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Abstract: In recent years, a large number of heuristicseh@een proposed for the
minimization of the total or mean flowtime/comptatitime of the well-known permutation
flowshop scheduling problem. Although some literatteviews and comparisons have been
made, they do not include the latest availableibtcs and results are hard to compare as no
common benchmarks and computing platforms have kegrloyed. Furthermore, existing
partial comparisons lack the application of powksfatistical tools. The result is that it is not
clear which heuristics, especially among the recemts, are the best. This paper presents a
comprehensive review and computational evaluat®owell as a statistical assessment of 22
existing heuristics. From the knowledge obtainddraguch a detailed comparison, five new
heuristics are presented. Careful designs of exgeris and analyses of variance (ANOVA)
techniques are applied to guarantee sound conohisikhe comparison results identify the
best existing methods and show that the five ngwsented heuristics are competitive or
better than the best performing ones in the liteeafor the permutation flowshop problem
with the total completion time criterion.

Keywords: Scheduling; Flowshop; Flowtime; Heuristics.

1. Introduction

A flowshop is a common layout in production shodsere m continuously available

machines are disposed in series. Each machin@rsdaction stage and products must visit
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all machines in order. Scheduling in a flowshom#sithe production ofn known jobs from

asetJ={12,....,n}. All the n jobs follow the same order of visitation to thedhmaes.

This order is, without loss of generality, machihanachine 2 and so un until machime.

Each job requires a given known, deterministic and-negative processing time at each

machine, denoted ag, ;, j0dJ, 1=22,...m. The flowshop scheduling problem or FSP

in short is a theoretical version of reality angesal simplifying assumptions apply: All jobs

are independent and available for processing a @pmachines are continuously available;
each job is either waiting for processing or bgingcessed by a machine at any given time;
machines can only process one job at a time, etcomplete list of these assumptions is
detailed, for example, in Baker (1974). A solution the FSP is a production sequence or

schedule for all jobs which aims at optimizing gegi criterion. Most optimization criteria in

scheduling are based on the completion times ofdbe or C,;. The time at which a given

job finishes processing at a given machine is deghas C, ; and therefore,C,,, =C, . The

most common and widely studied optimization crdaariin the flowshop problem is the
makespan orC,_ ., minimization. Minimizing makespan is important in situations wher

batch of jobs is received and it is required tcbmpleted as soon as possible. For example, a
multi-item order submitted by a single customerchhneeds to be delivered at the earliest
possible time. The makespan criterion also incietts® utilization of machines. The paper of
Johnson (1954) is recognized as the pioneering ¥ayrthe FSP where the specific cases of
two and three machines were studied with the dbaf makespan minimization. Since
then, the FSP has attracted considerable attefrbom researchers and hundreds of papers
have been published in scheduling and related @sirmhe vast majority of research on
flowshop scheduling deals with makespan minimizatiad several survey papers have been
published like those of Framinan et al. (2004),Z/and Maroto (2005), Hejazi and Saghafian
(2005) and Gupta and Stafford (2006).

As of late, there has been an increasing intenesthier objective functions. Sometimes
each job is needed as soon as it is completedlgsiynithe need to reduce Work In Process

(WIP) or in-process inventory has fostered the wtftthe total flowtime, also referred to as



total completion time. When all jobs are availafile processing at time 0 (i.e., no release

times) the flowtime of a job is equal to its contjge time and hence, the total flowtime is

n
equal to ZC]- . Flowtime minimization leads to a more stableizdiion of machines. The
=1

FSP with a total flowtime minimization objective svanitially classified asn/m/F/ZCj

following the four parameter notation A/B/C/D of @eay et al. (1967). Later, it has been

denoted asF//ZCj using the three field notatiom/3/y of Graham et al. (1979). In the

most general setting, the FSP has a search spage)8f sequences. However, the majority
of the published research deals with a more résttiwersion, the so called permutation
flowshop scheduling problem of PFSP in which jolsgiag is not allowed and all machines

follow the same sequence of jobs. In this casesélaech space reducesnd sequences. The

PFSP is classified as/m/P/» C; or F/prmu/» C; according to Pinedo (2008). We

will refer to this last problem with flowtime objeee as PFSP-TFT in short. The PFSP-TFT
was demonstrated to be NP-Hard in the strong sende/o or more machines by Gonzalez
and Sahni (1978).

Initial efforts focused on the development of exagplicit enumeration techniques and
on approximate approaches to obtain good (but eoessarily optimal) solutions. These
solution technigues can be broadly classified imto groups referred to as heuristics and
metaheuristics, respectively. Some initial hewsstfor the PFSP were introduced by
Campbell et al. (1970), Gupta (1972) and Miyazakiak (1978), to nhame just a few.
Metaheuristics include many different approaché® genetic algorithms (Tang and Liu
(2002)), simulated annealing (Varadharajan andriglaga (2005)), differential evolution (Pan
et al. (2008)) and many others. A metaheuristichogtusually obtains better solutions than
heuristic algorithms but normally at the cost ajngiicantly added CPU time. Heuristics
typically need no more than a few seconds wheredahmauristics might take several minutes.
This is problematic, especially if there are réalet requirements or large scale problems (Li
et al. (2009)). Furthermore, effective and effitiBruristics are still needed in metaheuristic
methods for the initial seed sequence. As a reswuristics are still essential in the

scheduling community.



This paper focuses on heuristics for the PFSP-TFE flowshop literature already
contains some reviews such as Framinan et al. j2086wever, there is room for
improvement: Comparisons have been performed amongore than a few heuristics; the
latest heuristics have not been compared; no condatmsets have been used and available
results cannot be easily generalized or are nat exgroducible; existing comparisons have
not carried out comprehensive statistical testhay. all these reasons, we provide an up to
date comprehensive review and evaluation of thetiegj heuristics. From the knowledge
obtained after such evaluation we also present fiearistics for the problem under
consideration. In total we compare 27 heuristichjctv are put through comprehensive
computational and statistical testing. The benchnudrchoice is given by Taillard (1993).
Our results attest to the fact that the five presbrheuristics outperform all heuristics
proposed up to date.

The rest of the paper is organized as follows: &ttin 2, the most well-known
heuristics for the PFSP-TFT are reviewed. Sectipne3ents the five new heuristics in detail.
A comprehensive comparison of the various heussiécgiven in Section 4. Finally, we

conclude the paper in Section 5.

2. Heuristicsfor the flowshop scheduling problem

Framinan et al. (2005) divided the existing heigsstinto two groups: simple and
composite methods. A heuristic commonly consister@ or more of three typical phases,
namely index development, solution constructiord aalution improvement. According to
Framinan et al. (2005), the method is regardedbagposite if it employs a simple heuristic
for one or more of the three above-mentioned ph@&asninan et al. (2005)). Conversely, it
is regarded as a simple method if no phase congalh®uristic. This distinction is sometimes
not easy to apply for some methods but it represansimple framework. Our literature

review is therefore divided between simple and awsitp heuristics.

