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Abstract:  Power transformations of positive data tables, prior to applying the 

correspondence analysis algorithm, are shown to open up a family of methods with direct 

connections to the analysis of log-ratios.  Two variations of this idea are illustrated.  The 

first approach is simply to power the original data and perform a correspondence analysis – 

this method is shown to converge to unweighted log-ratio analysis as the power parameter 

tends to zero.  The second approach is to apply the power transformation to the 

contingency ratios, that is, the values in the table relative to expected values based on the 

marginals – this method converges to weighted log-ratio analysis, or the spectral map.  

Two applications are described: first, a matrix of population genetic data which is inherently 

two-dimensional, and second, a larger cross-tabulation with higher dimensionality, from a 

linguistic analysis of several books. 
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1.  Introduction 

Correspondence analysis (CA) has found acceptance and application by a wide variety of 

researchers in different disciplines, notably the social and environmental sciences (for an up-to-date 

account, see Greenacre, 2007a).  The method has also appeared in the major statistical software 

packages, for example SPSS, Minitab, Stata, SAS, Statistica and XLSTAT, and it is freely available 

in several implementations in R (R Development Core Team, 2007) – see, for example, Nenadić and 

Greenacre, 2007.  The method is routinely applied to a table of non-negative data to obtain a spatial 

map of the important dimensions in the data, where proximities between points and other geometric 

features of the map indicate associations between rows, between columns and between rows and 

columns. 

Methods based on log-ratios have quite different origins in the physical sciences, notably chemistry 

and geology, (Aitchison, 1983, 1986) and lead to maps where vectors between points depict the 

logarithms of the ratios between data values in the corresponding pairs of rows or columns.    

Interestingly, this log-ratio analysis (LRA), with the slight but highly significant adaptation of 

weighting the rows and columns of the table proportional to their marginal totals (exactly as is done 

in CA), has been used extensively for more than three decades in the pharmaceutical industry, 

originated by Lewi (1976).   In this context it has been called the spectral map because it depicts the 

information from biological activity spectra.  The spectral map, which we otherwise call weighted 

LRA to distinguish it from the unweighted form, can also be used to analyse contingency tables (see 

Lewi, 1998), in fact any ratio-scale data, as long as there are no zero values.  Unweighted LRA has 

been treated in detail by Kazmierczak (1985) and its biplot and model-diagnostic properties have 

been investigated by Aitchison and Greenacre (2002).   It is known that in spatial maps produced by 

LRA (unweighted or weighted), points that line up approximately as straight lines suggest 

equilibrium models in the rows or columns corresponding to those points (for example, see 

Aitchison and Greenacre, 2002; Greenacre and Lewi, 2005; Greenacre, 2007b).   CA does not have 

this property, but has the advantage that it routinely handles data with zero values, which is one of 

the reasons why it is so popular in ecology and archaeology, where data tables are often quite large 

and sparse.   

So the present situation is one of two competing methods, each with its particular advantages, and no 

apparent direct theoretical link between them, apart from the fact that both are based on singular 

value decompositions.  It is known that CA and weighted LRA give very similar results if the 

variance in the table is low (this is a result of the approximation log(1+x) ≈ x when x is small), but 

differ when the variance is high – see Greenacre and Lewi (2005) or Cuadras, Cuadras and 

Greenacre (2006).   
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In the present paper we show that there is a much closer theoretical affinity between the two 

methods, in fact they both belong to the same family of methods defined by power transformations 

of either the original data or certain ratios calculated from the data.  The power transformation 

family, as embodied in the Box-Cox transformation (Box and Cox, 1964), is usually used in 

statistics to symmetrize the distribution of a response variable in a regression model to satisfy the 

model assumptions (Hinkley, 1975). In the analysis of frequency data, assuming the counts follow a 

Poisson distribution, the square root transformation is used to stabilize the variance (Bartlett, 1936). 

In ecology abundance data is almost always highly over-dispersed and a particular school of 

ecologists routinely applies a fourth-root transformation before proceeding with statistical analysis 

(Field, Clarke & Warwick, 1982). Here we study the family of power transformations in the context 

of correspondence analysis (CA). Some special cases emerge, notably the spectral map, which is a 

limiting case as the power transformation parameter tends to zero. 

