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A B S T R A C T

Thyroid nodule classification and segmentation in ultrasound images are crucial for computer-
aided diagnosis; however, they face limitations owing to insufficient labeled data. In this study, we
proposed a multi-view contrastive self-supervised method to improve thyroid nodule classification
and segmentation performance with limited manual labels. Our method aligns the transverse and
longitudinal views of the same nodule, thereby enabling the model to focus more on the nodule area.
We designed an adaptive loss function that eliminates the limitations of the paired data. Additionally,
we adopted a two-stage pre-training to exploit the pre-training on ImageNet and thyroid ultrasound
images. Extensive experiments were conducted on a large-scale dataset collected from multiple
centers. The results showed that the proposed method significantly improves nodule classification
and segmentation performance with limited manual labels and outperforms state-of-the-art self-
supervised methods. The two-stage pre-training also significantly exceeded ImageNet pre-training.

1. Introduction
Thyroid cancer is among the most common cancers

worldwide (Sung, Ferlay, Siegel, Laversanne, Soerjomataram,
Jemal and Bray, 2021). Early detection enables timely
intervention and avoids overdiagnosis (Bethesda, 2018).
Ultrasound is the primary imaging tool for thyroid di-
agnosis because it is real-time, non-invasive, and low-
cost (Smith-Bindman, Miglioretti, Johnson, Lee, Feigelson,
Flynn, Greenlee, Kruger, Hornbrook, Roblin et al., 2012).
However, accurate interpretation of ultrasound images re-
quires experienced physicians, and inexperienced physi-
cians may misdiagnose. Several computer-aided diagnostic
methods have been proposed to address this issue, most
of which are based on deep learning. For example, Deng,
Han, Wei and Chang (2022) proposed a multi-task net-
work to determine Thyroid Imaging Reporting and Data
System grade for identifying the benignity and malignancy
of thyroid nodules. Sun, Wu, Zhao, Gao, Xie, Lin, Sui,
Li, Wu and Ni (2023) proposed a contrast-learning-based
thyroid nodule classification model to improve the accuracy
of diagnosis. Kang, Lao, Li, Jiang, Qiu, Zhang and Li
(2022) proposed intra- and inter-task consistent learning
to enforce the network to learn consistent predictions for
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nodule classification and segmentation. Gong, Chen, Chen,
Li, Li and Chen (2023) designed a multi-task learning
framework to accurately segment the thyroid nodule. For
more related work, please refer to Chen, You and Li (2020a);
Sharifi, Bakhshali, Dehghani, DanaiAshgzari, Sargolzaei
and Eslami (2021).

Although these methods have the potential to solve the
aforementioned clinical problem, they require large amounts
of data with manual annotations. The fine-needle aspiration
(FNA) biopsy is the gold standard for distinguishing benign
and malignant nodules. However, only a small fraction of
patients undergo an FNA biopsy. For nodule segmentation,
the gold standard is obtained by manually delineating the
pixel-level mask. As shown in Fig.1, the borders of the nod-
ules in the image are often blurred and incomplete and the
nodules may resemble carotid vessels. Therefore, annotating
the mask requires a comprehension of the thyroid anatomy,
recognition of relevant features from the ultrasound image,
and exclusion of interference from similar tissues. Anno-
tating ultrasound images is time-consuming and requires
costly expertise that is not easily accessible. Most labeled
thyroid image datasets are thus small and lack manual labels.
This limits the development of deep learning techniques in
thyroid image analysis.

Recently, self-supervised learning (SSL) has been ap-
plied to various medical images to address the problem of
insufficient labeled data. Its core objective is to provide good
initialization for the target task by pre-training the model
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Figure 1: The upper row is the thyroid ultrasound images
of different patients, and the lower row is the corresponding
nodule masks. Red arrows indicate nodules and green arrows
indicate carotid vessels.

without using artificial labels. For example, Zhou, Sodha,
Pang, Gotway and Liang (2021c) used image restoration
to pre-train models on 2D chest CT slices, chest X-ray
images, and 3D chest volumes. Zhou, Yu, Bian, Hu, Ma
and Zheng (2020) used contrastive learning to pre-train
the model on chest X-ray images. Zhu, Li, Hu, Ma, Zhou
and Zheng (2020) used 3D jigsaw puzzles to pre-train the
model on brain CT and MRI volumes. Punn and Agarwal
(2022) pre-trained models on breast ultrasound images and
dermoscopy images via redundancy reduction. Basu, Singla,
Gupta, Rana, Gupta and Arora (2022) combined contrastive
learning and hard negative mining to pre-train models on
gallbladder ultrasound videos. For more information about
the medical imaging applications of SSL, please refer to
Shurrab and Duwairi (2022).

We investigated a large number of SSL-related research
in the field of medical image analysis from the literature and
found that the existing methods have some limitations. First,
most methods were designed for single-view tasks, which
does not consider the multi-view nature of the thyroid. Physi-
cians usually scan the thyroid gland of a patient horizontally
and vertically to conduct a complementary examination,
resulting in transverse and longitudinal views. It is also
possible that one of the two views is missing. As shown in
Fig.2, the lower row shows thyroid transverse views from
four patients, and the upper row shows the corresponding
longitudinal views. Two views of the same nodule display
relevant and complementary information, such as nodule
shape and echo pattern. Moreover, two views of the same
nodule should belong to the same category, either benign
or malignant. Intuitively, exploiting such multi-view con-
sistency can enhance SSL, thereby improving the target
task performance. Second, the SSL methods designed for
multimodal data can theoretically be used for multi-view
thyroid images (Hervella, Rouco, Novo and Ortega, 2020,
2021; Fedorov, Sylvain, Geenjaar, Luck, Wu, DeRamus,
Kirilin, Bleklov, Calhoun and Plis, 2021a; Fedorov, Wu,
Sylvain, Luck, DeRamus, Bleklov, Plis and Calhoun, 2021b;
Li, Jia, Islam, Yu and Xing, 2020; Taleb, Lippert, Klein
and Nabi, 2017; Xiang, Zhuo, Zhao, Deng, Zhu, Wang,
Jiang and Lei, 2022), but they cannot handle missing views
well. This is because they all require the paired data, and

