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Four-dimensional conebeam computed tomography (4D CBCT) is an efficient tech-
nique to overcome motion artifacts caused by organ motion during breathing. 4D
CBCT reconstruction in a single scan usually divides projections into different groups
of sparsely sampled data based on the respiratory phases. The reconstructed images
within each group present poor image quality due to the limited number of projections.
To improve the image quality of 4D CBCT in a single scan, we propose a novel re-
construction scheme that combines prior knowledge with motion compensation. We
apply the reconstructed images of the full projections within a single routine as prior
knowledge, providing structural information for the network to enhance the restoration
structure. The prior network (PN-Net) is proposed to extract features of prior knowl-
edge and fuse them with the sparsely sampled data using an attention mechanism. The
prior knowledge guides the reconstruction process to restore the approximate organ
structure and alleviates severe streaking artifacts. The deformation vector field (DVF)
extracted using deformable image registration among different phases is then applied
in the motion-compensated ordered-subset simultaneous algebraic reconstruction al-
gorithm to generate 4D CBCT images. Proposed method has been evaluated using
simulated and clinical datasets and has shown promising results by comparative exper-
iment. Compared with previous methods, our approach exhibits significant improve-
ments across various evaluation metrics.

*Corresponding author.
**Corresponding author.

1. Introduction

Conebeam Computed Tomography (CBCT) is widely used in
image-guided radiation therapy (IGRT) and surgery. CBCT en-
ables precise treatment using real-time monitoring and adjust-

e-mail: niuty @szbl.ac.cn (Tianye Niu), chenyang.list@seu.edu.cn (Yang ment of patient positioning, minimiZing the impaCt of paﬁent

Chen)

motion during the treatment. This improves treatment effec-
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tiveness and maximizes the safety of surrounding healthy tis-
sues [10, 13]. The scanning duration, typically lasting around
one minute per rotation and covering approximately 10-20 res-
piratory cycles, often leads to significant motion distortions, es-
pecially in the chest and upper abdomen [20]. These distortions
can produce artifacts that may introduce biases within treat-
ment, leading to high radiation exposure to healthy tissues and
a decrease in the intended dose to the targeted tumor site [6].
Hence, there is an urgent need to mitigate motion artifacts in
CBCT imaging.

Four-dimensional (4D) CBCT is an advanced imaging tech-
nique to mitigate motion artifacts [7]. It involves respiratory
motion monitoring, projection acquisition, projection sorting,
reconstruction, and motion artifact correction. By utilizing the
patient’s respiratory profile, multiple groups of projections are
divided into distinct respiratory phases. Reconstructing images
from these groups produces 3D dynamic sequence images [8].
The widespread adoption of 4D CBCT is restricted by the long
scanning time and complex instrument design using existing 4D
CT equipment with respiratory gating devices. Using a single
regular 3D CBCT scan for 4D reconstruction is thus appealing.
Nevertheless, each group of projections exhibits non-uniform
and sparse angular distribution, resulting in insufficient data
condition and compromised accuracy of image reconstruction.

To tackle this challenging problem, numerous 4D CBCT
reconstruction algorithms have been proposed. These meth-
ods can be divided into respiratory-correlated and motion-
compensated methods according to the various use of breathing
signals. Respiratory-correlated methods reconstruct each phase
sequence image using the acquired sparse projections [28]. This
strategy explores the substantial temporal correlation among
various phases by incorporating a spatiotemporal framework.
Specifically, an iterative approach for 4D CBCT reconstruc-
tion is proposed to incorporate the temporal non-local means
(TNLM) regularization term [21]. This method enables the
simultaneous reconstruction of all phase images, yielding im-
proved performance compared with the utilization of total vari-
ation (TV). An extension of spatial TV to the spatial-temporal
domain is also employed for 4D cardiac imaging [19] to sup-
press motion artifacts. Nevertheless, excessive regularization
may result in visual distortions and over-smoothing, degrading
the quality of reconstruction results [5].

Deformable image registration is commonly used for motion-
compensated 4D CBCT reconstruction. This type of method
investigates the correlation among distinct phases by extract-
ing deformation vector fields (DVFs) from CBCT images of
various phases to account for motion artifacts [5]. The artifact
model-based cyclic motion-compensation algorithm (acMoCo)
acquires inaccurate DVF disturbed by multitudinous artifacts
[3]. Simultaneous motion estimation and image reconstruction
method (SMEIR) [23] includes the motion model in the itera-
tive reconstruction process to improve the precision of motion
model estimation and considerably enhance the quality of im-
age reconstruction. Motion-compensated methods usually as-
sume a regular breathing pattern at each respiratory phase [29].
When the amplitude and period of breathing are strongly irreg-
ular, the DVF estimation accuracy may be degraded, resulting

in the decline of reconstruction quality.

