changes may be accounted for by
lower lung volumes on the current exam.
Left basilar opacity, potentially atelectasis
noting that infection would also be possible.

1. Low lung volumes with bibasilar atelectasis.
2. Severe cardiomegaly.

Known lung metastases are again noted
though better assessed on prior CT. No
definite signs of superimposed acute
process.

No acute cardiopulmonary process.

In comparison with the study of _ _ _, there
is little change in the substantial
enlargement of the cardiomediastinal
silhouette and moderate pulmonary edema
with bilateral pleural effusions. Monitoring
and support devices remain in place.

'As compared to the previous radiograph, there
is no relevant change. Moderate cardiomegaly
with bilateral pleural effusions and subsequent
areas of atelectasis. The monitoring and
support devices are in constant position. No
new parenchyma opacities.'

Image True text Predicted text

Figure 13: Reports generated by RATCHET [392] using the X-ray dataset [393]. The
same color shows the corresponding descriptions.

KdTNet [399] is developed, in which the visual grid and graph convolutional mod-
ules are designed to extract fine-grained visual features. The transformer decoder is
implemented to generate the hidden semantic states. A BERT-based auxiliary lan-
guage module is used to obtain the context language features from the pre-defined
medical term knowledge. Besides, a multimodal information fusion module is con-
structed to calculate the contribution of linguistic and visual features adaptively. Sev-
eral works construct the models using smaller units. For example, Lin et al. [400]
designed an SGT network, in which relation-driven attention is proposed to facilitate
the interaction described in the report. Instead of directly leveraging the inputs tra-
ditionally, relation-driven attention utilizes diverse sampled interactive relationships
as augmented memory. Besides, an ingenious approach is also developed to ho-
mogenize the input heterogeneous scene graph, in which graph-induced attention is
injected into the encoder for local interactions encoding. Wang and co-workers [333]
proposed an MCGN method, in which a memory-augmented sparse attention block
with bilinear pooling is developed for extracting higher-order interactions. The Eddie-
Transformer developed by Nguyen et al. [402] decouples the latent visual features
into semantic disease embeddings and disease states using the proposed state-
aware mechanism. The learned diseases and corresponding states are entangled
into explicit and precise disease representations.

Registration. U-shaped networks are used in most of the works for medical im-
age registration [34, 405, 406, 408, 410, 412]. For example, Shi and co-workers
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[412] developed a new transformer architecture XMorpher with dual parallel feature
extraction networks. The XMorpher exchanges information through cross-attention
to discover multi-level semantic correspondence. At the same time, respective fea-
tures are captured gradually for registration. The cross-attention transformer blocks
can find the correspondence automatically and prompt the feature fusion. There is
a work that uses a different way to design the model. Mok et al. [415] proposed a
C2FViT method, which naturally leverages the global connectivity and locality of the
convolutional transformer and the multi-resolution strategy to learn the global affine
registration. The proposed C2FViT is divided into three stages to the affine regis-
tration in a coarse-to-fine manner. The three stages have an identical architecture,
including a convolutional patch embedding layer and several transformer encoder
blocks. For any transformer encoder block, it is composed of an alternating multi-
head self-attention module with a convolutional feed-forward layer.

Detection. Several works made minor modifications based on existing models
for medical image detection [417, 419]. One example would be the modified DETR-
based [17] proposed by Leng et al. [419]. The authors introduce the PVT [332] and
deformable attention module into the DETR. Connecting existing models in series
is also widely used [421, 424, 426]. For instance, Zhang and co-workers [424] pro-
posed a lightweight transformer for tumor detection [425], in which images are fed
into a ResNet to generate feature maps. The proposed method employs attention to
the outputs of ResNet to improve the hidden representations. The outputs are then
fed to FPN [442], where the multi-scale pyramidal hierarchy is utilized to construct
feature pyramids. A semi-supervised method is also introduced in the detection task.
Liu et al. [428] proposed a semi-supervised framework SFOD-Trans, consisting of
two parallel branches. The two branches in the SFOD-Trans are utilized to train su-
pervised and unsupervised loss, respectively. The combination of the two branches
results in a semi-supervised loss. Besides, a new fusion module named normalized
ROI fusion (NRF) is designed for fusing the hepatic portal vein information captured
from labeled and unlabeled images. The NRF extracts the ROI of the object region
by calculating the geometric gravity center of the bounding box using real and arti-
ficial labels. The obtained two ROIs are fused using the MixUp [443] method. The
federated split transformer discussed in Table 1 and Table 3 can also be used for
image detection.

Enhancement. Reconstruction is one of the most widely researched enhance-
ment tasks. Xie and co-workers [430] proposed a network SSTrans-3D, which re-
constructs the volume using a slice-by-slice scheme. The structures of the encoder
and decoder are the same as the ones in the transformer, while the normalization
layers are removed. In 2022, Zeng et al. [45] developed a 3D convolutional visual
transformer-GAN model 3D CVT-GAN. A hierarchical generator is designed where
multiple 3D CVT blocks are used as the encoder and TCVT blocks are implemented
as the decoder. The CVT block is based on convolutional embedding and the trans-
former, while the TCVT block is based on transpose convolutional embedding as well
as the transformer. The discriminator is also based on the 3D CVT block. Korkmaz
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LDCT RED-CNN WGAN-VGG MAP-NN AD-NET TED-Net NDCT

Figure 14: The denoising results of different methods on the CT dataset [434]. In-
cluded methods are RED-CNN [444], WGAN-VGG [445], MAP-NN [446], AD-NET
[447], and TED-Net. LDCT represents low-dose CT, and NDCT illustrates normal-
dose CT.

and co-workers [431] proposed a novel GVTrans deep generative network. It real-
izes scan-specific reconstruction by embedding visual converters into the generative
network. The multi-layer architecture increases image resolution progressively. Up-
sampled feature maps are fed into a cross-attention transformer module within each
layer and generated images are masked with the same sampling pattern as in the
undersampled acquisition. Besides, the parameters of the model are optimized for
consistency. The RSTUnet-CR discussed in Table 2 is also capable of restructur-
ing images through a consistency regularization decoder. Besides reconstruction,
denoising is also widely investigated. Wang et al. [433] proposed a symmetric TED-
Net network, consisting of an encoder-decoder structure and both the encoder and
decoder contain several transformer blocks. The input to the encoder is tokenized
and the decoder outputs the detokenized result. A transformer block is employed to
link the encoder and decoder and the input is removed from the output to calculate
the final result. The denoising results of TED-Net and other methods can be found
in Figure 14, and it is easy to find that the TED-Net is capable of keeping high-level
smoothness and details when removing the artifact or noise, while other methods
left more blotchy noise. Yang and co-workers [435] developed a SIST method, in
which denoising is performed in the sinogram and image domains using the internal
structure in the sinogram domain. In detail, the CT imaging mechanism and statisti-
cal characteristics of sinogram are studied for inner-structure loss design to restore
high-quality CT images. A sinogram transformer module is also proposed, in which
interrelations between projections of different view angles are exploited for sinogram
denoising. Moreover, an image reconstruction module is developed to denoise com-
plementarily in both the sinogram and the image domain. The Eformer [437] de-
veloped by Luthra et al. is built based on transformer blocks with non-overlapping
window-based self-attention. The learnable Sobel-Feldman operators are incorpo-
rated to enhance edges and concatenated in the intermediate layers.

Localization. Viti et al. [438] developed a transformer graph network, which
exploited the self-attention mechanism of the spatial transformer to embed the con-
textual features of the coronary tree. Specifically, the local features are extracted by
CNN and the positional encodings are then embedded into the extracted features.
Positional encodings are locally calculated by utilizing the directed tree structure. A
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simple signed hop count from the center node is utilized, that is, +1 for distal and
-1 for proximal. The resulting features are merged within the self-attention block of
the spatial transformer. Besides, 150 coronary CT angiography scans are collected
retrospectively.

Synthesis. The ResViT model proposed by Dalmaz et al. [440] is composed of
an encoder, an information bottleneck, and a decoder. The generator of the ResViT
utilizes a central bottleneck with aggregated residual transformer (ART) blocks with
transformer modules. The ART block is composed of three parts, which are the trans-
former encoder-based part, the channel compression part, as well as the residual
CNN part. For the given input feature maps, it first passes the transformer encoder-
based part, in which the residual connection is implemented. The concatenated
features are then fed to the channel compression part with two CNN branches fol-
lowed by the sum operation. Output feature maps are obtained by feeding the output
of the channel compression part to the residual CNN part. As the name implies, the
residual connection is also implemented in this block.

4.4. Quantitative Evaluation
Table 6 shows the performance of the representative transformer-based models

and the performance comparison with other state-of-the-art methods. For classifi-
cation [29, 115, 121, 162, 165, 173], optimal accuracy, F1 score, area under the
curve, precision, recall, balanced accuracy, and Matthew’s correlation coefficient are
observed. For accuracy, we observe an accuracy of up to 99.6% with the leader-
ship of up to 5.6%. Regarding the F1 score, the highest F1 score of 99.5% and
the highest leadership of 3.1% are reached. As for area under the curve, preci-
sion, recall, balanced accuracy, and Matthew’s correlation coefficient, the highest
results are 99.4%, 99.5%, 98.8%, 99.4%, and 98.9%, respectively. For segmenta-
tion [194, 269, 273, 274, 328, 329], superior dice similarity coefficient, sensitivity,
specificity, pixel accuracy, and intersection over union are achieved. The highest
dice similarity coefficient is 90.6% and the highest improvement reaches 4.4%. As
for sensitivity, the highest values and leadership are 94.8% and 9.6%, respectively.
Regarding the specificity, pixel accuracy, and intersection over union, the best re-
sults are 97.7%, 95.9%, and 80.7% respectively. For captioning [399], superior bilin-
gual evaluation understudy-4, consensus-based image description evaluation, and
recall-oriented understudy for gisting evaluation-longest common subsequence are
reached, equaling 0.58, 0.69, and 0.75, respectively. As for registration [34] and
enhancement [433, 435], better dice similarity coefficient, structural similarity index,
root mean squared error, and peak signal-to-noise ratio of 74.3%, 0.92, 8.77, and
41.80 are observed.

