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A B S T R A C T

Four-dimensional conebeam computed tomography (4D CBCT) is an efficie
nique to overcome motion artifacts caused by organ motion during breathi
CBCT reconstruction in a single scan usually divides projections into differen
of sparsely sampled data based on the respiratory phases. The reconstructed
within each group present poor image quality due to the limited number of pro
To improve the image quality of 4D CBCT in a single scan, we propose a n
construction scheme that combines prior knowledge with motion compensati
apply the reconstructed images of the full projections within a single routine
knowledge, providing structural information for the network to enhance the res
structure. The prior network (PN-Net) is proposed to extract features of prior
edge and fuse them with the sparsely sampled data using an attention mechani
prior knowledge guides the reconstruction process to restore the approxima
structure and alleviates severe streaking artifacts. The deformation vector fiel
extracted using deformable image registration among different phases is then
in the motion-compensated ordered-subset simultaneous algebraic reconstru
gorithm to generate 4D CBCT images. Proposed method has been evaluate
simulated and clinical datasets and has shown promising results by comparativ
iment. Compared with previous methods, our approach exhibits significant i
ments across various evaluation metrics.

ding author.
ding author.
uty@szbl.ac.cn (Tianye Niu), chenyang.list@seu.edu.cn (Yang

1. Introduction

Conebeam Computed Tomography (CBCT) is widely
image-guided radiation therapy (IGRT) and surgery. CB
ables precise treatment using real-time monitoring and
ment of patient positioning, minimizing the impact o

motion during the treatment. This improves treatment effec-
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and maximizes the safety of surrounding healthy tis-
13]. The scanning duration, typically lasting around
te per rotation and covering approximately 10-20 res-
ycles, often leads to significant motion distortions, es-
n the chest and upper abdomen [20]. These distortions
uce artifacts that may introduce biases within treat-
ding to high radiation exposure to healthy tissues and
e in the intended dose to the targeted tumor site [6].

here is an urgent need to mitigate motion artifacts in
aging.

imensional (4D) CBCT is an advanced imaging tech-
mitigate motion artifacts [7]. It involves respiratory
onitoring, projection acquisition, projection sorting,

ction, and motion artifact correction. By utilizing the
respiratory profile, multiple groups of projections are
nto distinct respiratory phases. Reconstructing images
se groups produces 3D dynamic sequence images [8].
spread adoption of 4D CBCT is restricted by the long
time and complex instrument design using existing 4D
ment with respiratory gating devices. Using a single
D CBCT scan for 4D reconstruction is thus appealing.
less, each group of projections exhibits non-uniform
se angular distribution, resulting in insufficient data
and compromised accuracy of image reconstruction.

kle this challenging problem, numerous 4D CBCT
ction algorithms have been proposed. These meth-
be divided into respiratory-correlated and motion-

ated methods according to the various use of breathing
espiratory-correlated methods reconstruct each phase
image using the acquired sparse projections [28]. This

explores the substantial temporal correlation among
hases by incorporating a spatiotemporal framework.
lly, an iterative approach for 4D CBCT reconstruc-
oposed to incorporate the temporal non-local means
regularization term [21]. This method enables the
ous reconstruction of all phase images, yielding im-

erformance compared with the utilization of total vari-
). An extension of spatial TV to the spatial-temporal

s also employed for 4D cardiac imaging [19] to sup-
tion artifacts. Nevertheless, excessive regularization
lt in visual distortions and over-smoothing, degrading
ty of reconstruction results [5].

able image registration is commonly used for motion-
ated 4D CBCT reconstruction. This type of method
tes the correlation among distinct phases by extract-
rmation vector fields (DVFs) from CBCT images of
hases to account for motion artifacts [5]. The artifact
sed cyclic motion-compensation algorithm (acMoCo)
inaccurate DVF disturbed by multitudinous artifacts
ltaneous motion estimation and image reconstruction