Figure 2: The color image on the left is a schematic of the
thyroid, and thyroid ultrasound images from four patients are
on the right. The upper row is the longitudinal views, and the
lower row is the corresponding transverse views. The yellow
arrows point to the same nodule.

unpaired data cannot be used. Third, the combination of
SSL-based pre-training on medical images and pre-training
on natural images may benefit the target task but was ignored
by existing self-supervised studies. Most self-supervised
studies have demonstrated that self-supervised pre-training
on medical images can outperform supervised pre-training
on natural images for target tasks. However, one can easily
collect numerous natural images from the Internet, but it is
difficult to obtain numerous medical images from hospitals,
even without labels.

In this study, we attempt to improve the nodule clas-
sification and segmentation performance of thyroid ultra-
sound images with limited manual labels using a novel SSL
method. The main contributions of our study are as follows:
(1) We proposed a multi-view SSL method for thyroid ultra-
sound image analysis. To address the issue of missing views,
we designed an adaptive loss function that allowed the model
to utilize unpaired views. (2) We adopted a two-stage pre-
training strategy to combine ImageNet pre-training and self-
supervised pre-training on thyroid ultrasound images, which
exploits the benefits of both. (3) Extensive experiments
were conducted on a large-scale thyroid ultrasound image
dataset collected from multiple centers and devices. The
experimental results showed that the proposed method sig-
nificantly improves nodule classification and segmentation
performance with limited manual labels, demonstrating its
effectiveness.

2. Related work
In this section, we briefly introduce three fields related to

our research: self-supervised learning, multi-view learning,
and two-stage pre-training.

2.1. Self-supervised learning
SSL can be classified into three main categories: pre-

dictive, generative, and contrastive (Shurrab and Duwairi,
2022). Predictive methods usually first transform the im-
age and then use models to predict these transformations.
Examples include the jigsaw puzzle (Noroozi and Favaro,
2016), relative-position prediction (Doersch, Gupta and
Efros, 2015), and rotation prediction (Gidaris, Singh and Ko-
modakis, 2018). However, these methods must be carefully
designed to prevent the network from taking shortcuts to
learn meaningless representations for the target tasks. Gen-
erative methods usually use an encoder-decoder structure
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for image reconstruction, such as image inpainting (Pathak,
Krahenbuhl, Donahue, Darrell and Efros, 2016), image con-
text restoration (Chen, Bentley, Mori, Misawa, Fujiwara and
Rueckert, 2019), models genesis (Zhou et al., 2021c). Such
methods often provide limited improvements in the target
performance. Recently, breakthroughs have been achieved
in visual transformers (ViTs) based on generative methods
(He, Chen, Xie, Li, Dollár and Girshick, 2022). Partial
patches of the image were masked, and visible patches
were sent to a ViT-based network for patch reconstruction.
Although these methods produce more generalizable visual
features, they are specifically designed for ViT architecture
and are computationally intensive. Additionally, without
further fine-tuning, pre-trained features may not perform
favorably in some scenarios. Contrastive methods aim to
minimize the feature distances of positive pairs while maxi-
mizing the feature distances between negative pairs. Positive
pairs usually refer to different augmented versions of the
same image, and negative pairs usually refer to different
images. The representative methods include SimCLR (Chen,
Kornblith, Norouzi and Hinton, 2020b) and MoCo (He,
Fan, Wu, Xie and Girshick, 2020; Chen, Fan, Girshick and
He, 2020c). These methods have been shown to outperform
supervised ImageNet pre-training. In this study, we extend
the common contrastive approach by considering different
thyroid ultrasound views of the same nodule as positive
pairs.

2.2. Multi-view learning
Multi-view learning is a scenario where representations

are learned by correlating information from multiple views
of data to improve learning performance (Li, Yang and
Zhang, 2018). Multi-view supervised learning is an active
research area (Wang, Miao, Yang, Li, Zhou, Huang, Lin,
Xue, Jia, Zhou et al., 2020; Wu, Xie, Zhu, Ao, Chen, Zhang,
Zhuang, Lin and He, 2022; Shah, Shah, Lau, de Melo
and Chellappa, 2023; Kim and Song, 2022). For example,
Wang et al. (2020) proposed a multimodal fusion network
that fuses B-mode, Doppler, shear wave, and strain wave
ultrasound images to predict benign and malignant breast
nodules. In multi-view self-supervised learning, Hervella
et al. (2020, 2021) proposed a generative framework that
reconstructs gray angiography from the corresponding col-
orful retinography. Fedorov et al. (2021a,b) used a con-
trastive framework on multimodal MRI images to maximize
the mutual information. Xiang et al. (2022) proposed a
self-supervised multi-modal fusion network on multimodal
thyroid images. Hassani and Khasahmadi (2020) proposed
a contrastive framework on graphs. Roy and Etemad (2021)
proposed a contrastive framework on human facial images.
However, these SSL methods require paired views. To ad-
dress this problem, Li et al. (2020) first used CycleGAN
(Zhu, Park, Isola and Efros, 2017) to synthesize missing
modalities from other modalities. They then pre-trained the
model using a contrastive self-supervised framework that
aligned multimodal features. Similarly, Taleb et al. (2017)
also used CycleGAN to synthesize the missing modality and

designed multimodal jigsaw puzzles on multimodal MRI
images. However, the quality of synthetic data is difficult to
evaluate and may be detrimental to pre-training. In contrast,
the proposed method does not require paired data. Addi-
tionally, our method is evaluated on image classification,
segmentation, and multi-view classification, which has not
been verified in other studies.