As can be seen, the reviewed transformer-based method outperforms most ex-
isting methods on different MIA tasks. These methods include both the CNN-based
methods [53, 183, 448–452] and the transformer-based methods [49, 193, 447, 453–
455]. Overperforming CNN-based models can prove the inherent advantage of the
transformer-based method while outperforming existing transform-based methods il-
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lustrates the effectiveness of their proposed improvements. The outstanding results
prove the versatility and adaptability of the transformer-based method in the field of
MIA. Though the transformer-based method mostly outperforms existing methods to
a large extent, we need to point out that there exist some cases that it is not well-
at. For example, the transformer-based method can sometimes get a relatively low
specificity. To sum up, with overall satisfactory performance, the development of MIA
can be significantly boosted by the transformer-based method.

5. Challenges and Perspectives

Despite the significant progress and successful deployment of transformer-based
methods as a major game changer in the CV area of MIA, future challenges still
exist. We summarize several main challenges and give corresponding perspectives
on how to solve or improve them. We organize the main challenges together with
the corresponding perspectives into three parts, which are feature integration and
computing cost reduction, data augmentation and dataset collection, and learning
manner and modality-object distribution.

Feature integration and computing cost reduction. In order to improve the
model performance by capturing both local and global features, most current works
only simply hybridize CNN and transformer, such as inserting the transformer en-
coder block into a CNN model. However, the integration of local and global features in
this way may not be firm enough. To integrate CNN and the transformer closer, two-
fold ways can be implemented by benefiting the transformer from inductive biases,
which are inherent in CNN. On the one hand, inductive bias in CNN can be brought
back to the transformer [457–459]. On the other hand, the transformer can learn
with CNN simultaneously under the mutual learning framework [460]. High com-
puting cost is always an inevitable problem for the transformer due to the quadratic
computational complexity of the input size, especially when the image resolution is
high. However, seldom works mentioned or try to solve this problem. To improve
the training efficiency of the transformer, more attention computing methods, such
as shifted window attention [49], efficient attention [461], and multi-head linear self-
attention [462] can be taken into consideration. Besides, projection parameters in
the transformer can be shared at different levels. The FLOPs and the number of pa-
rameters of the model can be calculated for quantitative model complexity evaluation
and further comparison.

Data augmentation and dataset collection. In the field of MIA, data shortage
always hamper the model performance. The data augmentation technique is an
important research direction to address this problem. However, as far as we have
seen, many of the transformer-related works have not gone deep into it. Most of the
works only use traditional data augmentation techniques such as rotation, crop, and
flip. So far, only seldom works utilize advanced data augmentation methods, such as
the GAN-based method to synthesize images. Even though, the implemented basic
GAN cannot be considered advanced as the quality and resolution of the images
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Table 6: Quantitative performance of the representative transformer-based method.
For classification, ACC, F1, AUC, PRE, REC, BA, and MCC represent the accu-
racy, F1 score, area under the curve, precision, recall, balanced accuracy, and
Matthew’s correlation coefficient, respectively. For segmentation, DSC, SEN, SPE,
PA, and IoU stand for dice similarity coefficient, sensitivity, specificity, pixel accuracy,
and intersection over union, respectively. For miscellaneous tasks, BLEU-4, CIDEr,
ROUGE-L, DSC, SSIM, and RMSE, PSNR mean bilingual evaluation understudy-4,
consensus-based image description evaluation, recall-oriented understudy for gist-
ing evaluation-longest common subsequence, dice similarity coefficient, structural
similarity index, root mean squared error, and peak signal-to-noise ratio, respectively.
We select one of the representative datasets when multiple datasets are used.

Task Method Baseline Performance (Baseline)

Classification transformer [29] DenseNet ACC: 97.6% (92.0%), F1: 94.6% (91.5%), PRE:
95.3% (91.0%), REC: 93.8% (92.2%)

Classification transformer [162] ResNet ACC: 81.8% (73.1%)

Classification multi-scale feature fusion
transformer [165]

DenseNet
ACC: 85.3% (84.3%), F1: 74.2% (72.7%), AUC:

92.3% (90.7%), PRE: 80.2% (80.3%), REC:
70.5% (68.7%)

Classification ensembled swin
transformer [115]

swin
transformer

ACC: 99.6% (99.2%), F1: 99.5% (99.2%), AUC:
99.4% (99.2%), BA: 99.4% (99.1%), MCC:

98.9% (98.3%)
Classification Self-ViT-MIL [121] DSMIL [448] ACC: 91.5% (91.5%), AUC: 94.3% (93.6%)

Classification symmetric dual transformer
[173]

EfficientNet-
based [449]

ACC: 99.1% (99.0%), F1: 99.1% (99.0%), PRE:
99.5% (99.2%), REC: 98.8% (98.8%)

Segmentation versatile transformer [328] FrCN [450]
DSC: 85.3% (82.0%), SEN: 83.9% (80.8%),

SPE: 82.4% (83.5%), PA: 88.1% (85.3%), IoU:
80.7% (77.4%)

Segmentation semi-supervised
transformer [329]

MSA-UNet
[456]

DSC: 90.6% (90.3%), SEN: 94.8% (88.7%),
SPE: 97.7% (97.1%), PA: 95.9% (95.8%)

Segmentation UTNet [194] CBAM [453] DSC: 88.3% (87.3%)
Segmentation UCATR [269] TransUNet DSC: 73.6% (70.6%), SEN: 73.1% (69.4%)

Segmentation CCAT-net [273] FPN [451] DSC: 65.1% (60.7%), SEN: 76.0% (66.4%),
SPE: 97.7% (95.5%)

Segmentation CAC-EMVT [274] TransUNet DSC: 75.4% (73.2%), PA: 94.0% (92.3%), IoU:
80.6% (78.0%)

Captioning KdTNet [399] PPKED [454] BLEU-4: 0.58 (0.58), CIDEr: 0.69 (0.68),
ROUGE-L: 0.75 (0.74)

Registration TD-Net [34] SYMNet [455] DSC: 74.3% (73.7%)
Enhancement TED-Net [433] AD-Net SSIM: 0.91 (0.90), RMSE: 8.77 (9.72)

Enhancement SIST [435] DP-ResNet
[452]

SSIM: 0.92 (0.91), PSNR: 41.80 (40.92)
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synthesized by basic GAN are difficult to guarantee. In the case of using low-quality
or even repetitive (e.g., model collapse) synthesized images for training, the validity
of the model performance is questionable. For instance, a classification model can
show very high accuracy on a dataset, but there may exist thousands of repetitive
synthesized images that are correctly classified in the dataset. To augment data
better, state-of-the-art image synthesis models should be taken into consideration.
For instance, GAN that suits small datasets like StyleGAN2-ADA [463], independent
spatial and appearance transform models [59], and diffusion probabilistic models
like 3D-DDPM [60]. Another problem we observed is that many selected papers
only compare the model performance with several classic models, and models de-
signed for MIA by other authors are not included. This is especially common for
non-mainstream modalities and objects. One of the main reasons that caused it is
the lack of widely accepted benching marking datasets like ImageNet [464]. Thus,
the collection and publication of new high-quality medical datasets can benefit this
research field a lot. Constructing such datasets can also benefit the development of
the transfer learning technique in the MIA field. According to our observation, though
transfer learning is widely implemented in the field of MIA, most of them transfer from
ImageNet. As natural images and medical images can have different data contribu-
tions, transferring from medical datasets may further improve model performance.

Learning manner and modality-object distribution. There are several state-
of-the-art learning manners, such as weakly-supervised learning, and unsupervised
learning, which can reduce the need for data labeling. However, these manners are
not widely used in transformer-based MIA works. Regarding the modality-object dis-
tribution, most existing works mainly concentrate on several mainstream modalities,
as shown in Figure 8. However, there is a lot of untapped research potential outside
of these mainstream modalities and objects. In terms of modalities, current research
primarily focuses on MRI, CT, X-ray, and microscope imaging. Despite being an es-
sential medical image modality, the US has not been fully investigated. In terms of
objects, most of the current works focus on the brain, chest, abdomen, and heart,
while other objects such as the retina warrant further investigation.

We believe that future efforts in the transformer-based MIA community are cer-
tainly not limited to the three points listed above. More research directions like model
interpretability should also be fully investigated. With the joining of more and more
artificial intelligence and medical researchers, the transformer-based MIA will be de-
veloped at an unprecedented speed from both algorithm and data sides. Besides
self-benefiting, the fast development of the transformer-based MIA can also bene-
fit related application domains of MIA a lot. For example, state-of-the-art methods
[465–467] in these related application domains such as the optimization algorithm
can be combined with the transformer. Specifically, the optimization algorithm can
be implemented to search the hyperparameter combination in the transformer model
to search for further performance improvement. With the fast development of the
transformer-based method, the development of MIA can definitely be accelerated to
a large extent. This can help doctors to diagnose more fastly, accurately, and smartly,
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promoting early intervention.