SMEIR) [23] includes the motion model in the itera-
nstruction process to improve the precision of motion
timation and considerably enhance the quality of im-
struction. Motion-compensated methods usually as-
gular breathing pattern at each respiratory phase [29].
amplitude and period of breathing are strongly irreg-

in the decline of reconstruction quality.
Deep learning methods are extensively employe

cal imaging to optimize and enhance medical image
ther large datasets or the principles of transfer learn
techniques have been combined with traditional met
hance efficiency and precision [15]. In 4D CBCT
tion, neural networks have shown their ability to lea
tensive datasets, extracting crucial image features an
missing information from sparsely sampled views.
ple, U-Net-based interpolation has improved image
filling in missing data in sparse-view sinograms, red
facts [18]. Additionally, iCT-net [19] is a novel ap
seamlessly integrates the reconstruction process with
work architecture, optimizing the entire reconstructio
Moreover, researchers have explored incorporating
ages into CNN-based methods to boost reconstruct
mance. CycN-Net [32], for instance, introduces
tive approach that encodes both the degraded and
ages, leveraging their combined information during
ing step. This integration of prior knowledge offe
portunities for enhancing the quality and accuracy
image reconstructions, benefiting diagnostic and cli
cations.

In recent times, there has been a proliferation of m
gies that amalgamate deep learning with motion com
strategies. For instance, the 3D U-net has been empl
hance image quality in conjunction with motion com
techniques, as demonstrated in [27]. In our prior re
leveraged this approach by utilizing a multi-scale
network to improve sparse-view reconstruction, as
[26]. Nonetheless, these deep learning networks ex
tations in terms of their generalization capacity and
Their performance on test datasets may not consist
the requirements for medical treatment. Consequen
bustness of the network becomes crucial, particularl
discrepancies in data distribution between the traini
datasets.

In addition to 4D reconstruction algorithms, respi
file extraction is also critical for accurate projection
Phase measurement techniques are employed to a
piratory profiles and these techniques can be divide
types based on the invasion style. Invasive metho
the insertion of fiducial markers including metal pa
the human body to track respiratory movements. Ne
these methods require medical surgery to place the m
may pose additional risks to the patient. Noninva
ods generally utilize various instruments or algorithm
tor respiratory motion, including the diaphragmatic l
monitoring. The diaphragm position in upper abdom
imaging can be obtained directly from the project
without additional sensors [4].

In this study, we propose a novel method to g
CBCT images combining prior knowledge with m
pensation from a single routine scan. The respirator
formation is derived directly from the diaphragm pos
original projections without additional sensors. Th
DVF estimation accuracy may be degraded, resulting PN-Net is applied to improve the initial phase-sorted image
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the estimation accuracy of DVF due to its enhance-
ility. Specifically, we propose a dual encoder struc-

based on a conditional U-Net structure to integrate
edge. The prior image is reconstructed using all pro-
onging to the respiratory phases. To extract global
, we add an attention mechanism to the decoder of
. The DVFs from enhanced images are applied in
T reconstruction using a standard ordered-subset

s algebraic reconstruction (OS-SART). Compared
us works, we address the non-equiangular distribu-
ections caused by irregular breathing and achieve
4D CBCT images from a conventional 3D CBCT

ology

osed workflow illustrated in Fig. 1 consists of the
teps. The CBCT projections acquired from a rou-
n are processed to pinpoint the position of the di-
d extract the respiratory curve. Initially, the projec-
based on the respiratory curve are reconstructed
4D sparse-view CBCT images, characterized by
streaking artifacts. A prior network, incorporat-

r image reconstructed using all the projections, is
nhance the quality of these sparse-view CBCT im-
etwork effectively mitigates streaking artifacts and
tomical detail, although some fine structures remain
ormable image registration is applied to derive the
g optimized images to compensate for the anatom-

oss. The motion-compensated iterative reconstruc-
both the DVFs and the measured projection as in-

ng the reconstruction of high-quality 4D CBCT im-

tion Phasing

ram detailing the proposed phase-sorting method is
Fig. 2. We utilize logarithmic operations and first-

entiation to heighten the contrast between the lung
each projection. These contrast-enhanced projec-

en converted into a gray-scale image and summed
teral detector direction to eradicate the fluctuation of
m locations within the projections. Each summed
sequentially arranged within a 2D matrix, with the

dinates corresponding to the rotation angle and the
atial position. The respiratory signal is obtained by
h vector within the matrix. A low-pass filter, incor-
ve-point window moving average, is implemented
e motion signal. The final motion curve is derived
ing the filtered respiratory signal.