The main result in this paper is thanks to the Box-Cox transformation f(x) = (1/α) (xα –1), which 

converges to log(x) as α  tends to 0. Because we are making a comparison with LRA, only strictly 

positive data will be considered.  In Section 2 we give two equivalent definitions of CA and show 

how power transformations can generate two respective families of methods, the first giving a direct 

link between CA and unweighted LRA, and the second a direct link between CA and weighted 

LRA.  Properties of these families are illustrated in Section 3 using two examples, a data matrix 

from population genetics with high inherent variance, and a linguistic example with very low 

variance.  Sections 4 and 5 treat related topics and literature, and Section 6 concludes with a 

discussion.  R code that permits dynamic viewing of the smooth transition from a CA map to a LRA 

map (weighted or unweighted) is available for download from http://www.carme-n.org and 

videos showing the results of executing this code can be viewed at 

http://www.econ.upf.edu/~michael/videos.  In this article we can merely show some 

static “snapshots” of this transition. 

 

2.  Power families: from correspondence analysis to  log-ratio analysis 

CA and LRA are two of the many multivariate methods based on the singular value decomposition 

(SVD) (see, for example, Greenacre 1984: chapter 3).  In the geometric interpretation of the SVD, 

the rows and/or columns of the data matrix define points in a multidimensional space and the SVD 

identifies subspaces of low dimensionality which capture maximum sum-of-squares in the data.  

Different weights for the rows and columns can be introduced into this scheme so that weighted 

sum-of-squares is decomposed.  The weighting can be considered either as assigning different 

weights to each point, or as a change of the Euclidean metric to a weighted one, or both of these at 

the same time, as is the case in CA.  To establish notation, the following subsection contains a 
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summary of standard theory to obtain the principal coordinates of the row and columns points in a 

so-called symmetric CA map (for more details, see Greenacre, 2007a). 

2.1  Correspondence analysis 

Suppose that N is an I × J table of non-negative data.  First divide N by its grand total n to obtain the 

so-called correspondence matrix P = (1/n) N.   Let the row and column marginal totals of P be the 

vectors r  and c respectively – these are the weights, or masses, associated with the rows and 

columns.  Let Dr and Dc be the diagonal matrices of these masses.  The computational algorithm to 

obtain coordinates of the row and column profiles with respect to principal axes, using the SVD, is 

as follows: 

Correspondence analysis 

1. Calculate the matrix of standardized residuals: 

   2/12/1 )( −− −= cr DrcPDS T                           (1) 

2.      Calculate the SVD: TVUDS σ=  where UTU = VTV = I                        (2) 

3. Principal coordinates of rows:       σUDDF 2/1−= r                                (3) 

4. Principal coordinates of columns: σVDDG 2/1−= c                (4) 

The rows of the coordinate matrices in (3) and (4) refer to the rows or columns, as the case may be, 

of the original table, while the columns of these matrices refer to the principal axes, or dimensions, 

of the solution.  The sum of squares of the decomposed matrix S is a quantity called the total inertia, 

or simply inertia, of the data table: 

  

2

1 11 1

2
2 1

)(
  inertia ∑∑∑∑

= == =













−=

−
==

I

i

J

j ji

ij
ji

I

i

J

j ji

jiij

cr

p
cr

cr

crp
φ              (5) 

The inertia is exactly Pearson’s mean-square contingency coefficient, that is, the Pearson chi-square 

statistic for the table divided by the grand total n of the table, and is used as a measure of total 

variance.  The squared singular values σk
2 decompose the inertia, and the row and column principal 

coordinates are scaled in such a way that 2
σDGDGFDF == cr

TT , i.e. the weighted sum-of-squares 

of the coordinates on the k-th dimension (or their inertia in the direction of this dimension) is equal 

to σk
2, called the principal inertia (or eigenvalue) on dimension k.  A two-dimensional solution, say, 

would use the first two columns of the coordinate matrices, and the explained inertia accounted for 

in the two-dimensional solution is the sum of the first two terms σ1
2+σ2

2, usually expressed as 
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percentages of the total inertia.  Standard coordinates are defined as in (3) and (4) without scaling on 

the right by the singular valuesσD , and hence have weighted sum-of-squares equal to 1. 