6. Conclusion

The transformer-based MIA is now developing rapidly. In this review, we sum-
marize and analyze the recent progress on transformer-based MIA. The structure
of this review is on the basis of different tasks, including classification, segmenta-
tion, captioning, registration, detection, enhancement, localization, and synthesis.
The task-modality mode can make the readers access their needs faster and eas-
ier. We also compare the performance between the transformer-based method and
existing state-of-the-art methods. Furthermore, we point out the current challenges
and perspectives in the transformer-based MIA field in three core points from both
data and algorithm sides. The main advantages of our task-modality review include
updated content, detailed information, and comprehensive comparison. Our sys-
tematic review may help new DL researchers as well as medical experts without DL
knowledge enter this field more quickly. In other words, the detailed content about
the latest progress and the performance comparison can be easily accessed with
the task-modality mode. However, it is worth noting that the task-modality organiza-
tion mode may occasionally overlook the sequential relationship between research
works. Specifically, subsequent studies building on prior works may be categorized
into different tasks or modalities due to the tasks performed or datasets used. While
this is not likely to happen frequently, it can occur in certain cases. We show that fu-
ture work of the transformer-based MIA can be five-fold. First, the method exploration
for feature integration and computing cost reduction can be developed. Second,
more effort on data augmentation as well as dataset collection should be paid. Next,
more focus on the non-mainstream learning manner, modality, and object is needed.
Then, deeper research on the model interpretability can be performed. Finally, the
transformer-based method and other related application domain methods can be
combined. To sum up, benefiting from the fast development of the transformer-based
MIA, the medical diagnosis might become more and more convenient and accurate.
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Štern, et al. Verse: A vertebrae labelling and segmentation benchmark for
multi-detector ct images. Med. Image Anal., 73:102166, 2021. https://doi.
org/10.1016/j.media.2021.102166.

[279] Duy-Phuong Dao, Hyung-Jeong Yang, Ngoc-Huynh Ho, Sudarshan Pant, Soo-
Hyung Kim, Guee-Sang Lee, In-Jae Oh, and Sae-Ryung Kang. Survival
analysis based on lung tumor segmentation using global context-aware trans-
former in multimodality. In Proceedings of the International Conference on
Pattern Recognition, pages 5162–5169. IEEE, 2022. https://doi.org/10.
1109/ICPR56361.2022.9956406.

[280] Hugo JWL Aerts, Emmanuel Rios Velazquez, Ralph TH Leijenaar, Chin-
tan Parmar, Patrick Grossmann, Sara Carvalho, Johan Bussink, René Mon-
shouwer, Benjamin Haibe-Kains, Derek Rietveld, et al. Decoding tumour phe-
notype by noninvasive imaging using a quantitative radiomics approach. Nat.
Commun., 5(1):4006, 2014. https://doi.org/10.1038/ncomms5006.

[281] Lifang Chen and Li Wan. Ctunet: automatic pancreas segmentation using a
channel-wise transformer and 3d u-net. Visual Comput., pages 1–15, 2022.
https://doi.org/10.1007/s00371-022-02656-2.

[282] Holger R Roth, Amal Farag, Le Lu, Evrim B Turkbey, and Ronald M Summers.
Deep convolutional networks for pancreas segmentation in ct imaging. In Pro-
ceedings of the Medical Imaging, volume 9413, pages 378–385. SPIE, 2015.
https://doi.org/10.1117/12.2081420.

[283] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang,
Qi Tian, and Manning Wang. Swin-unet: Unet-like pure transformer for med-
ical image segmentation. arXiv preprint, 2021. https://doi.org/10.48550/
arXiv.2105.05537.

[284] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myro-
nenko, Bennett Landman, Holger R Roth, and Daguang Xu. Unetr: Trans-
formers for 3d medical image segmentation. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pages 574–584, 2022.

[285] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua
Bengio. The one hundred layers tiramisu: Fully convolutional densenets for
semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 11–19, 2017.

[286] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.

66

https://doi.org/10.1109/BIBM55620.2022.9995702
https://doi.org/10.1109/BIBM55620.2022.9995702
https://doi.org/10.1007/978-3-031-21014-3_7
https://doi.org/10.1007/978-3-031-21014-3_7
 https://doi.org/10.1016/j.media.2021.102166
 https://doi.org/10.1016/j.media.2021.102166
 https://doi.org/10.1109/ICPR56361.2022.9956406
 https://doi.org/10.1109/ICPR56361.2022.9956406
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1007/s00371-022-02656-2
https://doi.org/10.1117/12.2081420
https://doi.org/10.48550/arXiv.2105.05537
https://doi.org/10.48550/arXiv.2105.05537


Rethinking atrous convolution for semantic image segmentation. arXiv
preprint, 2017. https://doi.org/10.48550/arXiv.1706.05587.

[287] Xiaoying Pan, Weidong Bai, Minjie Ma, and Shaoqiang Zhang. Rant: A cas-
cade reverse attention segmentation framework with hybrid transformer for
laryngeal endoscope images. Biomed. Signal Process. Control, 78:103890,
2022. https://doi.org/10.1016/j.bspc.2022.103890.

[288] Max-Heinrich Laves, Jens Bicker, Lüder A Kahrs, and Tobias Ortmaier. A
dataset of laryngeal endoscopic images with comparative study on convolu-
tion neural network-based semantic segmentation. Proceedings of the Inter-
national journal of computer assisted radiology and surgery, 14(3):483–492,
2019. https://doi.org/10.1007/s11548-018-01910-0.

[289] Shu Tang, Junlin Qiu, Xianzhong Xie, Haiheng Ran, and Guoli Zhang. Bidfnet:
Bi-decoder and feedback network for automatic polyp segmentation with vi-
sion transformers. In Proceedings of the Pattern Recognition and Com-
puter Vision, pages 16–27. Springer, 2022. https://doi.org/10.1007/
978-3-031-18910-4_2.

[290] Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pål Halvorsen, Thomas de
Lange, Dag Johansen, and Håvard D Johansen. Kvasir-seg: A segmented
polyp dataset. In Proceedings of the International Conference on Multime-
dia Modeling, pages 451–462. Springer, 2020. https://doi.org/10.1007/
978-3-030-37734-2_37.

[291] Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil,
Cristina Rodríguez, and Fernando Vilariño. Wm-dova maps for accurate polyp
highlighting in colonoscopy: Validation vs. saliency maps from physicians.
Comput. Med. Imaging Graph., 43:99–111, 2015. https://doi.org/10.1016/
j.compmedimag.2015.02.007.

[292] Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming Liang. Automated polyp
detection in colonoscopy videos using shape and context information. IEEE
Trans. Med. Imaging, 35(2):630–644, 2015. https://doi.org/10.1109/TMI.
2015.2487997.

[293] David Vázquez, Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach,
Antonio M López, Adriana Romero, Michal Drozdzal, and Aaron Courville. A
benchmark for endoluminal scene segmentation of colonoscopy images. J.
Healthc. Eng., 2017, 2017. https://doi.org/10.1155/2017/4037190.

[294] Yanglan Ou, Ye Yuan, Xiaolei Huang, Stephen TC Wong, John Volpi, James Z
Wang, and Kelvin Wong. Patcher: Patch transformers with mixture of ex-
perts for precise medical image segmentation. In Proceedings of the Medi-
cal Image Computing and Computer Assisted Intervention, pages 475–484.
Springer, 2022. https://doi.org/10.1007/978-3-031-16443-9_46.

[295] Vittorino Mandujano-Cornejo and Javier A Montoya-Zegarra. Polyp2seg: Im-
proved polyp segmentation with vision transformer. In Proceedings of the
Medical Image Understanding and Analysis, pages 519–534. Springer, 2022.
https://doi.org/10.1007/978-3-031-12053-4_39.

67

https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.1016/j.bspc.2022.103890
https://doi.org/10.1007/s11548-018-01910-0
https://doi.org/10.1007/978-3-031-18910-4_2
https://doi.org/10.1007/978-3-031-18910-4_2
https://doi.org/10.1007/978-3-030-37734-2_37
https://doi.org/10.1007/978-3-030-37734-2_37
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1109/TMI.2015.2487997
https://doi.org/10.1109/TMI.2015.2487997
https://doi.org/10.1155/2017/4037190
https://doi.org/10.1007/978-3-031-16443-9_46
https://doi.org/10.1007/978-3-031-12053-4_39


[296] Qian Wang, Longyan Li, Bo Ni, Yu Li, Dejin Kong, Chen Wang, and Zan Li.
Medical image segmentation using transformer. In Proceedings of the Artificial
Intelligence in China, pages 92–99. Springer, 2022. https://doi.org/10.
1007/978-981-16-9423-3_12.

[297] Edward Sanderson and Bogdan J Matuszewski. Fcn-transformer feature fu-
sion for polyp segmentation. In Proceedings of the Medical Image Under-
standing and Analysis, pages 892–907. Springer, 2022. https://doi.org/
10.1007/978-3-031-12053-4_65.

[298] Dataset of endoscopic colonoscopy frames for polyp detection. https://www.
kaggle.com/datasets/balraj98/cvcclinicdb. Accessed 18 February 2023.

[299] Nurbek Saidnassim, Beibit Abdikenov, Rauan Kelesbekov, Muhammad Tahir
Akhtar, and Prashant Jamwal. Self-supervised visual transformers for breast
cancer diagnosis. In Proceedings of the Asia-Pacific Signal and Informa-
tion Processing Association Annual Summit and Conference, pages 423–427.
IEEE, 2021.

[300] Guifang Zhang, Hon-Cheng Wong, Cheng Wang, Jianjun Zhu, Ligong Lu, and
Gaojun Teng. A temporary transformer network for guide-wire segmentation.
In Proceedings of the International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics, pages 1–5. IEEE, 2021. https://
doi.org/10.1109/CISP-BMEI53629.2021.9624350.

[301] Lingrong Zhang, Jinglin Yang, Dong Liu, Feng Zhang, Sibo Nie, Yuchen Tan,
and Taipeng Guo. Spine x-ray image segmentation based on transformer and
adaptive optimized postprocessing. In Proceedings of the International Confer-
ence on Software Engineering and Artificial Intelligence, pages 88–92. IEEE,
2022. https://doi.org/10.1109/SEAI55746.2022.9832144.

[302] Accurate automated spinal curvature estimation. https://aasce19.github.
io/. Accessed 18 February 2023.

[303] Siim-acr pneumothorax segmentation. https://www.kaggle.com/c/
siim-acr-pneumothorax-segmentation. Accessed 19 February 2023.

