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Abstract: Power transformations of positive data tables, prior to applying the
correspondence analysis algorithm, are shown to open up a family of methods with direct
connections to the analysis of log-ratios. Two variations of this idea are illustrated. The
first approach is simply to power the original data and perform a correspondence analysis —
this method is shown to converge to unweighted log-ratio analysis as the power parameter
tends to zero. The second approach is to apply the power transformation to the
contingency ratios, that is, the values in the table relative to expected values based on the
marginals — this method converges to weighted log-ratio analysis, or the spectral map.
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two-dimensional, and second, a larger cross-tabulation with higher dimensionality, from a
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1. Introduction

Correspondence analysi€A) has found acceptance and application by & watiety of

researchers in different disciplines, notably theia and environmental sciences (for an up-to-date
account, see Greenacre, 2007a). The method laaggeared in the major statistical software
packages, for example SPSS, Minitab, Stata, SAflisBta and XLSTAT, and it is freely available
in several implementations R (R Development Core Team, 2007) — see, for exgmydaadé and
Greenacre, 2007. The method is routinely appbeal table of non-negative data to obtain a spatial
map of the important dimensions in the data, wipeogimities between points and other geometric
features of the map indicate associations betwass, hetween columns and between rows and

columns.

Methods based on log-ratios have quite differeigfims in the physical sciences, notably chemistry
and geology, (Aitchison, 1983, 1986) and lead tpsnahere vectors between points depict the
logarithms of the ratios between data values irctreesponding pairs of rows or columns.
Interestingly, thisog-ratio analysis(LRA), with the slight but highly significant adgpion of
weighting the rows and columns of the table prapodl to their marginal totals (exactly as is done
in CA), has been used extensively for more thaeetllecades in the pharmaceutical industry,
originated by Lewi (1976). In this context it Hasen called thepectral magbecause it depicts the
information from biological activity spectra. Thpectral map, which we otherwise call weighted
LRA to distinguish it from the unweighted form, calso be used to analyse contingency tables (see
Lewi, 1998), in fact any ratio-scale data, as lasdhere are no zero values. Unweighted LRA has
been treated in detail by Kazmierczak (1985) andijpplot and model-diagnostic properties have
been investigated by Aitchison and Greenacre (200)s known that in spatial maps produced by
LRA (unweighted or weighted), points that line ygpeoximately as straight lines suggest
equilibrium models in the rows or columns corregping to those points (for example, see
Aitchison and Greenacre, 2002; Greenacre and L2805; Greenacre, 2007b). CA does not have
this property, but has the advantage that it relfinandles data with zero values, which is one of
the reasons why it is so popular in ecology antaeology, where data tables are often quite large

and sparse.

So the present situation is one of two competinthous, each with its particular advantages, and no
apparent direct theoretical link between them, afstam the fact that both are based on singular
value decompositions. It is known that CA and g LRA give very similar results if the
variance in the table is low (this is a result leé Bpproximation log(24 = x whenx is small), but
differ when the variance is high — see Greenacm laewi (2005) or Cuadras, Cuadras and
Greenacre (2006).



In the present paper we show that there is a milm$erc theoretical affinity between the two
methods, in fact they both belong to the same faofiimethods defined by power transformations
of either the original data or certain ratios cilted from the data. The power transformation
family, as embodied in the Box-Cox transformatiddoX and Cox, 1964), is usually used in
statistics to symmetrize the distribution of a e variable in a regression model to satisfy the
model assumptions (Hinkley, 1975). In the analg$ifequency data, assuming the counts follow a
Poisson distribution, the square root transfornmaiioused to stabilize the variance (Bartlett, 2936
In ecology abundance data is almost always highgr-dispersed and a particular school of
ecologists routinely applies a fourth-root transfation before proceeding with statistical analysis
(Field, Clarke & Warwick, 1982). Here we study faenily of power transformations in the context
of correspondence analysis (CA). Some special @wesge, notably the spectral map, which is a

limiting case as the power transformation parantetsis to zero.

