
1	Introduction
Saliency	detection,	which	is	closely	related	to	the	selective	processing	in	human	visual	system,	aims	to	locate	eye	fixations	or	interesting	areas	in	images.	Such	a	detector	that	mimics	the	human	visual	attention	mechanism	has

been	served	as	a	foundation	for	many	computer	vision	applications	including	object	classification	(Peng	and	Shao,	2015),	image	segmentation	(Fouquier	et	al.,	2012),	image	retrieval	(Chen	and	Cheng,	2009),	image	fusion	(Han	et	al.,

2013),	and	image	thumbnailing	(Marchesotti	et	al.,	2009).

Most	of	existing	saliency	detection	works	focus	on	one	of	the	following	two	specific	tasks	(Li	and	Hou,	2014):	fixation	prediction	or	salient	object	detection.	The	goal	of	the	former	is	to	compute	a	probabilistic	map	of	an	image

to	simulate	the	eye	movement	behaviors	of	human,	while	the	latter	is	expected	to	generate	a	map	that	matches	the	annotated	salient	object	mask.	In	this	paper,	we	will	concentrate	on	the	latter,	especially	on	the	detection	of	large-size

salient	objects	from	a	cluttered	scene,	because	it	can	deal	with	more	practical	applications.

In	the	past	few	years,	low-rank	matrix	recovery	(LRMR)	techniques,	such	as	low	rank	representation	(LRR)	(Liu	and	Lin,	2013),	robust	principal	component	analysis	(RPCA)	(Cades	and	Li,	2011)	and	matrix	completion	(MC)
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Abstract

In	 this	paper,	we	present	a	novel	 salient	object	detection	method,	efficiently	combining	Laplacian	sparse	subspace	clustering	 (LSSC)	and	unified	 low-rank	representation	 (ULRR).	Unlike	 traditional	 low-rank	matrix

recovery	(LRMR)	based	saliency	detection	methods	which	mainly	extract	saliency	from	pixels	or	super-pixels,	our	method	advocates	the	saliency	detection	on	the	super-pixel	clusters	generated	by	LSSC.	By	doing	so,	our

method	succeeds	in	extracting	large-size	salient	objects	from	cluttered	backgrounds,	against	the	detection	of	small-size	salient	objects	from	simple	backgrounds	obtained	by	most	existing	work.	The	entire	algorithm	is	carried

out	in	two	stages:	region	clustering	and	cluster	saliency	detection.	In	the	first	stage,	the	input	image	is	segmented	into	many	super-pixels,	and	on	top	of	it,	they	are	further	grouped	into	different	clusters	by	using	LSSC.	Each

cluster	contains	multiple	super-pixels	having	similar	features	(e.g.,	colors	and	intensities),	and	may	correspond	to	a	part	of	a	salient	object	 in	the	foreground	or	a	 local	region	in	the	background.	In	the	second	stage,	we

formulate	the	saliency	detection	of	each	super-pixel	cluster	as	a	unified	low-rankness	and	sparsity	pursuit	problem	using	a	ULRR	model,	which	integrates	a	Laplacian	regularization	term	with	respect	to	the	sparse	error

matrix	into	the	traditional	low-rank	representation	(LRR)	model.	The	whole	model	is	based	on	a	sensible	cluster-consistency	assumption	that	the	spatially	adjacent	super-pixels	within	the	same	cluster	should	have	similar

saliency	values,	similar	representation	coefficients	as	well	as	similar	reconstruction	errors.	In	addition,	we	construct	a	primitive	dictionary	for	the	ULRR	model	in	terms	of	the	local-global	color	contrast	of	each	super-pixel.	On

top	of	it,	a	global	saliency	measure	covering	the	representation	coefficients	and	a	local	saliency	measure	considering	the	sparse	reconstruction	errors	are	jointly	employed	to	define	the	final	saliency	measure.	Comprehensive

experiments	over	diverse	publicly	available	benchmark	data	sets	demonstrate	the	validity	of	the	proposed	method.
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(Cades	and	Tao,	2009),	were	presented	to	recover	low-rank	structures	from	the	corrupted	data	with	sparse	but	strong	noise.	Such	algorithms	have	attracted	significant	attentions	in	the	field	of	computer	vision	and	image	processing

due	to	their	super	capability	to	facilitate	applications	including	image	segmentation	(Cheng	and	Liu,	2011),	object	tracking	(Zhang	and	Liu,	2014),	image	classification	(Zhang	and	Ghanem,	2013),	image	fusion	(Wan	et	al.,	2013),	and	so

on.	Not	surprisingly,	these	LRMR	techniques	have	recently	been	applied	to	saliency	detection	(Yan	and	Zhu,	2010,	;	Lang	and	Liu,	2012,	;	Shen	and	Wu,	2012,	;	Rigas	et	al.,	2015,	;	Liu	et	al.,	2015).

Most	of	the	LRMR	methods	presume	that	the	salient	objects	only	occupy	a	few	parts	of	the	whole	image	and/or	the	features	of	the	backgrounds	lie	in	a	low-dimensional	subspace	(Shen	and	Wu,	2012).	Therefore,	they	first

employed	some	LRMR	techniques	to	decompose	the	feature	matrix,	constructed	by	the	local	patches	from	the	input	image,	into	a	low-rank	part	plus	a	sparse	noise	part	(or	reconstruction	error).	Subsequently,	they	employed	the	sparse

reconstruction	errors	to	indicate	the	saliency	of	the	local	image	patches	and	thus	obtained	the	salient	objects	or	regions	within	the	input	image.	In	general,	these	methods	can	well	detect	salient	objects	with	small	size	and	simple

backgrounds,	as	illustrated	in	the	first	row	of	Fig.	1.