[304] Kaizhong Deng, Yanda Meng, Dongxu Gao, Joshua Bridge, Yaochun Shen,
Gregory Lip, Yitian Zhao, and Yalin Zheng. Transbridge: A lightweight
transformer for left ventricle segmentation in echocardiography. In Pro-
ceedings of the International Workshop on Advances in Simplifying Medi-
cal Ultrasound, pages 63–72. Springer, 2021. https://doi.org/10.1007/
978-3-030-87583-1_7.

[305] Tao Wang, Zhihui Lai, and Heng Kong. Tfnet: Transformer fusion net-
work for ultrasound image segmentation. In Proceedings of the Pattern
Recognition, pages 314–325. Springer, 2022. https://doi.org/10.1007/
978-3-031-02375-0_23.

[306] Lina Pedraza, Carlos Vargas, Fabián Narváez, Oscar Durán, Emma Muñoz,
and Eduardo Romero. An open access thyroid ultrasound image database.
In Proceedings of the International symposium on medical information pro-
cessing and analysis, volume 9287, pages 188–193. SPIE, 2015. https:

68

https://doi.org/10.1007/978-981-16-9423-3_12
https://doi.org/10.1007/978-981-16-9423-3_12
https://doi.org/10.1007/978-3-031-12053-4_65
https://doi.org/10.1007/978-3-031-12053-4_65
https://www.kaggle.com/datasets/balraj98/cvcclinicdb
https://www.kaggle.com/datasets/balraj98/cvcclinicdb
https://doi.org/10.1109/CISP-BMEI53629.2021.9624350
https://doi.org/10.1109/CISP-BMEI53629.2021.9624350
https://doi.org/10.1109/SEAI55746.2022.9832144
https://aasce19.github.io/
https://aasce19.github.io/
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
https://doi.org/10.1007/978-3-030-87583-1_7
https://doi.org/10.1007/978-3-030-87583-1_7
https://doi.org/10.1007/978-3-031-02375-0_23
https://doi.org/10.1007/978-3-031-02375-0_23
https://doi.org/10.1117/12.2073532
https://doi.org/10.1117/12.2073532


//doi.org/10.1117/12.2073532.
[307] Haonan Yang and Dapeng Yang. Cswin-pnet: A cnn-swin transformer com-

bined pyramid network for breast lesion segmentation in ultrasound images.
Expert Syst. Appl., 213:119024, 2023. https://doi.org/10.1016/j.eswa.
2022.119024.

[308] Xianwei Zhuang, Xiner Zhu, Haoji Hu, Jincao Yao, Wei Li, Chen Yang, Lip-
ing Wang, Na Feng, and Dong Xu. Residual swin transformer unet with con-
sistency regularization for automatic breast ultrasound tumor segmentation.
In Proceedings of the IEEE International Conference on Image Processing,
pages 3071–3075. IEEE, 2022. https://doi.org/10.1109/ICIP46576.2022.
9897941.

[309] Xiaoyan Shen, Liangyu Wang, Yu Zhao, Ruibo Liu, Wei Qian, and He Ma.
Dilated transformer: residual axial attention for breast ultrasound image seg-
mentation. Quant. Imaging Med. Surg., 12(9):4513, 2022. https://doi.org/
10.21037/qims-22-33.

[310] Yingtao Zhang, Min Xian, Heng-Da Cheng, Bryar Shareef, Jianrui Ding,
Fei Xu, Kuan Huang, Boyu Zhang, Chunping Ning, and Ying Wang. Bu-
sis: A benchmark for breast ultrasound image segmentation. In Health-
care, volume 10, page 729. MDPI, 2022. https://doi.org/10.3390/
healthcare10040729.

[311] Zhihao Liao, Neng Fan, and Kai Xu. Swin transformer assisted prior attention
network for medical image segmentation. Appl. Sci., 12(9):4735, 2022. https:
//doi.org/10.3390/app12094735.

[312] Korsuk Sirinukunwattana, Josien PW Pluim, Hao Chen, Xiaojuan Qi, Pheng-
Ann Heng, Yun Bo Guo, Li Yang Wang, Bogdan J Matuszewski, Elia Bruni,
Urko Sanchez, et al. Gland segmentation in colon histology images: The glas
challenge contest. Med. Image Anal., 35:489–502, 2017. https://doi.org/
10.1016/j.media.2016.08.008.

[313] Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek
Vahadane, and Amit Sethi. A dataset and a technique for generalized nu-
clear segmentation for computational pathology. IEEE Trans. Med. Imaging,
36(7):1550–1560, 2017. https://doi.org/10.1109/TMI.2017.2677499.

[314] Ziniu Qian, Kailu Li, Maode Lai, Eric I-Chao Chang, Bingzheng Wei, Yubo
Fan, and Yan Xu. Transformer based multiple instance learning for weakly
supervised histopathology image segmentation. In Proceedings of the Med-
ical Image Computing and Computer Assisted Intervention, pages 160–170.
Springer, 2022. https://doi.org/10.1007/978-3-031-16434-7_16.

[315] Zhipeng Jia, Xingyi Huang, I Eric, Chao Chang, and Yan Xu. Constrained
deep weak supervision for histopathology image segmentation. IEEE Trans.
Med. Imaging, 36(11):2376–2388, 2017. https://doi.org/10.1109/TMI.
2017.2724070.

[316] Ziheng Wang, Xiongkuo Min, Fangyu Shi, Ruinian Jin, Saida S Nawrin, Ichen
Yu, and Ryoichi Nagatomi. Smeswin unet: Merging cnn and transformer for

69

https://doi.org/10.1117/12.2073532
https://doi.org/10.1117/12.2073532
https://doi.org/10.1117/12.2073532
https://doi.org/10.1016/j.eswa.2022.119024
https://doi.org/10.1016/j.eswa.2022.119024
https://doi.org/10.1109/ICIP46576.2022.9897941
https://doi.org/10.1109/ICIP46576.2022.9897941
https://doi.org/10.21037/qims-22-33
https://doi.org/10.21037/qims-22-33
https://doi.org/10.3390/healthcare10040729
https://doi.org/10.3390/healthcare10040729
https://doi.org/10.3390/app12094735
https://doi.org/10.3390/app12094735
https://doi.org/10.1016/j.media.2016.08.008
https://doi.org/10.1016/j.media.2016.08.008
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1007/978-3-031-16434-7_16
https://doi.org/10.1109/TMI.2017.2724070
https://doi.org/10.1109/TMI.2017.2724070


medical image segmentation. In Proceedings of the Medical Image Computing
and Computer Assisted Intervention, pages 517–526. Springer, 2022. https:
//doi.org/10.1007/978-3-031-16443-9_50.

[317] Navid Alemi Koohbanani, Mostafa Jahanifar, Neda Zamani Tajadin, and Nasir
Rajpoot. Nuclick: a deep learning framework for interactive segmentation of
microscopic images. Med. Image Anal., 65:101771, 2020. https://doi.org/
10.1016/j.media.2020.101771.

[318] Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A Viergever, and
Bram Van Ginneken. Ridge-based vessel segmentation in color images of the
retina. IEEE Trans. Med. Imaging, 23(4):501–509, 2004. https://doi.org/
10.1109/TMI.2004.825627.

[319] Christopher G Owen, Alicja R Rudnicka, Robert Mullen, Sarah A Barman,
Dorothy Monekosso, Peter H Whincup, Jeffrey Ng, and Carl Paterson. Measur-
ing retinal vessel tortuosity in 10-year-old children: validation of the computer-
assisted image analysis of the retina (caiar) program. Invest. Ophthalmol. Vis.
Sci., 50(5):2004–2010, 2009. https://doi.org/10.1167/iovs.08-3018.

[320] AD Hoover, Valentina Kouznetsova, and Michael Goldbaum. Locating blood
vessels in retinal images by piecewise threshold probing of a matched filter
response. IEEE Trans. Med. Imaging, 19(3):203–210, 2000. https://doi.
org/10.1109/42.845178.

[321] Yaowei Feng, Zhendong Li, Dong Yang, Hongkai Hu, Hui Guo, and Hao Liu.
Polarformer: Optic disc and cup segmentation using a hybrid cnn-transformer
and polar transformation. Appl. Sci., 13(1):541, 2022. https://doi.org/10.
3390/app13010541.

[322] José Ignacio Orlando, Huazhu Fu, João Barbosa Breda, Karel Van Keer,
Deepti R Bathula, Andrés Diaz-Pinto, Ruogu Fang, Pheng-Ann Heng, Jeyoung
Kim, JoonHo Lee, et al. Refuge challenge: A unified framework for evaluat-
ing automated methods for glaucoma assessment from fundus photographs.
Med. Image Anal., 59:101570, 2020. https://doi.org/10.1016/j.media.
2019.101570.

[323] Jayanthi Sivaswamy, SR Krishnadas, Gopal Datt Joshi, Madhulika Jain, and
A Ujjwaft Syed Tabish. Drishti-gs: Retinal image dataset for optic nerve
head (onh) segmentation. In Proceedings of the international symposium on
biomedical imaging, pages 53–56. IEEE, 2014. https://doi.org/10.1109/
ISBI.2014.6867807.

[324] Francisco Fumero, Silvia Alayón, José L Sanchez, Jose Sigut, and
M Gonzalez-Hernandez. Rim-one: An open retinal image database for optic
nerve evaluation. In Proceedings of the international symposium on computer-
based medical systems, pages 1–6. IEEE, 2011. https://doi.org/10.1109/
CBMS.2011.5999143.

