

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/110.1016/j.cor.2012.05.018

http://hdl.handle.net/10251/40392

Elsevier

Pan, Q.; Ruiz García, R. (2013). A comprehensive review and evaluation of permutation
flowshop heuristics to minimize flowtime. Computers and Operations Research. 40(1):117-
128. doi:10.1016/j.cor.2012.05.018.

 1

A comprehensive review and evaluation of permutation

flowshop heuristics to minimize flowtime

Quan-Ke Pana, Rubén Ruizb*
aCollege of Computer Science, Liaocheng University, Liaocheng, 252059, PR China

bGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Ciudad

Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de València , Camino de Vera

s/n, 46022 Valencia, Spain

email: panquanke@gmail.com, rruiz@eio.upv.es

Abstract: In recent years, a large number of heuristics have been proposed for the

minimization of the total or mean flowtime/completion time of the well-known permutation

flowshop scheduling problem. Although some literature reviews and comparisons have been

made, they do not include the latest available heuristics and results are hard to compare as no

common benchmarks and computing platforms have been employed. Furthermore, existing

partial comparisons lack the application of powerful statistical tools. The result is that it is not

clear which heuristics, especially among the recent ones, are the best. This paper presents a

comprehensive review and computational evaluation as well as a statistical assessment of 22

existing heuristics. From the knowledge obtained after such a detailed comparison, five new

heuristics are presented. Careful designs of experiments and analyses of variance (ANOVA)

techniques are applied to guarantee sound conclusions. The comparison results identify the

best existing methods and show that the five newly presented heuristics are competitive or

better than the best performing ones in the literature for the permutation flowshop problem

with the total completion time criterion.

Keywords: Scheduling; Flowshop; Flowtime; Heuristics.

1. Introduction

A flowshop is a common layout in production shops where m continuously available

machines are disposed in series. Each machine is a production stage and products must visit

* Corresponding author. Tel: +34 96 387 70 07, ext: 74946. Fax: +34 96 387 74 99

 2

all machines in order. Scheduling in a flowshop entails the production of n known jobs from

a set },...,2,1{ nJ = . All the n jobs follow the same order of visitation to the machines.

This order is, without loss of generality, machine 1, machine 2 and so un until machine m .

Each job requires a given known, deterministic and non-negative processing time at each

machine, denoted as jip , , Jj ∈ , mi ,...,2,1= . The flowshop scheduling problem or FSP

in short is a theoretical version of reality and several simplifying assumptions apply: All jobs

are independent and available for processing at time 0; machines are continuously available;

each job is either waiting for processing or being processed by a machine at any given time;

machines can only process one job at a time, etc. A complete list of these assumptions is

detailed, for example, in Baker (1974). A solution for the FSP is a production sequence or

schedule for all jobs which aims at optimizing a given criterion. Most optimization criteria in

scheduling are based on the completion times of the jobs or jC . The time at which a given

job finishes processing at a given machine is denoted as jiC , and therefore, jjm CC =, . The

most common and widely studied optimization criterion in the flowshop problem is the

makespan or maxC minimization. Minimizing makespan is important in situations where a

batch of jobs is received and it is required to be completed as soon as possible. For example, a

multi-item order submitted by a single customer which needs to be delivered at the earliest

possible time. The makespan criterion also increases the utilization of machines. The paper of

Johnson (1954) is recognized as the pioneering work for the FSP where the specific cases of

two and three machines were studied with the objective of makespan minimization. Since

then, the FSP has attracted considerable attention from researchers and hundreds of papers

have been published in scheduling and related journals. The vast majority of research on

flowshop scheduling deals with makespan minimization and several survey papers have been

published like those of Framinan et al. (2004), Ruiz and Maroto (2005), Hejazi and Saghafian

(2005) and Gupta and Stafford (2006).

As of late, there has been an increasing interest in other objective functions. Sometimes

each job is needed as soon as it is completed. Similarly, the need to reduce Work In Process

(WIP) or in-process inventory has fostered the study of the total flowtime, also referred to as

 3

total completion time. When all jobs are available for processing at time 0 (i.e., no release

times) the flowtime of a job is equal to its completion time and hence, the total flowtime is

equal to ∑
=

n

j
jC

1

. Flowtime minimization leads to a more stable utilization of machines. The

FSP with a total flowtime minimization objective was initially classified as ∑ jCFmn ///

following the four parameter notation A/B/C/D of Conway et al. (1967). Later, it has been

denoted as ∑ jCF // using the three field notation α/β/γ of Graham et al. (1979). In the

most general setting, the FSP has a search space of ��!�� sequences. However, the majority

of the published research deals with a more restricted version, the so called permutation

flowshop scheduling problem of PFSP in which job passing is not allowed and all machines

follow the same sequence of jobs. In this case, the search space reduces to �! sequences. The

PFSP is classified as ∑ jCPmn /// or ∑ jCprmuF // according to Pinedo (2008). We

will refer to this last problem with flowtime objective as PFSP-TFT in short. The PFSP-TFT

was demonstrated to be NP-Hard in the strong sense for two or more machines by Gonzalez

and Sahni (1978).

Initial efforts focused on the development of exact implicit enumeration techniques and

on approximate approaches to obtain good (but not necessarily optimal) solutions. These

solution techniques can be broadly classified into two groups referred to as heuristics and

metaheuristics, respectively. Some initial heuristics for the PFSP were introduced by

Campbell et al. (1970), Gupta (1972) and Miyazaki et al. (1978), to name just a few.

Metaheuristics include many different approaches, like genetic algorithms (Tang and Liu

(2002)), simulated annealing (Varadharajan and Rajendran (2005)), differential evolution (Pan

et al. (2008)) and many others. A metaheuristic method usually obtains better solutions than

heuristic algorithms but normally at the cost of significantly added CPU time. Heuristics

typically need no more than a few seconds whereas metaheuristics might take several minutes.

This is problematic, especially if there are real time requirements or large scale problems (Li

et al. (2009)). Furthermore, effective and efficient heuristics are still needed in metaheuristic

methods for the initial seed sequence. As a result, heuristics are still essential in the

scheduling community.

 4

This paper focuses on heuristics for the PFSP-TFT. The flowshop literature already

contains some reviews such as Framinan et al. (2005). However, there is room for

improvement: Comparisons have been performed among no more than a few heuristics; the

latest heuristics have not been compared; no common data sets have been used and available

results cannot be easily generalized or are not even reproducible; existing comparisons have

not carried out comprehensive statistical testing. For all these reasons, we provide an up to

date comprehensive review and evaluation of the existing heuristics. From the knowledge

obtained after such evaluation we also present five heuristics for the problem under

consideration. In total we compare 27 heuristics, which are put through comprehensive

computational and statistical testing. The benchmark of choice is given by Taillard (1993).

Our results attest to the fact that the five presented heuristics outperform all heuristics

proposed up to date.

The rest of the paper is organized as follows: In Section 2, the most well-known

heuristics for the PFSP-TFT are reviewed. Section 3 presents the five new heuristics in detail.

A comprehensive comparison of the various heuristics is given in Section 4. Finally, we

conclude the paper in Section 5.

2. Heuristics for the flowshop scheduling problem

Framinan et al. (2005) divided the existing heuristics into two groups: simple and

composite methods. A heuristic commonly consists of one or more of three typical phases,

namely index development, solution construction, and solution improvement. According to

Framinan et al. (2005), the method is regarded as composite if it employs a simple heuristic

for one or more of the three above-mentioned phases (Framinan et al. (2005)). Conversely, it

is regarded as a simple method if no phase contains a heuristic. This distinction is sometimes

not easy to apply for some methods but it represents a simple framework. Our literature

review is therefore divided between simple and composite heuristics.

2.1 Simple heuristics

The CDS heuristic introduced by Campbell et al. (1970) is a simple heuristic for the

 5

PFSP. It is basically an extension of the algorithm of Johnson (1954). The CDS creates

� − 1 problems with of two “virtual” machines, each of them containing some of the

original � machines. Johnson’s algorithm is then applied to the �− 1 problems with two

virtual machines and � − 1 sequences are obtained. The schedule with the minimum

flowtime is selected. The CDS heuristic has a computational complexity of

()nmnnmO log2 + and researchers have typically used CDS as benchmark for comparisons.