However,	such	an	assumption	is	no	longer	reasonable	when	the	input	image	contains	large-size	salient	objects	with	complex	backgrounds,	inevitably	giving	rise	to	unsatisfactory	results	if	an	LRMR	method	is	straightforwardly

employed.	For	example,	as	illustrated	in	the	second	row	of	Fig.	1,	the	traditional	LRMR	based	algorithms	mentioned	here	could	not	produce	uniform	saliency	values	for	the	whole	object	when	large-size	salient	objects	appear	on	the

image.	In	addition,	as	shown	in	the	third	row	of	Fig.	1,	most	of	them	mistakenly	label	a	part	of	the	background	as	the	salient	region	in	the	case	that	the	backgrounds	contain	multiple	texture	regions	(e.g.,	wires	and	poles).

Aiming	to	solve	the	two	problems	mentioned	above,	we	present	a	new	method	based	on	the	Laplacian	sparse	subspace	clustering	(LSSC)	(Xie	et	al.,	2013)	and	a	unified	low-rank	representation	(ULRR).	As	can	be	seen	in	Fig.	2,

the	proposed	method	consists	of	region	clustering	and	cluster	saliency	detection.	More	specifically,	the	input	image	is	first	segmented	into	many	super-pixels,	and	on	top	of	them,	different	clusters	are	formed	by	grouping	them	using

LSSC.	Each	cluster	contains	multiple	super-pixels	with	similar	features	(e.g.,	colors	and	intensities),	and	may	correspond	to	a	part	of	a	salient	object	in	the	foreground	or	a	local	region	in	the	background.	Thus,	the	detection	of	salient

objects	can	be	converted	to	the	detection	of	different	salient	clusters.

At	the	later	stage,	we	apply	the	ULRR,	i.e.,	by	integrating	a	Laplacian	regularization	term	with	respect	to	the	sparse	error	matrix	into	the	traditional	LRR	model	(Liu	and	Lin,	2013),	on	the	feature	matrix	of	each	cluster.	For

Fig.	1Fig.	1.	Saliency	detection	results	by	different	LRMR	based	methods.	(a)	Original	images;	(b)	SR_RPCA	(Yan	and	Zhu,	2010);	(c)	LRR	(Lang	and	Liu,	2012);	(d)	ULR	(Shen	and	Wu,	2012);	(e)	Proposed;	(f)	Ground	truth.

alt-text:	Fig	1

Fig.	2Fig.	2.	Diagram	of	the	proposed	method.

alt-text:	Fig	2



doing	so,	a	primitive	saliency	dictionary	is	first	constructed	based	on	the	local-global	color	contrast	of	each	super-pixel.	Afterwards,	two	saliency	measures	are	constructed,	in	which	one	is	based	on	the	ULRR	coefficients	for	the	global

saliency	detection	with	respect	to	the	entire	image	while	the	other	one	is	based	on	the	sparse	reconstruction	errors	for	the	local	saliency	detection	with	respect	to	each	cluster.	Finally,	the	saliency	maps	derived	by	the	two	measures

are	 fused	 and	 reinforced	 into	 a	 full-resolution	 saliency	map.	Experimental	 results	 demonstrate	 the	 superiority	 of	 the	 proposed	method	 over	 some	 state-of-the-art	methods,	 including	 traditional	 LRMR	based	 and	 clustering	 based

methods.

In	summary,	the	main	contributions	of	this	paper	are	as	follows:

1. We	formulate	the	saliency	detection	of	each	super-pixel	cluster	as	a	low-rankness	and	sparsity	pursuit	problem	by	using	a	unified	low-rank	representation	(ULRR)	model,	i.e.,	by	integrating	a	Laplacian	regularization	with	respect	to	the	sparse

error	matrix	into	the	traditional	LRR	model	(Liu	and	Lin,	2013).	This	is	based	on	a	sensible	cluster-consistency	assumption	that	the	spatially	adjacent	super-pixels	within	the	same	cluster	should	have	similar	saliency	values	and	thus	have	similar

representation	coefficients	and	reconstruction	errors.	As	a	result,	the	whole	salient	objects	are	expected	to	be	uniformly	highlighted	and	some	isolated	regions	in	the	detected	result	are	also	expected	to	be	suppressed.

2. We	construct	a	primitive	saliency	dictionary	for	the	ULRR	decomposition	on	the	feature	matrices	of	super-pixel	clusters.	This	clearly	differs	from	the	traditional	LRR	based	saliency	detection	method	(Lang	and	Liu,	2012),	 in	which	the	data

themselves	are	directly	served	as	the	dictionary.

3. We	construct	two	saliency	measures	by	using	the	ULRR	decomposition	coefficients	and	sparse	reconstruction	errors,	respectively.	The	former	is	a	global	cluster-level	measure	for	detecting	large	objects,	while	the	latter	is	a	local	super-pixel-

level	measure	for	the	detection	of	small	objects	or	local	regions	within	a	large	object.	The	two	measures	are	combined	to	construct	the	final	saliency	measure,	thus	enabling	us	to	effectively	detect	both	large	and	small	salient	objects.

The	rest	of	this	paper	is	organized	as	follows:	Section	2	reviews	the	related	work.	In	Section	3,	the	proposed	method	is	described	in	detail.	Experimental	results	as	well	as	some	insightful	conclusions	are	given	in	Sections	4	and

Section	5,	respectively.