[325] Yang Li, Yue Zhang, Jing-Yu Liu, Kang Wang, Kai Zhang, Gen-Sheng Zhang,
Xiao-Feng Liao, and Guang Yang. Global transformer and dual local atten-
tion network via deep-shallow hierarchical feature fusion for retinal vessel seg-

70

https://doi.org/10.1007/978-3-031-16443-9_50
https://doi.org/10.1007/978-3-031-16443-9_50
https://doi.org/10.1016/j.media.2020.101771
https://doi.org/10.1016/j.media.2020.101771
https://doi.org/10.1109/TMI.2004.825627
https://doi.org/10.1109/TMI.2004.825627
https://doi.org/10.1167/iovs.08-3018
https://doi.org/10.1109/42.845178
https://doi.org/10.1109/42.845178
https://doi.org/10.3390/app13010541
https://doi.org/10.3390/app13010541
https://doi.org/10.1016/j.media.2019.101570
https://doi.org/10.1016/j.media.2019.101570
https://doi.org/10.1109/ISBI.2014.6867807
https://doi.org/10.1109/ISBI.2014.6867807
https://doi.org/10.1109/CBMS.2011.5999143
https://doi.org/10.1109/CBMS.2011.5999143


mentation. IEEE T. Cybern., 2022. https://doi.org/10.1109/TCYB.2022.
3194099.

[326] Venkateswararao Cherukuri, Vijay Kumar Bg, Raja Bala, and Vishal Monga.
Deep retinal image segmentation with regularization under geometric priors.
IEEE Trans. Image Process., 29:2552–2567, 2019. https://doi.org/10.
1109/TIP.2019.2946078.

[327] Muhammad Moazam Fraz, Paolo Remagnino, Andreas Hoppe, Bunyarit
Uyyanonvara, Alicja R Rudnicka, Christopher G Owen, and Sarah A Bar-
man. An ensemble classification-based approach applied to retinal blood
vessel segmentation. IEEE Trans. Biomed. Eng., 59(9):2538–2548, 2012.
https://doi.org/10.1109/TBME.2012.2205687.

[328] Masum Shah Junayed, Md Baharul Islam, and Nipa Anjum. A transformer-
based versatile network for acne vulgaris segmentation. In Proceedings of the
Innovations in Intelligent Systems and Applications Conference, pages 1–6.
IEEE, 2022. https://doi.org/10.1109/ASYU56188.2022.9925323.

[329] Mohammad D Alahmadi and Wajdi Alghamdi. Semi-supervised skin le-
sion segmentation with coupling cnn and transformer features. IEEE Ac-
cess, 10:122560–122569, 2022. https://doi.org/10.1109/ACCESS.2022.
3224005.

[330] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen
Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris,
Michael Marchetti, et al. Skin lesion analysis toward melanoma detection
2018: A challenge hosted by the international skin imaging collaboration (isic).
arXiv preprint, 2019. https://doi.org/10.48550/arXiv.1902.03368.

[331] Teresa Mendonça, Pedro M Ferreira, Jorge S Marques, André RS Marcal,
and Jorge Rozeira. Ph 2-a dermoscopic image database for research and
benchmarking. In Proceedings of the annual international conference of the
IEEE engineering in medicine and biology society, pages 5437–5440. IEEE,
2013. https://doi.org/10.1109/EMBC.2013.6610779.

[332] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang,
Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile
backbone for dense prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 568–578, 2021.

[333] Zhanyu Wang, Mingkang Tang, Lei Wang, Xiu Li, and Luping Zhou. A
medical semantic-assisted transformer for radiographic report generation.
In Proceedings of the Medical Image Computing and Computer Assisted
Intervention, pages 655–664. Springer, 2022. https://doi.org/10.1007/
978-3-031-16437-8_63.

[334] Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, and Youn-
Long Lin. Hardnet: A low memory traffic network. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 3552–3561,
2019.

[335] Jeya Maria Jose Valanarasu, Poojan Oza, Ilker Hacihaliloglu, and Vishal M

71

https://doi.org/10.1109/TCYB.2022.3194099
https://doi.org/10.1109/TCYB.2022.3194099
https://doi.org/10.1109/TIP.2019.2946078
https://doi.org/10.1109/TIP.2019.2946078
https://doi.org/10.1109/TBME.2012.2205687
https://doi.org/10.1109/ASYU56188.2022.9925323
https://doi.org/10.1109/ACCESS.2022.3224005
https://doi.org/10.1109/ACCESS.2022.3224005
https://doi.org/10.48550/arXiv.1902.03368
https://doi.org/10.1109/EMBC.2013.6610779
https://doi.org/10.1007/978-3-031-16437-8_63
https://doi.org/10.1007/978-3-031-16437-8_63


Patel. Medical transformer: Gated axial-attention for medical image seg-
mentation. In Proceedings of the International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, pages 36–46. Springer,
2021. https://doi.org/10.1007/978-3-030-87193-2_4.

[336] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jian-
ming Liang. Unet++: A nested u-net architecture for medical image segmen-
tation. arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1807.10165.

[337] Aleksandar Vakanski, Min Xian, and Phoebe E Freer. Attention-enriched deep
learning model for breast tumor segmentation in ultrasound images. Ultra-
sound Med. Biol., 46(10):2819–2833, 2020. https://doi.org/10.1016/j.
ultrasmedbio.2020.06.015.

[338] Haonan Wang, Peng Cao, Jiaqi Wang, and Osmar R Zaiane. Uctransnet:
rethinking the skip connections in u-net from a channel-wise perspective with
transformer. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pages 2441–2449, 2022.

[339] Xiaohong Huang, Zhifang Deng, Dandan Li, Xueguang Yuan, and Ying
Fu. Missformer: An effective transformer for 2d medical image segmenta-
tion. IEEE Trans. Med. Imaging, 2022. https://doi.org/10.1109/TMI.2022.
3230943.

[340] Automated cardiac diagnosis challenge. https://acdc.creatis.insa-lyon.
fr/description/databases.html. Accessed 4 August 2022.

[341] Zhifang Hong, Mingzhi Chen, Weijie Hu, Shiyu Yan, Aiping Qu, Lingna Chen,
and Junxi Chen. Dual encoder network with transformer-cnn for multi-organ
segmentation. Med. Biol. Eng. Comput., pages 1–11, 2022. https://doi.
org/10.1007/s11517-022-02723-9.

[342] Ailiang Lin, Jiayu Xu, Jinxing Li, and Guangming Lu. Contrans: Improv-
ing transformer with convolutional attention for medical image segmentation.
In Proceedings of the Medical Image Computing and Computer Assisted
Intervention, pages 297–307. Springer, 2022. https://doi.org/10.1007/
978-3-031-16443-9_29.

[343] Covid-19 ct segmentation dataset. http://medicalsegmentation.com/
covid19/. Accessed 29 July 2022.

[344] Juan C Caicedo, Allen Goodman, Kyle W Karhohs, Beth A Cimini, Jeanelle
Ackerman, Marzieh Haghighi, CherKeng Heng, Tim Becker, Minh Doan, Claire
McQuin, et al. Nucleus segmentation across imaging experiments: the 2018
data science bowl. Nat. Methods, 16(12):1247–1253, 2019. https://doi.
org/10.1038/s41592-019-0612-7.

[345] Jevgenij Gamper, Navid Alemi Koohbanani, Ksenija Benet, Ali Khuram, and
Nasir Rajpoot. Pannuke: an open pan-cancer histology dataset for nu-
clei instance segmentation and classification. In Proceedings of the Dig-
ital Pathology, pages 11–19. Springer, 2019. https://doi.org/10.1007/
978-3-030-23937-4_2.

[346] Huimin Huang, Shiao Xie, Lanfen Lin, Yutaro Iwamoto, Xianhua Han, Yen-

72

https://doi.org/10.1007/978-3-030-87193-2_4
https://doi.org/10.48550/arXiv.1807.10165
https://doi.org/10.1016/j.ultrasmedbio.2020.06.015
https://doi.org/10.1016/j.ultrasmedbio.2020.06.015
https://doi.org/10.1109/TMI.2022.3230943
https://doi.org/10.1109/TMI.2022.3230943
https://acdc.creatis.insa-lyon.fr/description/databases.html
https://acdc.creatis.insa-lyon.fr/description/databases.html
https://doi.org/10.1007/s11517-022-02723-9
https://doi.org/10.1007/s11517-022-02723-9
https://doi.org/10.1007/978-3-031-16443-9_29
https://doi.org/10.1007/978-3-031-16443-9_29
http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/
https://doi.org/10.1038/s41592-019-0612-7
https://doi.org/10.1038/s41592-019-0612-7
https://doi.org/10.1007/978-3-030-23937-4_2
https://doi.org/10.1007/978-3-030-23937-4_2


Wei Chen, and Ruofeng Tong. Scaleformer: Revisiting the transformer-based
backbones from a scale-wise perspective for medical image segmentation.
arXiv preprint, 2022. https://doi.org/10.48550/arXiv.2207.14552.

[347] Bennett Landman, Zhoubing Xu, Juan Eugenio Igelsias, M Styner,
TR Langerak, and A Klein. Segmentation outside the cranial vault challenge.
Synapse, 2015.

[348] Abhinav Sagar. Emsvit: Efficient multi scale vision transformer for biomedi-
cal image segmentation. In Proceedings of the Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries, pages 39–51. Springer, 2022.
https://doi.org/10.1007/978-3-031-08999-2_3.

[349] Shen Jiang and Jinjiang Li. Transcunet: Unet cross fused transformer for
medical image segmentation. Comput. Biol. Med., 150:106207, 2022. https:
//doi.org/10.1016/j.compbiomed.2022.106207.

[350] Neeraj Kumar, Ruchika Verma, Deepak Anand, Yanning Zhou, Omer Fahri On-
der, Efstratios Tsougenis, Hao Chen, Pheng-Ann Heng, Jiahui Li, Zhiqiang Hu,
et al. A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imag-
ing, 39(5):1380–1391, 2019. https://doi.org/10.1109/TMI.2019.2947628.

[351] Hao Li, Dewei Hu, Han Liu, Jiacheng Wang, and Ipek Oguz. Cats: Comple-
mentary cnn and transformer encoders for segmentation. In Proceedings of
the International Symposium on Biomedical Imaging, pages 1–5. IEEE, 2022.
https://doi.org/10.1109/ISBI52829.2022.9761596.