2.1 Simple heuristics

The CDS heuristic introduced by Campbell et al.7()9is a simple heuristic for the
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PFSP. It is basically an extension of the algoritbinJohnson (1954). The CDS creates
m — 1 problems with of two “virtual” machines, each dfetn containing some of the
original m machines. Johnson’s algorithm is then appliechéort — 1 problems with two
virtual machines andn —1 sequences are obtained. The schedule with themmimi

flowtime is selected. The CDS heuristic has a cdatmnal complexity of
O(n12n+ mnlogn) and researchers have typically used CDS as benkHorartomparisons.

Gupta (1972) introduced three simple heuristicaned minimum idle time (MINIT),
minimum completion time (MICOT) and MINIMAX algotitns, and compared the results
against the CDS heuristic providing better reswith less computational time. However, it
has to be noted that the maximum instance sizededtthat time was really small with just 7
jobs and 20 machines maximumxgD). Krone and Steiglitz (1974) presented an early
heuristic in which in the first phase, permutatissguences were improved by insertion
movements. In the second phase, job passing wawesll Miyazaki et al. (1978) also
presented a heuristic but in this case based orintheovement of the sequence by the
interchange of adjacent jobs. Later, Miyazaki andhlyama (1980) provided a similar
extension but for the additional considerationatf yeights. Ho and Chang (1991) proposed
a heuristic that works by minimizing the idle timestween jobs in then machine case. The
heuristic was evaluated against other existing outhbut mainly those proposed for
makespan minimization. Rajendran and ChaudhuriZ)l88roduced three simple heuristics
and compared them with those of Gupta (1972), Mikazet al. (1978) and the
aforementioned heuristic of Ho and Chang (1991)e Thsults favored the introduced
methods for the studied instances. In a relateckwRajendran and Chaudhuri (1991), the
same authors presented another heuristic thatauleeger bound in the construction phase of
the sequence. The proposed heuristic is appliedtalthe no-wait problem. No comparisons
against the three heuristics of Rajendran and CGhau(1992) are shown.

The NEH heuristic of Nawaz et al. (1983) is regdrde the best heuristic for the PFSP
with makespan criterion (Taillard (1990), Ruiz avidroto (2005)). It is based on the idea that
jobs with larger total processing times should dieeduled as early as possible. Consequently,

the heuristic first generates an initial order @fg with respect to descending sums of their



total processing times. Then a job sequence istated by evaluating all the sequences

obtained by inserting a job from this initial ordeto all the possible positions of the current

partial sequence. The NEH heuristic evalua{e$n+1)/2—1] sequences and has a

complexity of O(ngm) for the TFT criterion. Due to its effectivenedse NEH heuristic has

been inspiring research on the total completiore tariterion since its publication. Rajendran
(1993) proposed an insertion heuristic, denotedRa@as having many similarities with the
NEH heuristic. The heuristic arranges the jobs aling to the weighted total processing
times and inserts a job into a restricted subsetligiossible positions of the current partial
sequence. According to the author’s results, tlpgsed heuristic is more efficient than the
methods of Gupta (1972), Miyazaki et al. (1978) blodand Chang (1991). Another heuristic
was proposed by Woo and Yim (1998) (denoted as W¥hiort). Unlike the Raj heuristic,
WY does not require an initial starting job sequeertdowever, it also has an insertion phase
where a schedule is constructed by inserting altsuheduled jobs in all possible positions of

the partial sequence. This heuristic is also basetthe aforementioned NEH heuristic but has
a higher complexity ofO(n“m). The authors concluded that their algorithm outpers the

adaptation for flowtime minimization of the NEH, Gand Raj heuristics.

Framinan et al. (2002) investigated the phases hef NEH heuristic and their
contribution to its excellent performance regardimgkespan minimization. They proposed to
modify the NEH heuristic in order to accomplishaldtowtime criterion, and proved that the
NEH heuristic starting with an initial sequencejalfs sorted by an increasing (instead of
decreasing) sum of processing times performs b#tser the adaptation of the original NEH
heuristic. It almost equals the WY heuristic inmierof the quality of the solutions but with
smaller computational times. Later, Framinan et(2003) further delved into the NEH
initialization and studied 177 different initialdmrs for the NEH, including some specially
geared towards TFT minimization. Among the proposedhods, a heuristic called B5FT,
consisting of the best of five-tuples among the approaches, is shown to outperform the
RZ heuristic of Rajendran and Ziegler (1997) (todiscussed later) and the WY method
which were regarded as the best constructive himsrier the problem prior to the year 2000
according to Framinan et al. (2005). Framinan araisten (2003) presented another
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NEH-based heuristic, referred to as FL, with theeaomplexity as the WY method. After
the insertion process in the basic NEH heuridtie,dbtained partial sequence is improved by
performing a pairwise interchange improvement pdace. If a better result is obtained, the
new partial solution is retained as the currenttiglarsequence. Computational results
indicated that this approach outperformed RZ and Neéwristics. More recently, Laha and
Sarin (2009) have presented a modification of the heuristic, denoted as FL-LS. It
implements the iteration of the insertion step loé tNEH heuristic by performing job
insertions rather than the pairwise interchanghs.authors proved by numerical experiments
that the modification significantly improves therfeemance of the FL heuristic while not
affecting its computational complexity.

Ho (1995) presented a sorting-based heuristic ith@dtides an iterated improvement
scheme based on job insertions and pairwise irdaggs. The author compared the method
with the heuristics of Rajendran and Chaudhuri 2)%hd Raj of Rajendran (1993). In this
case, larger instances of up to<B0 were tested and the proposed heuristic was showea
superior. However, this heuristic seems closemntall search techniques such as simulated
annealing or tabu search rather than to consteitiauristics as its computational effort does
not make it suitable for large problem sizes andidhose environments where sequencing
decisions are required in a short time (Framinaal.g2005)).

Other heuristics assign a weight or index to eyebyand then arrange the sequence by
sorting the jobs according to the assigned indéxs Tdea was exploited by Wang et al.
(1997). The authors presented two heuristic apesmby choosing jobs according to a given
weight or index function and appending them to eesu partial sequence. The first one,
named less idle time rule (LIT), focuses on redgeirachine idle times, while the second one,
named smallest process distance rule (SPD), foarsesducing both machine idle times and
job waiting times. The second approach also cansistwo heuristics; one is based on the
Euclidean distance measure, while the other iscbanethe linear distance. The authors did
not compare their heuristics with previous onestdad, they compared them against the

lower bound provided by Ahmadi and Bagchi (1990)e heuristics proposed by Wang et al.

