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Abstract: In recent years, a large number of heuristics have been proposed for the 

minimization of the total or mean flowtime/completion time of the well-known permutation 

flowshop scheduling problem. Although some literature reviews and comparisons have been 

made, they do not include the latest available heuristics and results are hard to compare as no 

common benchmarks and computing platforms have been employed. Furthermore, existing 

partial comparisons lack the application of powerful statistical tools. The result is that it is not 

clear which heuristics, especially among the recent ones, are the best. This paper presents a 

comprehensive review and computational evaluation as well as a statistical assessment of 22 

existing heuristics. From the knowledge obtained after such a detailed comparison, five new 

heuristics are presented. Careful designs of experiments and analyses of variance (ANOVA) 

techniques are applied to guarantee sound conclusions. The comparison results identify the 

best existing methods and show that the five newly presented heuristics are competitive or 

better than the best performing ones in the literature for the permutation flowshop problem 

with the total completion time criterion. 

Keywords: Scheduling; Flowshop; Flowtime; Heuristics. 

 

1. Introduction 

A flowshop is a common layout in production shops where m  continuously available 

machines are disposed in series. Each machine is a production stage and products must visit 
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all machines in order. Scheduling in a flowshop entails the production of n  known jobs from 

a set },...,2,1{ nJ = . All the n  jobs follow the same order of visitation to the machines. 

This order is, without loss of generality, machine 1, machine 2 and so un until machine m . 

Each job requires a given known, deterministic and non-negative processing time at each 

machine, denoted as jip , , Jj ∈ , mi ,...,2,1= . The flowshop scheduling problem or FSP 

in short is a theoretical version of reality and several simplifying assumptions apply: All jobs 

are independent and available for processing at time 0; machines are continuously available; 

each job is either waiting for processing or being processed by a machine at any given time; 

machines can only process one job at a time, etc. A complete list of these assumptions is 

detailed, for example, in Baker (1974). A solution for the FSP is a production sequence or 

schedule for all jobs which aims at optimizing a given criterion. Most optimization criteria in 

scheduling are based on the completion times of the jobs or jC . The time at which a given 

job finishes processing at a given machine is denoted as jiC ,  and therefore, jjm CC =, . The 

most common and widely studied optimization criterion in the flowshop problem is the 

makespan or maxC  minimization. Minimizing makespan is important in situations where a 

batch of jobs is received and it is required to be completed as soon as possible. For example, a 

multi-item order submitted by a single customer which needs to be delivered at the earliest 

possible time. The makespan criterion also increases the utilization of machines. The paper of 

Johnson (1954) is recognized as the pioneering work for the FSP where the specific cases of 

two and three machines were studied with the objective of makespan minimization. Since 

then, the FSP has attracted considerable attention from researchers and hundreds of papers 

have been published in scheduling and related journals. The vast majority of research on 

flowshop scheduling deals with makespan minimization and several survey papers have been 

published like those of Framinan et al. (2004), Ruiz and Maroto (2005), Hejazi and Saghafian 

(2005) and Gupta and Stafford (2006). 

As of late, there has been an increasing interest in other objective functions. Sometimes 

each job is needed as soon as it is completed. Similarly, the need to reduce Work In Process 

(WIP) or in-process inventory has fostered the study of the total flowtime, also referred to as 
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total completion time. When all jobs are available for processing at time 0 (i.e., no release 

times) the flowtime of a job is equal to its completion time and hence, the total flowtime is 

equal to ∑
=

n

j
jC

1

. Flowtime minimization leads to a more stable utilization of machines. The 

FSP with a total flowtime minimization objective was initially classified as ∑ jCFmn ///  

following the four parameter notation A/B/C/D of Conway et al. (1967). Later, it has been 

denoted as ∑ jCF //  using the three field notation α/β/γ  of Graham et al. (1979). In the 

most general setting, the FSP has a search space of ��!�� sequences. However, the majority 

of the published research deals with a more restricted version, the so called permutation 

flowshop scheduling problem of PFSP in which job passing is not allowed and all machines 

follow the same sequence of jobs. In this case, the search space reduces to �! sequences. The 

PFSP is classified as ∑ jCPmn ///  or ∑ jCprmuF //  according to Pinedo (2008). We 

will refer to this last problem with flowtime objective as PFSP-TFT in short. The PFSP-TFT 

was demonstrated to be NP-Hard in the strong sense for two or more machines by Gonzalez 

and Sahni (1978). 

Initial efforts focused on the development of exact implicit enumeration techniques and 

on approximate approaches to obtain good (but not necessarily optimal) solutions. These 

solution techniques can be broadly classified into two groups referred to as heuristics and 

metaheuristics, respectively. Some initial heuristics for the PFSP were introduced by 

Campbell et al. (1970), Gupta (1972) and Miyazaki et al. (1978), to name just a few. 

Metaheuristics include many different approaches, like genetic algorithms (Tang and Liu 

(2002)), simulated annealing (Varadharajan and Rajendran (2005)), differential evolution (Pan 

et al. (2008)) and many others. A metaheuristic method usually obtains better solutions than 

heuristic algorithms but normally at the cost of significantly added CPU time. Heuristics 

typically need no more than a few seconds whereas metaheuristics might take several minutes. 

This is problematic, especially if there are real time requirements or large scale problems (Li 

et al. (2009)). Furthermore, effective and efficient heuristics are still needed in metaheuristic 

methods for the initial seed sequence. As a result, heuristics are still essential in the 

scheduling community. 
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This paper focuses on heuristics for the PFSP-TFT. The flowshop literature already 

contains some reviews such as Framinan et al. (2005). However, there is room for 

improvement: Comparisons have been performed among no more than a few heuristics; the 

latest heuristics have not been compared; no common data sets have been used and available 

results cannot be easily generalized or are not even reproducible; existing comparisons have 

not carried out comprehensive statistical testing. For all these reasons, we provide an up to 

date comprehensive review and evaluation of the existing heuristics. From the knowledge 

obtained after such evaluation we also present five heuristics for the problem under 

consideration. In total we compare 27 heuristics, which are put through comprehensive 

computational and statistical testing. The benchmark of choice is given by Taillard (1993). 

Our results attest to the fact that the five presented heuristics outperform all heuristics 

proposed up to date. 

The rest of the paper is organized as follows: In Section 2, the most well-known 

heuristics for the PFSP-TFT are reviewed. Section 3 presents the five new heuristics in detail. 

A comprehensive comparison of the various heuristics is given in Section 4. Finally, we 

conclude the paper in Section 5. 

 

2. Heuristics for the flowshop scheduling problem 

Framinan et al. (2005) divided the existing heuristics into two groups: simple and 

composite methods. A heuristic commonly consists of one or more of three typical phases, 

namely index development, solution construction, and solution improvement. According to 

Framinan et al. (2005), the method is regarded as composite if it employs a simple heuristic 

for one or more of the three above-mentioned phases (Framinan et al. (2005)). Conversely, it 

is regarded as a simple method if no phase contains a heuristic. This distinction is sometimes 

not easy to apply for some methods but it represents a simple framework. Our literature 

review is therefore divided between simple and composite heuristics. 

 

2.1 Simple heuristics 

The CDS heuristic introduced by Campbell et al. (1970) is a simple heuristic for the 
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PFSP. It is basically an extension of the algorithm of Johnson (1954). The CDS creates 

� − 1 problems with of two “virtual” machines, each of them containing some of the 

original � machines. Johnson’s algorithm is then applied to the �− 1 problems with two 

virtual machines and � − 1 sequences are obtained. The schedule with the minimum 

flowtime is selected. The CDS heuristic has a computational complexity of 

( )nmnnmO log2 +  and researchers have typically used CDS as benchmark for comparisons. 

Gupta (1972) introduced three simple heuristics, named minimum idle time (MINIT), 

minimum completion time (MICOT) and MINIMAX algorithms, and compared the results 

against the CDS heuristic providing better results with less computational time. However, it 

has to be noted that the maximum instance size tested at that time was really small with just 7 

jobs and 20 machines maximum (7×20). Krone and Steiglitz (1974) presented an early 

heuristic in which in the first phase, permutation sequences were improved by insertion 

movements. In the second phase, job passing was allowed. Miyazaki et al. (1978) also 

presented a heuristic but in this case based on the improvement of the sequence by the 

interchange of adjacent jobs. Later, Miyazaki and Nishiyama (1980) provided a similar 

extension but for the additional consideration of job weights. Ho and Chang (1991) proposed 

a heuristic that works by minimizing the idle times between jobs in the m machine case. The 

heuristic was evaluated against other existing methods but mainly those proposed for 

makespan minimization. Rajendran and Chaudhuri (1992) introduced three simple heuristics 

and compared them with those of Gupta (1972), Miyazaki et al. (1978) and the 

aforementioned heuristic of Ho and Chang (1991). The results favored the introduced 

methods for the studied instances. In a related work, Rajendran and Chaudhuri (1991), the 

same authors presented another heuristic that uses a lower bound in the construction phase of 

the sequence. The proposed heuristic is applied also to the no-wait problem. No comparisons 

against the three heuristics of Rajendran and Chaudhuri (1992) are shown. 