Notice in (5) how the inertia can be defined using either contingency differences between observed 

and expected relative frequencies, pij  – r i cj , or contingency ratios, pij  / r i cj . The matrix S in (1) can 

be written equivalently as follows, in terms of the matrix of contingency ratios Q = Dr
–1PDc

–1: 

2/1112/1 ))()(( ccrr D1cIPDD1rIDS TTT −−= −−                (6) 

where 1 denotes a vector of ones of appropriate order in each case.  The pre- and post-multiplication 

of Q by the centring matrices (I  – 1rT) and  (I  – 1cT)T amounts to a weighted double-centring of the 

contingency ratios.  This second definition of CA is particularly useful for comparing with LRA. 

2.2 Logratio analysis, weighted and unweighted 

A weighted LRA (i.e., spectral map) is based on the logarithms of the elements of N: L  = [log(nij)]; 

hence we only consider strictly positive data here.  Using the same masses r  and c as in CA, the 

matrix is then double-centred, and then a weighted SVD is performed, as summarized in the 

following computational scheme: 

Weighted log-ratio analysis (spectral map) 

1. Calculate the weighted, double-centred matrix: 

   2/12/1 )()(* cr D1cIL1rIDS TTT −−=                          (7) 

2.      Calculate the SVD: TVUDS µ=*  where UTU = VTV = I                        (8) 

3. Principal coordinates of rows:       µUDDF 2/1−= r                                (9) 

4. Principal coordinates of columns: µVDDG 2/1−= c                          (10) 

Notice that steps (8) – (10) are identical to (2) – (4) of CA.  It is just the pre-processing and first step 

(7) that differs.  The unweighted LRA is obtained simply by setting r  = (1/I )1 and c = (1/J )1 in the 

above scheme, so that the initial matrix S* is replaced by  

))/1(())/1(()( 2/1 TT 11IL11IS JIIJ −−= −o                (11) 

Since the logarithm of the contingency ratios is log(nij) – log (n) – log(r i) – log(cj),  and the double-

centring removes the “constant” log(n) and “main effects” log(r i) and log(cj), the only difference 
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between the initial matrices S and S* is that in (6) CA operates on the contingency ratios whereas in 

(7) weighted LRA operates on the log-transformed contingency ratios.   

The total variance in weighted LRA (i.e., the sum of squares of matrix S* in (7)) can be written in 

terms of the logarithms of the “double-ratios”: 
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For the unweighted LRA, again replace the row masses by (1/I ) and the column masses by (1/J ).  

 

2.3 Power families of analyses generated by power t ransformations 

The two forms of CA starting from the correspondence matrix in (1) or the contingency ratios in (6) 

suggest two ways of introducing a power transformation. 

Power family 1:  Pre-transform the matrix P (or, equivalently N), by the power transformation pij(α) 

= pij
α .  After dividing out this matrix by its total to obtain the new correspondence matrix and 

recalculating the row and column masses, proceed as in (1) to calculate the matrix to be 

decomposed, denoted by S(α), and then continue as in (2) – (4) above.  To standardize the analyses 

with different values of the power parameter α  the singular values σk are divided by α , so the 

inertia is divided by α2 – this is equivalent to dividing S(α) by α  before applying the SVD.   

Power family 2:  Pre-transform the matrix Q of contingency ratios by the power transformation 

qij(α) = qij
α .  Calculate S*(α) using the power-transformed contingency ratios, as in (6), followed by 

(2) – (4).  In this case the masses r i and cj are maintained constant throughout, equal to their original 

values irrespective of α.  Again, to standardize the analyses with different values of the power 

parameter α , the singular values σk are divided by α , so the inertia is divided by α2 – this is 

equivalent to dividing S*(α) by α  before applying the SVD, or to dividing the power-transformed 

contingency ratios qij(α) by α  before double-centring and decomposing.   

In power family 2, whether we double-centre (1/α) qij
α  or (1/α) (qij

α –1) makes no difference at all, 

because the constant term will be removed.  Hence, the analysis in this case amounts to the Box-Cox 

transformation of the contingency ratios: 

( )1
1 −α

α ijq            (13) 
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which converges to log(qij) as α→0.  This shows that power family 2 converges to weighted LRA as 

α→0. 

In power family 1, we are also analysing contingency ratios of the form (1/α) qij
α , or (1/α) (qij

α –1), 

but then the ratios as well as the weights and double-centring are all with respect to row and column 

masses that are changing with α.  At the limit as α→0, these masses tend to constant values, i.e. 1/I  

for the rows and 1/J  for the columns; hence this shows that the limiting case of power family 1 is the 

analysis of the logarithms with constant masses, or unweighted LRA. 