rk Inputs Generating

eprocessing step, the original projections are de-
g the penalty-weighted least-square (PWLS) al-
d are mapped into the line integration domain
ssed projections are reconstructed using a standard
avis-Kress(FDK) algorithm [8] and is written as

where Yk represents the projection of the k-th phase, X
sents the sparse-view reconstruction image containing
teristics of the k-th respiratory phase along with signifi
tifacts and noise. Yk is divided by the respiratory curve,
biases in the quantity and distribution of projections
phase due to the patient’s irregular breathing patterns. T
ation in the duration and amplitude of each breath res
partial quality gap among the sparse-view reconstruc
ages. When employing projections from all phases in
construction, the resultant image serves as the integrat
image. Despite encompassing information from all ph
consequently displaying motion artifacts, it maintains
organ structures.
2.3. PN-Net Enhancement

As shown in Fig. 3, we introduced a novel network
PN-Net, to address severe streak artifacts and the loss
tural information induced by sparse-view projection a
equiangular distribution. Drawing on the U-net arch
the PN-Net adopts an encoder-decoder structure, furt
mented with a skip connection. In contrast to CycN-N
which incorporates prior knowledge in the decoder,
opts to fuse prior knowledge within the additional en
fully integrate this information. Both encoders emp
down-sampling operations to generate feature maps of
spatial resolutions, with these feature maps being direct
to the subsequent block [25]. Our results demonstrate
prior feature fusion module contributes to a more effecti
structure.

The network encoders use dense blocks, which co
multiple sublayers to extract multilayer features. Co
to traditional convolutional layers, dense blocks inte
the feature maps produced by all previous layers, thus
ing low-level and high-level information. As demons
Fig. 3(b), the inputs undergo a 2 × 2 max pooling o
and sublayers using 2D convolution blocks (BN+ReLU
with dense connectivity [11]. This dense block structure
fies network training and ensures compactness, resolvin
associated with gradient disappearance and explosion [

Due to the localized action of the convolution kernel
tive field, features of distinct regions may become co
after multiple convolution layers, thereby limiting netw
ficiency and performance. To widen the receptive field
vised the decoder phase to include a self-attention te
after the residual block. Consequently, up-sampling of
can leverage global context information to restore spati
ture [22, 25]. As illustrated in Fig. 4, the non-local blo
erates three types of matrices through a convolution op
corresponding to the query, key, and value in the self-a
mechanism. The central concept posits that the respo
pixel is the summation of feature weights across all ot
els. The equation for this block can be expressed as

yi =
1

c(x)

∑

∀ j

f (xi, x j)g(x j),

where x represents the input feature image, i represent
sponse at the current location, j represents the global r
The function f calculates the correlation among i-th posi
Xk = FDK(Yk), (1) all other positions; The function g can map a point to a vector;
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workflow of the proposed PNMC method is presented. The projections of a routine 3D CBCT scan are initially divided into di
to the position of the diaphragm. The sparse-view images reconstructed by grouped projections are then enhanced using the pre-tra
t fuses the full projection reconstruction as the prior knowledge. The enhanced images are used to estimate DVFs among differen
phase-sorted projections are applied to the motion-compensated iterative reconstruction.

gram illustrates the proposed method for extracting respiratory
he half-fan projections are modified to increase edge contrast.
ced images are summed in the extension direction and stacked
cally. After a filter, the respiratory signal is extracted as the
for projection phasing.

tion c is the normalized function; The block calculates
lation based on the position and generates a new fea-
with the same size. In Fig. 4, there is the operation
idual connection adding the input to the output as the
ich can maintain network stability.

ss function of the network is computed with structure
index measure(SSIM):