The NEH heuristic of Nawaz et al. (1983) is regarded as the best heuristic for the PFSP 

with makespan criterion (Taillard (1990), Ruiz and Maroto (2005)). It is based on the idea that 

jobs with larger total processing times should be scheduled as early as possible. Consequently, 

the heuristic first generates an initial order of jobs with respect to descending sums of their 
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total processing times. Then a job sequence is constructed by evaluating all the sequences 

obtained by inserting a job from this initial order into all the possible positions of the current 

partial sequence. The NEH heuristic evaluates [ ]12/)1( −+nn  sequences and has a 

complexity of ( )mnO 3  for the TFT criterion. Due to its effectiveness, the NEH heuristic has 

been inspiring research on the total completion time criterion since its publication. Rajendran 

(1993) proposed an insertion heuristic, denoted as Raj, having many similarities with the 

NEH heuristic. The heuristic arranges the jobs according to the weighted total processing 

times and inserts a job into a restricted subset of all possible positions of the current partial 

sequence. According to the author’s results, the proposed heuristic is more efficient than the 

methods of Gupta (1972), Miyazaki et al. (1978) and Ho and Chang (1991). Another heuristic 

was proposed by Woo and Yim (1998) (denoted as WY in short). Unlike the Raj heuristic, 

WY does not require an initial starting job sequence. However, it also has an insertion phase 

where a schedule is constructed by inserting all non-scheduled jobs in all possible positions of 

the partial sequence. This heuristic is also based on the aforementioned NEH heuristic but has 

a higher complexity of ( )mnO 4 . The authors concluded that their algorithm outperforms the 

adaptation for flowtime minimization of the NEH, CDS and Raj heuristics. 

Framinan et al. (2002) investigated the phases of the NEH heuristic and their 

contribution to its excellent performance regarding makespan minimization. They proposed to 

modify the NEH heuristic in order to accomplish total flowtime criterion, and proved that the 

NEH heuristic starting with an initial sequence of jobs sorted by an increasing (instead of 

decreasing) sum of processing times performs better than the adaptation of the original NEH 

heuristic. It almost equals the WY heuristic in terms of the quality of the solutions but with 

smaller computational times. Later, Framinan et al. (2003) further delved into the NEH 

initialization and studied 177 different initial orders for the NEH, including some specially 

geared towards TFT minimization. Among the proposed methods, a heuristic called B5FT, 

consisting of the best of five-tuples among the 177 approaches, is shown to outperform the 

RZ heuristic of Rajendran and Ziegler (1997) (to be discussed later) and the WY method 

which were regarded as the best constructive heuristics for the problem prior to the year 2000 

according to Framinan et al. (2005). Framinan and Leisten (2003) presented another 
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NEH-based heuristic, referred to as FL, with the same complexity as the WY method. After 

the insertion process in the basic NEH heuristic, the obtained partial sequence is improved by 

performing a pairwise interchange improvement procedure. If a better result is obtained, the 

new partial solution is retained as the current partial sequence. Computational results 

indicated that this approach outperformed RZ and WY heuristics. More recently, Laha and 

Sarin (2009) have presented a modification of the FL heuristic, denoted as FL-LS. It 

implements the iteration of the insertion step of the NEH heuristic by performing job 

insertions rather than the pairwise interchanges. The authors proved by numerical experiments 

that the modification significantly improves the performance of the FL heuristic while not 

affecting its computational complexity. 

Ho (1995) presented a sorting-based heuristic that includes an iterated improvement 

scheme based on job insertions and pairwise interchanges. The author compared the method 

with the heuristics of Rajendran and Chaudhuri (1992) and Raj of Rajendran (1993). In this 

case, larger instances of up to 50×20 were tested and the proposed heuristic was shown to be 

superior. However, this heuristic seems closer to local search techniques such as simulated 

annealing or tabu search rather than to constructive heuristics as its computational effort does 

not make it suitable for large problem sizes and/or in those environments where sequencing 

decisions are required in a short time (Framinan et al. (2005)). 

Other heuristics assign a weight or index to every job and then arrange the sequence by 

sorting the jobs according to the assigned index. This idea was exploited by Wang et al. 

(1997). The authors presented two heuristic approaches by choosing jobs according to a given 

weight or index function and appending them to a current partial sequence. The first one, 

named less idle time rule (LIT), focuses on reducing machine idle times, while the second one, 

named smallest process distance rule (SPD), focuses on reducing both machine idle times and 

job waiting times. The second approach also consists of two heuristics; one is based on the 

Euclidean distance measure, while the other is based on the linear distance. The authors did 

not compare their heuristics with previous ones. Instead, they compared them against the 

lower bound provided by Ahmadi and Bagchi (1990). The heuristics proposed by Wang et al. 

(1997) have a computational complexity of ( )mnO 2 . The already mentioned RZ heuristic of 
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Rajendran and Ziegler (1997) consists of two phases. The first phase involves the generation 

of a seed sequence according to a priority rule similar to the shortest weighted processing 

time, whereas the second phase improves the solution by carrying out a local search based on 

the sequential insertion of each job in the seed sequence at each possible different position of 

the incumbent partial sequence. The RZ heuristic has a complexity of ( )mnO 3 . Comparisons 

between the RZ and WY heuristics have been performed by several researchers (Framinan et 

al. (2003), Li and Wu (2005)). It was found that the RZ heuristic performs better than the WY 

heuristic for small-sized problem instances but the relative performance of the WY heuristic 

improves with increasing number of jobs and finally it surpasses the RZ heuristic. In addition, 

the effectiveness of the improvement scheme of the RZ heuristic was also demonstrated by 

Rajendran and Ziegler (1997), and it has been used as an improvement procedure in several 

composite heuristics (Framinan et al. (2005), Li et al. (2009) and Allahverdi and Aldowaisan 

(2002)). Li and Wu (2005) have developed an improved RZ heuristic, denoted RZ-LW, where 

the authors generate an initial sequence by sorting the jobs in ascending order of the sum of 

processing times, and then perform the RZ local search to the solution until no improvement 

is found. The performance of RZ-LW is shown to be comparable to that of the Framinan and 

Leisten (2003) but needs far less computational time. 

Liu and Reeves (2001) proposed a constructive heuristic, referred to as LR that initially 

sorts jobs according to some indexes that consider both the machine idle times and the effects 

on the completion times of later jobs. The LR heuristic does not fix the number of sequences 

to be generated and it is therefore flexible in its computational effort. It can be adjusted 

according to the requirements of the problem. The benchmark of Taillard (1993) has been 

used to compare the proposed heuristic against the previous ones including Wang et al. (1997), 

Ho (1995), Rajendran and Ziegler (1997) and Woo and Yim (1998). The computational results 

demonstrated that the LR heuristic is the best performer, especially in large sized problems. 

 

2.2 composite heuristics 

Liu and Reeves (2001) proposed an improvement scheme based on job pairwise 

exchanges. Starting from an initial sequence, the procedure tries to exchange every job with a 
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certain number of jobs following it in the sequence. If the best sequence obtained by these 

exchanges is better than the current sequence, it is replaced. After all the jobs are tested, the 

procedure starts over again from the first job in the sequence. The above procedure is repeated 

until no improvement can be found for a round of trials (i.e., a form of local search up to local 

optimality). This procedure is known as the forward pairwise exchange (FPE). The reversed 

version which checks the exchanges of jobs from right to left in the sequence is called 

backward pairwise exchange (BPE). The authors studied the effectiveness of different 

combinations of their heuristics with local search, referred to as LR(x)-FPE and LR(x)-BPE, 

respectively. The result is that composite methods are more effective than the simple ones at 

the expense of additional computation time. 

Allahverdi and Aldowaisan (2002) proposed a total of seven composite heuristics by 

combining the NEH, WY and RZ methods with local search procedures including FPE with 

restart (FPE-R in short) and the local search of the RZ heuristic. The authors compared their 

methods (named IH1~IH7) against many of the earlier heuristics like those of Ho (1995), 

Wang et al. (1997), Rajendran and Ziegler (1997) and Woo and Yim (1998). The experimental 

results indicated that the performance of the heuristic by Ho (1995) is good but 

computationally demanding. They also reported that the heuristics by Wang et al. (1997) do 

not perform well when compared with the others except the CDS method. The proposed 

heuristics outperform all others in terms of solution quality, and IH7 is the best performer. 