(1997) have a computational complexity Gf(nzm). The already mentioned RZ heuristic of



Rajendran and Ziegler (1997) consists of two phaEles first phase involves the generation
of a seed sequence according to a priority rulelaino the shortest weighted processing
time, whereas the second phase improves the sologi@arrying out a local search based on

the sequential insertion of each job in the segdesgce at each possible different position of
the incumbent partial sequence. The RZ heuristicgheomplexity ofO(n3m). Comparisons

between the RZ and WY heuristics have been peribtnyeseveral researchers (Framinan et
al. (2003), Li and Wu (2005)). It was found thag RZ heuristic performs better than the WY
heuristic for small-sized problem instances butrilative performance of the WY heuristic
improves with increasing number of jobs and findllyurpasses the RZ heuristic. In addition,
the effectiveness of the improvement scheme ofREeheuristic was also demonstrated by
Rajendran and Ziegler (1997), and it has been aseah improvement procedure in several
composite heuristics (Framinan et al. (2005), Lale{2009) and Allahverdi and Aldowaisan
(2002)). Li and Wu (2005) have developed an impdoR& heuristic, denoted RZ-LW, where
the authors generate an initial sequence by sotti@gobs in ascending order of the sum of
processing times, and then perform the RZ localcket® the solution until no improvement
is found. The performance of RZ-LW is shown to benparable to that of the Framinan and
Leisten (2003) but needs far less computationad.tim
Liu and Reeves (2001) proposed a constructive $tayjrieferred to as LR that initially

sorts jobs according to some indexes that consioér the machine idle times and the effects
on the completion times of later jobs. The LR h&tizidoes not fix the number of sequences
to be generated and it is therefore flexible inatnputational effort. It can be adjusted
according to the requirements of the problem. Taechmark of Taillard (1993) has been
used to compare the proposed heuristic againgiréweous ones including Wang et al. (1997),
Ho (1995), Rajendran and Ziegler (1997) and Woo¥ind(1998). The computational results

demonstrated that the LR heuristic is the besoper, especially in large sized problems.

2.2 composite heuristics

Liu and Reeves (2001) proposed an improvement sehbased on job pairwise

exchanges. Starting from an initial sequence, theqalure tries to exchange every job with a



certain number of jobs following it in the sequenkehe best sequence obtained by these
exchanges is better than the current sequencereéplaced. After all the jobs are tested, the
procedure starts over again from the first jothim $equence. The above procedure is repeated
until no improvement can be found for a round @i$r(i.e., a form of local search up to local
optimality). This procedure is known as the forwaairwise exchange (FPE). The reversed
version which checks the exchanges of jobs frorhtrig left in the sequence is called
backward pairwise exchange (BPE). The authors etudihe effectiveness of different
combinations of their heuristics with local seandferred to as LR§-FPE and LRX)-BPE,
respectively. The result is that composite mettergsmore effective than the simple ones at
the expense of additional computation time.

Allahverdi and Aldowaisan (2002) proposed a tothlkeven composite heuristics by
combining the NEH, WY and RZ methods with localrseaprocedures including FPE with
restart (FPE-R in short) and the local search efRE heuristic. The authors compared their
methods (named IH1~IH7) against many of the eaHeuristics like those of Ho (1995),
Wang et al. (1997), Rajendran and Ziegler (199d)\&oo and Yim (1998). The experimental
results indicated that the performance of the k&ariby Ho (1995) is good but
computationally demanding. They also reported thatheuristics by Wang et al. (1997) do
not perform well when compared with the others pkadbe CDS method. The proposed
heuristics outperform all others in terms of santiquality, and IH7 is the best performer.
Framinan and Leisten (2003) proposed an improveneetite IH7 heuristic, called IH7-FL,
by employing the FL heuristic as an initial solatimstead of the WY heuristic as in the
original IH7. Later, Framinan et al. (2005) preseh& comprehensive comparison of recent
heuristics for the problem. A total of eight hetids were compared and a number of
composite methods were also presented. One of thesecomposite heuristics, named
C2-FL, is observed to produce better solutions thase of the best method from the earlier
study (Framinan and Leisten (2003)).

More recently, Li et al. (2009) presented three posite heuristics, denoted as IC1, IC2,
and IC3, respectively, by integrating FPE, FPE-RI & local search with an effective
iterative method where the procedure is repeatditl nm better solution is found or a given
stopping criterion is reached. Computational ressittow that the three proposed algorithms
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outperform the existing best composite ones inagidihe C1-FL and C2-FL of Framinan et al.
(2005) and IH7-FL of Framinan and Leisten (2003nokg the presented heuristics, IC3
performs best in terms of solution quality but reeetich more CPU time than both IC1 and
IC2. In a related work (Li and Wang (2006)), thehaus presented two composite heuristics,
named ECH1 and ECH2, which were similar to the isgas IC1, IC2 and IC3.

A summary of the different heuristics reviewed mranological order is reported in

Table 1.
Table 1. Summary of heuristics for flowshop schewdulvith total flowtime criterion.
Year Authors Acronym Heuristic type Comments
1970 Campbell et al. CDS Simple Based on Johnsole's ru
1972 Gupta MINIT Simple Based on job pair exchange
MICOT Based on job pair exchange
MINIMAX Based on Johnson's rule
1974 Krone and Steiglitz Simple Based on inseitigorovement and
job passing
1978 Miyazaki et al. Simple Based on intercharfged@acent jobs
1980 Miyazaki and Nishiyama Simple Based on interchange of adjacent jobs
and job weights
1991 Ho and Chang Simple Minimizing the idle tibeween jobs
1991  Rajendran and Chaudhuri Simple Based on lower bound
1992  Rajendran and Chaudhuri Simple Considering a job’s impact to its
immediate successor
1993 Rajendran Raj Simple Based on NEH
1995 Ho Simple Based on sorting
1997 Wang et al. LIT Simple Assigning a weighet@ry job
SPD1 Simple Assigning a weight to every job
SPD2 Simple Assigning a weight to every job
1997 Rajendran and Ziegler RZ Simple Assigning aykteio every job and
performing RZ local search
1998 Woo and Yim wy Simple Based on NEH
2001 Liu and Reeves LR)( Simple Assigning a weight to every job
LR(x)-FBE Composite Based on LR(and FPE
LR(x)-BPE composite Based on LB@nd BPE
2002 Framinan et al. NEH-flowtime Simple Based drHN
2002 Allahverdi and Aldowaisar IH1 Composite Base on NEH and FPE-R
IH2 Composite Based on NEH
IH3 Composite Consisting of IH2 and FPE-R
IH4 Composite Consisting of WY and FPE-R
IH5 Composite Consisting of RZ and FPE-R
IH6 Composite  Consisting of WY and RZ local search
IH7 Composite Consisting of IH6 and FPE-R
2003 Framinan et al. B5FT Simple Based on NEH
2003 Framinan and Leisten FL Simple Based on NEHierchange
IH7-FL Composite consisting of FL, RZ and FPE-R
2005 Framinan et al. C1-FL Composite Based on LR &nd F
C2-FL Composite Based on C1, RZ and FIE-R.
2005 Li and Wu RZ-LW Simple Based on iterated RZ llsearch
2006 Li and Wang ECH1 Composite Similar to IC3
ECH2 Composite Similar to IC2
2009 Liet al IC1 Composite  Consisting of LR and itedaRZ local
search.
IC2 Composite  Consisting of LR, iterated RZ and FPE.
IC3 Composite Consisting of LR, iterated RZ and
FPE-R
2009 Laha and Sarin FL-LS Simple Based on NEH asdrtion
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3. Proposed heuristics

The previous evaluation has prompted us to testesoew composite heuristics. We
present five new high performing methods. The fose is a simple procedure which
combines the LR heuristic of Liu and Reeves (2G01J the NEH algorithm. The others are
composite heuristics based on this first one andllsearch methods. More specifically, the
RZ local search of Rajendran and Ziegler (1997)aNdriable Neighborhood Search scheme

(VNS) based on the work of Mladenovic and Hand&97).