1 − SSIM = 1 − (2µxµy + c1)(σxy + c2)
(µ2

x + µ
2
y + c1)(σ2

x + σ
2
y + c2)

, (3)

and uy represent the mean value in the image x and im-

image x and image y, and σxy represents the covaria
c2 represent constants to avoid system errors cause
nominator of zero. SSIM is a perception-based com
model, it can focus on the fuzzy changes of the str
formation in human perception. The value of SSIM
means the correlation is strong, so we subtract its va
as a loss function. Compared with other loss funct
ables a more accurate image quality assessment.
2.4. Motion Compensated Iterative Registration

The image optimization achieved using the PN-N
strates a noteworthy reduction in artifacts and an en
in structural clarity. Nonetheless, owing to inherent
in information availability, certain structural deta
compromised. In order to recapture these missing de
formation vector field (DVF) is computed through d
registration between each pair of phases. Subsequ
DVF is utilized to compensate for motion during bo
and backward projection in the iterative reconstructi
resulting in the recovery of the lost details [1]. Fig. 5
the overall flow of this process:

µt = Dk→tµk,

where µt and µk denote images in the t-th phase and
respectively, while Dk→t signifies deformation fields
from the k-th phase to the t-th phase. Consequently
formation among different phase images can be achie
formation fields, inducing the following formula:
x and σy represent the standard deviance between the pt = ADk→tµk, (5)
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e architecture of the proposed PN-Net. PN-Net incorporates an encoder path to fusion the prior image, the outputs of both enc
ch down-sampling step. The non-local module is added in the decoder to recover image features based on global features. This d
input information. (b) The framework of the dense block. The maps are directly overlaid after convolution layers, sharing informa

s.

c process of the non-local block. Three characteristic images
by convolution, and the correlation among image positions
y dimension reduction. The feature map obtained through

ion mechanism is then transformed into the same size as the
ed to the input as the final result.

resents the projection matrix and pt corresponds to
d images of the t-th phase. Hence, the projection
y phase can be obtained by using the deformation
rojection of each respiratory phase serves as an or-
t, and the Ordered-Subset Simultaneous Algebraic
ion Technique (OS-SART) used to perform these
sets is computationally efficient.

xi
t + λnV−1

k Dk→t(AT
k (Wk(pk − AkDt→k(xi

t))), (6)

presents the reconstructed image of the t-th phase at
tion. λn is employed to update the relaxation param-

V−1
k signifies the diagonal weighted matrix of the forw

jection, while Wk denotes the weighting matrix for b
projection [16].

Fig. 5. Detailed workflow of motion-compensated iterative recon
of the image in the k-th phase. The k-th phase image is deforma
tered to the i-th phase image and then subtracts the i-th phase
projections. Finally, the k-th phase image is updated with the
image. Iterating this process may compensate for missing inform

2.5. Implementation Details

In the network training phase, the PN-Net utilizes A
gorithms for optimization, with set β1=0.9, β2=0.99
learning rate is initially set at 10e-4, which is adjusted
tenth of its original value every 20 iterations, finally
ing to 10e-6. The batch size is established at 2. The
sequence concludes after 50 iterations, taking approx
ning at 1 and decreasing by 10e-2 at each iteration. twenty hours. All the processes outlined in this article are run
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e 1. Parameters of simulated and clinical data acquisition
es Simulated Phantom Hospital Clinical Trial SPARE

1500/1000 1500/1000 1500/1000

mm2) 0.5x0.5 0.388x0.388 0.388x0.388

ize 1024x768 1024x768 1008x752

ge 0°-360° 0°-360° 0°-360°

(mm3) 0.75x0.75x2 0.75x0.75x2 1x1x1

512x512x120 512x512x120 450x450x220

Number 600 660 680

with the following specifications: Intel(R) Core(TM)
CPU@3.20GHz CPU, NVIDIA GeForce GTX 1080

and 128GB memory.