Deep learning methods are extensively employed in medi-
cal imaging to optimize and enhance medical images using ei-
ther large datasets or the principles of transfer learning. These
techniques have been combined with traditional methods to en-
hance efficiency and precision [15]. In 4D CBCT reconstruc-
tion, neural networks have shown their ability to learn from ex-
tensive datasets, extracting crucial image features and filling in
missing information from sparsely sampled views. For exam-
ple, U-Net-based interpolation has improved image quality by
filling in missing data in sparse-view sinograms, reducing arti-
facts [18]. Additionally, iCT-net [19] is a novel approach that
seamlessly integrates the reconstruction process within the net-
work architecture, optimizing the entire reconstruction pipeline.
Moreover, researchers have explored incorporating prior im-
ages into CNN-based methods to boost reconstruction perfor-
mance. CycN-Net [32], for instance, introduces an innova-
tive approach that encodes both the degraded and prior im-
ages, leveraging their combined information during the decod-
ing step. This integration of prior knowledge offers new op-
portunities for enhancing the quality and accuracy of medical
image reconstructions, benefiting diagnostic and clinical appli-
cations.

In recent times, there has been a proliferation of methodolo-
gies that amalgamate deep learning with motion compensation
strategies. For instance, the 3D U-net has been employed to en-
hance image quality in conjunction with motion compensation
techniques, as demonstrated in [27]. In our prior research, we
leveraged this approach by utilizing a multi-scale adversarial
network to improve sparse-view reconstruction, as outlined in
[26]. Nonetheless, these deep learning networks exhibit limi-
tations in terms of their generalization capacity and robustness.
Their performance on test datasets may not consistently meet
the requirements for medical treatment. Consequently, the ro-
bustness of the network becomes crucial, particularly given the
discrepancies in data distribution between the training and test
datasets.

In addition to 4D reconstruction algorithms, respiratory pro-
file extraction is also critical for accurate projections phasing.
Phase measurement techniques are employed to acquire res-
piratory profiles and these techniques can be divided into two
types based on the invasion style. Invasive methods involve
the insertion of fiducial markers including metal particles into
the human body to track respiratory movements. Nevertheless,
these methods require medical surgery to place the markers and
may pose additional risks to the patient. Noninvasive meth-
ods generally utilize various instruments or algorithms to moni-
tor respiratory motion, including the diaphragmatic localization
monitoring. The diaphragm position in upper abdominal CBCT
imaging can be obtained directly from the projection images
without additional sensors [4].

In this study, we propose a novel method to generate 4D
CBCT images combining prior knowledge with motion com-
pensation from a single routine scan. The respiratory phase in-
formation is derived directly from the diaphragm position of the
original projections without additional sensors. The proposed
PN-Net is applied to improve the initial phase-sorted image
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quality and the estimation accuracy of DVF due to its enhance-
ment capability. Specifically, we propose a dual encoder struc-
ture network based on a conditional U-Net structure to integrate
prior knowledge. The prior image is reconstructed using all pro-
jections belonging to the respiratory phases. To extract global
information, we add an attention mechanism to the decoder of
the network. The DVFs from enhanced images are applied in
the 4D CBCT reconstruction using a standard ordered-subset
simultaneous algebraic reconstruction (OS-SART). Compared
with previous works, we address the non-equiangular distribu-
tion of projections caused by irregular breathing and achieve
high-quality 4D CBCT images from a conventional 3D CBCT
scan.

2. Methodology

The proposed workflow illustrated in Fig. 1 consists of the
following steps. The CBCT projections acquired from a rou-
tine 3D scan are processed to pinpoint the position of the di-
aphragm and extract the respiratory curve. Initially, the projec-
tions sorted based on the respiratory curve are reconstructed
to generate 4D sparse-view CBCT images, characterized by
pronounced streaking artifacts. A prior network, incorporat-
ing the prior image reconstructed using all the projections, is
trained to enhance the quality of these sparse-view CBCT im-
ages. The network effectively mitigates streaking artifacts and
restores anatomical detail, although some fine structures remain
absent. Deformable image registration is applied to derive the
DVFs among optimized images to compensate for the anatom-
ical detail loss. The motion-compensated iterative reconstruc-
tion utilizes both the DVFs and the measured projection as in-
puts, enabling the reconstruction of high-quality 4D CBCT im-
ages.

2.1. Projection Phasing

The diagram detailing the proposed phase-sorting method is
displayed in Fig. 2. We utilize logarithmic operations and first-
order differentiation to heighten the contrast between the lung
and liver in each projection. These contrast-enhanced projec-
tions are then converted into a gray-scale image and summed
along the lateral detector direction to eradicate the fluctuation of
the diaphragm locations within the projections. Each summed
1D vector is sequentially arranged within a 2D matrix, with the
matrix coordinates corresponding to the rotation angle and the
detector’s spatial position. The respiratory signal is obtained by
aligning each vector within the matrix. A low-pass filter, incor-
porating a five-point window moving average, is implemented
to smooth the motion signal. The final motion curve is derived
by normalizing the filtered respiratory signal.