2.3. Two-stage pre-training
Given the significant differences between natural and

medical images, transfer learning from natural to medical
images may be suboptimal (Raghu, Zhang, Kleinberg and
Bengio, 2019). Therefore, some studies have proposed a
two-stage pre-training for target tasks. For example, Liu,
Dong, Wang, Cui, Fan, Ma and Chen (2021) first initialized
the partial layers of their proposed network with weights pre-
trained on ImageNet and continued to pre-train the model
on numerous labeled pulmonary nodule CT images before
fine-tuning it for COVID-19 lung infection segmentation.
Similarly, Meng, Tan, Yu, Wang and Liu (2022) used two-
stage pre-training to initialize the model and used it for
COVID-19 image classification. Zhang, Chen, Gao, Huang,
Li and Zhang (2022) built a large dataset from natural
images similar to tongue manifestation images and trained
the pre-trained model on it before fine-tuning it on real clin-
ical tongue manifestation images for target tasks. Although
these studies demonstrated the effectiveness of two-stage
pre-training, it is challenging to collect a large amount of
labeled data for supervised learning in the second stage. A
natural idea is to replace supervised pre-training with self-
supervised pre-training in the second stage, which exploits
a large amount of unlabeled data. However, only a few stud-
ies (Azizi, Mustafa, Ryan, Beaver, Freyberg, Deaton, Loh,
Karthikesalingam, Kornblith, Chen et al., 2021; Verma and
Tapaswi, 2022) have attempted this strategy, and a detailed
analysis is lacking. In this study, we carefully explore two-
stage pre-training in two ways: supervised to self-supervised
and self-supervised to self-supervised.

3. Method
In this section, we first introduce the proposed SSL

framework and then propose our adaptive loss. Finally, we
introduce the two-stage pre-training and implementation
details.

3.1. Proposed framework
Common contrastive learning methods regard different

data-augmented versions of the same image as positive pairs,
and different images as negative pairs. They reduce the fea-
ture distance between positive pairs and increase the feature
distance between negative pairs. This allows the model to be
trained without manual labels and to achieve a target task
performance that meets or exceeds the level of supervised
ImageNet pre-training (Chen et al., 2020b,c). However, such
methods may lead to multi-view images of the same nodule
being assigned to different categories. In thyroid ultrasound
scanning, the transverse and longitudinal views of the same
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Figure 3: Our framework adopts independent query and momentum encoders for each view, and the two views share the same
memory bank.

nodule are visually related. As shown in Fig.2, two views of
the same nodule are related and complementary in terms of
nodule shape and echo pattern and are differentiated in views
of different nodules. Furthermore, two views of the same
nodule share the same benign and malignant categories.
Therefore, common contrastive learning methods may not
be suitable for multi-view thyroid ultrasound images.

To solve this problem, we propose a multi-view con-
trastive self-supervised framework. Fig.3 shows this frame-
work. Inspired by MoCo v2 (Chen et al., 2020c), we adopt
two sets of encoders for the transverse and longitudinal
views, where each set of encoders consists of a query and a
momentum encoder. For convenience, we denote the trans-
verse and longitudinal encoders as f(⋅) and g(⋅), and use the
subscripts q and m to represent the query and momentum
encoder, respectively. The four encoders (f𝑞(⋅), f𝑚(⋅), g𝑞(⋅),
and g𝑚(⋅)) share the same network architecture and initial
weights. Each encoder consists of a backbone and a projec-
tion head. The backbone and projection are convolutional
neural networks (CNNs) and multilayer perception (MLP),
respectively. The backbone is used to extract features from
the images in the input space, and the projection head is used
to project the extracted features into the latent space. After
pre-training, only the backbone of the query encoder is used
for the target tasks, whereas the projection head is discarded.
Additionally, we adopt a memory bank that can store K
vectors. This memory bank stores the vectors projected onto
the latent space and works as a queue that follows the first-
in-first-out principle.

Given the paired views of the same patient from a batch
X, we denote the transverse view as x𝑓 and the longitudinal
view as x𝑔 . We employ the random data augmentation on x𝑓

and x𝑔 to generate two augmented versions (x𝑓1 and x𝑓2, x𝑔1
and x𝑔2). The augmented transverse views, x𝑓1 and x𝑓2 are
fed into f𝑞(⋅) and f𝑚(⋅), respectively. Similarly, the augmented
longitudinal views, x𝑔1 and x𝑔2 are fed into g𝑞(⋅) and g𝑚(⋅),
respectively. After feature extraction and projection, the
corresponding vectors, y𝑓1, y𝑓2, y𝑔1, and y𝑔2 are obtained,
where y𝑓1 and y𝑓2, y𝑔1 and y𝑔2 are considered as two positive
pairs since they are from the same image (x𝑓 and x𝑔).
The loss function is described in the following subsection.
After computing the loss, the weights of query encoders (
f𝑞(⋅) and g𝑞(⋅) ) are updated through back-propagation, and
the weights of momentum encoders ( f𝑚(⋅) and g𝑚(⋅) ) are
updated by exponential moving average (EMA):

𝜃𝑡𝑚 ← 𝛼 ⋅ 𝜃𝑡−1𝑚 + (1 − 𝛼) ⋅ 𝜃𝑡𝑞 , (1)

where 𝜃𝑞 and 𝜃𝑚 denote the weights of the query and mo-
mentum encoders, respectively. The superscript t denotes the
training step, and 𝛼 ∈ [0, 1] is the momentum coefficient that
controls the speed of the weight update. After weight updat-
ing, 𝑦𝑓2 and 𝑦𝑔2 are sent to the memory bank as new vectors,
and the oldest vectors in the memory bank are dequeued. In
our framework, the query encoders, f𝑞(⋅) and g𝑞(⋅) share the
same weights, whereas the momentum encoders, f𝑚(⋅) and
g𝑚(⋅) share the same weights. We also tried separate weights
for the transverse and longitudinal encoders but found it
better to use the weight-sharing mechanism.