Gupta (1972) introduced three simple heuristics, named minimum idle time (MINIT),

minimum completion time (MICOT) and MINIMAX algorithms, and compared the results

against the CDS heuristic providing better results with less computational time. However, it

has to be noted that the maximum instance size tested at that time was really small with just 7

jobs and 20 machines maximum (7×20). Krone and Steiglitz (1974) presented an early

heuristic in which in the first phase, permutation sequences were improved by insertion

movements. In the second phase, job passing was allowed. Miyazaki et al. (1978) also

presented a heuristic but in this case based on the improvement of the sequence by the

interchange of adjacent jobs. Later, Miyazaki and Nishiyama (1980) provided a similar

extension but for the additional consideration of job weights. Ho and Chang (1991) proposed

a heuristic that works by minimizing the idle times between jobs in the m machine case. The

heuristic was evaluated against other existing methods but mainly those proposed for

makespan minimization. Rajendran and Chaudhuri (1992) introduced three simple heuristics

and compared them with those of Gupta (1972), Miyazaki et al. (1978) and the

aforementioned heuristic of Ho and Chang (1991). The results favored the introduced

methods for the studied instances. In a related work, Rajendran and Chaudhuri (1991), the

same authors presented another heuristic that uses a lower bound in the construction phase of

the sequence. The proposed heuristic is applied also to the no-wait problem. No comparisons

against the three heuristics of Rajendran and Chaudhuri (1992) are shown.

The NEH heuristic of Nawaz et al. (1983) is regarded as the best heuristic for the PFSP

with makespan criterion (Taillard (1990), Ruiz and Maroto (2005)). It is based on the idea that

jobs with larger total processing times should be scheduled as early as possible. Consequently,

the heuristic first generates an initial order of jobs with respect to descending sums of their

 6

total processing times. Then a job sequence is constructed by evaluating all the sequences

obtained by inserting a job from this initial order into all the possible positions of the current

partial sequence. The NEH heuristic evaluates []12/)1(−+nn sequences and has a

complexity of ()mnO 3 for the TFT criterion. Due to its effectiveness, the NEH heuristic has

been inspiring research on the total completion time criterion since its publication. Rajendran

(1993) proposed an insertion heuristic, denoted as Raj, having many similarities with the

NEH heuristic. The heuristic arranges the jobs according to the weighted total processing

times and inserts a job into a restricted subset of all possible positions of the current partial

sequence. According to the author’s results, the proposed heuristic is more efficient than the

methods of Gupta (1972), Miyazaki et al. (1978) and Ho and Chang (1991). Another heuristic

was proposed by Woo and Yim (1998) (denoted as WY in short). Unlike the Raj heuristic,

WY does not require an initial starting job sequence. However, it also has an insertion phase

where a schedule is constructed by inserting all non-scheduled jobs in all possible positions of

the partial sequence. This heuristic is also based on the aforementioned NEH heuristic but has

a higher complexity of ()mnO 4 . The authors concluded that their algorithm outperforms the

adaptation for flowtime minimization of the NEH, CDS and Raj heuristics.

Framinan et al. (2002) investigated the phases of the NEH heuristic and their

contribution to its excellent performance regarding makespan minimization. They proposed to

modify the NEH heuristic in order to accomplish total flowtime criterion, and proved that the

NEH heuristic starting with an initial sequence of jobs sorted by an increasing (instead of

decreasing) sum of processing times performs better than the adaptation of the original NEH

heuristic. It almost equals the WY heuristic in terms of the quality of the solutions but with

smaller computational times. Later, Framinan et al. (2003) further delved into the NEH

initialization and studied 177 different initial orders for the NEH, including some specially

geared towards TFT minimization. Among the proposed methods, a heuristic called B5FT,

consisting of the best of five-tuples among the 177 approaches, is shown to outperform the

RZ heuristic of Rajendran and Ziegler (1997) (to be discussed later) and the WY method

which were regarded as the best constructive heuristics for the problem prior to the year 2000

according to Framinan et al. (2005). Framinan and Leisten (2003) presented another

 7

NEH-based heuristic, referred to as FL, with the same complexity as the WY method. After

the insertion process in the basic NEH heuristic, the obtained partial sequence is improved by

performing a pairwise interchange improvement procedure. If a better result is obtained, the

new partial solution is retained as the current partial sequence. Computational results

indicated that this approach outperformed RZ and WY heuristics. More recently, Laha and

Sarin (2009) have presented a modification of the FL heuristic, denoted as FL-LS. It

implements the iteration of the insertion step of the NEH heuristic by performing job

insertions rather than the pairwise interchanges. The authors proved by numerical experiments

that the modification significantly improves the performance of the FL heuristic while not

affecting its computational complexity.

Ho (1995) presented a sorting-based heuristic that includes an iterated improvement

scheme based on job insertions and pairwise interchanges. The author compared the method

with the heuristics of Rajendran and Chaudhuri (1992) and Raj of Rajendran (1993). In this

case, larger instances of up to 50×20 were tested and the proposed heuristic was shown to be

superior. However, this heuristic seems closer to local search techniques such as simulated

annealing or tabu search rather than to constructive heuristics as its computational effort does

not make it suitable for large problem sizes and/or in those environments where sequencing

decisions are required in a short time (Framinan et al. (2005)).

Other heuristics assign a weight or index to every job and then arrange the sequence by

sorting the jobs according to the assigned index. This idea was exploited by Wang et al.

(1997). The authors presented two heuristic approaches by choosing jobs according to a given

weight or index function and appending them to a current partial sequence. The first one,

named less idle time rule (LIT), focuses on reducing machine idle times, while the second one,

named smallest process distance rule (SPD), focuses on reducing both machine idle times and

job waiting times. The second approach also consists of two heuristics; one is based on the

Euclidean distance measure, while the other is based on the linear distance. The authors did

not compare their heuristics with previous ones. Instead, they compared them against the

lower bound provided by Ahmadi and Bagchi (1990). The heuristics proposed by Wang et al.

(1997) have a computational complexity of ()mnO 2 . The already mentioned RZ heuristic of

 8

Rajendran and Ziegler (1997) consists of two phases. The first phase involves the generation

of a seed sequence according to a priority rule similar to the shortest weighted processing

time, whereas the second phase improves the solution by carrying out a local search based on

the sequential insertion of each job in the seed sequence at each possible different position of

the incumbent partial sequence. The RZ heuristic has a complexity of ()mnO 3 . Comparisons

between the RZ and WY heuristics have been performed by several researchers (Framinan et

al. (2003), Li and Wu (2005)). It was found that the RZ heuristic performs better than the WY

heuristic for small-sized problem instances but the relative performance of the WY heuristic

improves with increasing number of jobs and finally it surpasses the RZ heuristic. In addition,

the effectiveness of the improvement scheme of the RZ heuristic was also demonstrated by

Rajendran and Ziegler (1997), and it has been used as an improvement procedure in several

composite heuristics (Framinan et al. (2005), Li et al. (2009) and Allahverdi and Aldowaisan

(2002)). Li and Wu (2005) have developed an improved RZ heuristic, denoted RZ-LW, where

the authors generate an initial sequence by sorting the jobs in ascending order of the sum of

processing times, and then perform the RZ local search to the solution until no improvement

is found. The performance of RZ-LW is shown to be comparable to that of the Framinan and

Leisten (2003) but needs far less computational time.

Liu and Reeves (2001) proposed a constructive heuristic, referred to as LR that initially

sorts jobs according to some indexes that consider both the machine idle times and the effects

on the completion times of later jobs. The LR heuristic does not fix the number of sequences

to be generated and it is therefore flexible in its computational effort. It can be adjusted

according to the requirements of the problem. The benchmark of Taillard (1993) has been

used to compare the proposed heuristic against the previous ones including Wang et al. (1997),

Ho (1995), Rajendran and Ziegler (1997) and Woo and Yim (1998). The computational results

demonstrated that the LR heuristic is the best performer, especially in large sized problems.

2.2 composite heuristics

Liu and Reeves (2001) proposed an improvement scheme based on job pairwise

exchanges. Starting from an initial sequence, the procedure tries to exchange every job with a

 9

certain number of jobs following it in the sequence. If the best sequence obtained by these

exchanges is better than the current sequence, it is replaced. After all the jobs are tested, the

procedure starts over again from the first job in the sequence. The above procedure is repeated

until no improvement can be found for a round of trials (i.e., a form of local search up to local

optimality). This procedure is known as the forward pairwise exchange (FPE). The reversed

version which checks the exchanges of jobs from right to left in the sequence is called

backward pairwise exchange (BPE). The authors studied the effectiveness of different

combinations of their heuristics with local search, referred to as LR(x)-FPE and LR(x)-BPE,

respectively. The result is that composite methods are more effective than the simple ones at

the expense of additional computation time.