[352] Cross-modality domain adaptation for medical image segmentation - 2021.
https://crossmoda.grand-challenge.org/. Accessed 19 February 2023.

[353] Generalisable 3d semantic segmentation. http://medicaldecathlon.com/.
Accessed 19 February 2023.

[354] Yixuan Wu, Kuanlun Liao, Jintai Chen, Jinhong Wang, Danny Z Chen, Hong-
hao Gao, and Jian Wu. D-former: A u-shaped dilated transformer for 3d
medical image segmentation. Neural Comput. Appl., pages 1–14, 2022.
https://doi.org/10.1007/s00521-022-07859-1.

[355] Ning Zhang, Long Yu, Dezhi Zhang, Weidong Wu, Shengwei Tian, and Xi-
aojing Kang. Apt-net: Adaptive encoding and parallel decoding transformer
for medical image segmentation. Comput. Biol. Med., 151:106292, 2022.
https://doi.org/10.1016/j.compbiomed.2022.106292.

[356] Reza Azad, Mohammad T Al-Antary, Moein Heidari, and Dorit Merhof.
Transnorm: Transformer provides a strong spatial normalization mechanism
for a deep segmentation model. IEEE Access, 10:108205–108215, 2022.
https://doi.org/10.1109/ACCESS.2022.3211501.

[357] Anubha Gupta, Pramit Mallick, Ojaswa Sharma, Ritu Gupta, and Rahul Dug-
gal. Pcseg: Color model driven probabilistic multiphase level set based tool for
plasma cell segmentation in multiple myeloma. PloS one, 13(12):e0207908,
2018. https://doi.org/10.1371/journal.pone.0207908.

[358] Hao Du, Jiazheng Wang, Min Liu, Yaonan Wang, and Erik Meijering. Swinpa-
net: Swin transformer-based multiscale feature pyramid aggregation network

73

https://doi.org/10.48550/arXiv.2207.14552
https://doi.org/10.1007/978-3-031-08999-2_3
https://doi.org/10.1016/j.compbiomed.2022.106207
https://doi.org/10.1016/j.compbiomed.2022.106207
https://doi.org/10.1109/TMI.2019.2947628
https://doi.org/10.1109/ISBI52829.2022.9761596
https://crossmoda.grand-challenge.org/
http://medicaldecathlon.com/
https://doi.org/10.1007/s00521-022-07859-1
https://doi.org/10.1016/j.compbiomed.2022.106292
https://doi.org/10.1109/ACCESS.2022.3211501
https://doi.org/10.1371/journal.pone.0207908


for medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst., 2022.
https://doi.org/10.1109/TNNLS.2022.3204090.

[359] Chaoqun Li, Liejun Wang, and Yongming Li. Transformer and group par-
allel axial attention co-encoder for medical image segmentation. Sci Rep,
12(1):16117, 2022. https://doi.org/10.1038/s41598-022-20440-z.

[360] Xiaomeng Feng, Taiping Wang, Xiaohang Yang, Minfei Zhang, Wanpeng Guo,
and Weina Wang. Convwin-unet: Unet-like hierarchical vision transformer
combined with convolution for medical image segmentation. Math. Biosci.
Eng., 20(1):128–144, 2023. https://doi.org/10.3934/mbe.2023007.

[361] Hubmap - hacking the kidney. https://www.kaggle.com/c/
hubmap-kidney-segmentation/data. Accessed 19 February 2023.

[362] Gang Zhang, Chenhong Zheng, Jianfeng He, and Sanli Yi. Pct: Pyra-
mid convolutional transformer for parotid gland tumor segmentation in ultra-
sound images. Biomed. Signal Process. Control, 81:104498, 2023. https:
//doi.org/10.1016/j.bspc.2022.104498.

[363] Ailiang Lin, Bingzhi Chen, Jiayu Xu, Zheng Zhang, Guangming Lu, and David
Zhang. Ds-transunet: Dual swin transformer u-net for medical image segmen-
tation. IEEE Trans. Instrum. Meas., 2022. https://doi.org/10.1109/TIM.
2022.3178991.

[364] Zhuotong Cai, Jingmin Xin, Peiwen Shi, Jiayi Wu, and Nanning Zheng.
Dstunet: Unet with efficient dense swin transformer pathway for medical image
segmentation. In Proceedings of the International Symposium on Biomedi-
cal Imaging, pages 1–5. IEEE, 2022. https://doi.org/10.1109/ISBI52829.
2022.9761536.

[365] Hongyi Wang, Shiao Xie, Lanfen Lin, Yutaro Iwamoto, Xian-Hua Han, Yen-
Wei Chen, and Ruofeng Tong. Mixed transformer u-net for medical im-
age segmentation. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 2390–2394. IEEE, 2022.
https://doi.org/10.1109/ICASSP43922.2022.9746172.

[366] Abhinav Sagar. Vitbis: Vision transformer for biomedical image segmen-
tation. In Clinical Image-Based Procedures, Distributed and Collaborative
Learning, Artificial Intelligence for Combating COVID-19 and Secure and
Privacy-Preserving Machine Learning, pages 34–45. Springer, 2021. https:
//doi.org/10.1007/978-3-030-90874-4_4.

[367] Xuping Huang, Junxi Chen, Mingzhi Chen, Lingna Chen, and Yaping Wan.
Tdd-unet: Transformer with double decoder unet for covid-19 lesions segmen-
tation. Comput. Biol. Med., 151:106306, 2022. https://doi.org/10.1016/j.
compbiomed.2022.106306.

[368] Kyeong-Beom Park and Jae Yeol Lee. Swine-net: hybrid deep learning
approach to novel polyp segmentation using convolutional neural network
and swin transformer. J. Comput. Des. Eng., 9(2):616–632, 2022. https:
//doi.org/10.1093/jcde/qwac018.

[369] Tashvik Dhamija, Anunay Gupta, Shreyansh Gupta, Rahul Katarya, Ghan-

74

https://doi.org/10.1109/TNNLS.2022.3204090
https://doi.org/10.1038/s41598-022-20440-z
https://doi.org/10.3934/mbe.2023007
https://www.kaggle.com/c/hubmap-kidney-segmentation/data
https://www.kaggle.com/c/hubmap-kidney-segmentation/data
https://doi.org/10.1016/j.bspc.2022.104498
https://doi.org/10.1016/j.bspc.2022.104498
https://doi.org/10.1109/TIM.2022.3178991
https://doi.org/10.1109/TIM.2022.3178991
https://doi.org/10.1109/ISBI52829.2022.9761536
https://doi.org/10.1109/ISBI52829.2022.9761536
https://doi.org/10.1109/ICASSP43922.2022.9746172
https://doi.org/10.1007/978-3-030-90874-4_4
https://doi.org/10.1007/978-3-030-90874-4_4
https://doi.org/10.1016/j.compbiomed.2022.106306
https://doi.org/10.1016/j.compbiomed.2022.106306
https://doi.org/10.1093/jcde/qwac018
https://doi.org/10.1093/jcde/qwac018


shyam Singh, et al. Semantic segmentation in medical images through trans-
fused convolution and transformer networks. Appl. Intell., pages 1–17, 2022.
https://doi.org/10.1007/s10489-022-03642-w.

[370] Quan-Dung Pham, Hai Nguyen-Truong, Nam Nguyen Phuong, Khoa NA
Nguyen, Chanh DT Nguyen, Trung Bui, and Steven QH Truong. Segtransvae:
Hybrid cnn-transformer with regularization for medical image segmentation. In
Proceedings of the International Symposium on Biomedical Imaging, pages
1–5. IEEE, 2022. https://doi.org/10.1109/ISBI52829.2022.9761417.

[371] Jeya Maria Jose Valanarasu, Rajeev Yasarla, Puyang Wang, Ilker Haci-
haliloglu, and Vishal M Patel. Learning to segment brain anatomy from 2d
ultrasound with less data. IEEE J. Sel. Top. Signal Process., 14(6):1221–1234,
2020. https://doi.org/10.1109/JSTSP.2020.3001513.

[372] Puyang Wang, Nick G Cuccolo, Rachana Tyagi, Ilker Hacihaliloglu, and
Vishal M Patel. Automatic real-time cnn-based neonatal brain ventricles
segmentation. In Proceedings of the International Symposium on Biomedi-
cal Imaging, pages 716–719. IEEE, 2018. https://doi.org/10.1109/ISBI.
2018.8363674.

[373] Zhixian Tang, Jintao Duan, Yanming Sun, Yanan Zeng, Yile Zhang, and Xufeng
Yao. A combined deformable model and medical transformer algorithm for
medical image segmentation. Med. Biol. Eng. Comput., 61(1):129–137, 2023.
https://doi.org/10.1007/s11517-022-02702-0.

[374] Tonge image dataset. https://github.com/BioHit/TongeImageDataset. Ac-
cessed 19 February 2023.

[375] Feiniu Yuan, Zhengxiao Zhang, and Zhijun Fang. An effective cnn and trans-
former complementary network for medical image segmentation. Pattern
Recognit., 136:109228, 2023. https://doi.org/10.1016/j.patcog.2022.
109228.

[376] Jing Zhang, Qiuge Qin, Qi Ye, and Tong Ruan. St-unet: Swin transformer
boosted u-net with cross-layer feature enhancement for medical image seg-
mentation. Computers in Biology and Medicine, page 106516, 2023.

[377] Bo Wang, Pengwei Dong, et al. Multiscale transunet++: dense hybrid u-net
with transformer for medical image segmentation. Signal Image Video Pro-
cess., pages 1–8, 2022. https://doi.org/10.1007/s11760-021-02115-w.