2.2. Network Inputs Generating

In the preprocessing step, the original projections are de-
noised using the penalty-weighted least-square (PWLS) al-
gorithm and are mapped into the line integration domain
[24]. Processed projections are reconstructed using a standard
Feldkamp-Davis-Kress(FDK) algorithm [8] and is written as
follows:

X, = FDK(Y}), (D

where Y} represents the projection of the k-th phase, X; repre-
sents the sparse-view reconstruction image containing charac-
teristics of the k-th respiratory phase along with significant ar-
tifacts and noise. Yy is divided by the respiratory curve, causing
biases in the quantity and distribution of projections for each
phase due to the patient’s irregular breathing patterns. The vari-
ation in the duration and amplitude of each breath results in a
partial quality gap among the sparse-view reconstruction im-
ages. When employing projections from all phases in FDK re-
construction, the resultant image serves as the integrated prior
image. Despite encompassing information from all phases and
consequently displaying motion artifacts, it maintains distinct
organ structures.

2.3. PN-Net Enhancement

As shown in Fig. 3, we introduced a novel network, named
PN-Net, to address severe streak artifacts and the loss of struc-
tural information induced by sparse-view projection and non-
equiangular distribution. Drawing on the U-net architecture,
the PN-Net adopts an encoder-decoder structure, further aug-
mented with a skip connection. In contrast to CycN-Net [29],
which incorporates prior knowledge in the decoder, PN-Net
opts to fuse prior knowledge within the additional encoder to
fully integrate this information. Both encoders employ four
down-sampling operations to generate feature maps of varying
spatial resolutions, with these feature maps being directly added
to the subsequent block [25]. Our results demonstrate that this
prior feature fusion module contributes to a more effective static
structure.

The network encoders use dense blocks, which consist of
multiple sublayers to extract multilayer features. Compared
to traditional convolutional layers, dense blocks interconnect
the feature maps produced by all previous layers, thus integrat-
ing low-level and high-level information. As demonstrated in
Fig. 3(b), the inputs undergo a 2 X 2 max pooling operation
and sublayers using 2D convolution blocks (BN+ReLU+Conv)
with dense connectivity [11]. This dense block structure simpli-
fies network training and ensures compactness, resolving issues
associated with gradient disappearance and explosion [12].

Due to the localized action of the convolution kernel’s recep-
tive field, features of distinct regions may become correlated
after multiple convolution layers, thereby limiting network ef-
ficiency and performance. To widen the receptive field, we re-
vised the decoder phase to include a self-attention technique
after the residual block. Consequently, up-sampling of features
can leverage global context information to restore spatial struc-
ture [22, 25]. As illustrated in Fig. 4, the non-local block gen-
erates three types of matrices through a convolution operation,
corresponding to the query, key, and value in the self-attention
mechanism. The central concept posits that the response at a
pixel is the summation of feature weights across all other pix-
els. The equation for this block can be expressed as follows:

1
yi = ) ; Sxi, x)g(x)), @)

where x represents the input feature image, i represents the re-
sponse at the current location, j represents the global response,
The function f calculates the correlation among i-th position and
all other positions; The function g can map a point to a vector;
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Fig. 2. Diagram illustrates the proposed method for extracting respiratory
curves. The half-fan projections are modified to increase edge contrast.
The enhanced images are summed in the extension direction and stacked
chronologically. After a filter, the respiratory signal is extracted as the
foundation for projection phasing.
The function c is the normalized function; The block calculates
the correlation based on the position and generates a new fea-
ture map with the same size. In Fig. 4, there is the operation
of the residual connection adding the input to the output as the
result, which can maintain network stability.

The loss function of the network is computed with structure
similarity index measure(SSIM):

(Zﬂx,u)' + Cl)(o'xy +c2)

L=1-SSIM=1- ——— 5 5 ,
(ux +u5 + c)oy + 05 +¢2)

3

where u, and u, represent the mean value in the image x and im-
age y, o, and o, represent the standard deviance between the

image x and image y, and o, represents the covariance. ¢; and
¢, represent constants to avoid system errors caused by a de-
nominator of zero. SSIM is a perception-based computational
model, it can focus on the fuzzy changes of the structural in-
formation in human perception. The value of SSIM close to 1
means the correlation is strong, so we subtract its value from 1
as a loss function. Compared with other loss functions, it en-
ables a more accurate image quality assessment.
2.4. Motion Compensated Iterative Registration