Allahverdi and Aldowaisan (2002) proposed a total of seven composite heuristics by

combining the NEH, WY and RZ methods with local search procedures including FPE with

restart (FPE-R in short) and the local search of the RZ heuristic. The authors compared their

methods (named IH1~IH7) against many of the earlier heuristics like those of Ho (1995),

Wang et al. (1997), Rajendran and Ziegler (1997) and Woo and Yim (1998). The experimental

results indicated that the performance of the heuristic by Ho (1995) is good but

computationally demanding. They also reported that the heuristics by Wang et al. (1997) do

not perform well when compared with the others except the CDS method. The proposed

heuristics outperform all others in terms of solution quality, and IH7 is the best performer.

Framinan and Leisten (2003) proposed an improvement to the IH7 heuristic, called IH7-FL,

by employing the FL heuristic as an initial solution instead of the WY heuristic as in the

original IH7. Later, Framinan et al. (2005) presented a comprehensive comparison of recent

heuristics for the problem. A total of eight heuristics were compared and a number of

composite methods were also presented. One of these new composite heuristics, named

C2-FL, is observed to produce better solutions than those of the best method from the earlier

study (Framinan and Leisten (2003)).

More recently, Li et al. (2009) presented three composite heuristics, denoted as IC1, IC2,

and IC3, respectively, by integrating FPE, FPE-R and RZ local search with an effective

iterative method where the procedure is repeated until no better solution is found or a given

stopping criterion is reached. Computational results show that the three proposed algorithms

 10

outperform the existing best composite ones including the C1-FL and C2-FL of Framinan et al.

(2005) and IH7-FL of Framinan and Leisten (2003). Among the presented heuristics, IC3

performs best in terms of solution quality but needs much more CPU time than both IC1 and

IC2. In a related work (Li and Wang (2006)), the authors presented two composite heuristics,

named ECH1 and ECH2, which were similar to the heuristics IC1, IC2 and IC3.

A summary of the different heuristics reviewed in chronological order is reported in

Table 1.

Table 1. Summary of heuristics for flowshop scheduling with total flowtime criterion.
Year Authors Acronym Heuristic type Comments
1970 Campbell et al. CDS Simple Based on Johnson’s rule
1972 Gupta MINIT Simple Based on job pair exchange

 MICOT Based on job pair exchange
 MINIMAX Based on Johnson’s rule

1974 Krone and Steiglitz Simple Based on insertion improvement and
job passing

1978 Miyazaki et al. Simple Based on interchange of adjacent jobs
1980 Miyazaki and Nishiyama Simple Based on interchange of adjacent jobs

and job weights
1991 Ho and Chang Simple Minimizing the idle time between jobs
1991 Rajendran and Chaudhuri Simple Based on lower bound
1992 Rajendran and Chaudhuri Simple Considering a job’s impact to its

immediate successor
1993 Rajendran Raj Simple Based on NEH
1995 Ho Simple Based on sorting
1997 Wang et al. LIT Simple Assigning a weight to every job

 SPD1 Simple Assigning a weight to every job
 SPD2 Simple Assigning a weight to every job

1997 Rajendran and Ziegler RZ Simple Assigning a weight to every job and
performing RZ local search

1998 Woo and Yim WY Simple Based on NEH
2001 Liu and Reeves LR(x) Simple Assigning a weight to every job

 LR(x)-FBE Composite Based on LR(x) and FPE
 LR(x)-BPE composite Based on LR(x) and BPE

2002 Framinan et al. NEH-flowtime Simple Based on NEH
2002 Allahverdi and Aldowaisan IH1 Composite Base on NEH and FPE-R

 IH2 Composite Based on NEH
 IH3 Composite Consisting of IH2 and FPE-R
 IH4 Composite Consisting of WY and FPE-R
 IH5 Composite Consisting of RZ and FPE-R
 IH6 Composite Consisting of WY and RZ local search
 IH7 Composite Consisting of IH6 and FPE-R

2003 Framinan et al. B5FT Simple Based on NEH
2003 Framinan and Leisten FL Simple Based on NEH and interchange

 IH7-FL Composite consisting of FL, RZ and FPE-R
2005 Framinan et al. C1-FL Composite Based on LR and FL

 C2-FL Composite Based on C1, RZ and FIE-R.
2005 Li and Wu RZ-LW Simple Based on iterated RZ local search
2006 Li and Wang ECH1 Composite Similar to IC3

 ECH2 Composite Similar to IC2
2009 Li et al IC1 Composite Consisting of LR and iterated RZ local

search.
 IC2 Composite Consisting of LR, iterated RZ and FPE.
 IC3 Composite Consisting of LR, iterated RZ and

FPE-R
2009 Laha and Sarin FL-LS Simple Based on NEH and Insertion

 11

3. Proposed heuristics

The previous evaluation has prompted us to test some new composite heuristics. We

present five new high performing methods. The first one is a simple procedure which

combines the LR heuristic of Liu and Reeves (2001) and the NEH algorithm. The others are

composite heuristics based on this first one and local search methods. More specifically, the

RZ local search of Rajendran and Ziegler (1997) and a Variable Neighborhood Search scheme

(VNS) based on the work of Mladenovic and Hansen (1997).

3.1 The presented LR-NEH(x) heuristic

3.1.1 The LR(x) heuristic in detail

The LR(x) heuristic developed by Liu and Reeves (2001) constructs x different

sequences by appending jobs one by one using an index function. The sequence with the

minimum flowtime is selected as the final solution. The index function consists of two terms:

The weighted total machine idle time and the artificial total flowtime. Let π be a partial

sequence formed by k already scheduled jobs, and U be the set of unscheduled jobs, i.e.,

those not yet in π . A job Uj ∈ is selected and appended to π according to an index

function kj ,ξ . The weighted total machine idle time between the processing of the job

occupying the kth position of the sequence and job j is computed as follows:

{ }
() ()∑

=

−

−−+
−⋅

=
m

i

kiji
kj nimki

CCm
IT

2

][,,1
, 2

max
 (1)

where][, kiC is the completion time of the job in the thk position of π at machine i .

The other jobs in U are considered as a single artificial job λ . Its processing time is

the average of the processing times of these jobs. Job λ is appended to job j and its

completion time λ,iC is calculated. Then the total flowtime of jobs j and λ , kjAT , , is

given below:

λ,,, mjmkj CCAT += (2)

 12

And the index function kj,ξ is finally defined as follows:

() kjkjkj ATITkn ,,, 2 +−−=ξ (3)

The index function kj,ξ is calculated for all jobs in U . The job with the minimum

value of this index function is selected, and ties are broken by selecting the one with the

minimum weighted total machine idle time kjIT , .

Finally, the procedure of LR(x) is outlined in Figure 1.

Procedure LR(x)

Generate a job sequence },...,,{ 21 nαααα = by ascending 0,jξ value (break ties

according to ascending 0,jIT value).

for 1:=l to x do %(generate x sequences)

},{: l
l απ = }{: lJU α−= .

for 2:=k to n do %(construct a complete sequence)

Take the job j with minimum kj,ξ value (break ties according to minimum kjIT ,

value) from U and place it at the end of lπ . Remove job j from U .

endfor

endfor

return the sequence },...,,{ 21 xππππ ∈ with the minimum total flowtime.

Figure 1. The LR(x) heuristic.

)(xLR does not fix the number of sequences to be generated, and it can be adjusted to

the requirements of the problem.

3.1.2 The NEH heuristic

The NEH heuristic of Nawaz et al. (1983) was originally designed for the FPSP with the

objective of minimizing the makespan. The first step consists of ordering jobs according to

descending total processing times. The job with the maximum total processing time is placed

first. All other jobs are inserted in all possible positions of the incumbent sequence and finally

placed in the position with the lowest partial objective value. The procedure of NEH is

described in Figure 2.

Procedure NEH

 13

Generate a job sequence },...,,{ 21 nββββ = by descending order of total processing times.

}{: 1βπ =

for 2:=k to n do %(construct a complete sequence)

Take job kβ from β and insert it in all the k possible positions of π .

Place job kβ in π at the tested position resulting in the lowest objective value.

endfor

return π

Figure 2. The NEH heuristic.

Framinan et al. (2002) adapted the NEH heuristic for total flowtime criterion, and found

that ranking jobs according to their ascending total processing times performs much better

than descending total processing times. As a result, we also employ this improved version. As

we can see, the main loop of the NEH can be regarded as an insertion local search around the

seed sequence β . We denote this local search as)(βNEH for our other composite

heuristics.