The main result in this paper is thanks to the Bax-transformatiori(x) = (1/a) (x” —1), which
converges to log) asa tends to OBecause we are making a comparison with LRA, etrigtly
positive data will be considered. In Section 2giee two equivalent definitions of CA and show
how power transformations can generate two resgetdimilies of methods, the first giving a direct
link between CA and unweighted LRA, and the seaddect link between CA and weighted
LRA. Properties of these families are illustraite®ection 3 using two examples, a data matrix
from population genetics with high inherent varienand a linguistic example with very low
variance. Sections 4 and 5 treat related topiddigerature, and Section 6 concludes with a
discussion.R code that permits dynamic viewing of the smoatimsition from a CA map to a LRA
map (weighted or unweighted) is available for davall fromht t p: / / www. car ne- n. or g and
videos showing the results of executing this catele viewed at

ht t p: / / ww. econ. upf . edu/ ~mi chael / vi deos. In this article we can merely show some

static “snapshots” of this transition.

2. Power families: from correspondence analysis to log-ratio analysis

CA and LRA are two of the many multivariate methbdsed on the singular value decomposition
(SVD) (see, for example, Greenacre 1984: chaptetrBjhe geometric interpretation of the SVD,
the rows and/or columns of the data matrix defioi@ts in a multidimensional space and the SVD
identifies subspaces of low dimensionality whicptoae maximum sum-of-squares in the data.
Different weights for the rows and columns canrieoduced into this scheme so that weighted
sum-of-squares is decomposed. The weighting caohsidered either as assigning different
weights to each point, or as a change of the Eemfidnetric to a weighted one, or both of these at

the same time, as is the case in CA. To estabbidtion, the following subsection contains a



summary of standard theory to obtain phimcipal coordinatef the row and columns points in a

so-calledsymmetric CA maffor more details, see Greenacre, 2007a).

2.1 Correspondence analysis

Suppose thall is anl x J table of non-negative data. First divideby its grand totah to obtain the
so-calledcorrespondence matriR = (1h) N. Let the row and column marginal totalsPobe the
vectorsr andc respectively — these are the weightanassesassociated with the rows and

columns. LeD, andD_ be the diagonal matrices of these masses. Thputational algorithm to

obtain coordinates of the row and column profiléhwespect to principal axes, using the SVD, is

as follows:

Correspondence analysis

1. Calculate the matrix of standardized residuals:

S=D;Y*(P-rc")D."? (1)
2. Calculate the SVOIS =UD_ V" whereU'U=V'V =| 2)
3. Principal coordinates of rows: F =D "?UD, (3)
4.  Principal coordinates of column& = D_"*VD (4)

The rows of the coordinate matrices in (3) and€figr to the rows or columns, as the case may be,
of the original table, while the columns of thesatmces refer to the principal axes, or dimensions,
of the solution. The sum of squares of the decamgamnatrixS is a quantity called thetal inertia,

or simply inertia, of the data table:

2
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inertia= ¢’ :ZZM:ZZQQ Pi g (5)
im1 =1 IiC, i=1 j=1 iC

The inertia is exactly Pearson’s mean-square ogeticy coefficient, that is, the Pearson chi-square

statistic for the table divided by the grand totalf the table, and is used as a measure of total

variance. The squared singular valuzgzsdecompose the inertia, and the row and columrcipdh

coordinates are scaled in such a way D, F =G'D G = D(ZI, i.e. the weighted sum-of-squares

of the coordinates on theth dimension (or their inertia in the directiontbis dimension) is equal
to a;f, called theprincipal inertia(or eigenvalue) on dimensidn A two-dimensional solution, say,
would use the first two columns of the coordinatgnoes, and the explained inertia accounted for

in the two-dimensional solution is the sum of tistftwo termso;*+a;%, usually expressed as



percentages of the total inertia. Standard coatdsiare defined as in (3) and (4) without scadimg

the right by the singular valuBk, , and hence have weighted sum-of-squares equal to 1