The image optimization achieved using the PN-Net demon-
strates a noteworthy reduction in artifacts and an enhancement
in structural clarity. Nonetheless, owing to inherent limitations
in information availability, certain structural details may be
compromised. In order to recapture these missing details, a de-
formation vector field (DVF) is computed through deformable
registration between each pair of phases. Subsequently, this
DVF is utilized to compensate for motion during both forward
and backward projection in the iterative reconstruction process,
resulting in the recovery of the lost details [1]. Fig. 5 illustrates
the overall flow of this process:

He = Dysepiys “4)
where y, and y; denote images in the t-th phase and k-th phase
respectively, while D;_,, signifies deformation fields registered
from the k-th phase to the t-th phase. Consequently, the trans-
formation among different phase images can be achieved by de-
formation fields, inducing the following formula:

Pr = ADjo b, &)
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where A represents the projection matrix and p; corresponds to
the projected images of the t-th phase. Hence, the projection
image of any phase can be obtained by using the deformation
field. The projection of each respiratory phase serves as an or-
dered subset, and the Ordered-Subset Simultaneous Algebraic
Reconstruction Technique (OS-SART) used to perform these
ordered subsets is computationally efficient.

X = X+ 4V DAL (Wi(pt = AeDisi(11)), (6)

where x! represents the reconsgucted d’ma e of ihe t-th I‘Phase at
the i-th iferation. A, is employed to update the relaxation param-

eters, beginning at 1 and decreasing by 10e-2 at each iteration.

Ve I signifies the diagonal weighted matrix of the forward pro-
jection, while W; denotes the weighting matrix for backward
projection [16].

DVF(k to iy Select Angle fmmmmmmmmmmm e
Image_k —_— Image_i —). " | Virtual Proj_i |
Forward Proj L

Update T l
DVF(i to k)
' C

€
Select Ans'le r
i

Diffe Backward Diffc
" Projection Proj_i

Image_k Image_i

Fig. 5. Detailed workflow of motion-compensated iterative reconstruction
of the image in the k-th phase. The k-th phase image is deformable regis-
tered to the i-th phase image and then subtracts the i-th phase measured
projections. Finally, the k-th phase image is updated with the difference
image. Iterating this process may compensate for missing information.

2.5. Implementation Details

In the network training phase, the PN-Net utilizes Adam al-
gorithms for optimization, with set 5,=0.9, 5,=0.999. The
learning rate is initially set at 10e-4, which is adjusted to one-
tenth of its original value every 20 iterations, finally decreas-
ing to 10e-6. The batch size is established at 2. The training
sequence concludes after 50 iterations, taking approximately
twenty hours. All the processes outlined in this article are run



6 / Computers in Biology and Medicine (2024)

Table 1. Parameters of simulated and clinical data acquisition

Table 2. Description of different methods for comparison

Data Sources Simulated Phantom Hospital Clinical Trial SPARE
SID/SAD 1500/1000 1500/1000 1500/1000
Pixel Size(mm?) 0.5x0.5 0.388x0.388 0.388x0.388
Detector Size 1024x768 1024x768 1008x752
Angle Range 0°-360° 0°-360° 0°-360°
Voxel Size(mm?) 0.75x0.75x2 0.75x0.75x2 IxIx1
Dimension 512x512x120 512x512x120 450x450x220
Projection Number 600 660 680

on a PC with the following specifications: Intel(R) Core(TM)
17-6900K CPU@3.20GHz CPU, NVIDIA GeForce GTX 1080
Ti GPU, and 128GB memory.

3. EXPERIMENTS

3.1. Dataset

In 4D CBCT reconstruction, obtaining high-quality images
for deep learning across all respiratory phases significantly
complicates data acquisition. To overcome this challenge, we
devised a simulation method involving the projection of 4D CT
images from 13 patient cases, each comprising ten volumet-
ric images representing ten breathing phases. By incorporating
the respiratory signal into high-quality 4D CT images, we were
able to simulate corresponding sparse-view images and prior
images. The slice images of ten patients were assembled to
create the training dataset, which consisted of approximately
12,000 CBCT images after data augmentation. The remaining
three patients constituted the testing dataset, comprising around
1,800 CBCT images. Throughout the training process, we per-
formed scaling normalization on all images, wherein pixel-wise
or voxel-wise intensities were normalized to fall within the data
range of [-1, 1]. We assessed the proposed strategy on two types
of clinical patient datasets to verify the method’s reliability. The
first is a set of CBCT projections from patients with liver cancer
who underwent routine CBCT scans and SBRT at our institu-
tion. The second is the public dataset from the SPARE Chal-
lenge (https://image-x.sydney.edu.au/spare-challenge/). Both
of these clinical datasets exhibit substantial differences from
the training set, thereby serving as a rigorous test to evaluate
the robustness of our workflow. The collection parameters of
the dataset are presented in Table 1.