2	Related	work
In	the	past	decade,	numerous	visual	saliency	detection	methods	have	been	presented,	which	could	be	generally	classified	into	two	categories	(Xie	et	al.,	2013):	top-down	and	bottom-up.	The	former	depends	on	the	task	at	hand

whereas	the	latter	is	driven	by	the	input	image	tending	to	be	application	agnostic.	Here,	we	limit	our	review	to	the	bottom-up	visual	saliency	detection	methods	only	due	to	their	relevance	to	our	work.

Many	earlier	bottom-up	visual	saliency	detection	methods	(Itti	et	al.,	1998,	;	Ma	and	Zhang,	2003,	;	Harel	et	al.,	2006,	;	Bruce	and	Tsotsos,	2005,	;	Hou	and	Zhang,	2007,	;	Guo	and	Zhang,	2010,	;	Guo	et	al.,	2008,	;	Li	and	Martin,

2013,	;	Zhang	and	Han,	2016)	were	presented	 to	simulate	 the	eye	movement	or	 fixation	behaviors	of	human.	For	example,	as	a	pioneer,	 Itti	et	al.	 (Itti	et	al.,	(1998)	derived	a	bottom-up	visual	 saliency	map	using	center-surround

differences	across	multi-scale	image	features.	In	our	previous	work	(Zhang	and	Han,	2016),	we	applied	deep	learning	for	co-saliency	detection,	aiming	at	extracting	common	salient	regions	in	multiple	related	images.

In	 recent	years,	 the	 research	 in	 this	 field	evolves	 into	a	new	phase.	 Instead	of	predicting	a	 few	 fixation	points	 in	an	 image,	new	saliency	detection	methods	uniformly	highlight	 the	entire	 salient	 region	 in	 the	 foreground

(Achanta	and	Hemami,	2009,	;	Cheng	and	Mitra,	2015,	;	Gong	and	Tao,	2015,	;	Wang	et	al.,	2016,	;	Chakraborty	and	Mitra,	2016,	;	Liu	and	Han,	2016,	;	Kim	et	al.,	2016,	;	Wei	and	Wen,	2012).	For	example,	Achanta	et	al.	(Achanta	and

Hemami,	(2009)	first	presented	a	frequency-tuned	based	salient	region	detection	method	that	outputted	full	resolution	saliency	maps	with	well-defined	boundaries	of	salient	objects	by	substantially	retaining	more	spatial	frequency

contents	from	the	original	image.	Most	of	the	previous	methods	mentioned	above	rely	on	the	assumptions	or	priors	on	the	objects.	In	(Wei	and	Wen,	(2012),	the	authors	tackled	the	problem	from	a	different	viewpoint:	they	focused	more

on	the	background	rather	than	the	object.	Precisely,	they	exploited	two	common	priors	about	backgrounds	in	natural	images,	i.e.,	boundary	and	connectivity	priors,	to	provide	more	clues	for	the	salient	object	detection.

More	recently,	some	saliency	or	salient	object	detection	methods	were	proposed	based	on	LRMR	(Yan	and	Zhu,	2010,	;	Lang	and	Liu,	2012,	;	Shen	and	Wu,	2012,	;	Rigas	et	al.,	2015,	;	Liu	et	al.,	2015).	For	example,	in	(Yan	and

Zhu,	2010),	Yan	et	al.	applied	the	low-rank	sparsity	matrix	decomposition	(i.e.,	RPCA	(Cades	and	Li,,	2011))	to	the	visual	saliency	detection	task,	and	presented	a	saliency	estimation	model	for	object	detection,	which	directly	extracted

the	saliency	information	from	the	sparse	matrix	obtained	by	RPCA	decomposition.	In	(Lang	and	Liu,	(2012),	a	multi-task	sparsity	pursuit	was	presented	to	integrate	multiple	types	of	features	for	image	saliency	detection.	Given	an

image	described	by	multi-view	features,	its	saliency	map	is	inferred	by	seeking	the	consistently	sparse	elements	from	the	joint	low-rank	and	sparse	decomposition	of	multiple-feature	matrices.	In	(Shen	and	Wu,	(2012),	a	unified	salient

object	detection	model	was	proposed	to	incorporate	the	traditional	low-level	features	with	higher-level	guidance,	in	which	an	image	was	represented	as	a	low-rank	matrix	plus	sparse	noise	in	a	certain	feature	space.	These	methods

generally	work	appropriately	for	the	salient	objects	of	small	size.	However,	when	detecting	the	salient	objects	of	large	size,	these	methods	tend	to	only	produce	higher	saliency	values	on	the	borders	of	the	salient	objects.

3	The	proposed	salient	object	detection	method
As	shown	in	Fig.	2,	the	proposed	salient	object	detection	method	mainly	consists	of	two	parts:	(11)	Super-pixel	segmentation	and	clustering;	(22)	Super-pixel	cluster	saliency	detection,	each	being	elaborated	in	the	following



subsections.

3.1	Super-pixel	segmentation	and	clustering
This	part	can	be	further	decomposed	into:	(11)	Super-pixel	segmentation	using	simple	linear	iterative	clustering	(SLIC);	(22)	Super-pixel	clustering	based	on	Laplacian	sparse	subspace	clustering	(LSSC);	(33)	Feature	extraction.