3.1 Thepresented LR-NEH(X) heuristic
3.1.1 The LR(x) heuristic in detail

The LRK) heuristic developed by Liu and Reeves (2001) oot x different
sequences by appending jobs one by one using &x ifuwthction. The sequence with the
minimum flowtime is selected as the final solutidine index function consists of two terms:
The weighted total machine idle time and the aitfitotal flowtime. Let 77 be a partial

sequence formed bk already scheduled jobs, ald be the set of unscheduled jobs, i.e.,

those not yet in71. A job jOU is selected and appended @ according to an index

function Ej,k. The weighted total machine idle time between pinecessing of the job
occupying th&" position of the sequence and jop is computed as follows:

_ & mimax{Cy; —Cyyf
T = 2 k1) (-2 ®

where Ci'[k] is the completion time of the job in thie" position of ;7 at machinei .

The other jobs inU are considered as a single artificial job. Its processing time is
the average of the processing times of these jbiis.A is appended to jobj and its
completion time C; , is calculated. Then the total flowtime of jobs and A, AT;,, is

given below:

AT,-,k = Cmy 0t Cm’ y (2)
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And the index functiong; , is finally defined as follows:
£ =(N—k=-2)IT,, +AT,, @3)
The index functionfl-,k is calculated for all jobs ilJ . The job with the minimum

value of this index function is selected, and ties broken by selecting the one with the

minimum weighted total machine idle timeT; , .

Finally, the procedure of LR is outlined in Figure 1.

Procedure LR(X)
Generate a job sequencé :{al,az,...,an} by ascending 51,0 value (break ties
according to ascendind T, , value).
for |:=1 to X do%(generateX sequences)
m={a}, U=J-{a,}.
for K:=2 to N do%(construct a complete sequence)
Take the job | with minimum Ej’k value (break ties according to minimudnTLk
value) from U and place it at the end off . Remove job j from U .
endfor
endfor

return the sequence/T{ 77", 7,...,7T}  with the minimum total flowtime.
Figure 1. The LRY) heuristic.
LR(x) does not fix the number of sequences to be getkrand it can be adjusted to

the requirements of the problem.

3.1.2 The NEH heuristic

The NEH heuristic of Nawaz et al. (1983) was omdjindesigned for the FPSP with the
objective of minimizing the makespan. The firstpst®nsists of ordering jobs according to
descending total processing times. The job withniagimum total processing time is placed
first. All other jobs are inserted in all possilplesitions of the incumbent sequence and finally
placed in the position with the lowest partial aljee value. The procedure of NEH is

described in Figure 2.

Procedure NEH

12



Generate a job sequengd ={f,,5,,...,0,} by descending order of total processing times.
m={4}
for K:=2 to N do%(construct a complete sequence)
Take job B, from [ and insertitin all thek possible positions of72.
Place job ,8k in 71 atthe tested position resulting in the loweseotiye value.
endfor

return 71
Figure 2. The NEH heuristic.

Framinan et al. (2002) adapted the NEH heuristiddtal flowtime criterion, and found
that ranking jobs according to their ascendingltptacessing times performs much better
than descending total processing times. As a resalalso employ this improved version. As

we can see, the main loop of the NEH can be redaaden insertion local search around the

seed sequencgl. We denote this local search &8EH () for our other composite

heuristics.

3.1.3 The proposed LR-NEH(x) heuristic

The first presented heuristic is denoted as LR-NEHIE uses LR{) and NEH to
generate sequences. More specifically, we firsegee a partial sequence witobs using
the LRK), and then the remainingd jobs are inserted into the partial sequence usiag
NEH heuristic. The relative positions of jobs gexted by the LR() are not changed as the

algorithm progresses. The procedure of the propbBeNEH(X) is outlined in Figure 3.

Procedure LR-NEH(x)
Generate a job sequencé :{0'1,0’2,...,0’“} by ascending EJ-’O value (break ties
according to ascendind T, ; value).
for 1:=1 to X do%(generateX sequences)
m={a}, U=J-{a}.
for kK:=2 to d do%(construct a partial sequence with jobs)
Take the job j with minimum fj’k value (break ties according to minimurinT]-’k
value) from U and place it at the end off . Remove job | from U .
endfor

% (NEH heuristic)
Generate a partial sequeng8 ={/4,,3,,....5,.¢} (B;0U, j=12,..,n-d) by

13



ascending order of total processing times.
for k=1 to n—d do%(construct a complete sequence)
Take job B, from B andinsertitin all thek +d possible positions of7z .
Place job ,Bk in 77 atthe tested position resulting in the lowest titattime.
endfor

endfor
return the sequenceﬂD{ﬂl,ﬂz,...,ﬂj} with the minimum total flowtime.

Figure 3. The proposed LR-NEXJ(heuristic.
LR-NEH(X) has a single parametet , which is basically the number of jobs after which

NEH kicks in. Initial experiments showed that thesbvalue wasd = 3n/4. However, we

found that for reasonable values, LR-NEKH6 robust as regards this parameter. We leave for

a further study a deeper examination of the efiéthis parameter.

3.2 Composite heuristic PR1(x)
3.2.1 Iterated RZ local search

The improvement procedure presented by RajendraZigler (1997) is a typical local
search based on an insertion neighborhood, whighesdially inserts each job in the seed

sequence in all possible positions in the incumisequence and is, as mentioned, similar to

the NEH heuristic. Letr® ={7;, 17;,...,71;} be a seed sequence, avd be the incumbent

sequence. The procedure of the RZ local seardles ¢n Figure 4.

Procedure RZ(7)
=
for i:=1 to N do
n=n
Remove job 77" from 77'.
Take job 72,5 and insert it in all possible positions di' except for its original position.
Place job 7'l|S in 71" at the position resulting in the lowest total flowtime
if TFT(77')<TFT(77) then n:=n" %(TFT(77) denotes the total flowtime o)
endfor

return 71
Figure 4. The RZ local search.
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The above RZ procedure is a one-pass local seaotiegs. The process can be iterated
while improvements are found and local optimalgyreéached. This iterated process can find
better results but at the expense of more computatieffort. Therefore, a trade-off between

effectiveness and efficiency arises. We denotét¢inated RZ procedure as iRZ in short.