Notice in (5) how the inertia can be defined usitgercontingency differencdsetween observed

and expected relative frequencipip,—ri G, orcontingency ratio,sqoij I, G- The matrixSin (1) can

be written equivalently as follows, in terms of thatrix of contingency ratio® = Dr‘lPDC‘l:
S=DY?(1 -1r")(D;"PD))(1 —1c")"'DY? (6)

wherel denotes a vector of ones of appropriate ordeadn €ase. The pre- and post-multiplication
of Q by the centring matrice$ £ 1r") and ( —1c")" amounts to a weighted double-centring of the

contingency ratios. This second definition of GAparticularly useful for comparing with LRA.
2.2 Logratio analysis, weighted and unweighted

A weighted LRA (i.e., spectral map) is based onldigarithms of the elements bf L = [log(n,)];

hence we only consider strictly positive data hddsing the same masseandc as in CA, the
matrix is then double-centred, and then a weighteD is performed, as summarized in the
following computational scheme:

Weighted log-ratio analysis (spectral map)

1. Calculate the weighted, double-centred matrix:

St =DY?(I -1r")L(I -1c")"DY? (7)
2. Calculate the SVD&* =UD V' whereU™U =V'V =| (8)
3. Principal coordinates of rows: F =D;Y?UD, (9)
4. Principal coordinates of column& = D;**VD , (10)

Notice that steps (8) — (10) are identical to (2#)-of CA. It is just the pre-processing andtfgtep
(7) that differs. The unweighted LRA is obtainga@y by setting: = (11 )1 andc = (1)1 in the

above scheme, so that the initial maiis replaced by
S =132 -@nN11)L( - @/ J)11) (11)

Since the logarithm of the contingency ratios i;(ﬂ?) —log ) — log(,) — Iog(cl), and the double-

centring removes the “constant” loy@nd “main effects” log() and Iog(;]), the only difference



between the initial matricésandS* is that in (6) CA operates on the contingencyosatvhereas in

(7) weighted LRA operates on the log-transformeatiogency ratios.

The total variance in weighted LRA (i.e., the suhsquares of matri$* in (7)) can be written in

terms of the logarithms of the “double-ratios”:

n;

2
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For the unweighted LRA, again replace the row mabgg1l) and the column masses byJ}L/

2.3 Power families of analyses generated by powert  ransformations

The two forms of CA starting from the correspondenwatrix in (1) or the contingency ratios in (6)

suggest two ways of introducing a power transfoiomat

Power family 1. Pre-transform the matrR (or, equivalentiyN), by the power transformaticpﬂ(a)
= pij”. After dividing out this matrix by its total tubtain the new correspondence matrix and

recalculating the row and column masses, proceé@d (@3 to calculate the matrix to be
decomposed, denoted B{a), and then continue as in (2) — (4) above. Toddedize the analyses

with different values of the power parametethe singular values, are divided by, so the

inertia is divided by?” — this is equivalent to dividing(a) by a before applying the SVD.

Power family 2: Pre-transform the matri@ of contingency ratios by the power transformation
qij(a) = qi].". Calculates*( @) using the power-transformed contingency ratissing6), followed by
(2) — (4). In this case the masssleandcj are maintained constant throughout, equal to tiréginal
values irrespective af. Again, to standardize the analyses with diffekeues of the power
parameterr , the singular valueg, are divided byx, so the inertia is divided hy? — this is
equivalent to dividings*(a) by a before applying the SVD, or to dividing the poviemsformed

contingency ratioqij(a) by a before double-centring and decomposing.

In power family 2, whether we double-centreq)lqij" or (1/a) (qij"—l) makes no difference at all,

because the constant term will be removed. Heheeanalysis in this case amounts to the Box-Cox

transformation of the contingency ratios:

14
a(.. 1) (13)
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which converges to Iogp asa- 0. This shows that power family 2 converges toghtsd LRA as

a-0.

In power family 1, we are also analysing contingeratios of the form (1) qij", or (1ia) (qi].”—l),

but then the ratios as well as the weights and léecdmtring are all with respect to row and column
masses that are changing with At the limit asa - 0, these masses tend to constant values, i.e. 1/
for the rows and 1/ for the columns; hence this shows that the lirgitase of power family 1 is the

analysis of the logarithms with constant masseanareighted LRA.