3.1.1	Super-pixel	segmentation
Because	of	its	high	computation	efficiency	and	low	memory	requirement,	a	simple	iterative	super-pixel	clustering	(SLIC)	algorithm	(Achanta	and	Shaji,	2012)	is	adopted	to	achieve	the	super-pixel	segmentation	in	this	paper.	Specifically,	given	an

input	image	I,	a	set	of	super-pixels	 can	be	obtained	by	using	SLIC,	where	N	denotes	the	total	number	of	super-pixels	and	is	empirically	set	to	150	in	this	paper.

3.1.2	Super-pixel	clustering
Generally,	a	super-pixel	only	denotes	a	regional	atom	without	any	perceptual	meaning.	As	a	result,	the	object	and	the	background	can	be	represented	as	a	group	of	super-pixels,	which	is	illustrated	in	Fig.	3(b).	When	directly	performing	the	saliency

detection	onto	the	super-pixels,	some	super-pixels	within	the	salient	object	would	be	mistakenly	labeled	as	non-salient	ones,	while	some	super-pixels	from	the	background	would	be	falsely	marked	as	salient	ones.	This	is	more	likely	to	occur	in	the	images

where	the	large-size	salient	objects	are	coupled	with	complex	backgrounds.	To	solve	this	problem,	in	the	proposed	method,	we	will	group	the	super-pixels	into	different	clusters,	and	perform	the	saliency	detection	on	the	super-pixel	clusters	rather	than	on

the	super-pixels.	As	a	result,	such	a	scheme	is	able	to	depress	the	saliency	noise	caused	by	the	complex	background.

Regarding	the	cluster	algorithm,	we	directly	use	the	method	reported	in	by	(Xie	et	al.,	(2013)	by	Xie	et.	al.,,	which	fed	the	mid	visual	information	via	super-pixels	into	a	Laplacian	sparse	subspace	clustering	(LSSC)	method.	To	some	extent,	LSSC

method	can	be	considered	as	an	extension	of	the	sparse	subspace	clustering	(SSC)	(Elhamifar	and	Vidal,	2013)	by	introducing	a	Laplacian	regularization	term,	which	further	enforces	similar	super-pixels	to	be	clustered	into	the	same	group.	More	details

about	LSSC	can	be	found	in	Appendix	A.

Given	 a	 set	 of	 super-pixels	 from	 an	 input	 image,	 a	 set	 of	 super-pixel	 clusters	 are	 obtained	 using	 LSSC	 (Xie	 et	 al.,	 2013),	 where	 K	 denotes	 the	 total	 number	 of	 clusters	 and	will	 be	 discussed	 in	 the

experimental	part.	Here,	each	cluster	Ck	contains	Nk	super-pixels,	i.e.,	 .	Fig.	3	shows	an	example	of	super-pixel	segmentation	on	an	image	and	its	clustering.	As	shown	in	Fig.	3(c),	the	salient	object	and	the	background	are

segmented	into	only	a	fewer	number	of	clusters,	thereby	facilitating	the	complete	detection	of	salient	object	and	the	suppression	of	noise	from	the	background.

3.1.3	Feature	extraction
Given	an	image	I	and	a	set	of	its	super-pixel	clusters	 ,	the	feature	extraction	(or	feature	matrix	construction)	for	each	super-pixel	cluster	Ck	is	described	as	follows:

(1) For	each	pixel	pi	in	the	image	I,	construct	its	feature	vector	fi	∈	Rd	of	dimension	 as	suggested	in	(Shen	and	Wu,	(2012)	by:	(I)	Color	feature	 ,	where	ri,	gi,	and	bi	denote	the	red,	green	and	blue	color	channel	components	of	pixel	pi,

respectively.	hi	and	si	denote	its	hue	and	saturation	components.	(II)	Edge	feature	v2,	i	∈	R12,	which	is	constituted	by	the	absolute	values	of	the	outputs	of	a	set	of	steerable	pyramid	filters	with	3	scales	and	4	directions	for	pixel	pi.	(III)	Texture	feature	v3,	i	∈	R36,	which	is

constituted	by	the	absolute	values	of	the	outputs	of	a	set	of	Gabor	filters	with	3	scales	and	12	directions	for	the	current	pixel.	Thus	the	feature	vector	fi	is	constructed	by	vertically	stacking	the	vectors	v1,	i,	v2,	i,	and	v3,	i,	i.e.,

		 	

Fig.	3Fig.	3.	Super-pixel	segmentation	and	cluster	results.	(a)	Original	image;	(b)	Super-pixel	segmentation	result;	(c)	Cluster	result.

alt-text:	Fig	3

		 	 		 	

		 	

		 	

		 	 		 	



(2) Construct	the	feature	vector	xj	∈	Rd	for	each	super-pixel	spj	by	averaging	all	the	feature	vectors	of	the	pixels	contained	in	the	current	super-pixel,	i.e.,

where	 denotes	the	number	of	pixels	within	the	super-pixel	spj.

(3) Construct	the	feature	matrix	 by	using	all	of	the	feature	vectors	of	the	super-pixels	grouped	into	the	cluster	Ck,	i.e.,

where	xk,	j	denotes	the	feature	vector	of	the	j-th	super-pixel	spk,	j	in	the	cluster	Ck.	And	Nk	refers	to	the	number	of	super-pixels	in	the	cluster	Ck.