3.2. Adaptive loss
Our loss function comprises two parts: single-view and

cross-view contrastive losses. The single-view contrastive
loss reduces the feature distance between different aug-
mented versions of the same image, enabling the encoder
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to learn transformation-invariant features. It can be written
as:

𝐿𝑓𝑓 = 𝐶(𝑦𝑓1, 𝑦𝑓2),
𝐿𝑔𝑔 = 𝐶(𝑦𝑔1, 𝑦𝑔2),

(2)

where C(⋅) is the InfoNCE loss (Oord, Li and Vinyals, 2018),
which can be expressed as:

𝐶(𝑞, 𝑘) = − log
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑞, 𝑘)∕𝜏)

𝑒𝑥𝑝(𝑠𝑖𝑚(𝑞, 𝑘)∕𝜏) +
∑𝑁

𝑖=1𝑒𝑥𝑝(𝑠𝑖𝑚(𝑞, 𝑡𝑖)∕𝜏)
,

(3)

where 𝜏 is a temperature parameter and sim(⋅) is the operator
for similarity measurement; here, it is set as cosine similarity.
The vector q and vector k are a positive pair, whereas vector
q and vector 𝑡𝑖 (i ∈ {1, 2, ..., 𝑁}) are a negative pair. In this
study, the vector (y𝑓1 and y𝑔1) generated by query encoders
(f𝑞(⋅) and g𝑞(⋅)) and each vector stored in the memory bank
are considered negative pairs because they are from different
images or from the same image but at different training steps.
Thus, there are K negative pairs and a positive pair, which
forms the log loss of a (K+1)-way softmax-based classifier.

The cross-view contrastive loss reduces the feature dis-
tance between the transverse and longitudinal views of the
same nodule, which enables the encoder to learn view-
invariant features. It can be expressed as:

𝐿𝑓𝑔 = 𝐶(𝑦𝑓1, 𝑦𝑔2),
𝐿𝑔𝑓 = 𝐶(𝑦𝑔1, 𝑦𝑓2).

(4)

A naive idea is to combine these losses directly in the form
of a summation as follows:

𝐿𝑝𝑎𝑖𝑟 = 𝐿𝑓𝑓 + 𝐿𝑔𝑔 + 𝐿𝑓𝑔 + 𝐿𝑔𝑓 . (5)

Obviously, this loss function is only used for paired views,
and those unpaired views cannot be utilized. Unfortunately,
it is possible to happen that one of the two views is missing
in clinical practice. To solve this problem, Li et al. (2020);
Taleb et al. (2017) used CycleGAN to synthesize the missing
views before pre-training. However, image synthesis itself
requires paired data, and synthetic images may be harmful
to pre-training owing to poor synthesis quality. Therefore,
we propose the following adaptive loss function:

𝐿𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 𝑎 ⋅𝐿𝑓𝑓 + 𝑏 ⋅𝐿𝑔𝑔 + 𝑎𝑏 ⋅ 𝜆(𝐿𝑓𝑔 +𝐿𝑔𝑓 ), (6)

where a, b ∈ {0, 1} are two indicator functions that eval-
uate zero if the corresponding view is missing, and 𝜆 is a
coefficient that balances the single-view and cross-view con-
trastive losses. If one of the two views is missing, 𝐿𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 is
equal to𝐿𝑓𝑓 or𝐿𝑔𝑔 , which means that it adaptively becomes
a single-view contrastive loss. This eliminates the limitation
of requiring paired views. The final loss function is the
average of the loss functions corresponding to each patient in
the batch X. In summary, this adaptive loss function has two
advantages: (1) The encoder can learn both transformation-
invariant and view-invariant features, which is superior to
only learning transformation-invariant features. (2) The en-
coder can be optimized on both single-view data and multi-
view data, which is flexible and does not require paired data.

Figure 4: Two-stage pre-training. In the first stage, we train the
model on ImageNet in a supervised and self-supervised learning
manner. In the second stage, we first initialize the model with
the learned weights from the first stage and train the model on
unlabeled target medical images in a self-supervised manner.
Finally, the model is fine-tuned for the target tasks.

3.3. Two-stage pre-training
For medical image analysis, self-supervised pre-training

on medical images can alleviate the domain shift between
ImageNet and medical datasets compared with ImageNet
pre-training. However, it is also limited by the challenge
of collecting numerous medical images, owing to patient
privacy. In this study, instead of using one-stage pre-training,
we divided the pre-training process into two stages, as shown
in Fig.4. In the first stage, we trained the model on ImageNet
in a supervised and self-supervised manner. This enables the
model to learn the features of natural images and provides
good initialization for medical image analysis. However, this
ability is susceptible to domain shift and may not be effective
for certain medical images (Tajbakhsh, Shin, Gurudu, Hurst,
Kendall, Gotway and Liang, 2016). In the second stage,
we further trained the model on unlabeled medical images
similar to the target images in a self-supervised manner.
This enables the model to learn the features of medical
images and enhances its ability to handle such medical image
analysis tasks. The pre-trained weights of common network
architectures on ImageNet are usually available in the deep
learning community. We can skip the first stage and directly
initialize our model using these weights in the second stage.
After the two-stage pre-training, we fine-tuned our model for
target tasks using a small number of labeled target images in
a supervised learning manner.