3. Applications
3.1 Two-dimensional example: the M-N system in popu  lation genetics

If the data are inherently two-dimensional thenréhaill be little difference in the unweighted and
weighted LRA solutions, just a slight rotation bétprincipal axes, so this serves as a good
demonstration of the difference between the CAlaRA configurations. This is the case with the
data set in Table 1 from population genetics, coring the estimated frequencies in 24 populations
of three groups in thil-N genetic system. The two allel&é,andN, in this system are co-

dominant, so that the three groups ldifé, M (denotingMM) andN (denotingNN).

Figure 1 shows the transition in power family 2thwfixed masses, from CAx(= 1) to weighted

LRA (limit as a- 0, i.e. log-transformation) in three intermediatps:a=0.75,a=0.50 anda=0.25
(using theR code referred to at the end of Section 1, oneseardynamically a smooth change from
CA to LRA, using smaller steps, for examate0.99, 0.98, ..., 0.02, 0.0L; 0). This example is
interesting because the CA solution shows the welan arch effect, with 86.4% inertia on the
first axis, and thus 15.6% on the second.aAdescends the curve starts to straighten out atritile
limit of the weighted LRA, the configuration is jgtacally one-dimensional with 96.8% explained
inertia on the first principal axis (the inset bexahow the evolution of the total inertia, depidigd
the upper curve, and the two principal inertiasigiby the two lower curves, asdescends from 1
to 0).

The linearity ofM, MN andN in the final weighted LRA and the almost equatalise between the
three points imply a model for the logratios: IN/M) = log(N/MN) + constant, which perfectly
diagnoses the Hardy-Weinberg equilibrium for tresetic systemIN?/ M-N = 4 (see, for example,
Greenacre, 2007b).



The result for power family 1, with changing massesimost identical in this two-dimensional
case, the only noticeable difference being the thaytotal inertia and the parts of inertia are
measured, since the limiting caseaas0 is the unweighted LRA, where the percentage etiia

explained by the first axis is slightly higher, 2%.
3.2 Higher-dimensional example: the “author” data

The data set “author” consists of counts of thiefet to z in samples of texts from 12 books (or
chapters of books) by six famous English authoebld 2). This data set has an extremely low
inertia, since there are very small differenceth@nrelative frequencies of the letters, but the
differences between authors is still substantivedaningful (for more detailed analyses of this data
set, see Greenacre and Lewi, 2005; Greenacre, 2003pter 10). There is one zero value in this
table (a count of zero occurrences of the lejter the sample of text frofarewell to Armdy
Hemingway), which we have replaced by a #therwise LRA breaks down. It is already known
that CA and LRA will resemble one another whenitiegtia is low (Greenacre and Lewi, 2005;
Cuadraset al, 2006). Figure 2 shows CA in the first panel,gied LRA in the last panel and the
analysis of the power-transformed contingency satiith a = 0.50 in the middle panel. The
differences between the configurations of the baoksminor, as expected, and the cumulated
percentage of inertia explained by the first twesais slightly lower in the LRA map. The benefit of
the LRA approach is that letters that form stralgtes indicate linear models in the corresponding
log-ratios. For example, as shown by Greenacre_and (2005), the straight line formed hyy

andx in the last panel of Figure 2 indicates an equiliin relationship between these three letters
which amounts toy 0 x “% ®8. In the CA map (first panel of Figure 2) suchatieinships can not

be diagnosed.