Framinan and Leisten (2003) proposed an improvement to the IH7 heuristic, called IH7-FL, 

by employing the FL heuristic as an initial solution instead of the WY heuristic as in the 

original IH7. Later, Framinan et al. (2005) presented a comprehensive comparison of recent 

heuristics for the problem. A total of eight heuristics were compared and a number of 

composite methods were also presented. One of these new composite heuristics, named 

C2-FL, is observed to produce better solutions than those of the best method from the earlier 

study (Framinan and Leisten (2003)). 

More recently, Li et al. (2009) presented three composite heuristics, denoted as IC1, IC2, 

and IC3, respectively, by integrating FPE, FPE-R and RZ local search with an effective 

iterative method where the procedure is repeated until no better solution is found or a given 

stopping criterion is reached. Computational results show that the three proposed algorithms 
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outperform the existing best composite ones including the C1-FL and C2-FL of Framinan et al. 

(2005) and IH7-FL of Framinan and Leisten (2003). Among the presented heuristics, IC3 

performs best in terms of solution quality but needs much more CPU time than both IC1 and 

IC2. In a related work (Li and Wang (2006)), the authors presented two composite heuristics, 

named ECH1 and ECH2, which were similar to the heuristics IC1, IC2 and IC3. 

A summary of the different heuristics reviewed in chronological order is reported in 

Table 1. 
 

Table 1. Summary of heuristics for flowshop scheduling with total flowtime criterion. 
Year Authors Acronym Heuristic type Comments 
1970 Campbell et al.  CDS Simple Based on Johnson’s rule 
1972 Gupta  MINIT Simple Based on job pair exchange 

  MICOT  Based on job pair exchange 
  MINIMAX  Based on Johnson’s rule 

1974 Krone and Steiglitz   Simple Based on insertion improvement and 
job passing 

1978 Miyazaki et al.   Simple Based on interchange of adjacent jobs 
1980 Miyazaki and Nishiyama   Simple Based on interchange of adjacent jobs 

and job weights 
1991 Ho and Chang   Simple Minimizing the idle time between jobs 
1991 Rajendran and Chaudhuri   Simple Based on lower bound 
1992 Rajendran and Chaudhuri   Simple Considering a job’s impact to its 

immediate successor 
1993 Rajendran  Raj Simple Based on NEH 
1995 Ho   Simple Based on sorting 
1997 Wang et al.  LIT Simple Assigning a weight to every job 

  SPD1 Simple Assigning a weight to every job 
  SPD2 Simple Assigning a weight to every job 

1997 Rajendran and Ziegler  RZ Simple Assigning a weight to every job and 
performing RZ local search 

1998 Woo and Yim  WY Simple Based on NEH 
2001 Liu and Reeves  LR(x) Simple Assigning a weight to every job 

  LR(x)-FBE Composite Based on LR(x) and FPE 
  LR(x)-BPE composite Based on LR(x) and BPE 

2002 Framinan et al.  NEH-flowtime Simple Based on NEH 
2002 Allahverdi and Aldowaisan IH1 Composite Base on NEH and FPE-R 

  IH2 Composite Based on NEH 
  IH3 Composite Consisting of IH2 and FPE-R 
  IH4 Composite Consisting of WY and FPE-R 
  IH5 Composite Consisting of RZ and FPE-R 
  IH6 Composite Consisting of WY and RZ local search 
  IH7 Composite Consisting of IH6 and FPE-R 

2003 Framinan et al.  B5FT Simple Based on NEH 
2003 Framinan and Leisten  FL Simple Based on NEH and interchange 

  IH7-FL Composite consisting of FL, RZ and FPE-R 
2005 Framinan et al.  C1-FL Composite Based on LR and FL 

  C2-FL Composite Based on C1, RZ and FIE-R. 
2005 Li and Wu  RZ-LW Simple Based on iterated RZ local search 
2006 Li and Wang ECH1 Composite Similar to IC3 

  ECH2 Composite Similar to IC2 
2009 Li et al IC1 Composite Consisting of LR and iterated RZ local 

search. 
  IC2 Composite Consisting of LR, iterated RZ and FPE. 
  IC3 Composite Consisting of LR, iterated RZ and 

FPE-R 
2009 Laha and Sarin  FL-LS Simple Based on NEH and Insertion 

 



 11 

3. Proposed heuristics 

The previous evaluation has prompted us to test some new composite heuristics. We 

present five new high performing methods. The first one is a simple procedure which 

combines the LR heuristic of Liu and Reeves (2001) and the NEH algorithm. The others are 

composite heuristics based on this first one and local search methods. More specifically, the 

RZ local search of Rajendran and Ziegler (1997) and a Variable Neighborhood Search scheme 

(VNS)  based on the work of Mladenovic and Hansen (1997). 

 

3.1 The presented LR-NEH(x) heuristic 

3.1.1 The LR(x) heuristic in detail 

The LR(x) heuristic developed by Liu and Reeves (2001) constructs x different 

sequences by appending jobs one by one using an index function. The sequence with the 

minimum flowtime is selected as the final solution. The index function consists of two terms: 

The weighted total machine idle time and the artificial total flowtime. Let π  be a partial 

sequence formed by k  already scheduled jobs, and U  be the set of unscheduled jobs, i.e., 

those not yet in π . A job Uj ∈  is selected and appended to π  according to an index 

function kj ,ξ . The weighted total machine idle time between the processing of the job 

occupying the kth position of the sequence and job j  is computed as follows: 

{ }
( ) ( )∑

=

−

−−+
−⋅

=
m

i

kiji
kj nimki

CCm
IT

2

][,,1
, 2

max
           (1) 

where ][, kiC  is the completion time of the job in the thk  position of π  at machine i . 

The other jobs in U  are considered as a single artificial job λ . Its processing time is 

the average of the processing times of these jobs. Job λ  is appended to job j  and its 

completion time λ,iC  is calculated. Then the total flowtime of jobs j  and λ , kjAT , , is 

given below:  

λ,,, mjmkj CCAT +=               (2) 
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And the index function kj,ξ  is finally defined as follows: 

( ) kjkjkj ATITkn ,,, 2 +−−=ξ             (3) 

The index function kj,ξ  is calculated for all jobs in U . The job with the minimum 

value of this index function is selected, and ties are broken by selecting the one with the 

minimum weighted total machine idle time kjIT , . 

Finally, the procedure of LR(x) is outlined in Figure 1. 
 

Procedure LR(x) 

Generate a job sequence },...,,{ 21 nαααα =  by ascending 0,jξ  value (break ties 

according to ascending 0,jIT  value). 

for 1:=l  to x  do %(generate x  sequences) 

},{: l
l απ =  }{: lJU α−= . 

for 2:=k  to n  do %(construct a complete sequence) 

Take the job j  with minimum kj,ξ  value (break ties according to minimum kjIT ,  

value) from U  and place it at the end of lπ . Remove job j  from U . 

endfor 

endfor 

return the sequence },...,,{ 21 xππππ ∈  with the minimum total flowtime. 

Figure 1. The LR(x) heuristic. 
 

)(xLR  does not fix the number of sequences to be generated, and it can be adjusted to 

the requirements of the problem. 

 

3.1.2 The NEH heuristic 

The NEH heuristic of Nawaz et al. (1983) was originally designed for the FPSP with the 

objective of minimizing the makespan. The first step consists of ordering jobs according to 

descending total processing times. The job with the maximum total processing time is placed 

first. All other jobs are inserted in all possible positions of the incumbent sequence and finally 

placed in the position with the lowest partial objective value. The procedure of NEH is 

described in Figure 2. 
 

Procedure NEH 
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Generate a job sequence },...,,{ 21 nββββ =  by descending order of total processing times. 

}{: 1βπ =  

for 2:=k  to n  do %(construct a complete sequence) 

Take job kβ from β  and insert it in all the k  possible positions of π . 

Place job kβ  in π  at the tested position resulting in the lowest objective value. 

endfor 

return π  

Figure 2. The NEH heuristic. 
 

Framinan et al. (2002) adapted the NEH heuristic for total flowtime criterion, and found 

that ranking jobs according to their ascending total processing times performs much better 

than descending total processing times. As a result, we also employ this improved version. As 

we can see, the main loop of the NEH can be regarded as an insertion local search around the 

seed sequence β . We denote this local search as )(βNEH  for our other composite 

heuristics. 