RIMENTS

aset

CBCT reconstruction, obtaining high-quality images
learning across all respiratory phases significantly

tes data acquisition. To overcome this challenge, we
simulation method involving the projection of 4D CT

rom 13 patient cases, each comprising ten volumet-
s representing ten breathing phases. By incorporating
atory signal into high-quality 4D CT images, we were
imulate corresponding sparse-view images and prior
The slice images of ten patients were assembled to

e training dataset, which consisted of approximately
BCT images after data augmentation. The remaining
ents constituted the testing dataset, comprising around
CT images. Throughout the training process, we per-

caling normalization on all images, wherein pixel-wise
wise intensities were normalized to fall within the data
[-1, 1]. We assessed the proposed strategy on two types
l patient datasets to verify the method’s reliability. The
et of CBCT projections from patients with liver cancer
erwent routine CBCT scans and SBRT at our institu-
e second is the public dataset from the SPARE Chal-
ttps://image-x.sydney.edu.au/spare-challenge/). Both
clinical datasets exhibit substantial differences from
ng set, thereby serving as a rigorous test to evaluate
tness of our workflow. The collection parameters of
et are presented in Table 1.

luation and Comparison

mparison Methods
oposed methodology is compared with existing meth-
r identical datasets to ensure an accurate performance
nt. This comparison is bifurcated into two stages:
first stage, we conducted a comprehensive comparative
mong three distinct reconstruction approaches: Cycn-
O, and the conventional FISTA-TV method, as elab-

Table 2. Cycn-Net, aiming to our proposed approach,
tes prior knowledge to enhance image quality. How-
lies on sparse-view images from adjacent phases as its
wledge source and is exclusively dependent on neu-

Table 2. Description of different methods for compar
Method Description

PNMC

The optimization of CBCT image is achieved th
the implementation of PN-Net enhancement com
motion-compensated reconstruction techniques.
approach leverages prior knowledge to accuratel
deformation fields, enhancing the precision of th

MaMO

The optimization of CBCT image is achieved th
implementation of MSD-GAN enhancement com
motion-compensated reconstruction techniques.
utilizes multiple discriminators to optimize imag
obtain better deformation fields for motion comp

CycN-Net

The optimization of CBCT image is achieved
through the utilization of an enhanced prior imag
This approach involves incorporating informatio
multiple adjacent phases as prior knowledge into
network, aimed at enhancing the network’s capa
and compensating for motion-related informatio

FISTA-TV

The optimization of CBCT image is achieved th
a reconstruction approach that involves the phase
projections being processed using the Fast Iterat
Shrinkage Thresholding Algorithm (FISTA) with
Variation (TV) regularization. This method redu
by encouraging small changes in the gradient ma
of the image.

FDK
The optimization of CBCT image is achieved th
direct reconstruction using phase-sorted projecti
and the standard Feldkamp-Davis-Kress (FDK)

medical reconstruction algorithms. In contrast, the
method focuses on reconstructing the original sign
imizing a loss function with sparse prior informa
method is emblematic of traditional reconstruction
and is renowned for its capacity to generate high-
ages from incomplete, noisy, or blurred source imag
while, MaMO shares similarities with our approac
of neural network utilization and motion compens
niques but does not integrate prior knowledge, boast
streamlined structural design. Each of these three ap
representative in its own right, collectively providing
hensive evaluation framework that underscores the s
our proposed approach.

In the second stage, we conducted a comparative
of various networks for sparse image reconstruction t
the superior performance of the modified network a
The networks under consideration encompassed t
tional U-net, the Multi-Scale Generator Adversaria
(MSG-GAN), and the Prior-Net. Detailed compariso
are documented in Table 3.

3.2.2. Non-equiangular Projection Comparison
During free breathing, respiratory curve fluctuat

regular, leading to an uneven distribution of proje
bers in each respiratory phase. This variability ma
substantial discrepancies in sparse-view reconstruct
potentially degrading the 4D CBCT images. Notwi
numerous methods still divide the projection evenly
uniform angle, a scenario that seldom occurs in trea
cesses. To ascertain if the proposed method can a
rk optimization, lacking integration with conventional issue, we compare the results under both ideal and free breath-
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3. Description of different networks for comparison
Description

A network modeled on the U-Net structure includes an
additional encoder to fuse prior images and a self-attention
module is integrated into the decoder. Dense blocks replace
traditional convolution enhancement for feature extraction.