4. Connection with Hellinger distance and spherica | analysis

Escofier (1978) studied the properties of the Eigeh distance defined on the square-root
transformed profile values, called Hellinger distes (see, for example, Rao, 1995). Domenges and
Volle (1979) called the principal component anaydi such transformed dadaalyse sphérique
(spherical analysis), because the square-rootftnanation places the profile points on a
hypersphere. Cuadrasal.(2006) have studied the connection between CAaaslahtly different
form called “Hellinger analysis”, which differs the way the transformed data are centred. These
variants can also be thought of as a power-tramsfdrfamily if we start from the following

equivalent form of the matri® in (1) or (6), in terms ofow profiles(the rows ofP divided by their

row sums, i.e., the rows &f'P):

S=D"*(D/'P-1c")D;"? (14)



Hellinger analysis is based on the SVD of the matri
S=D*[(D;'P)"* - (1c")"*] (15)
which can be written as:
S=D[(D;'PD;})"? -11"]DY?
This suggests another family based on the powsesfibamation of the contingency ratiD$1P Dc'l:
S(a) = D¥*((D;*PD;})" ~11"]DY? (16)

(again, we would multiply this matrix by @before decomposing with the SVD). This family psss
smoothly from CA to Hellinger analysis aschanges value from 1 to 0.5 (Cuadras and Cuadras,
2007). In spherical analysis the square-root foanged profiles in (15) are centred with respect to
their weighted average' (D*P)"'?, and so this variant would be a special case ajhted PCA of
power-transformed profiles, centred in the usual ead weighted by the row masses. Neither
Hellinger analysis nor spherical analysis seenigt@ any practical benefit over CA or LRA, apart
from the claimed advantage that the metric betwlemows does not depend on the column
margins, as is the case in CA. Figure 3 shows/tieexample for this family witlr = 1, 0.75,

0.5. There is hardly any change in the row coméigan and the percentage of inertia on the first
dimension, after an initial increase, is less ifliniger analysis. This data set is two-dimensidnal
CA and LRA and in both power families describe&etction 3, but is three-dimensional in the case
of Hellinger and spherical analyses and the poessiilfes described above that lead to them (apart
from the caser = 1, which is CA and thus two-dimensional). Th&aduction of a third dimension
could be deemed a disadvantage because a sizeheffesow been mixed in with the analysis,

whereas CA and LRA concentrate only on shape sffect

Bavaud (2002, 2004) looks at families of dissinifijameasures based on the contingency raq;jos

defined, for example, between rows as:

1
>,clf@)-f@)f where f(q) == (q" -1) (17)
! a
for which a = 1 gives the chi-square distanees %2 gives the Hellinger distance, and the limitcas
tends to O gives the following weighted distancedobon the logarithms of the row profiles:

chj (|n(|oIj Ir)=In(p, /ri,))z. Notice that this distance function is similat hot the same as the



one implicit in weighted LRA, which divides elemep]]f in each row by their respective weighted

G

geometric mearp? ps--- p3’, not by their sun;.

5. More relations between methods

The same idea can be applied to many other metietated to CA, such as multidimensional
scaling (MDS) and so-called “non-symmetrical copasdence analysis” (NSCA) (Lauro and
D'Ambra , 1984; Kroonenberg and Lombardo, 1999).

NSCA is a principal component analysis of profieetors, using the profile masses as weights, in
other words the same as spherical analysis dedanlf®ection 4, but without the square-root
transformation. As in spherical analysis, the rawd columns are treated differently, depending on
whether the data are considered as predictingotlie given the columns, or the columns given the

rows. For example, in the latter case:

Non-symmetrical correspondence analysis for pratictolumns, given rows

1. Calculate the matrix:

S=DY*(D'P-1c") (18)
2. Calculate the SVD8=UD_V " whereU'U =V'V =| (19)
3.  Principal coordinates of rows: F=D;"?UD, (20)
4.  Principal coordinates of column& =VD (21)

Compare (18) with (15)the only difference is that the square-root tramsédgion of profiles is

omitted.

Various power versions can be considered, deperuinghat is transformed and how centring is

performed:

0] power up the original datapi? , in which case the row masses will change accgrttimr ;

(i) power up the profiles( p; Ir, )9, and average profilecf’ , keeping the row masses equal to

the original ones for alir— this version has Hellinger analysis as a specis¢ whermy= % .
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(iii) power up the profiles(p; /T, )9, and centre them at their weighted average, witsh
elementszi ri(pij /r)?, j=1,...,0 —thisversion has spherical analysis as a special case

when a=%.