 

3.1.3 The proposed LR-NEH(x) heuristic 

The first presented heuristic is denoted as LR-NEH(x). It uses LR(x) and NEH to 

generate sequences. More specifically, we first generate a partial sequence with d jobs using 

the LR(x), and then the remaining n-d jobs are inserted into the partial sequence using the 

NEH heuristic. The relative positions of jobs generated by the LR(x) are not changed as the 

algorithm progresses. The procedure of the proposed LR-NEH(x) is outlined in Figure 3. 
 

Procedure LR-NEH(x) 

Generate a job sequence },...,,{ 21 nαααα =  by ascending 0,jξ  value (break ties 

according to ascending 0,jIT  value). 

for 1:=l  to x  do %(generate x  sequences) 

}{: l
l απ = , }{: lJU α−= . 

for 2:=k  to d  do %(construct a partial sequence with d  jobs) 

Take the job j  with minimum kj,ξ  value (break ties according to minimum kjIT ,  

value) from U  and place it at the end of lπ . Remove job j  from U . 

endfor 

% (NEH heuristic) 

Generate a partial sequence },...,,{ 21 dn−= ββββ  ( ,Uj ∈β  dnj −= ,...,2,1 ) by 
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ascending order of total processing times. 

for 1:=k  to dn −  do %(construct a complete sequence) 

Take job kβ
 
from β  and insert it in all the dk +  possible positions of lπ . 

Place job kβ  in lπ  at the tested position resulting in the lowest total flowtime. 

endfor 

endfor 

return the sequence },...,,{ 21 lππππ ∈  with the minimum total flowtime. 

Figure 3. The proposed LR-NEH(x) heuristic. 
 

LR-NEH(x) has a single parameter d , which is basically the number of jobs after which 

NEH kicks in. Initial experiments showed that the best value was 43nd = . However, we 

found that for reasonable values, LR-NEH(x) is robust as regards this parameter. We leave for 

a further study a deeper examination of the effect of this parameter. 

 

3.2 Composite heuristic PR1(x) 

3.2.1 Iterated RZ local search 

The improvement procedure presented by Rajendran and Ziegler (1997) is a typical local 

search based on an insertion neighborhood, which sequentially inserts each job in the seed 

sequence in all possible positions in the incumbent sequence and is, as mentioned, similar to 

the NEH heuristic. Let },...,,{ 21
s
n

sss ππππ =  be a seed sequence, and π  be the incumbent 

sequence. The procedure of the RZ local search is given in Figure 4. 
 

Procedure )(πRZ  

ππ =:s
 

for 1:=i  to n  do 

ππ =:'  

Remove job 
s
iπ  from 'π . 

Take job 
s
iπ  and insert it in all possible positions of 'π  except for its original position. 

Place job 
s
iπ  in 'π  at the position resulting in the lowest total flowtime. 

if )()'( ππ TFTTFT <  then ': ππ =  %( )(πTFT  denotes the total flowtime of π ) 

endfor 

return π  

Figure 4. The RZ local search. 
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The above RZ procedure is a one-pass local search process. The process can be iterated 

while improvements are found and local optimality is reached. This iterated process can find 

better results but at the expense of more computational effort. Therefore, a trade-off between 

effectiveness and efficiency arises. We denote the iterated RZ procedure as iRZ in short. 

 

3.2.2 The proposed composite heuristic PR1(x) 

Based on the LR-NEH(x) heuristic and the iRZ local search, we propose a composite 

heuristic PR1(x). PR1(x) improves each of the solutions generated by LR-NEH(x) using iRZ. 

To save computational effort, we terminate the iteration if the CPU time is longer than 

mn01.0  seconds. The procedure of PR1(x) is outlined in Figure 5. 
 

Procedure PR1(x) 

Generate a job sequence },...,,{ 21 nαααα =  by ascending 0,jξ  value (break ties 

according to ascending 0,jIT  value). 

1:=l  

repeat 

}{: l
l απ = , }{: lJU α−= . 

for 2:=k  to d  do %(construct a partial sequence with d  jobs) 

Take the job j  with minimum kj,ξ  value (break ties according to minimum kjIT ,  

value) from U  and place it at the end of lπ
.
. Remove job j  from U . 

endfor 

Generate a partial sequence },...,,{ 21 dn−= ββββ  ( ,Uj ∈β  dnj −= ,...,2,1 ) by 

ascending order of total processing times. 

for 1:=k  to dn −  do %(construct a complete sequence) 

Take job kβ
 
from β  and insert it in all the dk +  possible positions of lπ . 

Place job kβ  in lπ  at the tested position resulting in the lowest total flowtime. 

endfor 

)(: ll iRZ ππ =  %(perform iRZ local search to lπ ) 

1: += ll  

until xl >  or mnCPUTime 01.0> seconds 

return the sequence },...,,{ 21 lππππ ∈  with the minimum total flowtime. 

Figure 5. The PR1(x) heuristic. 

 

3.3 Composite heuristic PR2(x) 
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The variable neighborhood search (VNS) is an effective metaheuristic presented by 

Mladenovic and Hansen (1997). Tasgetiren et al. (2007) proposed a local search based on the 

insertion+interchange variant of the VNS method and embedded it in a particle swarm 

optimization algorithm to solve the permutation flowshop with both makespan and total 

flowtime criterion. As a result, it seems promising to employ VNS in the heuristics. Let π  

be an incumbent job permutation to improve, and maxl  be the maximum number of iterations. 

The VNS is detailed in Figure 6. 

 

Procedure )(πVNS  

for 1:=l  to maxl  do 

true=:improved  

repeat 

πφ =:  

if true=improved  then Perform a pairwise interchange movement in φ . 

else Perform an insertion movement in φ . 

if )()( πφ TFTTFT ≤  then φπ =: , true=:improved  

else false=:improved  

until false=improved  

endfor 

return π  

Figure 6. The VNS local search. 
 

In the above VNS procedure, the pairwise interchange movement randomly selects two 

jobs in the sequence φ  and exchanges their positions. The insertion movement removes a 

random job from its original position and inserts it in another randomly selected position. In 

order to have a sufficient exploration of both interchange and insert neighborhoods, we set 

maxl  to 22n . We simply change the iRZ of PR1(x) by VNS, resulting in the PR2(x) heuristic. 

 

3.4 Composite heuristics PR3(x) and PR4(x) 

The composite heuristic PR3(x) first generates an initial solution using LR-NEH(x), and 

then improves the solution using a different improvement procedure. The procedure of PR3(x) 

is given in Figure 7. 
 

Procedure PR3(x) 
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)(NEHLR: y−=π  %(generate an initial solution) 

ππ =:b , 1:=l  

repeat %(improvement procedure) 

)(:' ππ iRZ=  % (iRZ local search) 

if )()'( bTFTTFT ππ <  then ': ππ =b . 

)'(:" ππ NEH=  % (NEH local search) 

if )()"( bTFTTFT ππ <  then ": ππ =b  

)"(: ππ NEH=  % (NEH local search) 

if )()( bTFTTFT ππ <  then ππ =:b  

1: += ll  

until xl >  or mnCPUTime 01.0> seconds 

return bπ  

Figure. 7. The PR3(x) heuristic. 
 

In the above procedure, the parameter y for the LR-NEH(y) initialization is fixed at 10. 

The final proposed heuristic PR4(x) uses the VNS local search as an improvement procedure 

instead of the iRZ local search of PR3(x). 

 

4. Computational and statistical experiments 

In this section we conduct a comprehensive computational and statistical evaluation of 

most existing high-performing heuristics as well as of the presented methods. The tested 

heuristics comprise 14 simple and 13 composite heuristics as follows: 

Simple heuristics 

1. Raj heuristic of Rajendran (1993), 

2-4. LIT, SPD1 and SPD2 heuristics by Wang et al. (1997), 

5. RZ heuristic of Rajendran and Ziegler (1997), 

6. WY heuristic by Woo and Yim (1998), 

7-9. LR(1), LR(n/m) and LR(n) of Liu and Reeves (2001), 

10. NEH heuristic modified by Framinan et al. (2002), 

11. FL heuristic of Framinan and Leisten (2003), 

12. RZ-LW heuristic of Li and Wu (2005), 

13. FL-LS heuristic by Laha and Sarin (2009), 

14. Proposed LR-NEH(x) heuristic. 



 18

Composite heuristics 

15-16. LR-FPE and LR-BPE of Liu and Reeves (2001), 

17. IH7 heuristic of Allahverdi and Aldowaisan (2002), 

18. IH7-FL heuristic of Framinan and Leisten (2003), 

19-20. Composite heuristics C1-FL and C2-FL of Framinan et al. (2005),  

21-23. IC1, IC2, IC3 heuristics of Li et al. (2009), 

24-27. The presented composite heuristics PR1(x), PR2(x), PR3(x) and PR4(x). 