3.4. Implementation details
We divided the implementation into four aspects: net-

work architecture, data augmentation, hyperparameters, and
optimization settings. For the network architecture, we used
ResNet50 (He, Zhang, Ren and Sun, 2016) as the backbone
and a two-layer fully connected layer as the projection head.
The hidden and output dimensions of the projection head
are 512 and 128, respectively. For data augmentation, we
employed common techniques, including cropping, resizing,
brightness adjustment, contrast adjustment, Gaussian blur,
horizontal flip, and rotation. For the hyperparameters, the
temperature parameter 𝜏 was set to 0.1, and the memory
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Table 1
Summary of the compared methods. These are the current SOTA self-supervised methods in medical image analysis. The categories
include generative, contrastive, and combinations of the two. The last column refers to the images used in the original papers.

Methods Publication Years Category Images for pre-training

MoCo v2 (He et al., 2020) CVPR 2020 contrastive ImageNet images
C2L (Zhou et al., 2020) MICCAI 2020 contrastive Chest X-ray images

MG (Zhou et al., 2021c) MedIA 2020 generative
2D Chest CT slices
3D Chest CT volumes
Chest X-ray images

PCRL (Zhou, Lu, Yang, Han and
Yu, 2021a) ICCV 2021 contrastive & generative Chest X-ray images

3D Chest CT volumes
CAiD (Taher, Haghighi, Gotway
and Liang, 2022) MIDL 2022 contrastive & generative Chest X-ray images

DiRA (Haghighi, Taher, Gotway
and Liang, 2022) CVPR 2022 contrastive & generative Chest X-ray images

3D Chest CT volumes
SSFL (Li et al., 2020) TMI 2020 contrastive Multimodal fundus images

bank size K was set to 512. The momentum coefficient 𝛼
was set to 0.99 and the loss coefficient 𝜆 was set to 0.5.
For the optimization settings, we used the following details:
SGD optimizer, cosine learning rate decay scheduler, initial
learning rate of 0.03, weight decay of 0.0001, batch size of
128 (64 patients per iteration), and 200 training epochs. The
intensity normalization (i.e. subtract the mean and divide
by the standard deviation) was performed. To demonstrate
that the target tasks benefit from our method rather than
from special tricks, we also implemented MoCo v2 using the
above settings. For the two-stage pre-training, we modified
the memory bank size K to 1024 and the initial learning
rate to 0.01. We obtained the supervised ImageNet pre-
trained weights from PyTorch official repository and self-
supervised ImageNet pre-trained weights from MMSelfSup
Contributors (2021). All experiments in this study were
performed on a PyTorch platform using servers equipped
with NVIDIA RTX A40 GPUs.

4. Materials and Experiments
In this section, we introduce our large-scale thyroid ul-

trasound dataset collected from multiple centers, compared
methods, and target tasks.

4.1. Dataset
To evaluate the proposed method, we constructed a

large-scale thyroid ultrasound dataset. Our dataset has the
following characteristics: (1) It was collected from multi-
ple centers consisting of more than 20 hospitals and sites.
These centers are located in different regions of China,
such as Shanghai, Chengdu in Sichuan, and Changzhou in
Jiangsu, providing regional diversity and physician scanning
diversity. (2) Images were generated using more than 30
types of ultrasound imaging equipment under different set-
tings. The equipment primarily included the Esaote Mylab
series, GE LOGIQ E9, Mindray Resona7 series, Philips
EPIQ7, SIEMENS ACUSONS 2000, SAMSUNG RS80A,
and TOSHIBA Aplio series, which provides diverse imaging
equipment. (3) This dataset contains 5224 patients ranging in

age from 9 to 82 years old, providing patient diversity. This
diverse dataset ensured the reliability of our experimental
results.

Our dataset contains 2216 patients with benign nodules
and 3008 patients with malignant nodules. All nodule la-
bels were determined using FNA biopsy reports. For the
ultrasound images with multiple nodules, the labels were
annotated as malignant if one nodule was malignant. This
is the largest multicenter thyroid ultrasound image dataset
with pathological labels. Additionally, the nodule masks
were annotated by experienced physicians. Only the largest
nodule in the image was labeled. For preprocessing, we first
used the largest connected component algorithm to obtain
the largest connected region. Second, we cut the surrounding
regions to extract it as the region of interest (ROI). Third, the
extracted ROIs were cropped or padded and then resized to
256 × 256 pixels. Finally, we manually verified all images
and corrected the errors.

Our dataset contains 9669 images from 5224 patients.
It is divided into two groups. The first group includes 779
patients with a single transverse or longitudinal view. The
second group contains 4445 patients with both transverse
and longitudinal views. Patients in the second group were
randomly and evenly divided into 10 subsets. We first es-
tablished a fixed test set by randomly selecting two subsets.
The remaining 8 subsets are used for cross-validation, with
a training set to validation set ratio of 7:1. We selected 5 sets
of training-validation sets for cross-validation. The images
in second group were used for target task fine-tuning, and all
metrics in this study were reported based on the fixed test
set. The training and validation set of the second group and
the first group were used for pre-training. As a result, the
model never sees the test set in the pre-training stage, which
avoids feature memorization or any form of information
leakage. To comprehensively evaluate the proposed method,
we further divided the training set into different proportions:
10%, 20%, and 50%, containing 310, 621, and 1554 patients,
respectively. We investigated the target performance with
limited training images using different proportions of data.
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Figure 5: Networks of three target tasks. For NC, we use
ResNet50 as the backbone and a one-layer fully connected layer
as the classifier. For NS, we use the UNet as the network. For
MNC, both two views have a network that consists of ResNet50
and a one-layer fully connected layer, and the two networks
share the same weights.