A network, based on the U-net model, includes a prior feature
fusion module. This module stacks prior features with sparse
view image features across channels to fuse the information
effectively.

A network built on the Generative Adversarial Network (GAN)
model comprises one generator and three discriminators. The
generated image is sent to three discriminators for comparison
at different scales, and the evaluation results from the three are
combined to update the generator.

A network with an encoder-decoder structure includes four
up-sampling and down-sampling operations. The generated
feature graph is amalgamated via a skip connection.

ns.

uation Metrics
h an accurate assessment of the results, we employ
criteria to gauge the regions of interest (ROI), in-
-Error, SSIM, Root Mean Square Error (RMSE),
gnal-to-Noise Ratio (PSNR). The formulations for
PSNR are as follows:

RMSE =

√√√
1

MN

M∑

i=1

N∑

j=1

(xi j − x̂i j)2, (7)

PSNR = 20 log10
max(x)
RMSE

, (8)

d N represent the size of the image, i and j sym-
oordinate position, x and x̂ represent real voxel and
xel. The PSNR indicates the ratio of the peak signal
e average noise energy, and it is inversely propor-
RMSE.

S
tion Data

ted in Fig. 6 and Fig. 7, we evaluate several 4D
nstruction methodologies utilizing images recon-
m distinct respiratory phases. Transverse displays
d in Fig. 6, while coronal views are demonstrated
he comparison includes several iterative and deep-
sed algorithms, the abbreviations of which are listed
Compared to FDK reconstruction, all methods ex-
ntial enhancements in image quality. The itera-
employing FISTA-TV reconstructs only the general
it exhibits partially inaccurate boundaries. To alle-
ere streaking artifacts, strong regularization was en-

h resulted in over-smoothing structures. The CycN-
m’s results present a superior visualization of the

cture, but the boundaries remain blurred due to the
equal angular distribution. The MaMO algorithm
acceptable performance with a clear organ struc-

Table 4. Images quality metrics using different methods
phases(RMSE:HU)

Metric FDK FISTA-TV Cyc-Net MaMO

Phase 1
SSIM 0.1178 0.6101 0.6490 0.7928
PSNR 14.71 23.13 24.72 28.36
RMSE 349.14 139.53 105.88 76.43

Phase 3
SSIM 0.0861 0.6114 0.6776 0.8087
PSNR 12.22 24.20 25.21 28.58
RMSE 475.06 122.21 102.71 73.90

Phase 5
SSIM 0.1381 0.6297 0.6811 0.8012
PSNR 16.11 25.06 25.56 29.11
RMSE 302.13 113.45 90.34 71.06

Phase 7
SSIM 0.1372 0.6156 0.6790 0.8179
PSNR 15.06 23.80 24.07 29.09
RMSE 338.32 129.20 88.05 70.20

Phase 9
SSIM 0.1430 0.6467 0.6798 0.7897
PSNR 14.06 24.45 25.82 28.29
RMSE 376.50 118.72 89.57 76.26

retains more streak artifacts owing to the lack of prior im
formation. Compared to other methods, the proposed a
displays notable improvements, showcasing sharp edge
tively suppressed streak artifacts, and high resolution i
constructed images. As evident from Table 4, the p
method outshines the others, achieving the lowest CT
value and the highest global SSIM/PSNR. Overall,
proach excels in reconstructing both contours and o
tional structure.

4.2. Clinical Data

The 3D-FDK reconstruction images, derived from
jections, serve as a reference for comparative analys
FISTA-TV yields a visually blurred image with sig
smoothing, delivering scant useful information. While
enhances image resolution and diminishes textural stru
spinal sections, the over-smoothed areas and streak
obscure bone and organ structures. In contrast, the p
method accurately restores distinct margins and intri
sue details with superior resolution, outperforming r
images, thereby underscoring its therapeutic potential.
picted in Fig. 9, we compare 1D profiles according to th
in Fig. 8 (a). Remarkably, the proposed method’s lin
nearly mirrors that of the reference image.