3.2.2 The proposed composite heuristic PR1(x)

Based on the LR-NERY heuristic and the iRZ local search, we proposmm@posite
heuristic PR2). PR1§&) improves each of the solutions generated by LR4}Eusing iRZ.
To save computational effort, we terminate theatien if the CPU time is longer than

00Imn seconds. The procedure of PR1§ outlined in Figure 5.

Procedure PR1§)
Generate a job sequencé :{al,az,...,an} by ascending EJ- o Value (break ties
according to ascendind T, , value).
=1
repeat
o ={a}, U=J-{a}.
for K:=2 to d do%(construct a partial sequence with jobs)
Take the job | with minimum Ej'k value (break ties according to minimudnTLk
value) from U and place it at the end off' . Remove job | from U .
endfor .
Generate a partial sequeng8 ={/3,, B,,---.,-a} (B;0U, j=12,.,n—-d) by
ascending order of total processing times.
for K:=1 to n—d do %(construct a complete sequence)
Take job S, from [ and insertitin all thek +d possible positions of7z .
Place job ,Bk in 77 at the tested position resulting in the lowesltBowtime.
endfor

7T :=iRZ(7T) %(perform iRZ local search tdT )
[=1+1
until 1 >x or CPUTIime> 001Imn seconds
return the sequenceiTD{lTl,ﬂz,...,lf} with the minimum total flowtime.

Figure 5. The PR{ heuristic.

3.3 Composite heuristic PR2(x)



The variable neighborhood search (VNS) is an dffectnetaheuristic presented by
Mladenovic and Hansen (1997). Tasgetiren et aD{p@roposed a local search based on the
insertion+interchange variant of the VNS method and embedded it in digarswarm
optimization algorithm to solve the permutationwighop with both makespan and total

flowtime criterion. As a result, it seems promisitoigemploy VNS in the heuristics. Let
be an incumbent job permutation to improve, dnd, be the maximum number of iterations.

The VNS is detailed in Figure 6.

Procedure VNS(71)
for :=1to I, do
improved=true
repeat
¢=n
if iImproved=true then Perform a pairwise interchange movementgn
else Perform an insertion movement i@ .
if TFT(¢)<TFT(n) then 71:=¢,improved=true
eseimproved= false
until improved= false
endfor

return 71
Figure 6. The VNS local search.

In the above VNS procedure, the pairwise interckamgvement randomly selects two

jobs in the sequencg and exchanges their positions. The insertion mevememoves a

random job from its original position and insetténi another randomly selected position. In

order to have a sufficient exploration of both inteange and insert neighborhoods, we set

. tO 2n°. We simply change the iRZ of PRLpy VNS, resulting in the PR heuristic.

3.4 Composite heuristics PR3(x) and PR4(x)

The composite heuristic PR3 (first generates an initial solution using LR-NE}(@nd
then improves the solution using a different imgnoent procedure. The procedure of PR3(
is given in Figure 7.

Procedure PR3§)

1€



71:=LR —NEH(y) %(generate an initial solution)
m=m, =1
repeat %(improvement procedure)
n"=iRZ(7n) % (iRZ local search)
it TFT(77) <TFT(7°) then 71°:=77.
"= NEH(77') % (NEH local search)
it TFT(7") <TFT(71°) then 71°:= 71"
71:= NEH (77") % (NEH local search)
it TFT(71) <TFT(71°) then 7°:=71
[=1+1
until 1 >x or CPUTime> 001Imn seconds

return ﬂb
Figure. 7. The PR3] heuristic.

In the above procedure, the paramgtéor the LR-NEHY) initialization is fixed at 10.
The final proposed heuristic PR#{ses the VNS local search as an improvement pguoee

instead of the iRZ local search of PR3(

4. Computational and statistical experiments

In this section we conduct a comprehensive comiouizt and statistical evaluation of
most existing high-performing heuristics as well aisthe presented methods. The tested
heuristics comprise 14 simple and 13 compositeistas as follows:

Simple heuristics

1. Raj heuristic of Rajendran (1993),

2-4. LIT, SPD1 and SPD2 heuristics by Wang et18197),

5. RZ heuristic of Rajendran and Ziegler (1997),

6. WY heuristic by Woo and Yim (1998),

7-9. LR(1), LR@/m) and LR) of Liu and Reeves (2001),

10. NEH heuristic modified by Framinan et al. (2002

11. FL heuristic of Framinan and Leisten (2003),

12. RZ-LW heuristic of Li and Wu (2005),

13. FL-LS heuristic by Laha and Sarin (2009),

14. Proposed LR-NEHK] heuristic.
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Composite heuristics

15-16. LR-FPE and LR-BPE of Liu and Reeves (2001),

17. IH7 heuristic of Allahverdi and Aldowaisan (2)0

18. IH7-FL heuristic of Framinan and Leisten (2003)

19-20. Composite heuristics C1-FL and C2-FL of Rrem et al. (2005),

21-23.1C1, IC2, IC3 heuristics of Li et al. (2009)

24-27. The presented composite heuristics BRPR2&), PR3k) and PR4X).

All other reviewed heuristics from Section 2 weteacly outperformed by the above
heuristics in previous research and are not testethis work. In addition, the general
flowtime computing method presented by Li et aDQ@) is employed to save computation
time in all heuristics that allow it.

The test bed presented by Taillard (1993) is a-wewn set for the PFSP with
makespan criterion, which consists of a total d kistances of various sizes, having 20, 50,
100, 200, and 500 jobs and 5, 10, or 20 machinessd instances are divided into 12 subsets,
each of which consists of 10 instances with the esa@ize. These subsets are denoted
according to their sizes: 20x5, 20x10, 20x20, 5@x10, 50x20, 100x5, 100x10, 10020,
200x10, 200x20 and 500x20. Recently, an increasimgber of researchers have used this
test bed to evaluate their algorithms dealing watal or mean flowtime criterion (Liu and
Reeves (2001), Li et al. (2006), Li and Wang (200@)sgetiren et al. (2007), Jarboui et al.
(2009), Dong et al. (2009), Li et al. (2009) anca@y et al. (2009), possibly among many
others). Thus, we evaluate the above mentionedigtiesrbased on this test bed, and the
performance measure is the relative percentageaserRPI) as follows:

RPI(c)=(c —c”)/c”x100 (4)
where ¢ is the solution obtained by th&' heuristic, andc” is the best solution found

by any of the heuristics.