3.2. Evaluation and Comparison

3.2.1. Comparison Methods

The proposed methodology is compared with existing meth-
ods under identical datasets to ensure an accurate performance
assessment. This comparison is bifurcated into two stages:

In the first stage, we conducted a comprehensive comparative
analysis among three distinct reconstruction approaches: Cycn-
Net, MaMO, and the conventional FISTA-TV method, as elab-
orated in Table 2. Cycn-Net, aiming to our proposed approach,
incorporates prior knowledge to enhance image quality. How-
ever, it relies on sparse-view images from adjacent phases as its
prior knowledge source and is exclusively dependent on neu-
ral network optimization, lacking integration with conventional

Method Description

The optimization of CBCT image is achieved through

the implementation of PN-Net enhancement combined with
motion-compensated reconstruction techniques. This
approach leverages prior knowledge to accurately extract
deformation fields, enhancing the precision of the process.

PNMC

The optimization of CBCT image is achieved through the
implementation of MSD-GAN enhancement combined with
motion-compensated reconstruction techniques. MSD-GAN
utilizes multiple discriminators to optimize images to
obtain better deformation fields for motion compensation.

MaMO

The optimization of CBCT image is achieved

through the utilization of an enhanced prior image network.
This approach involves incorporating information from
multiple adjacent phases as prior knowledge into the
network, aimed at enhancing the network’s capabilities

and compensating for motion-related information.

CycN-Net

The optimization of CBCT image is achieved through

a reconstruction approach that involves the phase-sorted
projections being processed using the Fast Iterative
Shrinkage Thresholding Algorithm (FISTA) with Total
Variation (TV) regularization. This method reduces noise
by encouraging small changes in the gradient magnitude
of the image.

FISTA-TV

The optimization of CBCT image is achieved through a
FDK direct reconstruction using phase-sorted projections
and the standard Feldkamp-Davis-Kress (FDK) algorithm.

medical reconstruction algorithms. In contrast, the FISTA-TV
method focuses on reconstructing the original signal by min-
imizing a loss function with sparse prior information. This
method is emblematic of traditional reconstruction algorithms
and is renowned for its capacity to generate high-quality im-
ages from incomplete, noisy, or blurred source images. Mean-
while, MaMO shares similarities with our approach in terms
of neural network utilization and motion compensation tech-
niques but does not integrate prior knowledge, boasting a more
streamlined structural design. Each of these three approaches is
representative in its own right, collectively providing a compre-
hensive evaluation framework that underscores the strengths of
our proposed approach.

In the second stage, we conducted a comparative evaluation
of various networks for sparse image reconstruction to highlight
the superior performance of the modified network architecture.
The networks under consideration encompassed the conven-
tional U-net, the Multi-Scale Generator Adversarial Network
(MSG-GAN), and the Prior-Net. Detailed comparison specifics
are documented in Table 3.

3.2.2. Non-equiangular Projection Comparison

During free breathing, respiratory curve fluctuations are ir-
regular, leading to an uneven distribution of projection num-
bers in each respiratory phase. This variability may result in
substantial discrepancies in sparse-view reconstruction quality,
potentially degrading the 4D CBCT images. Notwithstanding,
numerous methods still divide the projection evenly based on a
uniform angle, a scenario that seldom occurs in treatment pro-
cesses. To ascertain if the proposed method can address this
issue, we compare the results under both ideal and free breath-
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Table 3. Description of different networks for comparison
Network

Description

A network modeled on the U-Net structure includes an
additional encoder to fuse prior images and a self-attention
module is integrated into the decoder. Dense blocks replace
traditional convolution enhancement for feature extraction.

PN-Net

A network, based on the U-net model, includes a prior feature
fusion module. This module stacks prior features with sparse
view image features across channels to fuse the information
effectively.

Prior-Net

A network built on the Generative Adversarial Network (GAN)
model comprises one generator and three discriminators. The
generated image is sent to three discriminators for comparison
at different scales, and the evaluation results from the three are
combined to update the generator.

MSD-GAN

A network with an encoder-decoder structure includes four
up-sampling and down-sampling operations. The generated
feature graph is amalgamated via a skip connection.

U-Net

ing conditions.

3.2.3. Evaluation Metrics

To furnish an accurate assessment of the results, we employ
a range of criteria to gauge the regions of interest (ROI), in-
cluding L1-Error, SSIM, Root Mean Square Error (RMSE),
and Peak Signal-to-Noise Ratio (PSNR). The formulations for
RMSE and PSNR are as follows:

M N
1
RMSE = _— (x,-j - )%,‘j)z, (7)
VN 242
max(x)
PSNR = 201og,, RMSE’ (3)

where M and N represent the size of the image, i and j sym-
bolize the coordinate position, x and X represent real voxel and
predicted voxel. The PSNR indicates the ratio of the peak signal
energy to the average noise energy, and it is inversely propor-
tional to the RMSE.