4.2. Compared methods
We compared the proposed method with recent self-

supervised methods on other images, including MoCo v2
(He et al., 2020), C2L (Zhou et al., 2020), MG (Zhou et al.,
2021c), PCRL (Zhou et al., 2021a), CAiD (Taher et al.,
2022), DiRA (Haghighi et al., 2022), and SSFL (Li et al.,
2020). As shown in Table.1, these methods were published
in reputed journals or conferences and are current state-
of-the-art (SOTA) self-supervised methods. These methods
were re-implemented on our ultrasound images by referring
to the authors’ codes and articles. For a fair comparison, the
original methods were uniformly modified while maintain-
ing their specificity.

4.3. Target tasks
We employed three target tasks to evaluate the effec-

tiveness of pre-training: nodule classification (NC), nodule
segmentation (NS), and multi-view nodule classification
(MNC). These networks are illustrated in Fig.5. For NC, we
trained a model to predict benign and malignant nodules.
We did not distinguish between the transverse and longi-
tudinal images and treated them as independent samples.
We used cross-entropy loss as the loss function. For NS,
we adopted UNet (Ronneberger, Fischer and Brox, 2015) as
the segmentation network. The encoder was ResNet50 and
the decoder consisted of multiple convolutional layers and
interpolation operations. We used Dice loss as the loss func-
tion. For MNC, we treated the transverse and longitudinal
images of the same patient as the joint sample. The network
consisted of two branches, corresponding to the two views.
Each branch consists of ResNet50 and MLP. Both branches
shared the same weights. This design suppresses overfitting
by reducing the number of parameters, and its effectiveness
has been proven (Wang et al., 2020; Huang, Dong, Jia, Zhou,
Ni, Cheng and Huang, 2022). We used the average of the
outputs of the two branches as the final prediction results. We
calculated the cross-entropy loss for the transverse branch,
longitudinal branch, and final prediction, and we adopted the
sum of the three losses as the final loss function.

Table 2
NC results (Unit:%). The random model was trained from
scratch with an initial learning rate of 0.02 and 200 training
epochs. Other models were trained with an initial learning rate
of 0.005.

Init r=10% r=20% r=50% r=100%

Random 60.28 69.16 78.60 84.38
MoCo v2 76.30 78.40 82.78 85.52
C2L 75.86 78.21 82.84 86.01
MG 54.86 66.89 74.70 81.02
PCRL 74.02 77.18 83.42 85.10
CAiD 74.30 74.74 82.58 85.21
DiRA 75.87 78.19 83.59 86.28
SSFL 75.95 78.17 83.02 85.95
Ours 77.75∗ 79.87∗ 84.36∗ 86.30

Table 3
NS results (Unit:%). The random model was trained from
scratch with an initial learning rate of 0.02 and 100 training
epochs. Other models were trained with an initial learning rate
of 0.01.

Init r=10% r=20% r=50% r=100%

Random 68.11 79.60 84.56 86.36
MoCo v2 76.27 80.58 84.72 86.46
C2L 75.28 80.42 84.17 86.01
MG 66.99 78.38 83.97 86.17
PCRL 75.63 80.45 84.57 86.46
CAiD 73.08 78.58 83.39 85.55
DiRA 75.06 79.98 83.90 85.99
SSFL 77.71 81.76 84.66 86.44
Ours 79.69∗ 82.31∗ 84.89 86.50

We used the same data augmentation for the three target
tasks: horizontal flip, brightness and contrast adjustment,
random scale, rotation, and translation. The SGD optimizer
and cosine learning rate decay scheduler were employed
to optimize all models. We used an early stopping mecha-
nism on the validation set to avoid overfitting. We set the
weight decay to 0.00001 and the batch size to 32. For the
randomly initialized models, we used the initial learning
rate ∈ {0.01, 0.02, 0.05} and training epochs ∈ {100, 200}
to search for the best results as the baseline. For models
using pre-trained weights, we used the initial learning rate
∈ {0.005, 0.01} and 100 epochs to train the models. We used
the area under curve (AUC) score to evaluate nodule classi-
fication and the Dice score to evaluate nodule segmentation.
Both pre-training and fine-tuning were performed five times.

5. Results
In this section, we first compare the proposed method

with SOTA methods and then compare the two-stage pre-
training with ImageNet pre-training. For convenience, ran-
domly initialized models are denoted as "Random". "SPIN"
and "SSPIN" denote supervised and self-supervised pre-
training on ImageNet, respectively. The two-stage pre-training
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Figure 6: Comparison between ImageNet pre-training and two-stage pre-training, based on three target tasks and different
proportions of training data.

Table 4
MNC results (Unit:%). The random model was trained from
scratch with an initial learning rate of 0.01 and 200 training
epochs. Other models were trained with an initial learning rate
of 0.005.

Init r=10% r=20% r=50% r=100%

Random 58.90 66.80 78.37 86.69
MoCo v2 77.28 80.36 85.94 88.23
C2L 77.43 80.33 85.65 88.87
MG 55.75 62.43 72.32 81.69
PCRL 73.42 78.87 85.60 88.30
CAiD 74.89 78.76 83.46 87.69
DiRA 76.39 78.27 86.70 89.33
SSFL 74.41 81.06 86.08 88.27
Ours 78.17∗ 82.45∗ 87.08 89.48

is expressed in the form of “A→B”. We use r to represent
the proportion of accessible data in the entire training set.
Quantitative results are reported as the mean of five trials.
The best and second-best results are bolded and underlined,
respectively. Paired samples t-test was performed.

5.1. Nodule classification
Table.2 shows the results. The p-values between our

results and the second-best results were calculated. The
symbol ’*’ indicates p-value <0.001 and is considered
significant. The random model shows a large variance in
performance when different proportions of the training
data are used for training. Specifically, the random model
achieved average AUC scores of 60.28%, 69.16%, 78.60%,
and 84.38% with different proportions of training data (10%,
20%, 50%, and 100%), respectively. From 10% to 100%,
the AUC score increased by 24.1%. This shows that the
random model is highly sensitive to the amount of training
data, and insufficient data causes the model to perform
poorly. In addition to the MG model, other self-supervised
models have improved classification performance over the
random model, and our model achieved the largest boost.
Compared with the random model, our model improved
the AUC scores by 17.47%, 10.71%, 5.76%, and 1.92%,
respectively. Our model also significantly outperformed all

other self-supervised models with limited manual labels,
demonstrating its effectiveness.