All methods have been coded in Visual C++ 6.0 amdon a cluster of 30 blade severs
each one with two Intel XEON 5254 processors rugrah 2.5 GHz with 16 GB of RAM
memory. Each processor has four cores and the imgms are carried out in virtualized
Windows XP machines, each one with one virtualigextessor and 2 GB of RAM memory.
In order to better estimate the performance angseh CPU time of the compared algorithms,

a total of 5 replications for each instance arei@arout. Results are then averaged across the
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5 replications for each instance. In our five pregub heuristics LR-NEHK], PR1k), PR2§),
PR3k) and PR4X), x is tested at three values: 5, 10 and 15. Thissgiviotal of 37 heuristics
which are run 5 times each for the 120 instancdzibiard for a grand total of 22,200 results.
The averag®PI values, grouped for each subset (600 results gedrat each cell) are given
in Tables 2 and 3 for simple and composite heuasstiespectively. Both types of heuristics

are summarized in Table 4, orderedR#Bt. All CPU times are given in seconds.

Table 2. Results of the simple heuristics.
Raj LIT SPD1 SPD2 RZ WYy LR(1) LR(m)
InstanceRPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time
20x5 5.80 0.00 9.40 0.00 18.85 0.00 19.350.00 2.90 0.00 3.03 0.00 2.74 0.00 2.55 0.00
20x10 4.61 0.00 11.230.00 15.56 0.00 14.370.00 1.90 0.00 2.80 0.00 3.77 0.00 3.42 0.00
20x20 4.55 0.00 6.95 0.00 10.23 0.00 10.070.00 1.97 0.00 2.96 0.00 3.21 0.00 3.21 0.00
50x5 4,51 0.00 7.69 0.00 21.01 0.00 21.560.00 2.70 0.00 3.70 0.01 2.20 0.00 1.56 0.01
50x10 6.28 0.00 9.45 0.01 15.96 0.01 14.240.00 3.22 0.01 3.39 0.02 5.26 0.00 2.97 0.01
50x20 5.88 0.00 10.190.02 11.57 0.01 10.740.00 2.94 0.01 3.22 0.04 3.85 0.01 3.40 0.01
100x5 4.09 0.00 5.42 0.03 23.05 0.03 23.310.00 2.57 0.02 2.32 0.17 1.25 0.01 0.63 0.17
100x10 4.73 0.00 8.04 0.06 20.98 0.05 19.550.00 3.26 0.05 2.78 0.35 2.89 0.01 2.03 0.14
100x20 6.03 0.01 8.19 0.14 12.41 0.11 10.220.00 2.72 0.09 3.03 0.68 4.28 0.03 3.36 0.14
200x10 4.64 0.03 6.39 0.54 22.25 0.46 21.500.10 2.77 0.33 2.56 6.03 2.47 0.10 1.39 1.99
200%x20 4.98 0.06 9.14 1.01 17.80 0.90 14.955.82 2.51 0.70 2.3511.72 3.81 0.20 2.00 2.00
500x20 4.21 0.81 7.0315.2818.7612.6118.8711.29 2.34 10.01 1.79 483.791.79 3.10 0.94 77.23
Average 5.02 0.08 8.26 1.42 17.37 1.18 16.561.43 2.65 0.94 2.8341.90 3.13 0.29 2.29 6.81

LR(n) NEH FL RZ-LW FL-LS LR-NEH(5) LR-NEH(10) LR-NEH(15)
InstanceRPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time
20x5 2.44 0.00 5.05 0.00 2.49 0.00 1.54 0.00 1.74 0.00 2.26 0.00 2.26 0.00 2.26 0.00
20x10 3.35 0.00 4.14 0.00 2.40 0.00 1.43 0.00 1.25 0.00 2.51 0.00 2.51 0.00 2.51 0.00
20x20 2.42 0.01 3.88 0.00 2.44 0.00 1.07 0.00 1.04 0.01 2.01 0.00 1.89 0.00 1.89 0.01
50x5 1.56 0.05 4.25 0.00 2.02 0.03 1.63 0.01 1.37 0.04 1.33 0.01 1.33 0.01 1.33 0.02
50x10 2.81 0.10 5.08 0.00 2.54 0.05 1.44 0.04 1.61 0.08 2.48 0.01 2.43 0.02 2.43 0.04
50x20 3.07 0.23 4.39 0.01 2.01 0.10 1.63 0.05 1.28 0.17 2.67 0.02 2.43 0.05 2.43 0.07
100x5 0.63 0.83 3.18 0.01 1.20 0.31 1.69 0.10 1.12 0.52 1.35 0.04 1.25 0.07 1.25 0.11
100x10 2.00 1.37 4.54 0.02 2.41 0.73 1.09 0.28 1.12 1.24 1.67 0.08 1.54 0.16 1.54 0.24
100x20 2.67 2.76 4.48 0.04 2.04 1.47 0.87 0.57 0.91 259 2.44 0.17 2.16 0.34 1.98 0.52
200x10 1.39 19.85 3.16 0.14 1.39 10.16 1.40 2.42 1.11 18.38 1.03 0.59 0.96 1.16 0.95 1.74
200%x20 1.94 39.98 3.88 0.29 1.62 20.91 0.80 6.26 1.3238.61 1.57 1.27 1.52 257 1.48 3.74
500x20 0.82 1544.322.32 4.00 1.29 701.120.88 114.840.73 1381.230.80 17.66 0.68 35.24 0.65 52.85
Average 2.09 134.12 4.03 0.37 1.99 61.24 1.29 10.38 1.22 120.241.84 1.65 1.75 3.30 1.72 4.94
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Table 3. Results of the composite heuristics.

LR-FPE LR-BPE IH7 IH7-FL C1-FL C2-FL IC1 IC2 IC3 RA(5) PR1(10)
Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPlI Time RPlI Time
20x5 1.30 0.00 1.40 0.00 131 0.00 16®.00 168 0.00 122 0.00 1.00.00 0.66 0.00 066 0.00 057 0.00 053 0.01
20x10 191 0.00 191 0.00 145 0.00 1400 174 000 090 000 13000 1.07 000 106 0.00 0.84 0.01 0.63 0.01
20x20 1.60 0.00 2.07 0.00 124 000 13900 232 000 112 001 12900 135 0.00 132 0.00 056 0.01 040 0.038
50x5 0.72 0.02 0.83 002 161 0.03 1303 167 003 104 005 0.84€.02 061 0.03 062 003 051 0.05 046 0.11
50x10 1.37 0.03 151 0.02 184 0.04 1.6®%.07 227 006 146 0.09 11004 0.87 0.06 082 0.07 050 0.14 0.30 0.27
50x20 1.70 0.04 212 0.05 178 0.08 1.3®%.13 263 011 136 0.17 1.09.07 0.77 0.12 068 0.15 0.77 0.27 044 0.54
100x5 0.34 0.22 0.33 0.21 101 055 0.7D.47 094 043 0.67 054 0.30.24 0.14 030 0.18 0.38 056 0.43 047 0.9
100x10 0.87 0.29 0.87 0.29 152 081 1.7D91 180 085 074 133 0.69.36 052 057 048 102 053 1.06 046 224
100x20 1.86 0.40 2.04 051 149 140 144.77 198 157 101 290 10061 092 1.13 077 191 037 281 0.26 5.53
200x10 0.59 3.08 0.53 3.10 141 15.77 0.914.28 1.19 11.48 0.60 20.66 0.523.80 0.33 6.29 0.29 14.29.22 10.10 0.21 19.35
200x20 0.97 4.63 0.80 5.07 132 24.18 1.18556 1.60 22.22 0.82 49.46 0.486.50 0.47 11.080.43 21.86 0.18 26.17 0.18 43.16
500x20 0.39 115.48 0.38 126.841.13 1006.510.89 989.50 0.82 730.96 0.40 1583.460.20161.33 0.17 219.790.14 887.240.34 169.300.34 169.30
Average 1.14 10.35 1.23 11.34 1.43 87.45 1.3086.06 1.72 63.98 0.95 138.22 0.8114.41 0.66 19.95 0.62 77.25 0.50 17.53 0.39 20.12