All other reviewed heuristics from Section 2 were clearly outperformed by the above 

heuristics in previous research and are not tested in this work. In addition, the general 

flowtime computing method presented by Li et al. (2006) is employed to save computation 

time in all heuristics that allow it. 

The test bed presented by Taillard (1993) is a well-known set for the PFSP with 

makespan criterion, which consists of a total of 120 instances of various sizes, having 20, 50, 

100, 200, and 500 jobs and 5, 10, or 20 machines. These instances are divided into 12 subsets, 

each of which consists of 10 instances with the same size. These subsets are denoted 

according to their sizes: 20×5, 20×10, 20×20, 50×5, 50×10, 50×20, 100×5, 100×10, 100×20, 

200×10, 200×20 and 500×20. Recently, an increasing number of researchers have used this 

test bed to evaluate their algorithms dealing with total or mean flowtime criterion (Liu and 

Reeves (2001), Li et al. (2006), Li and Wang (2006), Tasgetiren et al. (2007), Jarboui et al. 

(2009), Dong et al. (2009), Li et al. (2009) and Zhang et al. (2009), possibly among many 

others). Thus, we evaluate the above mentioned heuristics based on this test bed, and the 

performance measure is the relative percentage increase (RPI) as follows: 

100/)()( ×−= ∗∗ ccccRPI ii           (4) 

where ic  is the solution obtained by the thi  heuristic, and ∗c  is the best solution found 

by any of the heuristics. 

All methods have been coded in Visual C++ 6.0 and run on a cluster of 30 blade severs 

each one with two Intel XEON 5254 processors running at 2.5 GHz with 16 GB of RAM 

memory. Each processor has four cores and the experiments are carried out in virtualized 

Windows XP machines, each one with one virtualized processor and 2 GB of RAM memory. 

In order to better estimate the performance and elapsed CPU time of the compared algorithms, 

a total of 5 replications for each instance are carried out. Results are then averaged across the 
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5 replications for each instance. In our five proposed heuristics LR-NEH(x), PR1(x), PR2(x), 

PR3(x) and PR4(x), x is tested at three values: 5, 10 and 15. This gives a total of 37 heuristics 

which are run 5 times each for the 120 instances of Taillard for a grand total of 22,200 results. 

The average RPI values, grouped for each subset (600 results averaged at each cell) are given 

in Tables 2 and 3 for simple and composite heuristics, respectively. Both types of heuristics 

are summarized in Table 4, ordered by RPI. All CPU times are given in seconds. 
 

Table 2. Results of the simple heuristics. 
 Raj LIT SPD1 SPD2 RZ WY LR(1) LR(n/m) 

Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time 
20×5 5.80 0.00 9.40 0.00 18.85 0.00 19.35 0.00 2.90 0.00 3.03 0.00 2.74 0.00 2.55 0.00 
20×10 4.61 0.00 11.23 0.00 15.56 0.00 14.37 0.00 1.90 0.00 2.80 0.00 3.77 0.00 3.42 0.00 
20×20 4.55 0.00 6.95 0.00 10.23 0.00 10.07 0.00 1.97 0.00 2.96 0.00 3.21 0.00 3.21 0.00 
50×5 4.51 0.00 7.69 0.00 21.01 0.00 21.56 0.00 2.70 0.00 3.70 0.01 2.20 0.00 1.56 0.01 
50×10 6.28 0.00 9.45 0.01 15.96 0.01 14.24 0.00 3.22 0.01 3.39 0.02 5.26 0.00 2.97 0.01 
50×20 5.88 0.00 10.19 0.02 11.57 0.01 10.74 0.00 2.94 0.01 3.22 0.04 3.85 0.01 3.40 0.01 
100×5 4.09 0.00 5.42 0.03 23.05 0.03 23.31 0.00 2.57 0.02 2.32 0.17 1.25 0.01 0.63 0.17 
100×10 4.73 0.00 8.04 0.06 20.98 0.05 19.55 0.00 3.26 0.05 2.78 0.35 2.89 0.01 2.03 0.14 
100×20 6.03 0.01 8.19 0.14 12.41 0.11 10.22 0.00 2.72 0.09 3.03 0.68 4.28 0.03 3.36 0.14 
200×10 4.64 0.03 6.39 0.54 22.25 0.46 21.50 0.10 2.77 0.33 2.56 6.03 2.47 0.10 1.39 1.99 
200×20 4.98 0.06 9.14 1.01 17.80 0.90 14.95 5.82 2.51 0.70 2.35 11.72 3.81 0.20 2.00 2.00 
500×20 4.21 0.81 7.03 15.28 18.76 12.61 18.87 11.29 2.34 10.01 1.79 483.79 1.79 3.10 0.94 77.23 
Average 5.02 0.08 8.26 1.42 17.37 1.18 16.56 1.43 2.65 0.94 2.83 41.90 3.13 0.29 2.29 6.81 

         

 LR(n) NEH FL RZ-LW FL-LS LR-NEH(5) LR-NEH(10) LR-NEH(15) 
Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time 

20×5 2.44 0.00 5.05 0.00 2.49 0.00 1.54 0.00 1.74 0.00 2.26 0.00 2.26 0.00 2.26 0.00 
20×10 3.35 0.00 4.14 0.00 2.40 0.00 1.43 0.00 1.25 0.00 2.51 0.00 2.51 0.00 2.51 0.00 
20×20 2.42 0.01 3.88 0.00 2.44 0.00 1.07 0.00 1.04 0.01 2.01 0.00 1.89 0.00 1.89 0.01 
50×5 1.56 0.05 4.25 0.00 2.02 0.03 1.63 0.01 1.37 0.04 1.33 0.01 1.33 0.01 1.33 0.02 
50×10 2.81 0.10 5.08 0.00 2.54 0.05 1.44 0.04 1.61 0.08 2.48 0.01 2.43 0.02 2.43 0.04 
50×20 3.07 0.23 4.39 0.01 2.01 0.10 1.63 0.05 1.28 0.17 2.67 0.02 2.43 0.05 2.43 0.07 
100×5 0.63 0.83 3.18 0.01 1.20 0.31 1.69 0.10 1.12 0.52 1.35 0.04 1.25 0.07 1.25 0.11 
100×10 2.00 1.37 4.54 0.02 2.41 0.73 1.09 0.28 1.12 1.24 1.67 0.08 1.54 0.16 1.54 0.24 
100×20 2.67 2.76 4.48 0.04 2.04 1.47 0.87 0.57 0.91 2.59 2.44 0.17 2.16 0.34 1.98 0.52 
200×10 1.39 19.85 3.16 0.14 1.39 10.16 1.40 2.42 1.11 18.38 1.03 0.59 0.96 1.16 0.95 1.74 
200×20 1.94 39.98 3.88 0.29 1.62 20.91 0.80 6.26 1.32 38.61 1.57 1.27 1.52 2.57 1.48 3.74 
500×20 0.82 1544.32 2.32 4.00 1.29 701.12 0.88 114.84 0.73 1381.23 0.80 17.66 0.68 35.24 0.65 52.85 
Average 2.09 134.12 4.03 0.37 1.99 61.24 1.29 10.38 1.22 120.24 1.84 1.65 1.75 3.30 1.72 4.94 
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Table 3. Results of the composite heuristics. 
 LR-FPE LR-BPE IH7 IH7-FL C1-FL C2-FL IC1 IC2 IC3 PR1(5) PR1(10) 

Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time 
20×5 1.30 0.00 1.40 0.00 1.31 0.00 1.66 0.00 1.68 0.00 1.22 0.00 1.00 0.00 0.66 0.00 0.66 0.00 0.57 0.00 0.53 0.01 
20×10 1.91 0.00 1.91 0.00 1.45 0.00 1.45 0.00 1.74 0.00 0.90 0.00 1.30 0.00 1.07 0.00 1.06 0.00 0.84 0.01 0.63 0.01 
20×20 1.60 0.00 2.07 0.00 1.24 0.00 1.34 0.00 2.32 0.00 1.12 0.01 1.29 0.00 1.35 0.00 1.32 0.00 0.56 0.01 0.40 0.03 
50×5 0.72 0.02 0.83 0.02 1.61 0.03 1.35 0.03 1.67 0.03 1.04 0.05 0.84 0.02 0.61 0.03 0.62 0.03 0.51 0.05 0.46 0.11 
50×10 1.37 0.03 1.51 0.02 1.84 0.04 1.63 0.07 2.27 0.06 1.46 0.09 1.10 0.04 0.87 0.06 0.82 0.07 0.50 0.14 0.30 0.27 
50×20 1.70 0.04 2.12 0.05 1.78 0.08 1.33 0.13 2.63 0.11 1.36 0.17 1.05 0.07 0.77 0.12 0.68 0.15 0.77 0.27 0.44 0.54 
100×5 0.34 0.22 0.33 0.21 1.01 0.55 0.71 0.47 0.94 0.43 0.67 0.54 0.30 0.24 0.14 0.30 0.18 0.38 0.56 0.43 0.47 0.90 
100×10 0.87 0.29 0.87 0.29 1.52 0.81 1.71 0.91 1.80 0.85 0.74 1.33 0.69 0.36 0.52 0.57 0.48 1.02 0.53 1.06 0.46 2.24 
100×20 1.86 0.40 2.04 0.51 1.49 1.40 1.44 1.77 1.98 1.57 1.01 2.90 1.01 0.61 0.92 1.13 0.77 1.91 0.37 2.81 0.26 5.53 
200×10 0.59 3.08 0.53 3.10 1.41 15.77 0.91 14.28 1.19 11.48 0.60 20.66 0.52 3.80 0.33 6.29 0.29 14.29 0.22 10.10 0.21 19.35 
200×20 0.97 4.63 0.80 5.07 1.32 24.18 1.19 25.56 1.60 22.22 0.82 49.46 0.48 6.50 0.47 11.08 0.43 21.86 0.18 26.17 0.18 43.16 
500×20 0.39 115.48 0.38 126.84 1.13 1006.51 0.89 989.50 0.82 730.96 0.40 1583.46 0.20 161.33 0.17 219.79 0.14 887.24 0.34 169.30 0.34 169.30 
Average 1.14 10.35 1.23 11.34 1.43 87.45 1.30 86.06 1.72 63.98 0.95 138.22 0.81 14.41 0.66 19.95 0.62 77.25 0.50 17.53 0.39 20.12 

            
 PR1(15) PR2(5) PR2(10) PR2(15) PR3(5) PR3(10) PR3(15) PR4(5) PR4(10) PR4(15)   

Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time   
20×5 0.37 0.01 0.56 0.01 0.45 0.02 0.37 0.02 0.88 0.00 0.85 0.01 0.84 0.01 0.64 0.01 0.46 0.02 0.40 0.02   
20×10 0.48 0.02 0.86 0.02 0.62 0.03 0.52 0.05 0.68 0.01 0.68 0.01 0.68 0.02 0.75 0.02 0.57 0.03 0.49 0.04   
20×20 0.31 0.04 0.56 0.03 0.45 0.06 0.31 0.08 0.65 0.02 0.57 0.02 0.57 0.04 0.57 0.03 0.45 0.05 0.40 0.07   
50×5 0.45 0.16 0.33 0.10 0.30 0.20 0.30 0.30 0.61 0.07 0.57 0.14 0.57 0.20 0.45 0.12 0.39 0.22 0.34 0.33   
50×10 0.24 0.39 0.68 0.23 0.55 0.45 0.45 0.67 0.59 0.17 0.43 0.30 0.42 0.44 0.87 0.27 0.69 0.51 0.58 0.75   
50×20 0.38 0.83 0.86 0.44 0.63 0.90 0.54 1.34 0.50 0.32 0.39 0.62 0.32 0.92 0.77 0.51 0.64 0.98 0.56 1.44   
100×5 0.43 1.37 0.27 0.64 0.22 1.28 0.21 1.92 0.56 0.58 0.50 1.14 0.49 1.66 0.33 0.78 0.30 1.49 0.27 2.20   
100×10 0.41 3.41 0.39 1.58 0.36 3.16 0.33 4.73 0.43 1.49 0.40 2.86 0.36 4.24 0.48 1.88 0.46 3.61 0.44 5.35   
100×20 0.20 8.22 0.65 3.38 0.48 6.76 0.40 10.14 0.26 3.18 0.25 6.11 0.22 9.01 0.72 3.93 0.66 7.56 0.60 11.17   
200×10 0.19 21.18 0.16 11.11 0.14 21.18 0.14 21.25 0.28 13.11 0.26 21.22 0.26 21.18 0.21 13.34 0.21 20.96 0.21 20.96   
200×20 0.18 43.14 0.49 24.19 0.39 43.44 0.39 43.44 0.42 25.78 0.42 43.12 0.42 43.14 0.44 28.37 0.43 43.98 0.43 44.00   
500×20 0.34 172.36 0.33 126.74 0.33 126.74 0.33 126.78 0.21 130.25 0.21 132.19 0.21 128.32 0.19 110.61 0.19 110.61 0.19 113.38   
Average 0.33 20.93 0.51 14.04 0.41 17.02 0.36 17.56 0.51 14.58 0.46 17.31 0.45 17.43 0.54 13.32 0.45 15.84 0.41 16.64   

 



 21

Table 4. Summary of all heuristics, ordered by RPI. 
# Algorithm RPI Time Type PARETO  # Algorithm RPI Time Type PARETO  
1 PR1(15) 0.33 20.93 Composite 0  20 RZ-LW 1.29 10.38 Simple 1 
2 PR2(15) 0.36 17.56 Composite 0  21 IH7-FL 1.30 86.06 Composite 18 
3 PR1(10) 0.39 20.12 Composite 1  22 IH7 1.43 87.45 Composite 19 
4 PR2(10) 0.41 17.02 Composite 1  23 C1-FL 1.72 63.98 Composite 17 
5 PR4(15) 0.41 16.64 Composite 0  24 LR-NEH(15) 1.72 4.94 Simple 0 
6 PR3(15) 0.45 17.43 Composite 2  25 LR-NEH(10) 1.75 3.30 Simple 0 
7 PR4(10) 0.45 15.84 Composite 0  26 LR-NEH(5) 1.84 1.65 Simple 0 
8 PR3(10) 0.46 17.31 Composite 3  27 FL 1.99 61.24 Simple 20 
9 PR1(5) 0.50 17.53 Composite 5  28 LR(n) 2.09 134.12 Simple 26 
10 PR3(5) 0.51 14.58 Composite 0  29 LR(n/m) 2.29 6.81 Simple 3 
11 PR2(5) 0.51 14.04 Composite 0  30 RZ 2.65 0.94 Simple 0 
12 PR4(5) 0.53 13.32 Composite 0  31 WY 2.83 41.90 Simple 22 
13 IC3 0.62 77.25 Composite 12  32 LR(1) 3.13 0.29 Simple 0 
14 IC2 0.66 19.95 Composite 10  33 NEH 4.03 0.37 Simple 1 
15 IC1 0.81 14.41 Composite 2  34 Raj 5.02 0.08 Simple 0 
16 C2-FL 0.95 138.22 Composite 15  35 LIT 8.26 1.42 Simple 4 
17 LR-FPE 1.14 10.35 Composite 0  36 SPD2 16.56 1.43 Simple 5 
18 FL-LS 1.22 120.24 Simple 16  37 SPD1 17.37 1.18 Simple 4 
19 LR-BPE 1.23 11.34 Composite 1        

 

It can be seen that simple heuristics clearly perform worse than the composite ones 

except FL-LS and RZ-LW, which produce slightly smaller RPI values than IH7, IH7-FL and 

C1-FL. Among the simple heuristics, the worst performing algorithms are the three heuristics 

presented by Wang et al (1997), with SPD1 and SPD2 being more than 15% over the best 

solution found by any of the compared methods. The best simple heuristic is FL-LS, which 

produces the smallest mean RPI value of 1.22%. However, this is a very costly method, which 

needs, on average, 120.24 seconds. As a matter of fact, the column “PARETO” in Table 4 

indicates the number of heuristics that Pareto-dominate a given one as regards average RPI 

and average CPU time. For FL-LS we see that there are 16 methods that dominate it: From 

the 17 heuristics with lower RPI values than FL-LS, all of them, except C2-FL, need less 

CPU time and therefore, dominate, in a Pareto sense, FL-LS. 

The presented LR-NEH(x) heuristic yields a much smaller overall RPI value than both 

the NEH and LR heuristics for x=5, 10 or 15. Additionally, the proposed LR-NEH(x) is not 

dominated, i.e., it represents the best trade-off between CPU time and RPI among the simple 

heuristics. Raj is the fastest method, needing barely a tenth of a second, on average. 

Among existing composite heuristics from the literature, IC3 is obviously the best 

performer producing 0.62% RPI value within 77.25 seconds. However, all presented 

composite heuristics at all tested x values result in lower RPI values at a lower computational 

cost. 