3.2	Super-pixel	cluster	saliency	detection	based	on	ULRR
As	shown	in	Fig.	3,	each	super-pixel	cluster	corresponds	to	a	part	of	an	object	in	the	foreground	or	a	local	region	with	similar	textures	in	the	background.	Hence,	the	salient	object	detection	in	an	image	may	be	achieved	via	the

saliency	detection	of	different	super-pixel	clusters,	which	is	similar	to	that	in	(Xie	et	al.,	(2013).	But	differently,	in	the	proposed	method,	we	formulate	the	saliency	detection	of	different	super-pixel	clusters	as	a	low	rankness	and	sparsity

pursuit	problem	with	the	ULRR	decomposition	rather	than	under	a	Bayesian	framework	(Xie	et	al.,	2013)	considering	the	strong	correlation	among	the	super-pixels	contained	in	each	cluster.

In	 theory,	 the	 feature	matrix	Xk	 obtained	 in	SubSection	3.1-C	 for	 each	cluster	Ck	 has	 the	 intrinsic	property	of	 low	 rankness.	However,	 it	may	be	partially	 corrupted	by	 some	errors	or	noise	 in	 the	 real	 application.	Given	a

dictionary	 with	Mk	prototype	atoms,	the	feature	matrix	Xk	of	the	super-pixel	cluster	Ck	may	be	decomposed	into	a	low-rank	part	plus	a	sparse	error	part	(Liu	and	Lin,	2013),	i.e.,

where	DkZk	 denotes	 the	 "intrinsic"	 low-rank	 part	 contained	 in	 the	matrix	Xk.	 refers	 to	 the	 sought	 after	 representation	 coefficient	matrix,	 which	 is	 accordingly	 assumed	 to	 have	 the	 property	 of	 low	 rankness	 in	 this

paper.	 represents	the	error	or	noise	part	and	is	assumed	to	have	sparse	columns	for	dealing	with	the	subsequent	saliency	detection	of	each	super-pixel	contained	in	the	cluster	Ck.

Eventually,	 for	 each	 super-pixel	 cluster	 Ck,	 its	 corresponding	 representation	 coefficient	 matrix	 Zk	 and	 error	 matrix	 Ek	 can	 be	 obtained	 via	 solving	 the	 below	 low-rank	 representation	 (LRR)	 (Liu	 and	 Lin,	 2013)	 problem,

respectively:

where	‖Zk‖*	denotes	the	nuclear	norm	of	the	matrix	Zk	and	is	defined	as	the	sum	of	the	singular	values	of	the	matrix	Zk.	It	 is	a	convex	relaxation	of	the	rank	function	(Liu	and	Lin,	2013).	||Ek||2,	1	denotes	the	 l2,	1-norm	of	 the	matrix

Ek	and	is	defined	as	 .	Ek(i,	j)	is	the	(i,	j)-th	entry	in	the	matrix	Ek.	Parameter	λk	>	0	is	used	to	balance	the	effects	of	the	two	parts.

In	theory,	it	might	be	more	reasonable	to	adaptively	construct	a	local	dictionary	for	each	cluster	due	to	large	feature	variations	across	the	clusters.	However,	using	different	dictionaries	 in	Eq.	(5)	will	give	rise

to	the	fact	that	the	representation	coefficients	and	error	matrices	 are	obtained	under	different	conditions.	This	will	affect	the	fairness	of	 the	subsequent	saliency	measure	for	different	super-pixel	clusters	or

super-pixels.	Therefore,	we	will	prefer	a	global	dictionary	D	∈	Rd	×	N	in	the	proposed	method,	which	will	be	constructed	by	the	feature	data	 of	all	of	the	super-pixels	in	the	input	image.

Given	a	dictionary,	each	cluster	will	be	well	represented	by	solving	Eq.	(5)	independently.	However,	such	a	scheme	neglects	the	interrelationships	among	the	spatially	adjacent	super-pixels	(Li	and	Martin,	2013),	thus	giving	rise

to	isolated	regions	in	the	detected	result.	In	practice,	the	super-pixels	that	are	spatially	adjacent	or	have	similar	features	are	likely	to	have	similar	saliency	values	(Li	and	Martin,	2013).	Therefore,	it	may	be	more	reasonable	to	group

those	 super-pixels	 into	 the	 same	 cluster.	 Accordingly,	 these	 super-pixels	 in	 the	 same	 cluster	 will	 have	 similar	 representation	 coefficients	 and	 reconstruction	 errors.	 This	 useful	 observation	 inspires	 us	 to	 involve	 such	 a	 cluster-
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consistency	prior	into	our	proposed	method,	thereby	ensuring	the	completeness	of	the	segmented	salient	object.	This	idea	can	be	implemented	by	integrating	a	Laplacian	regularization	term	with	respect	to	the	reconstruction	error	into

the	LRR	model	in	addition	to	the	low-rankness	constraint	on	the	representation	matrix.

The	problem	in	Eq.	(5)	is	thus	amended	to	be	the	following	unified	LRR	(ULRR)	one

where	E	 is	 formed	 by	 horizontally	 concatenating	E1,	E2,	 ...,	 EK	 together	 along	 the	 row,	 i.e.,	 .	 denotes	 the	 total	 number	 of	 super-pixels	 contained	 in	 the	 input	 image.	 λ1	 and	 λ2	 are	 two

positive	trade-off	parameters	and	are	experimentally	set	to	0.01	and	0.1,	respectively.	The	Laplacian	regularization	term	λ2tr(ELET)	is	computed	by

In	Eq.	(7),	ei	denotes	the	i-th	column	of	the	matrix	E.	The	weight	ωij	refers	to	the	similarity	between	the	i-th	and	j-th	super-pixels	and	is	defined	as

where	pi,	 pj	∈	R2	 denote	 the	 center	 positions	 of	 the	 super-pixels	 spi	 and	 spj.	 xi,	 xj	∈	Rm	 are	 their	 corresponding	 feature	 vectors.	σp	 and	σf	 are	 two	 scaling	 parameters,	 and	 are	 experimentally	 set	 to	 0.5	 and	 ,	 respectively.