 

3.  Applications 

3.1 Two-dimensional example: the M-N system in popu lation genetics 

If the data are inherently two-dimensional then there will be little difference in the unweighted and 

weighted LRA solutions, just a slight rotation of the principal axes, so this serves as a good 

demonstration of the difference between the CA and LRA configurations.  This is the case with the 

data set in Table 1 from population genetics, concerning the estimated frequencies in 24 populations 

of three groups in the M-N genetic system.  The two alleles, M and N, in this system are co-

dominant, so that the three groups are MN, M (denoting MM) and N (denoting NN).   

Figure 1 shows the transition in power family 2, with fixed masses, from CA (α = 1) to weighted 

LRA (limit as α→0, i.e. log-transformation) in three intermediate steps: α=0.75, α=0.50 and α=0.25 

(using the R code referred to at the end of Section 1, one can see dynamically a smooth change from 

CA to LRA, using smaller steps, for example α=0.99, 0.98, …, 0.02, 0.01, →0).  This example is 

interesting because the CA solution shows the well-known arch effect, with 86.4% inertia on the 

first axis, and thus 15.6% on the second.  As α  descends the curve starts to straighten out until at the 

limit of the weighted LRA, the configuration is practically one-dimensional with 96.8% explained 

inertia on the first principal axis (the inset boxes show the evolution of the total inertia, depicted by 

the upper curve, and the two principal inertias shown by the two lower curves, as α descends from 1 

to 0). 

The linearity of M, MN and N in the final weighted LRA and the almost equal distance between the 

three points imply a model for the logratios: log(MN/M) = log(N/MN) + constant, which perfectly 

diagnoses the Hardy-Weinberg equilibrium for this genetic system: MN2 / M·N = 4 (see, for example, 

Greenacre, 2007b). 
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The result for power family 1, with changing masses, is almost identical in this two-dimensional 

case, the only noticeable difference being the way the total inertia and the parts of inertia are 

measured, since the limiting case as α→0 is the unweighted LRA, where the percentage of inertia 

explained by the first axis is slightly higher, 97.2%. 

3.2 Higher-dimensional example: the “author” data 

The data set “author” consists of counts of the letters a to z in samples of texts from 12 books (or 

chapters of books) by six famous English authors (Table 2).  This data set has an extremely low 

inertia, since there are very small differences in the relative frequencies of the letters, but the 

differences between authors is still substantively meaningful (for more detailed analyses of this data 

set, see Greenacre and Lewi, 2005; Greenacre, 2007a: Chapter 10).  There is one zero value in this 

table (a count of zero occurrences of the letter q  in the sample of text from Farewell to Arms by 

Hemingway), which we have replaced by a ½ ,  otherwise LRA breaks down.  It is already known 

that CA and LRA will resemble one another when the inertia is low (Greenacre and Lewi, 2005; 

Cuadras et al., 2006).  Figure 2 shows CA in the first panel, weighted LRA in the last panel and the 

analysis of the power-transformed contingency ratios with α = 0.50 in the middle panel.  The 

differences between the configurations of the books are minor, as expected, and the cumulated 

percentage of inertia explained by the first two axes is slightly lower in the LRA map. The benefit of 

the LRA approach is that letters that form straight lines indicate linear models in the corresponding 

log-ratios.  For example, as shown by Greenacre and Lewi (2005), the straight line formed by k, y 

and x in the last panel of Figure 2 indicates an equilibrium relationship between these three letters 

which amounts to:  y ∝ x 
0.2k 

0.8.  In the CA map (first panel of Figure 2) such relationships can not 

be diagnosed. 

 

4.  Connection with Hellinger distance and spherica l analysis 

Escofier (1978) studied the properties of the Euclidean distance defined on the square-root 

transformed profile values, called Hellinger distances (see, for example, Rao, 1995).  Domenges and 

Volle (1979) called the principal component analysis of such transformed data analyse sphérique 

(spherical analysis), because the square-root transformation places the profile points on a 

hypersphere.   Cuadras et al. (2006) have studied the connection between CA and a slightly different 

form called “Hellinger analysis”, which differs in the way the transformed data are centred.  These 

variants can also be thought of as a power-transformed family if we start from the following 

equivalent form of the matrix S in (1) or (6), in terms of row profiles (the rows of P divided by their 

row sums, i.e., the rows of Dr
-1P): 