Figure 8 shows a scatter plot of average RPI versus average CPU time for the best 

performing methods. Pareto dominating heuristics are depicted in red (boldface in Table 4). 
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Figure. 8. Average RPI versus average CPU time for the heuristics. Pareto dominant 

methods shown in red. 
 

Previous tables and plots contain average results. We conduct comprehensive statistical 

analyses to ascertain if the observed differences in RPI values are indeed statistically 

significant. Design of experiments (DOE) and analyses of variance (ANOVA) (Montgomery 

(2008)) are conducted for all results. 

We consider all 27 tested heuristics. Recall that the proposed methods are tested with 

three values of x, namely 5, 10 and 15. As a result, we have 37 methods, all of them present in 

Table 4. Five replicates and 120 instances are tested which recall results in 22,200 treatments. 

In Taillard’s benchmark, not all combinations of n and m are present and therefore, n and m 

are not orthogonal. In order to study these two factors, we define a factor called type of 

instance “Type” which has 12 levels, 1 for 20×5, 2 for 20×10 and so on until 12 for 500×20. 

The replicate (note that all methods are run five independent times) is a witness factor that is 

shown to be statistically not significant with a p-value close to 1.0. This factor is then 

removed after validating the experiment. As a result, the initial ANOVA has two factors, 

Algorithm, with 37 levels, and Type of instance, at 12 levels. The response variable is the RPI. 

ANOVA is a parametric statistical tool and there are three main assumptions: normality, 

homogeneity of variance (homoscedasticity) and independence of the residuals. We carefully 
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checked all three assumptions and the results showed that no major departures were found. 

The only minor problem is a slight small departure from normality. However, as is well 

known, ANOVA is robust with respect to the normality assumption. The result of the ANOVA 

is that the two factors as well as the interaction between the two are statistically significant 

with p-values very close to 0. The most significant factor is the Algorithm with an F-Ratio 

close to 5,000. An initial means plot with 99% confidence level intervals (not shown due to 

space limitations) clearly shows that the following heuristics are statistically different (from 

worst to best): SPD1, SPD2, LIT, Raj, NEH and LR(1). Note that all these methods have 

average RPI over 3%. They are statistically worse than all other heuristics and are therefore 

disregarded from the ANOVA and from following plots (this in turn also helps with the 

normality assumption). We employ the most restrictive technique for calculating the 

confidence intervals around the means: the Tukey's Honest Significant Difference (HSD). If 

the intervals around two plotted means overlap, it means that there are no statistically 

significant differences between the means at the given confidence level. The means plot with 

the remaining 31 heuristics is given in Figure 9. 
 

 

Figure. 9. Means plot for the RPI with Tukey's Honest Significant Difference (HSD) 99% 

confidence intervals for the 31 best performing heuristics. 
 

It can be observed from Figure 9 that heuristics can be divided into 14 homogenous 

P
R
1
(1
5
)

P
R
2
(1
5
)

P
R
1
(1
0
)

P
R
2
(1
0
)

P
R
4
(1
5
)

P
R
3
(1
5
)

P
R
4
(1
0
)

P
R
3
(1
0
)

P
R
1
(5
)

P
R
3
(5
)

P
R
2
(5
)

P
R
4
(5
)

IC
3

IC
2

IC
1

C
2
-F
L

L
R
-F
P
E

F
L
-L
S

L
R
-B
P
E

R
Z
-L
W

IH
7
-F
L

IH
7

C
1
-F
L

L
R
-N
E
H
(1
5
)

L
R
-N
E
H
(1
0
)

L
R
-N
E
H
(5
)

F
L

L
R
(n
)

L
R
(n
/m
)

R
Z

W
Y

R
P
I



 24

groups where no significant differences can be found within each group. The last three 

heuristics are each in a group, i.e., from worst to best, WY, RZ and LR(n/m). Group 11 is 

formed by methods FL and LR(n). In Figure 9 we see how the confidence intervals for the 

average RPI of these two methods overlap. All groups are formed in a similar way. Figure 9 

also shows, in red, the intervals from those Pareto non-dominated heuristics. 

It is shown that our proposed methods, from PR1 to PR4, in all three values of x, are 

better than all other heuristics. Statistically speaking, from PR1(15) to PR3(10) we have 

significant differences with IC3, the best competing method from the literature. It has to be 

pointed out that IC3 needs, on average, more than 77 seconds of CPU time while PR1(15) 

needs less than 21 seconds on average. 

Of course, all previous statistical analyses depict the overall picture of the heuristics 

across all instances. The results vary slightly from one instance size to another. The 

interaction between the type of instance and the heuristics is relatively weak (still statistically 

significant but with a rather small F-Ratio). An example of this type of interaction is given in 

Figure 10. Only four heuristics are shown for clarity. 
 

 

Figure. 10. Means plot for the RPI with Tukey's Honest Significant Difference (HSD) 99% 

confidence intervals for the interaction between the instance type and some chosen heuristics. 
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We see that the confidence intervals are very wide (there are only 10 instances at each 

group) and there is not enough data to draw strong conclusions. We see, for example, how 

PR1(15) is statistically equivalent to IC3 for several instance groups, while being better for 

the others. Only for 100×5, IC3 results in a lower RPI, albeit this difference is not statistically 

significant. 

There are other cases where some differences appear. However, we believe that the main 

interest lies with the average performance depicted in the previous Figure 9. 

In a nutshell, we put forward the following statements based on the above comparison 

and analysis. (1) All the simple heuristics are surpassed by the composite ones except FL-LS 

and RZ-LW regarding to the quality of solutions. On the other hand, most simple heuristics 

run much faster than their composite counterparts. (2) The best four simple heuristics are 

FL-LS, RZ-LW, the proposed LR-NEH(x) and FL in terms of effectiveness with the 

computational time of the proposed LR-NEH(x) being much less than that of the other three 

heuristics. (3) Both IC2 and IC3 are significantly better than the other existing composite 

heuristics in terms of overall RPI value. However, both are outperformed by the presented 

heuristics PR1(x)-PR4(x) both in terms of RPI as well as CPU time. 

 

5. Conclusions 

In this paper we have carried out an extensive review and comparison of the heuristics 

for the permutation flowshop scheduling problem with total or mean flowtime minimization 

criterion. A total of 22 existing heuristics have been coded and tested. With the knowledge 

obtained, five new methods have been presented. The well known Taillard (1993) benchmark 

has been employed. All heuristics have been coded in the same language and have been tested 

on the same computing platform therefore the results are fully comparable. Furthermore, 

extensive use of the design of experiments (DOE) approach and analysis of variance 

(ANOVA) statistical technique results in sound conclusions. 

Among simple heuristics, the FL-LS of Laha and Sarin (2009) is the best performer. 

However, it is computationally costly; needing about one order of magnitude more CPU time 

than other composite heuristics that are, in turn, better performers. Our simple proposed 
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LR-NEH(x) method represents a good trade-off between CPU time and quality, dominating 

most other existing simple heuristics from a Pareto perspective. 

It is demonstrated that the heuristics IC2 and IC3 presented by Li et al. (2009) were the 

best two performers from the literature as regards the quality of solutions and composite 

heuristics. However, our four presented composite heuristics PR1(x)-PR4(x) result both in 

lower average relative percentage deviations and lower average CPU time. For example, 

PR1(x) results in an average deviation of just 0.33% and average CPU time of 20.93 seconds 

whereas IC3 has almost double the deviation (0.62%) and more than three times more CPU 

time (77.25 seconds). In conclusion, our presented methods can now be considered 

state-of-the-art heuristics for the permutation flowshop scheduling problem with total 

flowtime minimization criterion. 

 

Acknowledgements 

This research is partially supported by National Science Foundation of China (60874075, 

70871065), and Science Foundation of Shandong Province, China (BS2010DX005), and 

Postdoctoral Science Foundation of China (20100480897). Rubén Ruiz is partially funded by 

the Spanish Ministry of Science and Innovation, under the project “SMPA - Advanced Parallel 

Multiobjective Sequencing: Practical and Theorerical Advances” with reference 

DPI2008-03511/DPI and by the Small and Medium Industry of the Generalitat Valenciana 

(IMPIVA) and by the European Union through the European Regional Development Fund 

(FEDER) inside the R+D program “Ayudas dirigidas a Institutos Tecnológicos de la Red 

IMPIVA” during the year 2011, with project number IMDEEA/2011/142. 

 

REFERENCES 

Ahmadi,R.H. and Bagchi,U. (1990) Improved lower bounds for minimizing the sum of 

completion times of n jobs over m machines in a flow shop. European Journal of Operational 

Research 44 (3), 331-336. 

Allahverdi,A. and Aldowaisan,T. (2002) New heuristics to minimize total completion time in 

m-machine flowshops. International Journal of Production Economics 77 (1), 71-83. 