PR1(15) PR2(5) PR2(10) PR2(15) PR3(5) PR3(10) PR3( PR4(5) PR4(10) PR4(15)
Instance RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time RPI Time
20x5 0.37 0.01 056 0.01 045 0.02 0.3D.02 088 000 085 001 0.80.01 064 0.01 046 0.02 040 0.02
20x10 0.48 0.02 0.86 0.02 062 003 05205 068 001 068 001 0.6802 075 0.02 057 0.03 0.49 0.04
20x20 0.31 0.04 056 0.03 045 0.06 0.3D.08 065 0.02 057 0.02 05D.04 057 003 045 0.05 0.40 0.07
50x5 0.45 0.16 0.33 010 030 020 0.3@.30 0.61 0.07 057 0.14 05020 045 0.12 039 0.22 0.34 0.33
50x10 0.24 0.39 0.68 0.23 055 045 04®.67 059 0.17 043 030 0.4D44 0.87 027 069 051 058 0.75
50x20 0.38 0.83 0.86 044 063 090 054.34 050 032 039 062 03DP92 0.77 051 064 098 056 1.44
100x5 0.43 1.37 0.27 0.64 0.22 128 0.21.92 056 058 050 1.14 049.66 0.33 078 0.30 1.49 0.27 2.20
100x10 0.41 3.41 039 158 036 3.16 0.3%.73 043 149 040 286 0.3@.24 048 188 046 361 044 5.35
100x20 0.20 8.22 0.65 3.38 0.48 6.76 0.400.14 0.26 3.18 0.25 6.11 0.229.01 0.72 393 066 756 0.60 11.17
200x10 0.19 21.18 0.16 11.11 0.14 21.18 0.1421.25 0.28 13.11 0.26 21.22 0.2621.18 0.21 13.34 0.21 20.96 0.21 20.96
200x20 0.18 43.14 0.49 24.19 0.39 43.44 0.3943.44 0.42 25.78 0.42 43.12 0.4243.14 0.44 28.37 0.43 43.98 0.43 44.00
500x20 0.34 172.36 0.33 126.740.33 126.74 0.3326.78 0.21 130.250.21 132.19 0.2128.32 0.19 110.610.19 110.610.19 113.38
Average 0.33 20.93 0.51 14.04 0.41 17.02 0.3617.56 0.51 14.58 0.46 17.31 0.4517.43 0.54 13.32 0.45 15.84 0.41 16.64
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Table 4. Summary of all heuristics, orderedR®/.

#  Algorithm RPlI  Time Type PARETO # Algorithm  RPI Time Type PARETO
1 PR1(15) 0.33 20.93 Composite 0 20 RZ-LW 1.29 10.38 Simple 1

2 PR2(15) 0.36 17.56 Composite 0 21 IH7-FL 130 86.06 Cortpos 18

3 PR1(10) 0.39 20.12 Composite 1 22 IH7 1.43 87.4Bomposite 19

4 PR2(10) 0.41 17.02 Composite 1 23 C1-FL 1.72 98%3. Composite 17

5 PR4(15) 0.41 16.64 Composite 0 24LR-NEH(15) 1.72 4.94 Simple 0

6 PR3(15) 045 17.43 Composite 2 23 R-NEH(10) 1.75 3.30 Simple 0

7 PR4(10) 045 15.84 Composite 0 26 LR-NEH(5) 1.84 1.65 Simple 0

8 PR3(10) 046 17.31 Composite 3 27 FL 1.99 61.24 Simple 20

9 PR1(5) 0.50 17.53 Composite 5 28 R( 2.09 134.12 Simple 26
10  PR3(5) 0.51 1458 Composite 0 29 Lifdign) 2.29 6.81 Simple 3
11 PR2(5) 0.51 14.04 Composite 0 30 Rz 2.65 0.94 Simple 0
12 PRA(5) 0.53 13.32 Composite 0 31 WY 2.83  41.90 Simple 22
13 IC3 0.62 77.25 Composite 12 32 LR(1) 3.13 0.29 Simple 0
14 IC2 0.66 19.95 Composite 10 33 NEH 4.03 0.37 mpk 1

15 IC1 0.81 14.41 Composite 2 34 Raj 5.02 0.08 Simple 0
16 C2-FL 0.95 138.22 Composite 15 35 LIT 8.26 1.42 Simple 4

17 LR-FPE 114 10.35 Composite 0 36 SPD2 16.56 143 Simple 5
18 FL-LS 1.22 120.24 Simple 16 37 SPD1 17.37 1.18 Simple 4

19 LR-BPE 123 11.34 Composite 1

It can be seen that simple heuristics clearly perfevorse than the composite ones
except FL-LS and RZ-LW, which produce slightly st@aRPI values than IH7, IH7-FL and
C1-FL. Among the simple heuristics, the worst periiong algorithms are the three heuristics
presented by Wang et al (1997), with SPD1 and SP&2g more than 15% over the best
solution found by any of the compared methods. Bést simple heuristic is FL-LS, which
produces the smallest meBRI value of 1.22%. However, this is a very costly Imoet, which
needs, on average, 120.24 seconds. As a mattachftifie column “PARETO” in Table 4
indicates the number of heuristics that Pareto-datei a given one as regards averaBe
and average CPU time. For FL-LS we see that therel@ methods that dominate it: From
the 17 heuristics with loweRPI values than FL-LS, all of them, except C2-FL, néssb
CPU time and therefore, dominate, in a Pareto séitseS.

The presented LR-NEM) heuristic yields a much smaller overBIPl value than both
the NEH and LR heuristics fo=5, 10 or 15. Additionally, the proposed LR-NEdH(s not
dominated, i.e., it represents the best trade-gtiivben CPU time anBPlI among the simple
heuristics. Raj is the fastest method, needingpartenth of a second, on average.