3.1.3 The proposed LR-NEH(x) heuristic

The first presented heuristic is denoted as LR-NEH(x). It uses LR(x) and NEH to

generate sequences. More specifically, we first generate a partial sequence with d jobs using

the LR(x), and then the remaining n-d jobs are inserted into the partial sequence using the

NEH heuristic. The relative positions of jobs generated by the LR(x) are not changed as the

algorithm progresses. The procedure of the proposed LR-NEH(x) is outlined in Figure 3.

Procedure LR-NEH(x)

Generate a job sequence },...,,{ 21 nαααα = by ascending 0,jξ value (break ties

according to ascending 0,jIT value).

for 1:=l to x do %(generate x sequences)

}{: l
l απ = , }{: lJU α−= .

for 2:=k to d do %(construct a partial sequence with d jobs)

Take the job j with minimum kj,ξ value (break ties according to minimum kjIT ,

value) from U and place it at the end of lπ . Remove job j from U .

endfor

% (NEH heuristic)

Generate a partial sequence },...,,{ 21 dn−= ββββ (,Uj ∈β dnj −= ,...,2,1) by

 14

ascending order of total processing times.

for 1:=k to dn − do %(construct a complete sequence)

Take job kβ

from β and insert it in all the dk + possible positions of lπ .

Place job kβ in lπ at the tested position resulting in the lowest total flowtime.

endfor

endfor

return the sequence },...,,{ 21 lππππ ∈ with the minimum total flowtime.

Figure 3. The proposed LR-NEH(x) heuristic.

LR-NEH(x) has a single parameter d , which is basically the number of jobs after which

NEH kicks in. Initial experiments showed that the best value was 43nd = . However, we

found that for reasonable values, LR-NEH(x) is robust as regards this parameter. We leave for

a further study a deeper examination of the effect of this parameter.

3.2 Composite heuristic PR1(x)

3.2.1 Iterated RZ local search

The improvement procedure presented by Rajendran and Ziegler (1997) is a typical local

search based on an insertion neighborhood, which sequentially inserts each job in the seed

sequence in all possible positions in the incumbent sequence and is, as mentioned, similar to

the NEH heuristic. Let },...,,{ 21
s
n

sss ππππ = be a seed sequence, and π be the incumbent

sequence. The procedure of the RZ local search is given in Figure 4.

Procedure)(πRZ

ππ =:s

for 1:=i to n do

ππ =:'

Remove job
s
iπ from 'π .

Take job
s
iπ and insert it in all possible positions of 'π except for its original position.

Place job
s
iπ in 'π at the position resulting in the lowest total flowtime.

if)()'(ππ TFTTFT < then ': ππ = %()(πTFT denotes the total flowtime of π)

endfor

return π

Figure 4. The RZ local search.

 15

The above RZ procedure is a one-pass local search process. The process can be iterated

while improvements are found and local optimality is reached. This iterated process can find

better results but at the expense of more computational effort. Therefore, a trade-off between

effectiveness and efficiency arises. We denote the iterated RZ procedure as iRZ in short.

3.2.2 The proposed composite heuristic PR1(x)

Based on the LR-NEH(x) heuristic and the iRZ local search, we propose a composite

heuristic PR1(x). PR1(x) improves each of the solutions generated by LR-NEH(x) using iRZ.

To save computational effort, we terminate the iteration if the CPU time is longer than

mn01.0 seconds. The procedure of PR1(x) is outlined in Figure 5.

Procedure PR1(x)

Generate a job sequence },...,,{ 21 nαααα = by ascending 0,jξ value (break ties

according to ascending 0,jIT value).

1:=l

repeat

}{: l
l απ = , }{: lJU α−= .

for 2:=k to d do %(construct a partial sequence with d jobs)

Take the job j with minimum kj,ξ value (break ties according to minimum kjIT ,

value) from U and place it at the end of lπ
.
. Remove job j from U .

endfor

Generate a partial sequence },...,,{ 21 dn−= ββββ (,Uj ∈β dnj −= ,...,2,1) by

ascending order of total processing times.

for 1:=k to dn − do %(construct a complete sequence)

Take job kβ

from β and insert it in all the dk + possible positions of lπ .

Place job kβ in lπ at the tested position resulting in the lowest total flowtime.

endfor

)(: ll iRZ ππ = %(perform iRZ local search to lπ)

1: += ll

until xl > or mnCPUTime 01.0> seconds

return the sequence },...,,{ 21 lππππ ∈ with the minimum total flowtime.

Figure 5. The PR1(x) heuristic.

3.3 Composite heuristic PR2(x)

 16

The variable neighborhood search (VNS) is an effective metaheuristic presented by

Mladenovic and Hansen (1997). Tasgetiren et al. (2007) proposed a local search based on the

insertion+interchange variant of the VNS method and embedded it in a particle swarm

optimization algorithm to solve the permutation flowshop with both makespan and total

flowtime criterion. As a result, it seems promising to employ VNS in the heuristics. Let π

be an incumbent job permutation to improve, and maxl be the maximum number of iterations.

The VNS is detailed in Figure 6.

Procedure)(πVNS

for 1:=l to maxl do

true=:improved

repeat

πφ =:

if true=improved then Perform a pairwise interchange movement in φ .

else Perform an insertion movement in φ .

if)()(πφ TFTTFT ≤ then φπ =: , true=:improved

else false=:improved

until false=improved

endfor

return π

Figure 6. The VNS local search.

In the above VNS procedure, the pairwise interchange movement randomly selects two

jobs in the sequence φ and exchanges their positions. The insertion movement removes a

random job from its original position and inserts it in another randomly selected position. In

order to have a sufficient exploration of both interchange and insert neighborhoods, we set

maxl to 22n . We simply change the iRZ of PR1(x) by VNS, resulting in the PR2(x) heuristic.

3.4 Composite heuristics PR3(x) and PR4(x)

The composite heuristic PR3(x) first generates an initial solution using LR-NEH(x), and

then improves the solution using a different improvement procedure. The procedure of PR3(x)

is given in Figure 7.

Procedure PR3(x)

 17

)(NEHLR: y−=π %(generate an initial solution)

ππ =:b , 1:=l

repeat %(improvement procedure)

)(:' ππ iRZ= % (iRZ local search)

if)()'(bTFTTFT ππ < then ': ππ =b .

)'(:" ππ NEH= % (NEH local search)

if)()"(bTFTTFT ππ < then ": ππ =b

)"(: ππ NEH= % (NEH local search)

if)()(bTFTTFT ππ < then ππ =:b

1: += ll

until xl > or mnCPUTime 01.0> seconds

return bπ

Figure. 7. The PR3(x) heuristic.

In the above procedure, the parameter y for the LR-NEH(y) initialization is fixed at 10.

The final proposed heuristic PR4(x) uses the VNS local search as an improvement procedure

instead of the iRZ local search of PR3(x).

4. Computational and statistical experiments

In this section we conduct a comprehensive computational and statistical evaluation of

most existing high-performing heuristics as well as of the presented methods. The tested

heuristics comprise 14 simple and 13 composite heuristics as follows:

Simple heuristics

1. Raj heuristic of Rajendran (1993),

2-4. LIT, SPD1 and SPD2 heuristics by Wang et al. (1997),

5. RZ heuristic of Rajendran and Ziegler (1997),

6. WY heuristic by Woo and Yim (1998),

7-9. LR(1), LR(n/m) and LR(n) of Liu and Reeves (2001),

10. NEH heuristic modified by Framinan et al. (2002),

11. FL heuristic of Framinan and Leisten (2003),

12. RZ-LW heuristic of Li and Wu (2005),

13. FL-LS heuristic by Laha and Sarin (2009),

14. Proposed LR-NEH(x) heuristic.

 18

Composite heuristics

15-16. LR-FPE and LR-BPE of Liu and Reeves (2001),

17. IH7 heuristic of Allahverdi and Aldowaisan (2002),

18. IH7-FL heuristic of Framinan and Leisten (2003),

19-20. Composite heuristics C1-FL and C2-FL of Framinan et al. (2005),

21-23. IC1, IC2, IC3 heuristics of Li et al. (2009),

24-27. The presented composite heuristics PR1(x), PR2(x), PR3(x) and PR4(x).

All other reviewed heuristics from Section 2 were clearly outperformed by the above

heuristics in previous research and are not tested in this work. In addition, the general

flowtime computing method presented by Li et al. (2006) is employed to save computation

time in all heuristics that allow it.