4. RESULTS
4.1. Simulation Data

As depicted in Fig. 6 and Fig. 7, we evaluate several 4D
CBCT reconstruction methodologies utilizing images recon-
structed from distinct respiratory phases. Transverse displays
are presented in Fig. 6, while coronal views are demonstrated
in Fig. 7. The comparison includes several iterative and deep-
learning-based algorithms, the abbreviations of which are listed
in Table 2. Compared to FDK reconstruction, all methods ex-
hibit substantial enhancements in image quality. The itera-
tive method employing FISTA-TV reconstructs only the general
outline, but it exhibits partially inaccurate boundaries. To alle-
viate the severe streaking artifacts, strong regularization was en-
acted, which resulted in over-smoothing structures. The CycN-
Net algorithm’s results present a superior visualization of the
overall structure, but the boundaries remain blurred due to the
severely unequal angular distribution. The MaMO algorithm
exhibits an acceptable performance with a clear organ struc-
ture. However, it diverges from the ground truth in detail and

Table 4. Images quality metrics using different methods in five
phases(RMSE:HU)

Metric FDK FISTA-TV  Cyc-Net MaMO PNMC
SSIM  0.1178 0.6101 0.6490  0.7928  0.9150
Phase1l PSNR 14.71 23.13 24.72 28.36 35.49
RMSE 349.14 139.53 105.88 76.43 31.90
SSIM  0.0861 0.6114 0.6776  0.8087  0.9148
Phase3 PSNR 1222 2420 25.21 28.58 3542
RMSE 475.06 122.21 102.71 73.90 32.88
SSIM  0.1381 0.6297 0.6811 0.8012  0.8994
Phase5 PSNR 16.11  25.06 25.56 29.11 34.71
RMSE 302.13 11345 90.34 71.06 35.47
SSIM  0.1372  0.6156 0.6790  0.8179  0.9004
Phase7 PSNR 15.06 23.80 24.07 29.09 35.05
RMSE 33832 129.20 88.05 70.20 33.82
SSIM  0.1430 0.6467 0.6798 0.7897  0.8897
Phase9 PSNR 14.06 2445 25.82 28.29 33.78
RMSE 376.50 118.72 89.57 76.26 41.63

retains more streak artifacts owing to the lack of prior image in-
formation. Compared to other methods, the proposed approach
displays notable improvements, showcasing sharp edges, effec-
tively suppressed streak artifacts, and high resolution in the re-
constructed images. As evident from Table 4, the proposed
method outshines the others, achieving the lowest CT RMSE
value and the highest global SSIM/PSNR. Overall, our ap-
proach excels in reconstructing both contours and organiza-
tional structure.

4.2. Clinical Data

The 3D-FDK reconstruction images, derived from full pro-
jections, serve as a reference for comparative analysis. The
FISTA-TV yields a visually blurred image with significant
smoothing, delivering scant useful information. While MaMO
enhances image resolution and diminishes textural structure in
spinal sections, the over-smoothed areas and streak artifacts
obscure bone and organ structures. In contrast, the proposed
method accurately restores distinct margins and intricate tis-
sue details with superior resolution, outperforming reference
images, thereby underscoring its therapeutic potential. As de-
picted in Fig. 9, we compare 1D profiles according to the results
in Fig. 8 (a). Remarkably, the proposed method’s line shape
nearly mirrors that of the reference image.

4.3. Network Comparison

To assess the optimization ability of the PN-Net, we com-
pare it with three types of networks: U-Net, Prior-Net, and
MSD-GAN using the simulated dataset. As seen in Fig. 10,
the U-Net results reveal the most considerable deviation from
reality, displaying a distorted overall form and a disorganized
internal structure. The MSD-GAN, employing three discrimi-
nators to discern feature information, performs marginally bet-
ter than the U-Net, exhibiting more uniform voxel values and a
roughly complete shape.

When paired with prior knowledge, the Prior-Net demon-
strates a significant improvement in result quality, yielding en-
hanced outcomes with clear boundaries and balanced light-dark
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Phase 5

FISTA-TV

CycN-Net

Fig. 6. Test results of the simulated dataset in the transverse view. Sequentially, PNMC, MaMO, FISTA-TYV, CycN-Net and FDK algorithms are compared
to reconstruct images in five phases. The fluctuation of breathing is mainly reflected on the left side of the reconstructed image. Regions of interest like
liver, artery, and muscle regions are indicated by red dashed boxes. The display window is [-200,300] HU for all.