          2/112/1 )( −− −= crr D1cPDDS T               (14) 
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Hellinger analysis is based on the SVD of the matrix: 

          ])()[(
~ 2/12/112/1 T1cPDDS −= −

rr               (15) 

which can be written as: 

          2/12/1112/1 ])[(
~

ccrr D11PDDDS T−= −−  

This suggests another family based on the power transformation of the contingency ratios Dr
-1P Dc

-1: 

          2/1112/1 ])[()(
~

ccrr D11PDDDS T−= −− αα                        (16) 

(again, we would multiply this matrix by 1/α before decomposing with the SVD). This family passes 

smoothly from CA to Hellinger analysis as α  changes value from 1 to 0.5 (Cuadras and Cuadras, 

2007).  In spherical analysis the square-root transformed profiles in (15) are centred with respect to 

their weighted average 2/11 )( PDr −
r

T , and so this variant would be a special case of weighted PCA of 

power-transformed profiles, centred in the usual way and weighted by the row masses.  Neither 

Hellinger analysis nor spherical analysis seems to have any practical benefit over CA or LRA, apart 

from the claimed advantage that the metric between the rows does not depend on the column 

margins, as is the case in CA.   Figure 3 shows the M-N example for this family with α = 1, 0.75, 

0.5.  There is hardly any change in the row configuration and the percentage of inertia on the first 

dimension, after an initial increase, is less in Hellinger analysis.  This data set is two-dimensional in 

CA and LRA and in both power families described in Section 3, but is three-dimensional in the case 

of Hellinger and spherical analyses and the power families described above that lead to them (apart 

from the case α = 1, which is CA and thus two-dimensional).  The introduction of a third dimension 

could be deemed a disadvantage because a size effect has now been mixed in with the analysis, 

whereas CA and LRA concentrate only on shape effects.  

Bavaud (2002, 2004) looks at families of dissimilarity measures based on the contingency ratios qij  , 

defined, for example, between rows as:  

( )∑ ′−
j jiijj qfqfc 2)()(   where   )1(

1
)( −= α

α
qqf              (17) 

for which α = 1 gives the chi-square distance, α = ½  gives the Hellinger distance, and the limit as α 

tends to 0 gives the following weighted distance based on the logarithms of the row profiles: 

( )∑ ′′−
j ijiiijj rprpc 2)/ln()/ln( .  Notice that this distance function is similar but not the same as the 
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one implicit in weighted LRA, which divides elements pij in each row by their respective weighted 

geometric mean Jc
iJ

c
i

c
i ppp L21

21 , not by their sum r i. 

 

5.  More relations between methods 

The same idea can be applied to many other methods related to CA, such as multidimensional 

scaling (MDS) and so-called “non-symmetrical correspondence analysis” (NSCA) (Lauro and 

D'Ambra , 1984; Kroonenberg and Lombardo, 1999). 

NSCA is a principal component analysis of profile vectors, using the profile masses as weights, in 

other words the same as spherical analysis described in Section 4, but without the square-root 

transformation.  As in spherical analysis, the rows and columns are treated differently, depending on 

whether the data are considered as predicting the rows given the columns, or the columns given the 

rows.  For example, in the latter case: 

Non-symmetrical correspondence analysis for predicting columns, given rows 

1. Calculate the matrix: 

   )( 12/1 T1cPDDS −= −
rr

(

                                    (18) 

2.      Calculate the SVD: TVUDS σ=
(

 where UTU = VTV = I                      (19) 

3. Principal coordinates of rows:       σUDDF 2/1−= r                              (20) 

4. Principal coordinates of columns: σVDG =                           (21) 

Compare (18) with (15) – the only difference is that the square-root transformation of profiles is 

omitted.  

Various power versions can be considered, depending on what is transformed and how centring is 

performed: 

(i) power up the original data, αijp , in which case the row masses will change according to α ;  

(ii)  power up the profiles, α)/( iij rp , and average profile, αjc , keeping the row masses equal to 

the original ones for all α – this version has Hellinger analysis as a special case when α = ½ .  
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(iii)  power up the profiles, α)/( iij rp , and centre them at their weighted average, which has 

elements ∑i iiji rpr ,)/( α  j = 1,…, J – this version has spherical analysis as a special case 

when  α = ½ . 