Among existing composite heuristics from the litara, IC3 is obviously the best
performer producing 0.629%&RPI value within 77.25 seconds. However, all presented
composite heuristics at all testedalues result in loweRPI values at a lower computational
cost.

Figure 8 shows a scatter plot of averdf® versus average CPU time for the best

performing methods. Pareto dominating heuristiesdapicted in red (boldface in Table 4).
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Figure. 8. Averag®PI versus average CPU time for the heuristics. Paletainant
methods shown in red.

Previous tables and plots contain average redsconduct comprehensive statistical
analyses to ascertain if the observed difference&RI values are indeed statistically
significant. Design of experiments (DOE) and anedysf variance (ANOVA) (Montgomery
(2008)) are conducted for all results.

We consider all 27 tested heuristics. Recall that groposed methods are tested with
three values af, namely 5, 10 and 15. As a result, we have 37 oaksthall of them present in
Table 4. Five replicates and 120 instances aredeshich recall results in 22,200 treatments.
In Taillard’s benchmark, not all combinationsrofndm are present and thereforeandm
are not orthogonal. In order to study these twdofa¢c we define a factor called type of
instance “Type” which has 12 levels, 1 for 20x5p220x10 and so on until 12 for 500x20.
The replicate (note that all methods are run fngependent times) is a witness factor that is
shown to be statistically not significant with ava@lue close to 1.0. This factor is then
removed after validating the experiment. As a tedbk initial ANOVA has two factors,
Algorithm, with 37 levels, and Type of instance l8tlevels. The response variable is iR
ANOVA is a parametric statistical tool and there @hree main assumptions: normality,

homogeneity of variance (homoscedasticity) andpeddence of the residuals. We carefully
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checked all three assumptions and the results shtlwed no major departures were found.
The only minor problem is a slight small departéin@m normality. However, as is well
known, ANOVA is robust with respect to the normakissumption. The result of the ANOVA
is that the two factors as well as the interacbetween the two are statistically significant
with p-values very close to 0. The most significtattor is the Algorithm with an F-Ratio
close to 5,000. An initial means plot with 99% dadehce level intervals (not shown due to
space limitations) clearly shows that the followimguristics are statistically different (from
worst to best): SPD1, SPD2, LIT, Raj, NEH and LR(Upte that all these methods have
average RPI over 3%. They are statistically wohsm tall other heuristics and are therefore
disregarded from the ANOVA and from following plotghis in turn also helps with the
normality assumption). We employ the most restrictitechnique for calculating the
confidence intervals around the means: the Tukdglsest Significant Difference (HSD). If
the intervals around two plotted means overlapmé@ans that there are no statistically
significant differences between the means at thhergconfidence level. The means plot with

the remaining 31 heuristics is given in Figure 9.
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Figure. 9. Means plot for thePI with Tukey's Honest Significant Difference (HS¥)%
confidence intervals for the 31 best performingristics.

It can be observed from Figure 9 that heuristias ba divided into 14 homogenous
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groups where no significant differences can be dowithin each group. The last three
heuristics are each in a group, i.e., from worsbést, WY, RZ and LR{(m). Group 11 is
formed by methods FL and LR In Figure 9 we see how the confidence interfaisthe
averageRPI of these two methods overlap. All groups are fatnmea similar way. Figure 9
also shows, in red, the intervals from those Paretedominated heuristics.

It is shown that our proposed methods, from PRPR4, in all three values of are
better than all other heuristics. Statistically adprg, from PR1(15) to PR3(10) we have
significant differences with IC3, the best compgtmethod from the literature. It has to be
pointed out that IC3 needs, on average, more tifasec¢onds of CPU time while PR1(15)
needs less than 21 seconds on average.

Of course, all previous statistical analyses detfiet overall picture of the heuristics
across all instances. The results vary slightlynfrone instance size to another. The
interaction between the type of instance and theistecs is relatively weak (still statistically
significant but with a rather small F-Ratio). Anaexple of this type of interaction is given in

Figure 10. Only four heuristics are shown for diari

291~ : ‘ —— PRI(15)

— —IC3

24 —<e -FL-LS

I s LR-NEH(15)

RPI

Figure. 10. Means plot for tHePI with Tukey's Honest Significant Difference (HS)%
confidence intervals for the interaction betweanitistance type and some chosen heuristics.
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We see that the confidence intervals are very \fidere are only 10 instances at each
group) and there is not enough data to draw stoomglusions. We see, for example, how
PR1(15) is statistically equivalent to IC3 for seldnstance groups, while being better for
the others. Only for 100x5, IC3 results in a loRet, albeit this difference is not statistically
significant.

There are other cases where some differences apfmaever, we believe that the main
interest lies with the average performance depictelde previous Figure 9.

In a nutshell, we put forward the following statentebased on the above comparison
and analysis. (1) All the simple heuristics argpagsed by the composite ones except FL-LS
and RZ-LW regarding to the quality of solutions. @e other hand, most simple heuristics
run much faster than their composite counterpd®s.The best four simple heuristics are
FL-LS, RZ-LW, the proposed LR-NEKW( and FL in terms of effectiveness with the
computational time of the proposed LR-NEHbeing much less than that of the other three
heuristics. (3) Both IC2 and IC3 are significantigtter than the other existing composite
heuristics in terms of overaRPI value. However, both are outperformed by the mtesk

heuristics PRX)-PR4) both in terms oRPI as well as CPU time.

5. Conclusions

In this paper we have carried out an extensiveerexand comparison of the heuristics
for the permutation flowshop scheduling problemhwiittal or mean flowtime minimization
criterion. A total of 22 existing heuristics haveelm coded and tested. With the knowledge
obtained, five new methods have been presentedw&hénown Taillard (1993) benchmark
has been employed. All heuristics have been cadétkisame language and have been tested
on the same computing platform therefore the resaite fully comparable. Furthermore,
extensive use of the design of experiments (DOR)ragch and analysis of variance
(ANOVA) statistical technique results in sound dos@ons.

Among simple heuristics, the FL-LS of Laha and $48009) is the best performer.
However, it is computationally costly; needing abone order of magnitude more CPU time

than other composite heuristics that are, in tibetfer performers. Our simple proposed
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LR-NEH(X) method represents a good trade-off between CRE &nd quality, dominating
most other existing simple heuristics from a Papstispective.

It is demonstrated that the heuristics IC2 and p@&&%ented by Li et al. (2009) were the
best two performers from the literature as regdhds quality of solutions and composite
heuristics. However, our four presented composgeribtics PRI{)-PR4) result both in
lower average relative percentage deviations amgbricaverage CPU time. For example,
PR1) results in an average deviation of just 0.33% awetage CPU time of 20.93 seconds
whereas IC3 has almost double the deviation (0.62%d) more than three times more CPU
time (77.25 seconds). In conclusion, our presentegthods can now be considered
state-of-the-art heuristics for the permutationwBbop scheduling problem with total

flowtime minimization criterion.
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