The test bed presented by Taillard (1993) is a well-known set for the PFSP with

makespan criterion, which consists of a total of 120 instances of various sizes, having 20, 50,

100, 200, and 500 jobs and 5, 10, or 20 machines. These instances are divided into 12 subsets,

each of which consists of 10 instances with the same size. These subsets are denoted

according to their sizes: 20×5, 20×10, 20×20, 50×5, 50×10, 50×20, 100×5, 100×10, 100×20,

200×10, 200×20 and 500×20. Recently, an increasing number of researchers have used this

test bed to evaluate their algorithms dealing with total or mean flowtime criterion (Liu and

Reeves (2001), Li et al. (2006), Li and Wang (2006), Tasgetiren et al. (2007), Jarboui et al.

(2009), Dong et al. (2009), Li et al. (2009) and Zhang et al. (2009), possibly among many

others). Thus, we evaluate the above mentioned heuristics based on this test bed, and the

performance measure is the relative percentage increase (RPI) as follows:

100/)()(×−= ∗∗ ccccRPI ii (4)

where ic is the solution obtained by the thi heuristic, and ∗c is the best solution found

by any of the heuristics.

All methods have been coded in Visual C++ 6.0 and run on a cluster of 30 blade severs

each one with two Intel XEON 5254 processors running at 2.5 GHz with 16 GB of RAM

memory. Each processor has four cores and the experiments are carried out in virtualized

Windows XP machines, each one with one virtualized processor and 2 GB of RAM memory.

In order to better estimate the performance and elapsed CPU time of the compared algorithms,

a total of 5 replications for each instance are carried out. Results are then averaged across the

 19

5 replications for each instance. In our five proposed heuristics LR-NEH(x), PR1(x), PR2(x),

PR3(x) and PR4(x), x is tested at three values: 5, 10 and 15. This gives a total of 37 heuristics

which are run 5 times each for the 120 instances of Taillard for a grand total of 22,200 results.

The average RPI values, grouped for each subset (600 results averaged at each cell) are given

in Tables 2 and 3 for simple and composite heuristics, respectively. Both types of heuristics

are summarized in Table 4, ordered by RPI. All CPU times are given in seconds.

Table 2. Results of the simple heuristics.
 Raj LIT SPD1 SPD2 RZ WY LR(1) LR(n/m)

Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time
20×5 5.80 0.00 9.40 0.00 18.85 0.00 19.35 0.00 2.90 0.00 3.03 0.00 2.74 0.00 2.55 0.00
20×10 4.61 0.00 11.23 0.00 15.56 0.00 14.37 0.00 1.90 0.00 2.80 0.00 3.77 0.00 3.42 0.00
20×20 4.55 0.00 6.95 0.00 10.23 0.00 10.07 0.00 1.97 0.00 2.96 0.00 3.21 0.00 3.21 0.00
50×5 4.51 0.00 7.69 0.00 21.01 0.00 21.56 0.00 2.70 0.00 3.70 0.01 2.20 0.00 1.56 0.01
50×10 6.28 0.00 9.45 0.01 15.96 0.01 14.24 0.00 3.22 0.01 3.39 0.02 5.26 0.00 2.97 0.01
50×20 5.88 0.00 10.19 0.02 11.57 0.01 10.74 0.00 2.94 0.01 3.22 0.04 3.85 0.01 3.40 0.01
100×5 4.09 0.00 5.42 0.03 23.05 0.03 23.31 0.00 2.57 0.02 2.32 0.17 1.25 0.01 0.63 0.17
100×10 4.73 0.00 8.04 0.06 20.98 0.05 19.55 0.00 3.26 0.05 2.78 0.35 2.89 0.01 2.03 0.14
100×20 6.03 0.01 8.19 0.14 12.41 0.11 10.22 0.00 2.72 0.09 3.03 0.68 4.28 0.03 3.36 0.14
200×10 4.64 0.03 6.39 0.54 22.25 0.46 21.50 0.10 2.77 0.33 2.56 6.03 2.47 0.10 1.39 1.99
200×20 4.98 0.06 9.14 1.01 17.80 0.90 14.95 5.82 2.51 0.70 2.35 11.72 3.81 0.20 2.00 2.00
500×20 4.21 0.81 7.03 15.28 18.76 12.61 18.87 11.29 2.34 10.01 1.79 483.79 1.79 3.10 0.94 77.23
Average 5.02 0.08 8.26 1.42 17.37 1.18 16.56 1.43 2.65 0.94 2.83 41.90 3.13 0.29 2.29 6.81

 LR(n) NEH FL RZ-LW FL-LS LR-NEH(5) LR-NEH(10) LR-NEH(15)
Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time

20×5 2.44 0.00 5.05 0.00 2.49 0.00 1.54 0.00 1.74 0.00 2.26 0.00 2.26 0.00 2.26 0.00
20×10 3.35 0.00 4.14 0.00 2.40 0.00 1.43 0.00 1.25 0.00 2.51 0.00 2.51 0.00 2.51 0.00
20×20 2.42 0.01 3.88 0.00 2.44 0.00 1.07 0.00 1.04 0.01 2.01 0.00 1.89 0.00 1.89 0.01
50×5 1.56 0.05 4.25 0.00 2.02 0.03 1.63 0.01 1.37 0.04 1.33 0.01 1.33 0.01 1.33 0.02
50×10 2.81 0.10 5.08 0.00 2.54 0.05 1.44 0.04 1.61 0.08 2.48 0.01 2.43 0.02 2.43 0.04
50×20 3.07 0.23 4.39 0.01 2.01 0.10 1.63 0.05 1.28 0.17 2.67 0.02 2.43 0.05 2.43 0.07
100×5 0.63 0.83 3.18 0.01 1.20 0.31 1.69 0.10 1.12 0.52 1.35 0.04 1.25 0.07 1.25 0.11
100×10 2.00 1.37 4.54 0.02 2.41 0.73 1.09 0.28 1.12 1.24 1.67 0.08 1.54 0.16 1.54 0.24
100×20 2.67 2.76 4.48 0.04 2.04 1.47 0.87 0.57 0.91 2.59 2.44 0.17 2.16 0.34 1.98 0.52
200×10 1.39 19.85 3.16 0.14 1.39 10.16 1.40 2.42 1.11 18.38 1.03 0.59 0.96 1.16 0.95 1.74
200×20 1.94 39.98 3.88 0.29 1.62 20.91 0.80 6.26 1.32 38.61 1.57 1.27 1.52 2.57 1.48 3.74
500×20 0.82 1544.32 2.32 4.00 1.29 701.12 0.88 114.84 0.73 1381.23 0.80 17.66 0.68 35.24 0.65 52.85
Average 2.09 134.12 4.03 0.37 1.99 61.24 1.29 10.38 1.22 120.24 1.84 1.65 1.75 3.30 1.72 4.94

 20

Table 3. Results of the composite heuristics.
 LR-FPE LR-BPE IH7 IH7-FL C1-FL C2-FL IC1 IC2 IC3 PR1(5) PR1(10)

Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time
20×5 1.30 0.00 1.40 0.00 1.31 0.00 1.66 0.00 1.68 0.00 1.22 0.00 1.00 0.00 0.66 0.00 0.66 0.00 0.57 0.00 0.53 0.01
20×10 1.91 0.00 1.91 0.00 1.45 0.00 1.45 0.00 1.74 0.00 0.90 0.00 1.30 0.00 1.07 0.00 1.06 0.00 0.84 0.01 0.63 0.01
20×20 1.60 0.00 2.07 0.00 1.24 0.00 1.34 0.00 2.32 0.00 1.12 0.01 1.29 0.00 1.35 0.00 1.32 0.00 0.56 0.01 0.40 0.03
50×5 0.72 0.02 0.83 0.02 1.61 0.03 1.35 0.03 1.67 0.03 1.04 0.05 0.84 0.02 0.61 0.03 0.62 0.03 0.51 0.05 0.46 0.11
50×10 1.37 0.03 1.51 0.02 1.84 0.04 1.63 0.07 2.27 0.06 1.46 0.09 1.10 0.04 0.87 0.06 0.82 0.07 0.50 0.14 0.30 0.27
50×20 1.70 0.04 2.12 0.05 1.78 0.08 1.33 0.13 2.63 0.11 1.36 0.17 1.05 0.07 0.77 0.12 0.68 0.15 0.77 0.27 0.44 0.54
100×5 0.34 0.22 0.33 0.21 1.01 0.55 0.71 0.47 0.94 0.43 0.67 0.54 0.30 0.24 0.14 0.30 0.18 0.38 0.56 0.43 0.47 0.90
100×10 0.87 0.29 0.87 0.29 1.52 0.81 1.71 0.91 1.80 0.85 0.74 1.33 0.69 0.36 0.52 0.57 0.48 1.02 0.53 1.06 0.46 2.24
100×20 1.86 0.40 2.04 0.51 1.49 1.40 1.44 1.77 1.98 1.57 1.01 2.90 1.01 0.61 0.92 1.13 0.77 1.91 0.37 2.81 0.26 5.53
200×10 0.59 3.08 0.53 3.10 1.41 15.77 0.91 14.28 1.19 11.48 0.60 20.66 0.52 3.80 0.33 6.29 0.29 14.29 0.22 10.10 0.21 19.35
200×20 0.97 4.63 0.80 5.07 1.32 24.18 1.19 25.56 1.60 22.22 0.82 49.46 0.48 6.50 0.47 11.08 0.43 21.86 0.18 26.17 0.18 43.16
500×20 0.39 115.48 0.38 126.84 1.13 1006.51 0.89 989.50 0.82 730.96 0.40 1583.46 0.20 161.33 0.17 219.79 0.14 887.24 0.34 169.30 0.34 169.30
Average 1.14 10.35 1.23 11.34 1.43 87.45 1.30 86.06 1.72 63.98 0.95 138.22 0.81 14.41 0.66 19.95 0.62 77.25 0.50 17.53 0.39 20.12

 PR1(15) PR2(5) PR2(10) PR2(15) PR3(5) PR3(10) PR3(15) PR4(5) PR4(10) PR4(15)

Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time
20×5 0.37 0.01 0.56 0.01 0.45 0.02 0.37 0.02 0.88 0.00 0.85 0.01 0.84 0.01 0.64 0.01 0.46 0.02 0.40 0.02
20×10 0.48 0.02 0.86 0.02 0.62 0.03 0.52 0.05 0.68 0.01 0.68 0.01 0.68 0.02 0.75 0.02 0.57 0.03 0.49 0.04
20×20 0.31 0.04 0.56 0.03 0.45 0.06 0.31 0.08 0.65 0.02 0.57 0.02 0.57 0.04 0.57 0.03 0.45 0.05 0.40 0.07
50×5 0.45 0.16 0.33 0.10 0.30 0.20 0.30 0.30 0.61 0.07 0.57 0.14 0.57 0.20 0.45 0.12 0.39 0.22 0.34 0.33
50×10 0.24 0.39 0.68 0.23 0.55 0.45 0.45 0.67 0.59 0.17 0.43 0.30 0.42 0.44 0.87 0.27 0.69 0.51 0.58 0.75
50×20 0.38 0.83 0.86 0.44 0.63 0.90 0.54 1.34 0.50 0.32 0.39 0.62 0.32 0.92 0.77 0.51 0.64 0.98 0.56 1.44
100×5 0.43 1.37 0.27 0.64 0.22 1.28 0.21 1.92 0.56 0.58 0.50 1.14 0.49 1.66 0.33 0.78 0.30 1.49 0.27 2.20
100×10 0.41 3.41 0.39 1.58 0.36 3.16 0.33 4.73 0.43 1.49 0.40 2.86 0.36 4.24 0.48 1.88 0.46 3.61 0.44 5.35
100×20 0.20 8.22 0.65 3.38 0.48 6.76 0.40 10.14 0.26 3.18 0.25 6.11 0.22 9.01 0.72 3.93 0.66 7.56 0.60 11.17
200×10 0.19 21.18 0.16 11.11 0.14 21.18 0.14 21.25 0.28 13.11 0.26 21.22 0.26 21.18 0.21 13.34 0.21 20.96 0.21 20.96
200×20 0.18 43.14 0.49 24.19 0.39 43.44 0.39 43.44 0.42 25.78 0.42 43.12 0.42 43.14 0.44 28.37 0.43 43.98 0.43 44.00
500×20 0.34 172.36 0.33 126.74 0.33 126.74 0.33 126.78 0.21 130.25 0.21 132.19 0.21 128.32 0.19 110.61 0.19 110.61 0.19 113.38
Average 0.33 20.93 0.51 14.04 0.41 17.02 0.36 17.56 0.51 14.58 0.46 17.31 0.45 17.43 0.54 13.32 0.45 15.84 0.41 16.64

 21

Table 4. Summary of all heuristics, ordered by RPI.
Algorithm RPI Time Type PARETO # Algorithm RPI Time Type PARETO
1 PR1(15) 0.33 20.93 Composite 0 20 RZ-LW 1.29 10.38 Simple 1
2 PR2(15) 0.36 17.56 Composite 0 21 IH7-FL 1.30 86.06 Composite 18
3 PR1(10) 0.39 20.12 Composite 1 22 IH7 1.43 87.45 Composite 19
4 PR2(10) 0.41 17.02 Composite 1 23 C1-FL 1.72 63.98 Composite 17
5 PR4(15) 0.41 16.64 Composite 0 24 LR-NEH(15) 1.72 4.94 Simple 0
6 PR3(15) 0.45 17.43 Composite 2 25 LR-NEH(10) 1.75 3.30 Simple 0
7 PR4(10) 0.45 15.84 Composite 0 26 LR-NEH(5) 1.84 1.65 Simple 0
8 PR3(10) 0.46 17.31 Composite 3 27 FL 1.99 61.24 Simple 20
9 PR1(5) 0.50 17.53 Composite 5 28 LR(n) 2.09 134.12 Simple 26
10 PR3(5) 0.51 14.58 Composite 0 29 LR(n/m) 2.29 6.81 Simple 3
11 PR2(5) 0.51 14.04 Composite 0 30 RZ 2.65 0.94 Simple 0
12 PR4(5) 0.53 13.32 Composite 0 31 WY 2.83 41.90 Simple 22
13 IC3 0.62 77.25 Composite 12 32 LR(1) 3.13 0.29 Simple 0
14 IC2 0.66 19.95 Composite 10 33 NEH 4.03 0.37 Simple 1
15 IC1 0.81 14.41 Composite 2 34 Raj 5.02 0.08 Simple 0
16 C2-FL 0.95 138.22 Composite 15 35 LIT 8.26 1.42 Simple 4
17 LR-FPE 1.14 10.35 Composite 0 36 SPD2 16.56 1.43 Simple 5
18 FL-LS 1.22 120.24 Simple 16 37 SPD1 17.37 1.18 Simple 4
19 LR-BPE 1.23 11.34 Composite 1

It can be seen that simple heuristics clearly perform worse than the composite ones

except FL-LS and RZ-LW, which produce slightly smaller RPI values than IH7, IH7-FL and

C1-FL. Among the simple heuristics, the worst performing algorithms are the three heuristics

presented by Wang et al (1997), with SPD1 and SPD2 being more than 15% over the best

solution found by any of the compared methods. The best simple heuristic is FL-LS, which

produces the smallest mean RPI value of 1.22%. However, this is a very costly method, which

needs, on average, 120.24 seconds. As a matter of fact, the column “PARETO” in Table 4

indicates the number of heuristics that Pareto-dominate a given one as regards average RPI

and average CPU time. For FL-LS we see that there are 16 methods that dominate it: From

the 17 heuristics with lower RPI values than FL-LS, all of them, except C2-FL, need less

CPU time and therefore, dominate, in a Pareto sense, FL-LS.

The presented LR-NEH(x) heuristic yields a much smaller overall RPI value than both

the NEH and LR heuristics for x=5, 10 or 15. Additionally, the proposed LR-NEH(x) is not

dominated, i.e., it represents the best trade-off between CPU time and RPI among the simple

heuristics. Raj is the fastest method, needing barely a tenth of a second, on average.

Among existing composite heuristics from the literature, IC3 is obviously the best

performer producing 0.62% RPI value within 77.25 seconds. However, all presented

composite heuristics at all tested x values result in lower RPI values at a lower computational

cost.

Figure 8 shows a scatter plot of average RPI versus average CPU time for the best

performing methods. Pareto dominating heuristics are depicted in red (boldface in Table 4).

 22

Figure. 8. Average RPI versus average CPU time for the heuristics. Pareto dominant

methods shown in red.

Previous tables and plots contain average results. We conduct comprehensive statistical

analyses to ascertain if the observed differences in RPI values are indeed statistically

significant. Design of experiments (DOE) and analyses of variance (ANOVA) (Montgomery

(2008)) are conducted for all results.