4.3. Network Comparison

To assess the optimization ability of the PN-Net, w
pare it with three types of networks: U-Net, Prior-N
MSD-GAN using the simulated dataset. As seen in
the U-Net results reveal the most considerable deviati
reality, displaying a distorted overall form and a diso
internal structure. The MSD-GAN, employing three d
nators to discern feature information, performs margin
ter than the U-Net, exhibiting more uniform voxel valu
roughly complete shape.

When paired with prior knowledge, the Prior-Net
strates a significant improvement in result quality, yiel
ver, it diverges from the ground truth in detail and hanced outcomes with clear boundaries and balanced light-dark
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results of the simulated dataset in the transverse view. Sequentially, PNMC, MaMO, FISTA-TV, CycN-Net and FDK algorithms a
uct images in five phases. The fluctuation of breathing is mainly reflected on the left side of the reconstructed image. Regions o
y, and muscle regions are indicated by red dashed boxes. The display window is [-200,300] HU for all.

t results for the simulated dataset in the coronal view, Sequen-
C, MaMO, CycN-Net FISTA-TV and FDK algorithms are com-

econstruct images in three phases. The display window is [-
U for all.

s. Furthermore, the PN-Net, with its more complex
pling path and the integration of an attention mecha-

dule, offers substantial advantages over other networks
of detail and precision in image recovery, particularly
rteries, and muscle areas. As illustrated in Table 5, we
SSIM, PSNR, and RMSE for the network-optimized

areas of interest presented in Fig. 10. The proposed
xhibits the highest SSIM/PSNR and the lowest RMSE

Table 5. IMAGE QUALITY METRICS USING DIFFERENT
NETWORKS IN THE FIVE PHASES(RMSE:HU)

Metric U-Net MSD-GAN Prior-Net

ROI1
SSIM 0.4351 0.4494 0.8025
PSNR 26.70 27.72 30.67
RMSE 165.040 151.37 62.72

ROI2
SSIM 0.4299 0.5216 0.8419
PSNR 19.16 20.44 30.86
RMSE 183.99 163.96 44.17

ROI3
SSIM 0.4055 0.5076 0.8812
PSNR 16.67 18.59 30.99
RMSE 315.49 188.05 32.96

4.4. SPARE Challenge

The SPARE challenge datasets comprise both sim
clinical datasets, with the Varian clinical dataset s
testing. Importantly, we refrain from retraining the n
ing the challenge dataset, ensuring the training and t
of the network exhibit different distributions. Co
we can test the network’s generalization. Fig. 11
results. After PN-Net enhancement, artifacts disa
organ contours are restored, with missing structure
sated post-motion compensation. From three diffe
the proposed method’s results reveal clear edges a
tissue details. Compared to our method, FISTA-TV
to produce over-smoothed regions, while MaMO r
age resolution and slightly blurs edges. Notably, a
e three regions. successfully reconstruct tumor motion in this dataset, with the
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truction results using different methods in the selected phases
dies: (a) coronal view, (b) sagittal view. Comparison details
nes and marginal tissue are shown in the red box. The yel-
n at one-third of the ordinate are used to compare in the

ions. The window is shown as [-350,600] HU for all.

ethod significantly improving the clarity of the tu-
r.

uiangular Comparison

structed images using different projection distribu-
lected the region greatly affected by respiration for
. The projection numbers for the non-equiangular
ular distributions are 52 and 66, respectively, out of
0 projections. As shown in the Fig. 12, the sparse-
truction images from the non-equiangular test ex-
luttered artifacts with noticeable white stripes. The
ificantly reduces the gap, with image (a1) missing
details due to the occlusion of the white artifact
image (a2). Following motion-compensated itera-

ruction, the discrepancy between the two results de-
her, with both achieving high quality. These results

that our proposed method can effectively mitigate

Fig. 9. The 1-D profiles of the CBCT images using different meth
the yellow line in Fig. 8. Part of the center areas are enlarged for
comparison. It shows all curves are similar in general trend but
ferent in the details. The 3D-FDK image curve is used as a refer
the results that differ too much from it are regarded as inaccura