Based	on	these	weights,	an	affinity	matrix	W	∈	RN	×	N	with	its	(i,	j)-th	entry	 and	a	diagonal	degree	matrix	H	∈	RN	×	N	with	its	i-th	diagonal	element	 are	constructed.	The	Laplacian	matrix	L	is	thus	defined	as	

.

As	discussed	above,	the	low-rank	part	DZk	in	Eq.	(6)	contains	the	"intrinsic"	characteristics	of	each	super-pixel	cluster	Ck.	The	saliency	or	difference	among	different	super-pixel	clusters	 could	be	achieved	by

comparing	their	low-rank	parts	 ,	 i.e.,	their	ULRR	coefficients	 .	In	addition,	the	minimization	of	 l2,	1	norm	enables	the	columns	of	E	 to	be	near	to	zeros	(i.e.,	have	sparse	columns).	Here,	each

column	in	the	matrix	E	corresponds	to	a	super-pixel,	indicating	that	the	larger	(smaller)	the	magnitude	the	more	salient	(non-salient)	the	super-pixel	is	(Lang	and	Liu,	2012).	Therefore,	in	the	proposed	method,	we	will	jointly	employ	the

representation	coefficients	 ,	and	the	reconstruction	errors	E	to	construct	the	saliency	map.

To	sum	up,	the	proposed	saliency	detection	method	for	super-pixel	clusters	in	this	subsection	consists	of	four	parts:	(11)	Primary	saliency	dictionary	construction;	(22)	ULRR	problem	solving;	(33)	Saliency	measure	by	jointly

optimizing	the	representation	coefficients	and	reconstruction	errors;	(44)	Saliency	map	fusion	and	refinement.	In	the	following	contents,	we	will	describe	each	part	in	detail.

3.2.1	Primitive	saliency	dictionary	construction
In	this	part,	we	will	employ	the	feature	data	 of	all	the	super-pixels	in	the	input	image	to	construct	the	dictionary	D.	However,	instead	of	directly	employing	the	feature	data	as	the	dictionary,	we	adopt	a	two-step	approach,	where

the	first	step	is	to	coarsely	measure	the	saliency	of	each	super-pixel.	Next,	a	primitive	saliency	dictionary	is	constructed	with	the	aim	to	better	exploit	the	ULRR	coefficients	in	the	subsequent	saliency	measure	for	each	super-pixel	cluster.	In	the	primitive

saliency	dictionary,	each	feature	data	xj	will	be	still	employed	as	a	dictionary	atom	(or	a	column	in	the	dictionary	D),	but	its	position	(or	column	number)	will	be	rearranged	in	terms	of	its	initial	saliency	score.

For	that,	given	a	set	of	super-pixels	 ,	their	initial	saliency	scores	 are	first	obtained	by	using	a	local-global	color	contrast	based	method	(Perazzi	and	Krahenbull,	2012)	in	this	paper	because	of	its	efficiency.

Then	a	set	of	new	numbers	 are	obtained	according	to	the	initial	saliency	values.	The	global	dictionary	D	is	thus	constructed	as

where	 ( )	denotes	the	feature	data	of	the	si-th	super-pixel	 in	the	input	image.

As	shown	in	Fig.	4,	the	atoms	in	the	dictionary	D	can	be	divided	into	three	groups:	(11)	the	first	ρ	atoms	from	the	feature	data	of	the	potential	foreground	super-pixels;	(22)	the	last	ρ	atoms	from	the	feature	data	of	the	potential	background	super-

pixels;	(33)	the	rest	atoms	from	the	feature	data	of	uncertain	super-pixels.	ρ	is	empirically	set	to	20	in	this	paper.
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3.2.2	ULRR	problem	solving
Solving	the	problem	in	Eq.	(6)	equals	a	convex	optimization,	for	which	there	are	various	methods	available.	In	this	paper,	we	first	convert	it	to	the	following	equivalent	problem

To	solve	it,	a	linearized	alternating	direction	method	with	adaptive	penalty	(LADMAP)	(Lin	et	al.,	2011,	;	Zhang	et	al.,	2013)	is	adopted,	which	requires	the	minimization	of	the	following	augmented	Lagrangian	function:

where	Y1,	...,	YK	and	W1,	...,	WK	are	Lagrange	multipliers	used	 to	 remove	 the	equality	constraint	 in	Eq.	(10).	μ	>	0	 is	a	penalty	parameter.	 〈A,	B〉	 denotes	 the	Euclidean	 inner	product	of	matrices	A	 and	B.	Apparently,	 this	problem	 for	now	becomes

unconstrained	and	can	be	thus	minimized	with	respect	to	Ek	(or	E),	Xk	and	Jk	( ),	respectively.	Algorithm	1	summarizes	the	calculations	of	the	ULRR.	More	details	can	be	seen	in	Appendix	B.

Algorithm	1Algorithm	1..	Unified	low-rank	representation	(ULRR)	algorithm	using	IALM.

alt-text:	Table	1

Input:	Data	matrices	{Xk},	dictionary	D,	and	parameter	λ.

Output:	Zk
	( )	and	E.

Initialized:	 ,	 ,	 ,	 ,	 .