Baker,K.R. (1974) Introduction to sequencing and scheduling., Wiley, New York. 

Campbell,H.G., Dudek,R.A., and Smith,M.L. (1970) Heuristic Algorithm for n Job, m 



 27

Machine Sequencing Problem. Management Science Series B-Application 16 (10), 

B630-B637. 

Conway,R.W., Maxwell,W.I., and Miller,L.W. (1967) Theory of scheduling., Addison-Wesley, 

Reading, Mass. 

Dong,X.Y., Huang,H.K., and Chen,P. (2009) An iterated local search algorithm for the 

permutation flowshop problem with total flowtime criterion. Computers & Operations 

Research 36 (5), 1664-1669. 

Framinan,J.M., Gupta,J.N.D., and Leisten,R. (2004) A review and classification of heuristics 

for permutation flow-shop scheduling with makespan objective. Journal of the Operational 

Research Society 55 (12), 1243-1255. 

Framinan,J.M. and Leisten,R. (2003) An efficient constructive heuristic for flowtime 

minimisation in permutation flow shops. Omega-International Journal of Management 

Science 31 (4), 311-317. 

Framinan,J.M., Leisten,R., and Rajendran,C. (2003) Different initial sequences for the 

heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the 

static permutation flowshop sequencing problem. International Journal of Production 

Research 41 (1), 121-148. 

Framinan,J.M., Leisten,R., and Ruiz-Usano,R. (2002) Efficient heuristics for flowshop 

sequencing with the objectives of makespan and flowtime minimisation. European Journal of 

Operational Research 141 (3), 559-569. 

Framinan,J.M., Leisten,R., and Ruiz-Usano,R. (2005) Comparison of heuristics for flowtime 

minimisation in permutation flowshops. Computers & Operations Research 32 (5), 

1237-1254. 

Gonzalez,T. and Sahni,S. (1978) Flowshop and Jobshop Schedules: Complexity and 

Approximation. Operations Research 26 (1), 36-52. 

Graham,R.L., Lawler,E.L., Lenstra J.K., and Rinnooy Kan,A.H.G. (1979) Optimization and 

Approximation in Deterministic Sequencing and Scheduling: A survey. Annals of Discrete 

Mathematics 5 (2), 287-326. 

Gupta,J.N.D. (1972) Heuristic algorithms for multistage flowshop scheduling problem. AIIE 

Transactions 4 (1), 11-18. 

Gupta,J.N.D. and Stafford,E.F. (2006) Flowshop scheduling research after five decades. 

European Journal of Operational Research 169 (3), 699-711. 

Ho,J.C. (1995) Flowshop Sequencing with Mean Flowtime Objective. European Journal of 

Operational Research 81 (3), 571-578. 

Ho,J.C. and Chang,Y.-L. (1991) A new heuristic for the n-job, M-machine flow-shop problem. 

European Journal of Operational Research 52 (2), 194-202. 



 28

Jarboui,B., Eddaly,M., and Siarry,P. (2009) An estimation of distribution algorithm for 

minimizing the total flowtime in permutation flowshop scheduling problems. Computers & 

Operations Research 36 (9), 2638-2646. 

Johnson,S.M. (1954) Optimal Two- and Three-Stage Production Schedules with Setup Times 

Included. Naval Research Logistics Quarterly 1 (1), 61-68. 

Krone,M.J. and Steiglitz,K. (1974) Heuristic-Programming Solution of A 

Flowshop-Scheduling Problem. Operations Research 22 (3), 629-638. 

Laha,D. and Sarin,S.C. (2009) A heuristic to minimize total flow time in permutation flow 

shop. Omega-International Journal of Management Science 37 (3), 734-739. 

Li,X., Liu,L., and Wu,C. (2006) A fast method for heuristics in large-scale flow shop 

scheduling. Tsinghua Science & Technology 11 (1), 12-18. 

Li,X. and Wang,Q. (2006) Iterative Heuristics for Permutation Flow Shops with Total 

Flowtime Minimization. In: Shen,W. (ed), Information Technology For Balanced 

Manufacturing Systems 

IFIP TC5, WG 5.5 Seventh International Conference on lnformation Technology for Balanced 

Automation Systems in Manufacturing and Services. 349-356, Springer, New York. 

Li,X.P., Wang,Q., and Wu,C. (2009) Efficient composite heuristics for total flowtime 

minimization in permutation flow shops. Omega-International Journal of Management 

Science 37 (1), 155-164. 

Li,X.P. and Wu,C. (2005) An efficient constructive heuristic for permutation flow shops to 

minimize total flowtime. Chinese Journal of Electronics 14 (2), 203-208. 

Liu,J.Y. and Reeves,C.R. (2001) Constructive and composite heuristic solutions to the P//ΣCi 
scheduling problem. European Journal of Operational Research 132 (2), 439-452. 

Miyazaki,S. and Nishiyama,N. (1980) Analysis for minimizing weighted mean flow-time in 

flow-shop scheduling. Journal of the Operations Research Society of Japan 23 (2), 118-132. 

Miyazaki,S., Nishiyama,N., and Hashimoto,F. (1978) An adjacent pairwise approach to the 

mean flow-time scheduling problem. Journal of the Operations Research Society of Japan 21 

(2), 287-299. 

Mladenovic,N. and Hansen,P. (1997) Variable neighborhood search. Computers & Operations 

Research 24 (11), 1097-1100. 

Montgomery,D.C. (2008) Design and analysis of experiments., Wiley, Hoboken, NJ. 

Nawaz,M., Enscore,Jr.E.E., and Ham,I. (1983) A Heuristic Algorithm for the m Machine, n 

Job Flowshop Sequencing Problem. Omega-International Journal of Management Science 11 

(1), 91-95. 

Pan,Q.K., Tasgetiren,M.F., and Liang,Y.C. (2008) A discrete differential evolution algorithm 

for the permutation flowshop scheduling problem. Computers & Industrial Engineering 55 



 29

(4), 795-816. 

Pinedo,M. (2008) Scheduling: Theory, algorithms, and systems., Springer, New York. 

Rajendran,C. (1993) Heuristic Algorithm for Scheduling in A Flowshop to Minimize Total 

Flowtime. International Journal of Production Economics 29 (1), 65-73. 

Rajendran,C. and Chaudhuri,D. (1991) A Flowshop Scheduling Algorithm to Minimize Total 

Flowtime. Journal of the Operations Research Society of Japan 34 (1), 28-46. 

Rajendran,C. and Chaudhuri,D. (1992) An Efficient Heuristic Approach to the Scheduling of 

Jobs in A Flowshop. European Journal of Operational Research 61 (3), 318-325. 

Rajendran,C. and Ziegler,H. (1997) An efficient heuristic for scheduling in a flowshop to 

minimize total weighted flowtime of jobs. European Journal of Operational Research 103 (1), 

129-138. 

Ruiz,R. and Maroto,C. (2005) A comprehensive review and evaluation of permutation 

flowshop heuristics. European Journal of Operational Research 165 (2), 479-494. 

Taillard,E. (1990) Some Efficient Heuristic Methods for the Flow-Shop Sequencing Problem. 

European Journal of Operational Research 47 (1), 65-74. 

Taillard,E. (1993) Benchmarks for Basic Scheduling Problems. European Journal of 

Operational Research 64 (2), 278-285. 

Tang,L.X. and Liu,J.Y. (2002) A modified genetic algorithm for the flow shop sequencing 

problem to minimize mean flow time. Journal of Intelligent Manufacturing 13 (1), 61-67. 

Tasgetiren,M.F., Liang,Y.C., Sevkli,M., and Gencyilmaz,G. (2007) A particle swarm 

optimization algorithm for makespan and total flowtime minimization in the permutation 

flowshop sequencing problem. European Journal of Operational Research 177 (3), 

1930-1947. 

Varadharajan,T.K. and Rajendran,C. (2005) A multi-objective simulated-annealing algorithm 

for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European 

Journal of Operational Research 167 (3), 772-795. 

Wang,C.G., Chu,C.B., and Proth,J.M. (1997) Heuristic approaches for n/m/F/ΣCi, scheduling 
problems. European Journal of Operational Research 96 (3), 636-644. 

Woo,H.S. and Yim,D.S. (1998) A heuristic algorithm for mean flowtime objective in 

flowshop scheduling. Computers & Operations Research 25 (3), 175-182. 

Zhang,Y., Li,X.P., and Wang,Q. (2009) Hybrid genetic algorithm for permutation flowshop 

scheduling problems with total flowtime minimization. European Journal of Operational 

Research 196 (3), 869-876. 

 