5.2. Nodule segmentation
Table.3 presents the nodule segmentation results. The

performance of the random model varies significantly for
different proportions of training data. This indicates that the
random model performs poorly on a few training datasets.
In contrast, using less training data, self-supervised mod-
els other than the MG model improve segmentation per-
formance. Our model comprehensively outperforms other
self-supervised models and achieves average Dice scores of
79.69%, 82.31%, 84.89%, and 86.50%. This shows that our
method can also significantly improve nodule segmentation
with limited manual labels, demonstrating its effectiveness.

5.3. Multi-view nodule classification
Table.4 presents the multi-view nodule classification

results. Similarly, for different proportions of training data,
the random model exhibits a large variance in performance.
The score difference between 10% and 100% of the training
data is 27.79%. Compared with the random model, the self-
supervised models improve the multi-view nodule classifi-
cation performance, except for the MG model. The DiRA
model, for example, improves the AUC scores by 17.49%,
11.47%, 8.33%, and 2.64%. This is a major improvement,
particularly with less training data. Our model achieves av-
erage AUC scores of 78.17%, 82.45%, 87.08%, and 89.48%,
which significantly outperforms other self-supervised mod-
els when using a small amount of training data (i.e. r=10%
and 20%). This demonstrates the effectiveness of the pro-
posed method.

5.4. Two-stage pre-training
The nodule classification, segmentation, and multi-view

nodule classification results are presented in Tables.5, 6, and
7, respectively. The p-values between two-stage pre-training
of our method and ImageNet pre-training were calculated.
The symbol ’†’ indicates p-value <0.001 and is considered
significant. To present the results better, we drew line charts
for the three tasks, as shown in Fig.6. Compared to ImageNet
pre-training, the two-stage pre-training of our method almost
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Table 5
NC (two-stage) results (Unit:%). All models were trained with
an initial learning rate of 0.005.

Init r=10% r=20% r=50% r=100%

SPIN 77.86 81.96 84.35 87.29
SPIN→MoCo v2 79.75 81.66 84.98 87.35
SPIN→Ours 81.31† 83.69† 85.69† 87.76

SSPIN 79.75 80.74 84.75 87.01
SSPIN→MoCo v2 81.78 81.95 84.60 87.13
SSPIN→Ours 84.91† 85.55† 85.63† 88.32†

Table 6
NS (two-stage) results (Unit:%). All models were trained with
an initial learning rate of 0.01.

Init r=10% r=20% r=50% r=100%

SPIN 83.15 84.81 86.81 87.92
SPIN→MoCo v2 82.41 85.01 86.94 87.89
SPIN→Ours 83.47 85.34† 86.85 87.97

SSPIN 84.07 85.69 87.43 87.97
SSPIN→MoCo v2 84.41 85.75 86.85 87.03
SSPIN→Ours 84.57† 86.16† 87.36 88.13

Table 7
MNC (two-stage) results (Unit:%). All models were trained
with an initial learning rate of 0.005.

Init r=10% r=20% r=50% r=100%

SPIN 82.57 84.36 87.01 89.44
SPIN→MoCo v2 83.31 85.03 87.89 89.71
SPIN→Ours 85.05† 86.22† 88.25† 90.06†

SSPIN 83.26 85.76 87.65 89.04
SSPIN→MoCo v2 82.92 85.86 87.60 89.18
SSPIN→Ours 85.91† 87.18† 88.64† 90.41†

always improves performance. For example, the AUC scores
of SPIN→Ours are 3.45%, 1.73%, 1.34%, and 0.47% higher
than SPIN in NC. In NS, SSPIN→Ours is only slightly
lower than SSPIN when r=50%, and outperforms SSPIN in
other proportions. In MNC, SPIN→Ours improved the AUC
scores by 2.48%, 1.86%, 1.24%, and 0.62%, respectively.
Compared to ImageNet pre-training, MoCo v2’s two-stage
pre-training improves performance or reaches competitive
performance. Two-stage pre-training of our method outper-
forms that of MoCo v2 in most cases, demonstrating the
effectiveness of the proposed method.

5.5. Ablation study
Table.8 lists the results of three downstream tasks with

different lambda values in our method. When lambda is
equal to 0, the method degenerates to MoCo v2. This model
performs worst in given lambda values. This demonstrates
the effectiveness of cross-view contrastive learning. Our
method achieves the best performance when lambda is equal
to 0.5. We also verify the impact of the number of paired

Table 8
Results (Unit:%) of three downstream tasks with different
lambda values in our method.

Tasks r 𝜆 in Equation 6
0 0.2 0.5 1.0

NC 10% 76.30 77.67 77.75 76.79
20% 78.40 79.71 79.87 79.23

NS 10% 76.27 78.89 79.69 79.56
20% 80.58 81.97 82.31 82.43

MNC 10% 77.28 77.52 78.17 77.47
20% 80.36 81.79 82.45 82.29

Table 9
NC results (Unit:%). The dataset used for pre-training consists
of all paired images (training and validation set in the second
group) and different proportions of 779 unpaired views.

r Init + (%) of 779 unpaired views
0 20% 50% 100%

10% MoCo v2 75.02 75.14 75.67 76.30
Ours 77.13 77.20 77.54 77.75

20% MoCo v2 76.08 76.46 78.41 78.40
Ours 79.33 79.23 79.79 79.87

50% MoCo v2 81.34 81.83 81.94 82.78
Ours 83.76 84.04 84.29 84.36

10% MoCo v2 85.37 85.33 85.45 85.52
Ours 86.14 86.34 86.30 86.50

views on cross-view contrastive loss. The results are shown
in Table.9. From the table we can observe: (1) Our method
always outperforms MoCo v2 even though MoCo v2 uses all
unpaired views while our method does not use any unpaired
views. This shows that cross-view contrastive loss is impor-
tant. (2) Our approach continues to improve performance
as available unpaired views increase. This demonstrates the
effectiveness of the proposed adaptive loss function. Consid-
ering the clinical practice of coexistence of multiple views
and missing views in thyroid ultrasound examination, our
method can help improve thyroid ultrasound diagnosis with
limited labeled data.