Siciliano (1989) introduced a logarithmic transformation into NSCA – this corresponds to the 

limiting case of version (iii) above as α  tends to 0. 

In order to relate NSCA to CA, compare (18) with (14) – the only difference is that post-

multiplication by Dc
–½ is omitted.  To make a direct comparison with CA, an equal weighting of 1/J 

should be introduced for the columns, i.e., Dc
–½ in the CA formulation (14) should be replaced by 

(1/J)–1/2  = J1/2.   We can then illustrate graphically the difference between CA and NSCA by 

incorporating a parameter, β  say, which allows a transition from one weighting system to another.  

For example, let Dw = β Dc + (1 – β )(1/ J) I   and replace steps (18) and (21) above by, respectively: 

                          Matrix to be decomposed               2/112/1 )( −− −= wrr D1cPDDS T
(

                         (22) 

  Principal coordinates of columns: σVDDG 2/1−= w                                     (23) 

As β varies from 1 to 0 the resulting maps will pass smoothly from CA to NSCA respectively, where 

the equal column weighting of 1/J has been introduced into the NSCA definition.  Figure 4 shows 

three snapshots of the transition – since the row masses are approximately equal there is very little 

change in the configurations and percentages of inertia, only an increase in the inertias for the non-

symmetrical version. 

The same idea can be used to compare CA with PCA in terms of their respective standardizations of 

the matrix columns, say, where CA standardizes by the square root of the mean and PCA by the 

standard deviation.  This would make sense if the two methods were analysing comparable equal-

weighted rows, for example if the rows add up to 1 for data that are proportions (or percentages 

adding up to 100%) so that the profiles were the original data and all rows received the same mass. 

As before, the standardization could be defined parametrically as post-multiplication of the data 

matrix by γ Dc
–½ + (1–γ ) Ds

–1, where the columns masses (means in this case) are in the diagonal of 

Dc and the column standard deviations are in the diagonal of Ds . Hence, as γ  varies from 1 to 0, the 

resulting maps pass smoothly from CA to PCA. 

In MDS we are trying to match observed distances dij with fitted distances δij in a map. To reduce 

the influence of large distances in the fitting process, a power transformation can be introduced, for 

example:  
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   ( )1)1(
1

)( −+=∗ α

α
α ijij dd                (24) 

This starts with the original distances when α = 1 and converges to a logarithmic transformation 

log(1+ dij ) as α → 0.   

Carroll, Kumbasar and Romney (1997) showed a different connection between CA and MDS that is 

not governed by a power transformation but is a limiting result in the same spirit as those presented 

here.  Their result was that the CA of a suitably transformed distance matrix has as a limiting case 

classical scaling.  We give Carroll et al.’s result in our present notation.  Suppose [dii' ] is an I × I 

square matrix of observed distances, and define a new table as follows: 

    21
iiii dn ′′ −=

α
                  (25) 

where α > 0 and  1/α ≥ max{ 2
iid ′ }, i.e., squared distances are subtracted from a number at least as 

large as their maximum so that the nii' are all nonnegative.  Then the CA of the matrix N = [nii'] 

converges to the classical scaling solution as α → 0.  As in all cases above, a rescaling needs to be 

introduced to make the solutions equivalent.  In the case of CA, we perform steps (1) and (2) on the 

correspondence matrix P based on (25) and then the solution coordinates are: 

ασ 2
12/12/1 UDDH −= r                  (26)  

Hence H consists of the standard coordinates UD 2/1−
r  scaled by the square roots of the singular 

values (i.e., the fourth roots of the inertias† in the CA of N), then rescaled by dividing by 2α.  The 

eigenvalues of the classical scaling can be recovered from (I  / 2α)σk, remembering that all these 

results apply in the limit – in practice, an α  about one thousandth of the maximum of the 2
iid ′ , i.e. 

1/α about 1000 times this maximum, gives a solution very close to the classical scaling one. 

 

6.  Discussion and conclusion 

We have shown that CA and both unweighted and weighted LRA can be connected by considering 

the power transformation of the original data matrix or the matrix of contingency ratios respectively.  