While	not	converged	do

 (1)	Fix	the	others	and	update	J1,J2,...,JK	using	Eq.	(B2);

 (2)	Fix	the	others	and	update	Z1,Z2,...,ZK	using	Eq.	(B4);

 (3)	Fix	the	others	and	update	E	using	Eq.	(B8);

 (4)	Update	the	multipliers	Yk
	and	Wk

	( ):

   , ;

 (5)	Update	μ:

   ;

Fig.	4Fig.	4.	Primitive	saliency	dictionary.

alt-text:	Fig	4
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 (6)	Check	the	convergence	conditions:

and	 ;

 where	‖	·	‖∞denotes	the	l∞-norm	of	a	matrix	and	is	defined	as	the	maximum	absolute	value	of	the	entries	in	a	matrix.

end	while

3.2.3	Saliency	measure
In	this	part,	we	will	propose	two	saliency	measures.	One	is	based	on	the	ULRR	coefficients	for	the	saliency	detection	of	each	super-pixel	cluster,	and	the	other	is	based	on	the	reconstruction	errors	for	the	saliency	detection	of	each	super-pixel.

(11)	Saliency	measure	based	on	the	ULRR	coefficients

As	discussed	in	the	earlier	part	of	SubSection	3.2,	the	low-rank	part	DZk,	decomposed	by	the	ULRR	in	Eq.	(6),	contains	the	"intrinsic"	characteristics	of	each	super-pixel	cluster	Ck.	Each	cluster	may	correspond	to	a	part	of	a	salient	object	in	the

foreground	or	a	local	region	in	the	background.	Therefore,	the	detection	of	a	salient	object	in	the	foreground	could	be	achieved	by	using	the	low-rank	part	(or	information)	contained	in	each	cluster.

Consider	the	i-th	column	xk,	i,	which	is	the	feature	data	of	the	i-th	super-pixel	grouped	in	the	cluster	Ck.	Let	zk,	i	∈	RN	and	ek,	i	∈	Rd	denote	the	i-th	column	of	the	matrices	Zk	and	Ek,	respectively.	Then	xk,	i	can	be	represented	as

Therefore,	as	discussed	in	(Zhang	et	al.,	(2013),	the	coefficient	Zk(j,	i)	( )	indicates	the	correlation	(or	similarity)	between	the	data	xk,	i	and	the	j-th	atom	 in	the	dictionary	to	some	extent.	Larger	absolute	value	of	Zk(j,	i)	indicates

higher	correlation	(similarity)	between	the	data	xk,	i	and	the	atom	 .

Moreover,	as	shown	in	Fig.	4,	the	first	ρ	atoms	in	the	dictionary	D	are	 from	the	potential	 foreground	super-pixels,	and	the	 last	ρ	atoms	are	 from	the	potential	background	super-pixels.	As	a	result,	 the	sum	of	 the	absolute	values	of	 the	first	ρ

coefficients	 in	the	vector	zk,	i	may	reflect	the	similarity	between	the	super-pixel	spk,	j	and	the	potential	foreground	super-pixels.	Accordingly,	the	sum	of	the	absolute	values	of	the	last	ρ	coefficients	 in	the	vector	zk,	i	may

reflect	the	similarity	between	the	super-pixel	spk,	j	and	the	potential	background	super-pixels.

Let	 be	the	first	ρ	rows	of	ULRR	coefficients	Zk,	and	 be	the	last	ρ	rows	of	matrix	Zk.	Similarly,	the	sum	of	the	absolute	values	of	all	the	entries	in	the	matrix	 ,	denoted	by	 ,	implies	the	similarity	between	the	super-pixel

cluster	Ck	and	the	potential	foreground	super-pixels.	The	sum	of	the	absolute	values	of	all	the	entries	in	the	matrix	 ,	denoted	by	 ,	refers	to	the	similarity	between	the	super-pixel	cluster	Ck	and	the	potential	background	super-pixels.	Therefore,

the	proposed	saliency	measure	L(Ck)	for	each	cluster	Ck	is	defined	by

(22)	Saliency	measure	based	on	reconstruction	errors

As	discussed	above,	the	representation	coefficients	describe	the	similarity	between	each	super-pixel	cluster	and	those	potential	foreground	or	background	super-pixels.	Accordingly,	the	saliency	for	each	super-pixel	cluster	with	respect	to	the	entire

image	can	be	computed	by	using	Eq.	(13),	and	the	representation	coefficient	based	saliency	measure	can	also	be	seen	as	a	global	saliency	measure.

Different	 from	 the	 representation	 coefficients,	 each	 column	 in	 the	 error	 matrix	E	 indicates	 the	 differences	 between	 each	 super-pixel	 and	 its	 corresponding	 super-pixel	 clusters.	 Those	 super-pixels	 that	 are	 significantly	 distinct	 from	 their

corresponding	super-pixel	cluster	regions	actually	produce	higher	reconstruction	errors.	In	other	words,	the	saliency	for	each	super-pixel	with	respect	to	its	corresponding	super-pixel	cluster	can	be	measured	by	the	error	matrix	E.	This	is	particularly	true

for	those	super-pixels	corresponding	to	small	salient	objects	or	local	parts	within	the	large	salient	objects	but	with	different	features	from	the	salient	objects.1.	In	view	of	this	fact,	we	also	involve	the	sparse	reconstruction	error	matrix	E	to	define	a	local

saliency	measure	for	each	super-pixel	in	this	part,	which	is	expected	to	be	complementary	with	the	global	representation	coefficient	based	saliency	measure	for	each	super-pixel	cluster	introduced	above.