6. Discussions
6.1. Why is our method better?

Our method significantly outperformed those designed
for single-view images. This could be because our pre-
training method makes the model pay more attention to the
nodule area, which provides a good prior for the three target
tasks. To verify this, we used activation maps as nodules’
segmentation maps and computed the Dice score using nod-
ule masks. Specifically, we froze the pre-trained ResNet50
and fed all images from the test set into it. We obtained the
feature maps before the global pooling layer. The activation
map is obtained by directly averaging the feature maps along
the channel dimension. We resized the activation map to the
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Figure 7: Activation map visualization. The first row is the original image, and the second row is the corresponding mask. The
third and fourth rows are the activation maps of MoCo v2 and our method, respectively. Numbers on the activation map represent
Dice scores. We show five pairs of images and use a threshold of 0.5.

Table 10
Average Dice score between the activation maps and nodule
masks at different thresholds (Unit:%).

Pre-training t=0.3 t=0.4 t=0.5 t=0.6 t=0.7

MoCo v2 32.01 34.61 35.93 35.86 33.75
Ours 36.42 39.50 41.11 40.96 38.20

original image size and normalized it to [0,1]. We obtained
the segmentation map by binarizing the activation map with
different thresholds t ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. We com-
pared our method with MoCo v2. The quantitative results are
presented in Table.10 and the qualitative visualizations are
shown in Fig.7. Our method always has higher Dice scores
than MoCo v2 and pays more attention to the nodule area,
although nodule sizes vary significantly. Several studies
have indicated that lesion segmentation facilitates accurate
disease classification (Zhang, Tang, Cao, Han, Xiao, Ma and
Chang, 2021; Zhou, Chen, Li, Liu, Xu, Wang, Yap and Shen,
2021b). This may explain why our method achieves better
classification and segmentation performance. In addition,
our method also outperforms SSFL (Li et al., 2020), which
also adopts multi-view contrastive learning. This is because
SSFL can only utilize paired data, and images with only one
transverse or one longitudinal view are not utilized. Overall,
our method benefits from multi-view contrastive learning
that eliminates the paired data constraints.

6.2. Why is two-stage pre-training better?
The two-stage pre-training uses ImageNet pre-training

and significantly surpasses it without using additional la-
bels. Good pre-trained weights provide more reusable fea-
tures (Neyshabur, Sedghi and Zhang, 2020). Following
(Neyshabur et al., 2020), we evaluated the degree of feature
reuse by measuring the feature similarity of the different

Table 11
Comparison of feature reuse between two-stage pre-training
and ImageNet pre-training. Each row presents the CKA score
for different intermediate layers before and after fine-tuning
models in nodule classification.

Pre-training conv1 layer1 layer2 layer3 layer4

SPIN 0.966 0.920 0.965 0.911 0.114
SPIN→Ours 0.993 0.993 0.991 0.846 0.179

SSPIN 0.942 0.947 0.957 0.854 0.126
SSPIN→Ours 0.975 0.989 0.982 0.937 0.381

layers of the models before and after fine-tuning using
centered kernel alignment (CKA) (Kornblith, Norouzi, Lee
and Hinton, 2019). Fig.8 shows the visualization results.
A higher CKA score indicates more feature reuse, and
we primarily focused on the CKA scores at the diagonal
positions. Two-stage models have higher CKA scores than
corresponding ImageNet pre-training models, especially in
the low/mid-layer. This shows that the two-stage pre-training
provides more reusable features than the ImageNet pre-
training. We further computed the CKA scores of several
representative layers, as shown in Table.11. The two-stage
model corresponding to SSPIN improves the CKA scores
across the board more significantly in the highest layer.
It is well known that in CNNs, the lower layers extract
detailed features, while the higher layers extract task-specific
features. This shows that the two-stage self-supervised pre-
training not only provides more reusable detailed features
but also provides more reusable task-specific features. This is
probably why it performs better than ImageNet pre-training,
even without using any additional labels.
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Figure 8: Centered kernel alignment (CKA) score map. Based on nodule classification, we calculate the CKA scores of the different
layers of models before and after fine-tuning, including convolutional, batchnorm, and pooling layers. The value at coordinates
(i, j) in each map represents the CKA score between the i-th layer of the model before fine-tuning the j-th layer of the model
after fine-tuning.

7. Conclusion
We proposed a multi-view contrastive self-supervised

method to improve the nodule classification and segmen-
tation performance of thyroid ultrasound images with lim-
ited manual labels. Our method enables the model to learn
transformation- and view-invariant features. To address the
issue of missing views, we designed an adaptive loss func-
tion that eliminates the need for paired views. We also
adopted a two-stage pre-training strategy to alleviate the
domain shift between natural and medical images. To verify
the effectiveness of the proposed method, we constructed
a large-scale thyroid ultrasound image dataset from more
than 20 hospitals. The results of the extensive experiments
show that the proposed method significantly improves nod-
ule classification and segmentation performance compared
to random initialization and outperforms other SOTA self-
supervised methods with limited manual labels. The results
also show that the two-stage pre-training strategy can signif-
icantly boost the target performance.
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