Phase 1

Ground Truth lm!
\ ]
\ 4 o

Phase 4 Phase 7

CycN-Net

Fig. 7. Test results for the simulated dataset in the coronal view, Sequen-
tially, PNMC, MaMO, CycN-Net FISTA-TV and FDK algorithms are com-
pared to reconstruct images in three phases. The display window is [-
200,300] HU for all.

variations. Furthermore, the PN-Net, with its more complex
downsampling path and the integration of an attention mecha-
nism module, offers substantial advantages over other networks
in terms of detail and precision in image recovery, particularly
in liver, arteries, and muscle areas. As illustrated in Table 5, we
calculate SSIM, PSNR, and RMSE for the network-optimized
images’ areas of interest presented in Fig. 10. The proposed
method exhibits the highest SSIM/PSNR and the lowest RMSE
among the three regions.

Table 5. IMAGE QUALITY METRICS USING DIFFERENT
NETWORKS IN THE FIVE PHASES(RMSE:HU)

Metric  U-Net MSD-GAN Prior-Net PN-Net
SSIM  0.4351 0.4494 0.8025 0.8237
ROI1 PSNR 26.70 27.72 30.67 35.97
RMSE 165.040 151.37 62.72 50.66
SSIM  0.4299 0.5216 0.8419 0.8737
ROI2 PSNR 19.16 20.44 30.86 31.13
RMSE 183.99 163.96 44.17 39.56
SSIM  0.4055 0.5076 0.8812 0.9063
ROI3 PSNR 16.67 18.59 30.99 32.41
RMSE 315.49 188.05 32.96 32.46

4.4. SPARE Challenge

The SPARE challenge datasets comprise both simulated and
clinical datasets, with the Varian clinical dataset selected for
testing. Importantly, we refrain from retraining the network us-
ing the challenge dataset, ensuring the training and testing data
of the network exhibit different distributions. Consequently,
we can test the network’s generalization. Fig. 11 depicts the
results. After PN-Net enhancement, artifacts disappear, and
organ contours are restored, with missing structures compen-
sated post-motion compensation. From three different slices,
the proposed method’s results reveal clear edges and precise
tissue details. Compared to our method, FISTA-TV continues
to produce over-smoothed regions, while MaMO reduces im-
age resolution and slightly blurs edges. Notably, all methods
successfully reconstruct tumor motion in this dataset, with the
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Fig. 8. Reconstruction results using different methods in the selected phases
of patient studies: (a) coronal view, (b) sagittal view. Comparison details
focused on bones and marginal tissue are shown in the red box. The yel-
low lines drawn at one-third of the ordinate are used to compare in the
following sections. The window is shown as [-350,600] HU for all.

proposed method significantly improving the clarity of the tu-
mor contour.

4.5. Non-equiangular Comparison

We reconstructed images using different projection distribu-
tions and selected the region greatly affected by respiration for
comparison. The projection numbers for the non-equiangular
and equiangular distributions are 52 and 66, respectively, out of
a total of 660 projections. As shown in the Fig. 12, the sparse-
view reconstruction images from the non-equiangular test ex-
hibit more cluttered artifacts with noticeable white stripes. The
PN-Net significantly reduces the gap, with image (al) missing
only partial details due to the occlusion of the white artifact
compared to image (a2). Following motion-compensated itera-
tive reconstruction, the discrepancy between the two results de-
creases further, with both achieving high quality. These results
demonstrate that our proposed method can effectively mitigate
the effects of irregular breathing.

Comparision in Phase 1
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Fig. 9. The 1-D profiles of the CBCT images using different methods along
the yellow line in Fig. 8. Part of the center areas are enlarged for a clearer
comparison. It shows all curves are similar in general trend but quite dif-
ferent in the details. The 3D-FDK image curve is used as a reference, and
the results that differ too much from it are regarded as inaccurate.

5. DISCUSSION

In this study, we enhance 4D CBCT reconstruction, widely
used to minimize blurring from respiratory motion, by integrat-
ing deep learning models, prior knowledge, and motion com-
pensation within a single routine CBCT scan. Unlike traditional
methods that rely on previous reconstructions, our approach
derives prior knowledge from all projections in a single scan,
providing essential structural information for the network’s re-
covery process. We introduce PN-Net, designed to fuse multi-
level features in the encoder, using network-optimized images
to obtain accurate deformation fields for motion-compensated
iterative reconstruction. This method not only promises high-
quality 4D CBCT image reconstruction, as demonstrated by
evaluations with simulated and clinical datasets but also en-
hances image quality in medical applications. It relies solely
on a single 3D CBCT scan, reducing the need for additional in-
strumentation and patient radiation exposure. Our simulations
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Slice 1 Slice 2 Slice 3

Prior-Net

MSD-GAN

Fig. 10. The network-optimized images from sparse-view reconstruction
using different networks. From top to bottom are the results enhanced by
PN-Net, Prior-Net, MSD-GAN and U-Net. Regions of interest like liver,
artery, and muscle regions are indicated by red dashed boxes. The display
window is [-200,300] HU for all.

show stable reconstruction results under free-breathing condi-
tions, despite uneven projection distributions, highlighting the
method’s robustness. This approach is set to improve diagnos-
tic and treatment methods, raising the standard of patient care.
However, further research and comprehensive clinical valida-
tion are necessary to fully assess its implications and practical
applications.