We consider all 27 tested heuristics. Recall that the proposed methods are tested with

three values of x, namely 5, 10 and 15. As a result, we have 37 methods, all of them present in

Table 4. Five replicates and 120 instances are tested which recall results in 22,200 treatments.

In Taillard’s benchmark, not all combinations of n and m are present and therefore, n and m

are not orthogonal. In order to study these two factors, we define a factor called type of

instance “Type” which has 12 levels, 1 for 20×5, 2 for 20×10 and so on until 12 for 500×20.

The replicate (note that all methods are run five independent times) is a witness factor that is

shown to be statistically not significant with a p-value close to 1.0. This factor is then

removed after validating the experiment. As a result, the initial ANOVA has two factors,

Algorithm, with 37 levels, and Type of instance, at 12 levels. The response variable is the RPI.

ANOVA is a parametric statistical tool and there are three main assumptions: normality,

homogeneity of variance (homoscedasticity) and independence of the residuals. We carefully

PR1(15)

PR2(15)

PR1(10)

PR2(10)
PR4(15)

PR3(15)

PR4(10)

PR3(10)

PR1(5)

PR3(5)

PR2(5)

PR4(5)

IC2

IC1

LR-FPE
LR-BPE

RZ-LW

LR-NEH(15)

LR-NEH(10)

LR-NEH(5)

LR(n/m)

RZ
LR(1) NEH Raj

0

5

10

15

20

0 1 2 3 4 5

C
P

U
 T

im
e

RPI

 23

checked all three assumptions and the results showed that no major departures were found.

The only minor problem is a slight small departure from normality. However, as is well

known, ANOVA is robust with respect to the normality assumption. The result of the ANOVA

is that the two factors as well as the interaction between the two are statistically significant

with p-values very close to 0. The most significant factor is the Algorithm with an F-Ratio

close to 5,000. An initial means plot with 99% confidence level intervals (not shown due to

space limitations) clearly shows that the following heuristics are statistically different (from

worst to best): SPD1, SPD2, LIT, Raj, NEH and LR(1). Note that all these methods have

average RPI over 3%. They are statistically worse than all other heuristics and are therefore

disregarded from the ANOVA and from following plots (this in turn also helps with the

normality assumption). We employ the most restrictive technique for calculating the

confidence intervals around the means: the Tukey's Honest Significant Difference (HSD). If

the intervals around two plotted means overlap, it means that there are no statistically

significant differences between the means at the given confidence level. The means plot with

the remaining 31 heuristics is given in Figure 9.

Figure. 9. Means plot for the RPI with Tukey's Honest Significant Difference (HSD) 99%

confidence intervals for the 31 best performing heuristics.

It can be observed from Figure 9 that heuristics can be divided into 14 homogenous

P
R
1
(1
5
)

P
R
2
(1
5
)

P
R
1
(1
0
)

P
R
2
(1
0
)

P
R
4
(1
5
)

P
R
3
(1
5
)

P
R
4
(1
0
)

P
R
3
(1
0
)

P
R
1
(5
)

P
R
3
(5
)

P
R
2
(5
)

P
R
4
(5
)

IC
3

IC
2

IC
1

C
2
-F
L

L
R
-F
P
E

F
L
-L
S

L
R
-B
P
E

R
Z
-L
W

IH
7
-F
L

IH
7

C
1
-F
L

L
R
-N
E
H
(1
5
)

L
R
-N
E
H
(1
0
)

L
R
-N
E
H
(5
)

F
L

L
R
(n
)

L
R
(n
/m
)

R
Z

W
Y

R
P
I

 24

groups where no significant differences can be found within each group. The last three

heuristics are each in a group, i.e., from worst to best, WY, RZ and LR(n/m). Group 11 is

formed by methods FL and LR(n). In Figure 9 we see how the confidence intervals for the

average RPI of these two methods overlap. All groups are formed in a similar way. Figure 9

also shows, in red, the intervals from those Pareto non-dominated heuristics.

It is shown that our proposed methods, from PR1 to PR4, in all three values of x, are

better than all other heuristics. Statistically speaking, from PR1(15) to PR3(10) we have

significant differences with IC3, the best competing method from the literature. It has to be

pointed out that IC3 needs, on average, more than 77 seconds of CPU time while PR1(15)

needs less than 21 seconds on average.

Of course, all previous statistical analyses depict the overall picture of the heuristics

across all instances. The results vary slightly from one instance size to another. The

interaction between the type of instance and the heuristics is relatively weak (still statistically

significant but with a rather small F-Ratio). An example of this type of interaction is given in

Figure 10. Only four heuristics are shown for clarity.

Figure. 10. Means plot for the RPI with Tukey's Honest Significant Difference (HSD) 99%

confidence intervals for the interaction between the instance type and some chosen heuristics.

-0.1

0.4

0.9

1.4

1.9

2.4

2.9 PR1(15)

IC3

FL-LS

LR-NEH(15)

 25

We see that the confidence intervals are very wide (there are only 10 instances at each

group) and there is not enough data to draw strong conclusions. We see, for example, how

PR1(15) is statistically equivalent to IC3 for several instance groups, while being better for

the others. Only for 100×5, IC3 results in a lower RPI, albeit this difference is not statistically

significant.

There are other cases where some differences appear. However, we believe that the main

interest lies with the average performance depicted in the previous Figure 9.

In a nutshell, we put forward the following statements based on the above comparison

and analysis. (1) All the simple heuristics are surpassed by the composite ones except FL-LS

and RZ-LW regarding to the quality of solutions. On the other hand, most simple heuristics

run much faster than their composite counterparts. (2) The best four simple heuristics are

FL-LS, RZ-LW, the proposed LR-NEH(x) and FL in terms of effectiveness with the

computational time of the proposed LR-NEH(x) being much less than that of the other three

heuristics. (3) Both IC2 and IC3 are significantly better than the other existing composite

heuristics in terms of overall RPI value. However, both are outperformed by the presented

heuristics PR1(x)-PR4(x) both in terms of RPI as well as CPU time.

5. Conclusions

In this paper we have carried out an extensive review and comparison of the heuristics

for the permutation flowshop scheduling problem with total or mean flowtime minimization

criterion. A total of 22 existing heuristics have been coded and tested. With the knowledge

obtained, five new methods have been presented. The well known Taillard (1993) benchmark

has been employed. All heuristics have been coded in the same language and have been tested

on the same computing platform therefore the results are fully comparable. Furthermore,

extensive use of the design of experiments (DOE) approach and analysis of variance

(ANOVA) statistical technique results in sound conclusions.

Among simple heuristics, the FL-LS of Laha and Sarin (2009) is the best performer.

However, it is computationally costly; needing about one order of magnitude more CPU time

than other composite heuristics that are, in turn, better performers. Our simple proposed

 26

LR-NEH(x) method represents a good trade-off between CPU time and quality, dominating

most other existing simple heuristics from a Pareto perspective.

It is demonstrated that the heuristics IC2 and IC3 presented by Li et al. (2009) were the

best two performers from the literature as regards the quality of solutions and composite

heuristics. However, our four presented composite heuristics PR1(x)-PR4(x) result both in

lower average relative percentage deviations and lower average CPU time. For example,

PR1(x) results in an average deviation of just 0.33% and average CPU time of 20.93 seconds

whereas IC3 has almost double the deviation (0.62%) and more than three times more CPU

time (77.25 seconds). In conclusion, our presented methods can now be considered

state-of-the-art heuristics for the permutation flowshop scheduling problem with total

flowtime minimization criterion.

Acknowledgements

This research is partially supported by National Science Foundation of China (60874075,

70871065), and Science Foundation of Shandong Province, China (BS2010DX005), and

Postdoctoral Science Foundation of China (20100480897). Rubén Ruiz is partially funded by

the Spanish Ministry of Science and Innovation, under the project “SMPA - Advanced Parallel

Multiobjective Sequencing: Practical and Theorerical Advances” with reference

DPI2008-03511/DPI and by the Small and Medium Industry of the Generalitat Valenciana

(IMPIVA) and by the European Union through the European Regional Development Fund

(FEDER) inside the R+D program “Ayudas dirigidas a Institutos Tecnológicos de la Red

IMPIVA” during the year 2011, with project number IMDEEA/2011/142.

REFERENCES

Ahmadi,R.H. and Bagchi,U. (1990) Improved lower bounds for minimizing the sum of

completion times of n jobs over m machines in a flow shop. European Journal of Operational

Research 44 (3), 331-336.