[378] Geert Litjens, Robert Toth, Wendy van de Ven, Caroline Hoeks, Sjoerd Kerk-
stra, Bram van Ginneken, Graham Vincent, Gwenael Guillard, Neil Birbeck,
Jindang Zhang, et al. Evaluation of prostate segmentation algorithms for
mri: the promise12 challenge. Med. Image Anal., 18(2):359–373, 2014.
https://doi.org/10.1016/j.media.2013.12.002.

[379] Numan Saeed, Ikboljon Sobirov, Roba Al Majzoub, and Mohammad Yaqub.
Tmss: An end-to-end transformer-based multimodal network for segmentation
and survival prediction. In Proceedings of the Medical Image Computing and
Computer Assisted Intervention, pages 319–329. Springer, 2022. https://
doi.org/10.1007/978-3-031-16449-1_31.

75

https://doi.org/10.1007/s10489-022-03642-w
https://doi.org/10.1109/ISBI52829.2022.9761417
https://doi.org/10.1109/JSTSP.2020.3001513
https://doi.org/10.1109/ISBI.2018.8363674
https://doi.org/10.1109/ISBI.2018.8363674
https://doi.org/10.1007/s11517-022-02702-0
https://github.com/BioHit/TongeImageDataset
https://doi.org/10.1016/j.patcog.2022.109228
https://doi.org/10.1016/j.patcog.2022.109228
https://doi.org/10.1007/s11760-021-02115-w
https://doi.org/10.1016/j.media.2013.12.002
https://doi.org/10.1007/978-3-031-16449-1_31
https://doi.org/10.1007/978-3-031-16449-1_31


[380] Hecktor 2021. https://www.aicrowd.com/challenges/
miccai-2021-hecktor. Accessed 19 February 2023.

[381] Reza Azad, Moein Heidari, Moein Shariatnia, Ehsan Khodapanah Aghdam,
Sanaz Karimijafarbigloo, Ehsan Adeli, and Dorit Merhof. Transdeeplab:
Convolution-free transformer-based deeplab v3+ for medical image segmenta-
tion. In Proceedings of the Predictive Intelligence in Medicine, pages 91–102.
Springer, 2022. https://doi.org/10.1007/978-3-031-16919-9_9.

[382] Bo Wang, Qian Li, and Zheng You. Self-supervised learning based transformer
and convolution hybrid network for one-shot organ segmentation. Neurocom-
puting, 527:1–12, 2023. https://doi.org/10.1016/j.neucom.2022.12.028.

[383] Shuying Xu and Hongyan Quan. Ect-nas: Searching efficient cnn-transformers
architecture for medical image segmentation. In Proceedings of the IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM), pages 1601–
1604. IEEE, 2021. https://doi.org/10.1109/BIBM52615.2021.9669734.

[384] Eli Gibson, Francesco Giganti, Yipeng Hu, Ester Bonmati, Steve Bandula, Kur-
inchi Gurusamy, Brian Davidson, Stephen P. Pereira, Matthew J. Clarkson, and
Dean C. Barratt. Multi-organ abdominal ct reference standard segmentations.
https://doi.org/10.5281/zenodo.1169361, 2018. Accessed 5 August 2022.

[385] Jue Jiang, Neelam Tyagi, Kathryn Tringale, Christopher Crane, and Harini
Veeraraghavan. Self-supervised 3d anatomy segmentation using self-distilled
masked image transformer (smit). In Proceedings of the Medical Image Com-
puting and Computer Assisted Intervention, pages 556–566. Springer, 2022.
https://doi.org/10.1007/978-3-031-16440-8_53.

[386] Shen Jiang, Jinjiang Li, and Zhen Hua. Transformer with progressive sampling
for medical cellular image segmentation. Math. Biosci. Eng., 19(12):12104–
12126, 2022. https://doi.org/10.3934/mbe.2022563.

[387] Yuanyuan Li, Ziyu Wang, Li Yin, Zhiqin Zhu, Guanqiu Qi, and Yu Liu. X-net: a
dual encoding–decoding method in medical image segmentation. The Visual
Computer, pages 1–11, 2021.

[388] Peter Naylor, Marick Laé, Fabien Reyal, and Thomas Walter. Segmentation of
nuclei in histopathology images by deep regression of the distance map. IEEE
transactions on medical imaging, 38(2):448–459, 2018.

[389] Mashood Mohammad Mohsan, Muhammad Usman Akram, Ghulam Rasool,
Norah Saleh Alghamdi, Muhammad Abdullah Aamer Baqai, and Muhammad
Abbas. Vision transformer and language model based radiology report genera-
tion. IEEE Access, 11:1814–1824, 2022. https://doi.org/10.1109/ACCESS.
2022.3232719.

[390] Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Sonya E Shooshan,
Laritza Rodriguez, Sameer Antani, George R Thoma, and Clement J McDon-
ald. Preparing a collection of radiology examinations for distribution and re-
trieval. J. Am. Med. Inf. Assoc., 23(2):304–310, 2016. https://doi.org/10.
1093/jamia/ocv080.

[391] Hojun Lee, Hyunjun Cho, Jieun Park, Jinyeong Chae, and Jihie Kim. Cross

76

https://www.aicrowd.com/challenges/miccai-2021-hecktor
https://www.aicrowd.com/challenges/miccai-2021-hecktor
https://doi.org/10.1007/978-3-031-16919-9_9
https://doi.org/10.1016/j.neucom.2022.12.028
https://doi.org/10.1109/BIBM52615.2021.9669734
https://doi.org/10.5281/zenodo.1169361
https://doi.org/10.1007/978-3-031-16440-8_53
https://doi.org/10.3934/mbe.2022563
https://doi.org/10.1109/ACCESS.2022.3232719
https://doi.org/10.1109/ACCESS.2022.3232719
https://doi.org/10.1093/jamia/ocv080
https://doi.org/10.1093/jamia/ocv080


encoder-decoder transformer with global-local visual extractor for medical im-
age captioning. Sensors, 22(4):1429, 2022. https://doi.org/10.3390/
s22041429.

[392] Benjamin Hou, Georgios Kaissis, Ronald Summers, and Bernhard Kainz.
Ratchet: Medical transformer for chest x-ray diagnosis and reporting. arXiv
preprint, 2021. https://doi.org/10.48550/arXiv.2107.02104.

[393] AEWP Johnson, Tom Pollard, Roger Mark, Seth Berkowitz, and Steven Horng.
Mimic-cxr database. PhysioNet, 13026:C2JT1Q, 2019. https://doi.org/10.
13026/C2JT1Q.

[394] Ming Kong, Zhengxing Huang, Kun Kuang, Qiang Zhu, and Fei Wu. Transq:
Transformer-based semantic query for medical report generation. In Pro-
ceedings of the Medical Image Computing and Computer Assisted In-
tervention, pages 610–620. Springer, 2022. https://doi.org/10.1007/
978-3-031-16452-1_58.

[395] Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum, Matthew P
Lungren, Chih-ying Deng, Yifan Peng, Zhiyong Lu, Roger G Mark, Seth J
Berkowitz, and Steven Horng. Mimic-cxr-jpg, a large publicly available
database of labeled chest radiographs. arXiv preprint, 2019. https://doi.
org/10.48550/arXiv.1901.07042.

[396] Zhanyu Wang, Hongwei Han, Lei Wang, Xiu Li, and Luping Zhou. Auto-
mated radiographic report generation purely on transformer: A multicriteria
supervised approach. IEEE Trans. Med. Imaging, 41(10):2803–2813, 2022.
https://doi.org/10.1109/TMI.2022.3171661.

[397] Mingjie Li, Wenjia Cai, Karin Verspoor, Shirui Pan, Xiaodan Liang, and Xiaojun
Chang. Cross-modal clinical graph transformer for ophthalmic report genera-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 20656–20665, 2022.

[398] Mingjie Li, Wenjia Cai, Rui Liu, Yuetian Weng, Xiaoyun Zhao, Cong Wang, Xin
Chen, Zhong Liu, Caineng Pan, Mengke Li, et al. Ffa-ir: Towards an explain-
able and reliable medical report generation benchmark. In Proceedings of the
Conference on Neural Information Processing Systems Datasets and Bench-
marks Track, pages 1–14, 2021. https://doi.org/10.13026/ccbh-z832.

[399] Yiming Cao, Lizhen Cui, Fuqiang Yu, Lei Zhang, Zhen Li, Ning Liu, and
Yonghui Xu. Kdtnet: medical image report generation via knowledge-
driven transformer. In Proceedings of the Database Systems for Advanced
Applications, pages 117–132. Springer, 2022. https://doi.org/10.1007/
978-3-031-00129-1_8.

[400] Chen Lin, Shuai Zheng, Zhizhe Liu, Youru Li, Zhenfeng Zhu, and Yao Zhao.
Sgt: Scene graph-guided transformer for surgical report generation. In Med-
ical Image Computing and Computer Assisted Intervention–MICCAI 2022:
25th International Conference, Singapore, September 18–22, 2022, Proceed-
ings, Part VII, pages 507–518. Springer, 2022. https://doi.org/10.1007/
978-3-031-16449-1_48.

77

https://doi.org/10.3390/s22041429
https://doi.org/10.3390/s22041429
https://doi.org/10.48550/arXiv.2107.02104
https://doi.org/10.13026/C2JT1Q
https://doi.org/10.13026/C2JT1Q
https://doi.org/10.1007/978-3-031-16452-1_58
https://doi.org/10.1007/978-3-031-16452-1_58
https://doi.org/10.48550/arXiv.1901.07042
https://doi.org/10.48550/arXiv.1901.07042
https://doi.org/10.1109/TMI.2022.3171661
https://doi.org/10.13026/ccbh-z832
https://doi.org/10.1007/978-3-031-00129-1_8
https://doi.org/10.1007/978-3-031-00129-1_8
https://doi.org/10.1007/978-3-031-16449-1_48
https://doi.org/10.1007/978-3-031-16449-1_48


[401] Max Allan, Satoshi Kondo, Sebastian Bodenstedt, Stefan Leger, Rahim Kad-
khodamohammadi, Imanol Luengo, Felix Fuentes, Evangello Flouty, Ahmed
Mohammed, Marius Pedersen, et al. 2018 robotic scene segmentation chal-
lenge. arXiv preprint, 2020. https://doi.org/10.48550/arXiv.2001.11190.