5. DISCUSSION

In this study, we enhance 4D CBCT reconstruction
used to minimize blurring from respiratory motion, by
ing deep learning models, prior knowledge, and moti
pensation within a single routine CBCT scan. Unlike tra
methods that rely on previous reconstructions, our a
derives prior knowledge from all projections in a sing
providing essential structural information for the netw
covery process. We introduce PN-Net, designed to fus
level features in the encoder, using network-optimized
to obtain accurate deformation fields for motion-comp
iterative reconstruction. This method not only promis
quality 4D CBCT image reconstruction, as demonst
evaluations with simulated and clinical datasets but
hances image quality in medical applications. It relie
on a single 3D CBCT scan, reducing the need for addit
f irregular breathing. strumentation and patient radiation exposure. Our simulations
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e network-optimized images from sparse-view reconstruction
rent networks. From top to bottom are the results enhanced by
rior-Net, MSD-GAN and U-Net. Regions of interest like liver,

muscle regions are indicated by red dashed boxes. The display
[-200,300] HU for all.

ble reconstruction results under free-breathing condi-
spite uneven projection distributions, highlighting the
robustness. This approach is set to improve diagnos-

eatment methods, raising the standard of patient care.
, further research and comprehensive clinical valida-
ecessary to fully assess its implications and practical
ns.

earning has markedly advanced medical imaging due
ust non-linear capability. The network can decipher
and intricate patterns, producing superior-quality re-
pared to traditional methods. However, disparities in

ons between training and test data can result in sig-
egradation of network results. This issue is particu-

minent in 4D CBCT reconstruction, where simulated
for network training greatly differs from clinical data.

ently, it’s critical to maintain the network’s robustness
ith varying distributions. As demonstrated in our ex-
al results, integrating prior knowledge effectively miti-
issue. We directly applied the proposed method to the
ataset, yielding exceptionally promising results.
proposed method, a certain level of robustness is ob-
garding distribution disparities between the training
atasets. Nonetheless, when the test dataset markedly

from the training dataset, the outcomes become unpre-
and challenging to manage. Furthermore, the chosen
on method imposes constraints on the registration of
lution images due to the substantial resource and time
it entails. Based on this observation, there is poten-
rther refinement in this workflow. In future research,

Fig. 11. Reconstruction results on SPARE challenge dataset u
methods. We compare the results of PN-Net, PMNC, MaMO
TV in three slices. All of the methods have significantly restor
quality, but the other methods have lost additional details co
the proposed method. The display window is [-200,300] HU fo

Fig. 12. Test results on the projection of equiangular and non
distribution. images (a2)-(d2) show the difference between t
and images (a1)-(d1). The color change at the bottom is use
the difference, and approaching black or white indicates a lar
The organs affected by respiratory movements in the figure ha
differences.

tion and efficiency. Unsupervised learning may be a
approach, with techniques such as patch-based mul
supervised learning previously employed to enhance
resolution and microstructure of pulmonary arterie
other strategy involves the use of transfer learning.
refine models trained on large-scale datasets to redu
costs and boost generalization performance [15]. Fu
the fusion of the metaverse and medical diagnostics
a highly promising direction for future development
to further enhance the proposed method’s generaliza- fers the opportunity to explore the integration of digital twin
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We propose an efficient method for reconstructing 4D CBCT images from a single routine scan to
tackle current challenges in clinical applications. The method comprises three stages.  First,  the
respiratory curve derived from the original projection segments the projections into ten respiratory
phases. Next, PN-Net is employed to enhance the sparse-view reconstruction image. Owing to its
ability  to  fully  extract  the  structural  information from  the prior  image,  PN-Net  surpasses  other
networks  in  edge  and  organ  recovery  capabilities.  Finally,  iterative  reconstruction  is  used  to
compensate for motion information in each phase, enhancing the reconstruction's accuracy.
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