Allahverdi,A. and Aldowaisan,T. (2002) New heuristics to minimize total completion time in

m-machine flowshops. International Journal of Production Economics 77 (1), 71-83.

Baker,K.R. (1974) Introduction to sequencing and scheduling., Wiley, New York.

Campbell,H.G., Dudek,R.A., and Smith,M.L. (1970) Heuristic Algorithm for n Job, m

 27

Machine Sequencing Problem. Management Science Series B-Application 16 (10),

B630-B637.

Conway,R.W., Maxwell,W.I., and Miller,L.W. (1967) Theory of scheduling., Addison-Wesley,

Reading, Mass.

Dong,X.Y., Huang,H.K., and Chen,P. (2009) An iterated local search algorithm for the

permutation flowshop problem with total flowtime criterion. Computers & Operations

Research 36 (5), 1664-1669.

Framinan,J.M., Gupta,J.N.D., and Leisten,R. (2004) A review and classification of heuristics

for permutation flow-shop scheduling with makespan objective. Journal of the Operational

Research Society 55 (12), 1243-1255.

Framinan,J.M. and Leisten,R. (2003) An efficient constructive heuristic for flowtime

minimisation in permutation flow shops. Omega-International Journal of Management

Science 31 (4), 311-317.

Framinan,J.M., Leisten,R., and Rajendran,C. (2003) Different initial sequences for the

heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the

static permutation flowshop sequencing problem. International Journal of Production

Research 41 (1), 121-148.

Framinan,J.M., Leisten,R., and Ruiz-Usano,R. (2002) Efficient heuristics for flowshop

sequencing with the objectives of makespan and flowtime minimisation. European Journal of

Operational Research 141 (3), 559-569.

Framinan,J.M., Leisten,R., and Ruiz-Usano,R. (2005) Comparison of heuristics for flowtime

minimisation in permutation flowshops. Computers & Operations Research 32 (5),

1237-1254.

Gonzalez,T. and Sahni,S. (1978) Flowshop and Jobshop Schedules: Complexity and

Approximation. Operations Research 26 (1), 36-52.

Graham,R.L., Lawler,E.L., Lenstra J.K., and Rinnooy Kan,A.H.G. (1979) Optimization and

Approximation in Deterministic Sequencing and Scheduling: A survey. Annals of Discrete

Mathematics 5 (2), 287-326.

Gupta,J.N.D. (1972) Heuristic algorithms for multistage flowshop scheduling problem. AIIE

Transactions 4 (1), 11-18.

Gupta,J.N.D. and Stafford,E.F. (2006) Flowshop scheduling research after five decades.

European Journal of Operational Research 169 (3), 699-711.

Ho,J.C. (1995) Flowshop Sequencing with Mean Flowtime Objective. European Journal of

Operational Research 81 (3), 571-578.

Ho,J.C. and Chang,Y.-L. (1991) A new heuristic for the n-job, M-machine flow-shop problem.

European Journal of Operational Research 52 (2), 194-202.

 28

Jarboui,B., Eddaly,M., and Siarry,P. (2009) An estimation of distribution algorithm for

minimizing the total flowtime in permutation flowshop scheduling problems. Computers &

Operations Research 36 (9), 2638-2646.

Johnson,S.M. (1954) Optimal Two- and Three-Stage Production Schedules with Setup Times

Included. Naval Research Logistics Quarterly 1 (1), 61-68.

Krone,M.J. and Steiglitz,K. (1974) Heuristic-Programming Solution of A

Flowshop-Scheduling Problem. Operations Research 22 (3), 629-638.

Laha,D. and Sarin,S.C. (2009) A heuristic to minimize total flow time in permutation flow

shop. Omega-International Journal of Management Science 37 (3), 734-739.

Li,X., Liu,L., and Wu,C. (2006) A fast method for heuristics in large-scale flow shop

scheduling. Tsinghua Science & Technology 11 (1), 12-18.

Li,X. and Wang,Q. (2006) Iterative Heuristics for Permutation Flow Shops with Total

Flowtime Minimization. In: Shen,W. (ed), Information Technology For Balanced

Manufacturing Systems

IFIP TC5, WG 5.5 Seventh International Conference on lnformation Technology for Balanced

Automation Systems in Manufacturing and Services. 349-356, Springer, New York.

Li,X.P., Wang,Q., and Wu,C. (2009) Efficient composite heuristics for total flowtime

minimization in permutation flow shops. Omega-International Journal of Management

Science 37 (1), 155-164.

Li,X.P. and Wu,C. (2005) An efficient constructive heuristic for permutation flow shops to

minimize total flowtime. Chinese Journal of Electronics 14 (2), 203-208.

Liu,J.Y. and Reeves,C.R. (2001) Constructive and composite heuristic solutions to the P//ΣCi
scheduling problem. European Journal of Operational Research 132 (2), 439-452.

Miyazaki,S. and Nishiyama,N. (1980) Analysis for minimizing weighted mean flow-time in

flow-shop scheduling. Journal of the Operations Research Society of Japan 23 (2), 118-132.

Miyazaki,S., Nishiyama,N., and Hashimoto,F. (1978) An adjacent pairwise approach to the

mean flow-time scheduling problem. Journal of the Operations Research Society of Japan 21

(2), 287-299.

Mladenovic,N. and Hansen,P. (1997) Variable neighborhood search. Computers & Operations

Research 24 (11), 1097-1100.

Montgomery,D.C. (2008) Design and analysis of experiments., Wiley, Hoboken, NJ.

Nawaz,M., Enscore,Jr.E.E., and Ham,I. (1983) A Heuristic Algorithm for the m Machine, n

Job Flowshop Sequencing Problem. Omega-International Journal of Management Science 11

(1), 91-95.

Pan,Q.K., Tasgetiren,M.F., and Liang,Y.C. (2008) A discrete differential evolution algorithm

for the permutation flowshop scheduling problem. Computers & Industrial Engineering 55

 29

(4), 795-816.

Pinedo,M. (2008) Scheduling: Theory, algorithms, and systems., Springer, New York.

Rajendran,C. (1993) Heuristic Algorithm for Scheduling in A Flowshop to Minimize Total

Flowtime. International Journal of Production Economics 29 (1), 65-73.

Rajendran,C. and Chaudhuri,D. (1991) A Flowshop Scheduling Algorithm to Minimize Total

Flowtime. Journal of the Operations Research Society of Japan 34 (1), 28-46.

Rajendran,C. and Chaudhuri,D. (1992) An Efficient Heuristic Approach to the Scheduling of

Jobs in A Flowshop. European Journal of Operational Research 61 (3), 318-325.

Rajendran,C. and Ziegler,H. (1997) An efficient heuristic for scheduling in a flowshop to

minimize total weighted flowtime of jobs. European Journal of Operational Research 103 (1),

129-138.

Ruiz,R. and Maroto,C. (2005) A comprehensive review and evaluation of permutation

flowshop heuristics. European Journal of Operational Research 165 (2), 479-494.

Taillard,E. (1990) Some Efficient Heuristic Methods for the Flow-Shop Sequencing Problem.

European Journal of Operational Research 47 (1), 65-74.

Taillard,E. (1993) Benchmarks for Basic Scheduling Problems. European Journal of

Operational Research 64 (2), 278-285.

Tang,L.X. and Liu,J.Y. (2002) A modified genetic algorithm for the flow shop sequencing

problem to minimize mean flow time. Journal of Intelligent Manufacturing 13 (1), 61-67.

Tasgetiren,M.F., Liang,Y.C., Sevkli,M., and Gencyilmaz,G. (2007) A particle swarm

optimization algorithm for makespan and total flowtime minimization in the permutation

flowshop sequencing problem. European Journal of Operational Research 177 (3),

1930-1947.

Varadharajan,T.K. and Rajendran,C. (2005) A multi-objective simulated-annealing algorithm

for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European

Journal of Operational Research 167 (3), 772-795.

Wang,C.G., Chu,C.B., and Proth,J.M. (1997) Heuristic approaches for n/m/F/ΣCi, scheduling
problems. European Journal of Operational Research 96 (3), 636-644.

Woo,H.S. and Yim,D.S. (1998) A heuristic algorithm for mean flowtime objective in

flowshop scheduling. Computers & Operations Research 25 (3), 175-182.

Zhang,Y., Li,X.P., and Wang,Q. (2009) Hybrid genetic algorithm for permutation flowshop

scheduling problems with total flowtime minimization. European Journal of Operational

Research 196 (3), 869-876.