[402] Hoang TN Nguyen, Dong Nie, Taivanbat Badamdorj, Yujie Liu, Lingzi Hong,
Jason Truong, and Li Cheng. Eddie-transformer: Enriched disease embedding
transformer for x-ray report generation. In Proceedings of the International
Symposium on Biomedical Imaging (ISBI), pages 1–5. IEEE, 2022. https:
//doi.org/10.1109/ISBI52829.2022.9761459.

[403] Joseph Paul Cohen, Paul Morrison, and Lan Dao. Covid-19 image data col-
lection. arXiv preprint, 2020. https://doi.org/10.48550/arXiv.2003.11597.

[404] Daniel S Marcus, Tracy H Wang, Jamie Parker, John G Csernansky, John C
Morris, and Randy L Buckner. Open access series of imaging studies (oasis):
cross-sectional mri data in young, middle aged, nondemented, and demented
older adults. J. Cogn. Neurosci., 19(9):1498–1507, 2007. https://doi.org/
10.1162/jocn.2007.19.9.1498.

[405] Mingrui Ma, Yuanbo Xu, Lei Song, and Guixia Liu. Symmetric transformer-
based network for unsupervised image registration. Knowledge-Based Syst.,
257:109959, 2022. https://doi.org/10.1016/j.knosys.2022.109959.

[406] Junyu Chen, Eric C Frey, Yufan He, William P Segars, Ye Li, and Yong Du.
Transmorph: Transformer for unsupervised medical image registration. Med.
Image Anal., 82:102615, 2022. https://doi.org/10.1016/j.media.2022.
102615.

[407] WP Segars, Jason Bond, Jack Frush, Sylvia Hon, Chris Eckersley, Cameron H
Williams, Jianqiao Feng, Daniel J Tward, JT Ratnanather, MI Miller, et al. Pop-
ulation of anatomically variable 4d xcat adult phantoms for imaging research
and optimization. Med. Phys., 40(4):043701, 2013. https://doi.org/10.
1118/1.4794178.

[408] Da Hu. Fusing cnns and transformers for deformable medical image registra-
tion. In Proceedings of the International Conference on Computer Science,
Electronic Information Engineering and Intelligent Control Technology, pages
19–23. IEEE, 2022. https://doi.org/10.1109/CEI57409.2022.9950077.

[409] Lpba40 dataset. https://resource.loni.usc.edu/resources/
atlases-downloads/. Accessed 22 February 2023.

[410] Yongpei Zhu and Shi Lu. Swin-voxelmorph: A symmetric unsupervised
learning model for deformable medical image registration using swin trans-
former. In Proceedings of the Medical Image Computing and Computer As-
sisted Intervention, pages 78–87. Springer, 2022. https://doi.org/10.1007/
978-3-031-16446-0_8.

[411] Susanne G Mueller, Michael W Weiner, Leon J Thal, Ronald C Petersen,
Clifford R Jack, William Jagust, John Q Trojanowski, Arthur W Toga, and
Laurel Beckett. Ways toward an early diagnosis in alzheimer’s disease:
the alzheimer’s disease neuroimaging initiative (adni). Alzheimers. Dement.,

78

https://doi.org/10.48550/arXiv.2001.11190
https://doi.org/10.1109/ISBI52829.2022.9761459
https://doi.org/10.1109/ISBI52829.2022.9761459
https://doi.org/10.48550/arXiv.2003.11597
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1016/j.knosys.2022.109959
https://doi.org/10.1016/j.media.2022.102615
https://doi.org/10.1016/j.media.2022.102615
https://doi.org/10.1118/1.4794178
https://doi.org/10.1118/1.4794178
https://doi.org/10.1109/CEI57409.2022.9950077
https://resource.loni.usc.edu/resources/atlases-downloads/
https://resource.loni.usc.edu/resources/atlases-downloads/
https://doi.org/10.1007/978-3-031-16446-0_8
https://doi.org/10.1007/978-3-031-16446-0_8


1(1):55–66, 2005. https://doi.org/10.1016/j.jalz.2005.06.003.
[412] Jiacheng Shi, Yuting He, Youyong Kong, Jean-Louis Coatrieux, Huazhong

Shu, Guanyu Yang, and Shuo Li. Xmorpher: Full transformer for deformable
medical image registration via cross attention. In Proceedings of the Medi-
cal Image Computing and Computer Assisted Intervention, pages 217–226.
Springer, 2022. https://doi.org/10.1007/978-3-031-16446-0_21.

[413] Xiahai Zhuang and Juan Shen. Multi-scale patch and multi-modality atlases for
whole heart segmentation of mri. Med. Image Anal., 31:77–87, 2016. https:
//doi.org/10.1016/j.media.2016.02.006.

[414] Ramtin Gharleghi, Gihan Samarasinghe, Arcot Sowmya, and Susann Beier.
Automated segmentation of coronary arteries. In Proceedings of the Interna-
tional Conference on Medical Image Computing and Computer Assisted Inter-
vention, pages 1–13, 2022. https://doi.org/10.5281/zenodo.3819799.

[415] Tony CW Mok and Albert Chung. Affine medical image registration with
coarse-to-fine vision transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20835–20844, 2022.

[416] David W Shattuck, Mubeena Mirza, Vitria Adisetiyo, Cornelius Hojatkashani,
Georges Salamon, Katherine L Narr, Russell A Poldrack, Robert M Bilder,
and Arthur W Toga. Construction of a 3d probabilistic atlas of human cortical
structures. Neuroimage, 39(3):1064–1080, 2008. https://doi.org/10.1016/
j.neuroimage.2007.09.031.

[417] Amparo S Betancourt Tarifa, Claudio Marrocco, Mario Molinara, Francesco
Tortorella, and Alessandro Bria. Transformer-based mass detection in digi-
tal mammograms. J. Ambient Intell. Humaniz. Comput., pages 1–15, 2023.
https://doi.org/10.1007/s12652-023-04517-9.

[418] Mark D Halling-Brown, Lucy M Warren, Dominic Ward, Emma Lewis, Alis-
tair Mackenzie, Matthew G Wallis, Louise S Wilkinson, Rosalind M Given-
Wilson, Rita McAvinchey, and Kenneth C Young. Optimam mammography
image database: a large-scale resource of mammography images and clin-
ical data. Radiology: Artificial Intelligence, 3(1):e200103, 2020. https:
//doi.org/10.1148/ryai.2020200103.

[419] Bing Leng, Chunqing Wang, Min Leng, Mingfeng Ge, and Wenfei Dong. Deep
learning detection network for peripheral blood leukocytes based on improved
detection transformer. Biomed. Signal Process. Control, 82:104518, 2023.
https://doi.org/10.1016/j.bspc.2022.104518.

[420] Zahra Mousavi Kouzehkanan, Sepehr Saghari, Sajad Tavakoli, Peyman Ros-
tami, Mohammadjavad Abaszadeh, Farzaneh Mirzadeh, Esmaeil Shahabi
Satlsar, Maryam Gheidishahran, Fatemeh Gorgi, Saeed Mohammadi, et al.
A large dataset of white blood cells containing cell locations and types, along
with segmented nuclei and cytoplasm. Sci Rep, 12(1):1123, 2022. https:
//doi.org/10.1038/s41598-021-04426-x.

[421] Ahmad Obeid, Taslim Mahbub, Sajid Javed, Jorge Dias, and Naoufel Werghi.
Nucdetr: End-to-end transformer for nucleus detection in histopathology im-

79

https://doi.org/10.1016/j.jalz.2005.06.003
https://doi.org/10.1007/978-3-031-16446-0_21
https://doi.org/10.1016/j.media.2016.02.006
https://doi.org/10.1016/j.media.2016.02.006
https://doi.org/10.5281/zenodo.3819799
https://doi.org/10.1016/j.neuroimage.2007.09.031
https://doi.org/10.1016/j.neuroimage.2007.09.031
https://doi.org/10.1007/s12652-023-04517-9
https://doi.org/10.1148/ryai.2020200103
https://doi.org/10.1148/ryai.2020200103
https://doi.org/10.1016/j.bspc.2022.104518
https://doi.org/10.1038/s41598-021-04426-x
https://doi.org/10.1038/s41598-021-04426-x


ages. In Proceedings of the Computational Mathematics Modeling in Can-
cer Analysis, pages 47–57. Springer, 2022. https://doi.org/10.1007/
978-3-031-17266-3_5.

[422] Simon Graham, Quoc Dang Vu, Shan E Ahmed Raza, Ayesha Azam, Yee Wah
Tsang, Jin Tae Kwak, and Nasir Rajpoot. Hover-net: Simultaneous segmen-
tation and classification of nuclei in multi-tissue histology images. Med. Image
Anal., 58:101563, 2019. https://doi.org/10.1016/j.media.2019.101563.

[423] Jevgenij Gamper, Navid Alemi Koohbanani, Ksenija Benes, Simon Graham,
Mostafa Jahanifar, Syed Ali Khurram, Ayesha Azam, Katherine Hewitt, and
Nasir Rajpoot. Pannuke dataset extension, insights and baselines. arXiv
preprint, 2020. https://doi.org/10.48550/arXiv.2003.10778.

[424] Yifan Zhang, Haoyu Dong, Nicholas Konz, Hanxue Gu, and Maciej A
Mazurowski. Lightweight transformer backbone for medical object detection.
In Proceedings of the Cancer Prevention Through Early Detection, pages 47–
56. Springer, 2022. https://doi.org/10.1007/978-3-031-17979-2_5.

[425] M Buda, A Saha, R Walsh, S Ghate, N Li, A Święcicki, JY Lo, J Yang, and
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