Siciliano (1989) introduced a logarithmic transfattion into NSCA — this corresponds to the

limiting case of version (iii) above a&s tends to O.

In order to relate NSCA to CA, compare (18) witd) % the only difference is that post-
multiplication byDC‘VZ is omitted. To make a direct comparison with @A equal weighting of 3/

Y

should be introduced for the columns, i&,,” in the CA formulation (14) should be replaced by
(1/9)™2 = 32 We can then illustrate graphically the differemetween CA and NSCA by
incorporating a parametef, say, which allows a transition from one weightsygtem to another.
For example, leD, = 8D, + (1 -4)(1/J)1 and replace steps (18) and (21) above by, respbct

Matrix to be decomposed ~ S=D¥?(D*P-1c")D Y2 (22)

Principal coordinates of column& = D_"?VD (23)

As S varies from 1 to 0 the resulting maps will passsthly from CA to NSCA respectively, where
the equal column weighting ofdlhas been introduced into the NSCA definition. uFég4 shows

three snapshots of the transition — since the rasses are approximately equal there is very little
change in the configurations and percentages dianenly an increase in the inertias for the non-

symmetrical version.

The same idea can be used to compare CA with P@&rims of their respective standardizations of
the matrix columns, say, where CA standardizedibystjuare root of the mean and PCA by the
standard deviation. This would make sense ifwterhethods were analysing comparable equal-
weighted rows, for example if the rows add up forldata that are proportions (or percentages
adding up to 100%) so that the profiles were thgimal data and all rows received the same mass.
As before, the standardization could be definedmetrically as post-multiplication of the data

matrix bnyC‘VZ +(19) Ds‘l, where the columns masses (means in this cas@) tire diagonal of
D, and the column standard deviations are in theotialgofD, . Hence, ag varies from 1 to O, the

resulting maps pass smoothly from CA to PCA.

In MDS we are trying to match observed distard;lasith fitted distance®); in a map. To reduce

the influence of large distances in the fittingqess, a power transformation can be introduced, for

example:

11



di@) = (a+g,)" -1) 2

This starts with the original distances wher 1 and converges to a logarithmic transformation

log(1+ dij )asa - 0.

Carroll, Kumbasar and Romney (1997) showed a diffeconnection between CA and MDS that is
not governed by a power transformation but is atilvg result in the same spirit as those presented
here. Their result was that the CA of a suitaldy$formed distance matrix has as a limiting case

classical scaling. We give Carrell al’s result in our present notation. Suppakg [s anl x |

square matrix of observed distances, and defirematable as follows:

1
R i (25)
a
wherea> 0 and 1= max{d?2}, i.e., squared distances are subtracted fromnabren at least as

large as their maximum so that theare all nonnegative. Then the CA of the malitix [n, ]

converges to the classical scaling solutiomas 0. As in all cases above, a rescaling needs to be
introduced to make the solutions equivalent. indhse of CA, we perform steps (1) and (2) on the

correspondence matrixbased on (25) and then the solution coordinatss ar
-1/2 1/2 1
H=D,"“UD,” — (26)
2a

HenceH consists of the standard coordina&;s”zu scaled by thequare rootf the singular

values (i.e., the fourth roots of the inertiasthe CA ofN), then rescaled by dividing bya2 The

eigenvalues of the classical scaling can be reeovieom (/2a)g,, remembering that all these
results apply in the limit — in practice, anabout one thousandth of the maximum of ¢ife i.e.

1/a about 1000 times this maximum, gives a solutiary edse to the classical scaling one.

6. Discussion and conclusion

We have shown that CA and both unweighted and weighRA can be connected by considering
the power transformation of the original data nxatri the matrix of contingency ratios respectively.

When the power parameteris equal to 1 we have simple CA in both cases,aad tends to 0 we

" The distinction between singular values, eigeregiand inertias becomes a bit confusing in thie vdwere
N is a square matrix. The singular value®ddre actually eigenvalues (at least those correlipgrio positive
eigenvalues), and the inertias in the CANofoften themselves referred to as eigenvaluesiharsquares of
the singular values ¢d. Hence these inertias are fourth powerhll'sfeigenvalues.