Deep learning has markedly advanced medical imaging due
to its robust non-linear capability. The network can decipher
complex and intricate patterns, producing superior-quality re-
sults compared to traditional methods. However, disparities in
distributions between training and test data can result in sig-
nificant degradation of network results. This issue is particu-
larly prominent in 4D CBCT reconstruction, where simulated
data used for network training greatly differs from clinical data.
Consequently, it’s critical to maintain the network’s robustness
to data with varying distributions. As demonstrated in our ex-
perimental results, integrating prior knowledge effectively miti-
gates this issue. We directly applied the proposed method to the
SPARE dataset, yielding exceptionally promising results.

In the proposed method, a certain level of robustness is ob-
served regarding distribution disparities between the training
and test datasets. Nonetheless, when the test dataset markedly
deviates from the training dataset, the outcomes become unpre-
dictable and challenging to manage. Furthermore, the chosen
registration method imposes constraints on the registration of
high-resolution images due to the substantial resource and time
demands it entails. Based on this observation, there is poten-
tial for further refinement in this workflow. In future research,
we aspire to further enhance the proposed method’s generaliza-

Slice 1 Slice 2 Slice 3

Gated-FDK

FISTA-TV

Fig. 11. Reconstruction results on SPARE challenge dataset using different
methods. We compare the results of PN-Net, PMNC, MaMO, and FISTA-
TV in three slices. All of the methods have significantly restored the image
quality, but the other methods have lost additional details compared with
the proposed method. The display window is [-200,300] HU for all.

Difference |

Fig. 12. Test results on the projection of equiangular and non-equiangular
distribution. images (a2)-(d2) show the difference between the true value
and images (al)-(d1). The color change at the bottom is used to measure
the difference, and approaching black or white indicates a large difference.
The organs affected by respiratory movements in the figure have significant
differences.

tion and efficiency. Unsupervised learning may be a promising
approach, with techniques such as patch-based multi-layer un-
supervised learning previously employed to enhance the spatial
resolution and microstructure of pulmonary arteries [2]. An-
other strategy involves the use of transfer learning. We could
refine models trained on large-scale datasets to reduce training
costs and boost generalization performance [15]. Furthermore,
the fusion of the metaverse and medical diagnostics represents
a highly promising direction for future development[14]. It of-
fers the opportunity to explore the integration of digital twin
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technologies[17, 18], harnessing the full potential of modeling
for simulating 4D CBCT reconstructions.

The motion-compensated method represents another facet
ripe for optimization. Improving the registration method’s per-
formance is crucial since the accuracy of DVF directly im-
pacts the reconstruction quality. We could consider using deep
learning-based deformable registration techniques [9]. If the
motion-compensated reconstruction process can concurrently
estimate motion and provide high-quality reconstruction, it will
undoubtedly yield superior results. We could refine the DVFs
by utilizing the image with motion compensation during both
the forward and backward projection processes. This could en-
hance the image quality of 4D CBCT and the precision of mo-
tion estimation.

6. CONCLUSION

We propose an efficient method for reconstructing 4D CBCT
images from a single routine scan to tackle current challenges in
clinical applications. The method comprises three stages. First,
the respiratory curve derived from the original projection seg-
ments the projections into ten respiratory phases. Next, PN-Net
is employed to enhance the sparse-view reconstruction image.
Owing to its ability to fully extract the structural information
from the prior image, PN-Net surpasses other networks in edge
and organ recovery capabilities. Finally, iterative reconstruction
is used to compensate for motion information in each phase,
enhancing the reconstruction’s accuracy. The proposed method
exhibits superior performance on both simulated and clinical
data, significantly improving image quality without altering the
scanning setup or duration.
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We propose an efficient method for reconstructing 4D CBCT images from a single routine scan to
tackle current challenges in clinical applications. The method comprises three stages. First, the
respiratory curve derived from the original projection segments the projections into ten respiratory
phases. Next, PN-Net is employed to enhance the sparse-view reconstruction image. Owing to its
ability to fully extract the structural information from the prior image, PN-Net surpasses other
networks in edge and organ recovery capabilities. Finally, iterative reconstruction is used to

compensate for motion information in each phase, enhancing the reconstruction's accuracy.
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