When the power parameter α  is equal to 1 we have simple CA in both cases, and as α  tends to 0 we 
                                                      
† The distinction between singular values, eigenvalues and inertias becomes a bit confusing in this case where 
N is a square matrix. The singular values of N are actually eigenvalues (at least those corresponding to positive 
eigenvalues), and the inertias in the CA of N (often themselves referred to as eigenvalues) are the squares of 
the singular values of N.  Hence these inertias are fourth powers of N’s eigenvalues.  
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obtain the unweighted or weighted cases respectively.  This shows that LRA is theoretically part of 

the same family as CA, and not as different as one might have thought.  The connection is especially 

surprising for CA and the spectral map (weighted LRA) because the two methods have been 

developed and applied extensively for over 30 years as completely separate methodologies.     

The idea of linking methods by a parameter and especially the dynamic visualization of smooth 

changes from one method to another can be highly enlightening as to the properties of these 

methods.  Various other methods can be linked to CA in this way, as we have shown: CA to 

spherical analysis and Hellinger analysis, CA to NSCA, CA to PCA and CA to MDS.  

Unfortunately, in these pages we can only show “snapshots” of some steps between the methods for 

selected values of the power parameter, but the R code given on the site  

www.carme-n.org can be used to get an idea of the dynamic graphics possibilities, and is easily 

adapted to the other cases described above. 
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Table 1  Data set “M-N”: estimated proportions of three genetic groups of the M-N system, with 

two co-dominant alleles M and N. 

 

Population MN M N
1 0.12 0.01 0.87
2 0.19 0.02 0.79
3 0.37 0.05 0.58
4 0.39 0.08 0.53
5 0.41 0.02 0.57
6 0.50 0.25 0.25
7 0.52 0.25 0.23
8 0.51 0.31 0.18
9 0.50 0.31 0.19
10 0.49 0.27 0.24
11 0.50 0.28 0.22
12 0.49 0.35 0.16
13 0.47 0.43 0.10
14 0.44 0.47 0.09
15 0.40 0.51 0.09
16 0.42 0.51 0.07
17 0.39 0.53 0.08
18 0.39 0.59 0.02
19 0.15 0.79 0.06
20 0.15 0.83 0.02
21 0.36 0.61 0.03
22 0.34 0.61 0.05
23 0.30 0.68 0.02
24 0.28 0.67 0.05  
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Table 2  Books from which text is sampled for the “author” data, and abbreviations used in Figure 2. 

 

TD-Bu  Three Daughters (Buck)  FA-He  Farewell to Arms (Hemingway) 

EW-Bu  East Wind (Buck)  Is-He  Islands (Hemingway) 

Dr-Mi  The Drifters (Michener)  SF6-Fa  Sound and Fury, ch.6 (Faulkner) 

As-Mi  Asia (Michener)   SF7-Fa  Sound and Fury, ch.7 (Faulkner) 

LW-Cl  Lost World (Clark)  Pe2-Ho  Pendorric, ch.2 (Holt) 

PF-Cl  Profiles of the Future (Clark) Pe3-Ho  Pendorric, ch.3 (Holt) 
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Figure 1:  From correspondence analysis (α = 1) to weighted log-ratio analysis (α → 0), with three 
intermediate steps, for the “M-N” data, showing the symmetric maps (both rows and columns in principal 
coordinates). The box shows the numerical value of α  and the percentage of inertia explained on the first 
dimension, as well as a graph of the values of the total inertia and two principal inertias as α  decreases.  
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Figure 2:  From correspondence analysis (α = 1) to weighted log-ratio analysis (α → 0), with one 
intermediate “hybrid” analysis  (α = ½) for the “author” data, showing the symmetric maps. The box 
shows the numerical value of α  and the percentage of inertia explained .in the two-dimensional map, as 
well as a graph of the values of the total inertia and two principal inertias as α  decreases. 
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Figure 3:  From correspondence analysis (α = 1) to Hellinger analysis (α = 0.5) for the “M-N” data. The 
box shows the numerical value of α  and the percentage of inertia explained on the first dimension, and a 
graph of the values of the total inertia and two principal inertias as α  decreases.  
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Figure 4:  From correspondence analysis (β = 1) to non-symmetrical correspondence analysis (β = 0) for 
the “author” data, showing one intermediate “hybrid” step (β = ½ ). The asymmetric map is shown with 
columns in principal and rows in standard coordinates, where the column (letter) principal coordinates 
have been multiplied by 4 for better legibility. The box shows the numerical value of β and the 
percentage of inertia explained in the two-dimensional map, as well as a graph of the values of the total 
inertia and two principal inertias as β  decreases.  
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