12



obtain the unweighted or weighted cases respeygtivehis shows that LRA is theoretically part of
the same family as CA, and not as different asmigit have thought. The connection is especially
surprising for CA and the spectral map (weighted\).Because the two methods have been

developed and applied extensively for over 30 yaarsompletely separate methodologies.

The idea of linking methods by a parameter andasihethe dynamic visualization of smooth
changes from one method to another can be highilgheé@ning as to the properties of these
methods. Various other methods can be linked tarCtAis way, as we have shown: CA to
spherical analysis and Hellinger analysis, CA td@dSCA to PCA and CA to MDS.

Unfortunately, in these pages we can only showgshats” of some steps between the methods for
selected values of the power parameter, buRtbede given on the site

WWW. car ne- n. or g can be used to get an idea of the dynamic grajplossibilities, and is easily

adapted to the other cases described above.
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Tablel Data set M-N": estimated proportions of three genetic grouptheM-N system, with

two co-dominant alleles! andN.

Population MN M N
1 0.12 0.01 0.87
2 0.19 0.02 0.79
3 0.37 0.05 0.58
4 0.39 0.08 0.53
5 0.41 0.02 0.57
6 0.50 0.25 0.25
7 0.52 0.25 0.23
8 0.51 0.31 0.18
9 0.50 0.31 0.19
10 0.49 0.27 0.24
11 0.50 0.28 0.22
12 0.49 0.35 0.16
13 0.47 0.43 0.10
14 0.44 0.47 0.09
15 0.40 0.51 0.09
16 0.42 0.51 0.07
17 0.39 0.53 0.08
18 0.39 0.59 0.02
19 0.15 0.79 0.06
20 0.15 0.83 0.02
21 0.36 0.61 0.03
22 0.34 0.61 0.05
23 0.30 0.68 0.02
24 0.28 0.67 0.05
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Table2 Books from which text is sampled for the “authddta, and abbreviations used in Figure 2.

TD-Bu
EW-Bu
Dr-Mi
As-Mi
LW-Cl
PF-CI

Three Daughters (Buck) FA-He

East Wind (Buck) Is-He

The Drifters (Michener) SF6-Fa
Asia (Michener) SF7-Fa
Lost World (Clark) Pe2-Ho

Profiles of the Future (Clark) Pe3-Ho
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Farewell to Arms (Hemingway)
Islands (Hemingway)

Sound and Fury, ch.6 (Faulkner)
Sound and Fury, ch.7 (Faulkner)
Pendorric, ch.2 (Holt)

Pendorric, ch.3 (Holt)
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Figure I From correspondence analysisH 1) to weighted log-ratio analysig (-~ 0), with three
intermediate steps, for thi“N” data, showing the symmetric maps (both rows aidrons in principal
coordinates). The box shows the numerical valug ahd the percentage of inertia explained on tis¢ fir
dimension, as well as a graph of the values ofdted inertia and two principal inertias asdecreases.
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Figure 2 From correspondence analysis 1) to weighted log-ratio analysig (- 0), with one
intermediate “hybrid” analysisa(= %2) for the ‘author” data, showing the symmetric maps. The box
shows the numerical value of and the percentage of inertia explained .in thedimensional map, as
well as a graph of the values of the total ineatid two principal inertias ag decreases.
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Figure 3 From correspondence analysis< 1) to Hellinger analysisa(= 0.5) for the M-N" data. The
box shows the numerical value @fand the percentage of inertia explained on tis¢ diimension, and a
graph of the values of the total inertia and twio@pal inertias agr decreases.
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Figure 4 From correspondence analysis<(1) to non-symmetrical correspondence analysis @) for
the “author” data, showing one intermediate “hybrid” stgh=%% ). The asymmetric map is shown with
columns in principal and rows in standard coorainatvhere the column (letter) principal coordinates
have been multiplied by 4 for better legibility. box shows the numerical value®énd the
percentage of inertia explained in the two-dimemaionap, as well as a graph of the values of tte to
inertia and two principal inertias gsdecreases.
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