Moreover,	many	studies	have	shown	that	incorporating	some	priors,	such	as	boundary	prior	(Li	and	Fu,	2014),	shape	prior	(Jiang	and	Wang,	2011)	and	color	prior	(Shen	and	Wu,	2012),	could	enhance	the	saliency	detection	results	to	some	extent.

Especially,	the	color	prior	is	more	frequently	used	in	image	saliency	detection	(Kim	et	al.,	2016).	Similarly,	we	also	integrate	the	color	prior	(Shen	and	Wu,	2012)	into	the	saliency	detection	of	each	super-pixel.	And	the	saliency	measure	S(spi)	for	the	i-th
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super-pixel	spi	is	computed	by

where	E(:,	i)	is	the	i-th	column	of	the	matrix	E,	and	‖E(:,	i)‖2	denotes	its	l2-norm,	i.e.,	 .	prior(spi)	denotes	the	color	prior	of	super-pixel	spi	and	can	be	computed	as	in	(Shen	and	Wu,	(2012).

3.2.4	Pixel-level	saliency	map
According	to	the	saliency	measures	 and	 ,	two	pixel-level	saliency	maps	SalL(p)	and	SalS(p)	with	full	resolution	are	obtained	by	Eqs.	(15)	and	Eq.	(16),	respectively,	where	p	represents	a	pixel	in	the

input	image.

With	the	two	pixel-level	saliency	maps	SalL(p)	and	SalS(p),	a	fused	saliency	map	Sf(p)	is	obtained	using	a	multiplicative	strategy

where	α	is	a	weight	to	be	experimentally	determined.

After	that,	the	final	pixel-level	saliency	map	S(p)	with	full	resolution	is	obtained	by	integrating	the	center	prior	with	the	above	saliency	map,	which	is	computed	by

Here,	the	object-biased	Gaussian	model	Go(p)	in	(Lu	and	Li,	(2016),	instead	of	the	traditional	Gaussian	model,	is	employed	as	the	center	prior	considering	that	salient	object	does	not	always	appear	at	the	image	center.

Besides,	similar	to	(Tong	and	Lu,	2015),	we	apply	the	Max-Flow	method	(Borkov	and	Kolmogorov,	2004)	to	smooth	the	pixel-level	saliency	map	S(p),	and	the	smoothed	saliency	map	is	noted	as	Ssmooth(p).	Thus,	the	final	full-resolution	pixel-level

saliency	map	is	formulated	as

In	summary,	the	main	steps	of	the	proposed	salient	object	detection	method	can	be	described	by	Algorithm	2.	And	Fig.	5	illustrates	the	results	from	each	component.

Algorithm	2Algorithm	2..	Salient	object	detection	based	on	the	LSSC	and	ULRR.

alt-text:	Table	2

Input:	Image	I;	parameters	τ	and	α.

Output:	Pixel-level	saliency	map	S(p).

Begin:

 (1)	Super-pixel	segmentation	using	SLIC	(Achanta	and	Shaji,	2012);

 (2)	Super-pixel	clustering	using	LSSC	(Xie	et	al.,	2013);

 (3)	Super-pixel	feature	extraction	using	Eq.	(2);

 (4)	Construction	of	the	feature	matrix	for	each	super-pixel	cluster	using	Eq.	(3);

 (5)	Construction	of	the	primitive	saliency	dictionary	using	Eq.	(9);

 (6)	ULRR	decomposition	on	the	super-pixel	cluster	features	using	Eq.	(6);

 (7)	Saliency	measure	for	super-pixel	cluster	using	Eq.	(13)

 (8)	Saliency	measure	for	each	super-pixel	using	Eq.	(14);
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 (9)	Construction	of	pixel-level	saliency	map	using	Eqs.	(17)	and	(18).

 (10)	Smoothed	pixel-level	saliency	map	by	using	Eq.	(19).

End

Fig.	5	illustrates	the	detected	results	obtained	by	different	steps	in	the	proposed	method.	As	can	be	seen	in	Fig.	5(b),	the	majority	of	the	salient	objects	could	be	detected	using	the	representation	coefficient	based	measure	only.	Meanwhile,	several

local	regions	within	these	salient	objects,	shown	in	Fig.	5(c),	could	be	better	detected	using	the	reconstruction	error	based	saliency	measure.	Our	idea	fusing	the	two	saliency	maps	allows	the	whole	objects	to	be	extracted	completely.	After	performing	the

center	prior	on	these	saliency	maps,	the	salient	objects	are	further	highlighted.	In	addition,	the	background	noise	is	well	suppressed.	This	can	be	viewed	in	Fig.	5(d)	and	Fig.	5(e),	respectively.

3.3	Computational	complexity	analysis
Closely	 looking	at	 our	 system	 reveals	 that	 the	LSSC	based	 super-pixel	 clustering	and	 the	ULRR	decomposition	 take	up	 the	most	 time.	 In	 this	 subsection,	we	 theoretically	 investigate	 the	 computational	 complexity	 of	 this

algorithmic	part.

For	LSSC,	the	major	computation	is	the	l1	minimization	in	Eq.	(A1),	whose	complexity	is	about .	Here,	N	denotes	the	number	of	super-pixels	to	be	clustered.	d	refers	to	the	dimension	of	each	super-pixel

feature	 vector.	 r1	 is	 the	 number	 of	 iterations	 in	 this	 step.	Hence,	 the	 computational	 complexity	 of	 the	ULRR	model	 is	 about	 considering	 that	 the	 global	 dictionary	D	 in	 the	 proposed	ULRR	model	 is

constructed	by	all	of	the	super-pixels	in	the	test	image,	and	d	is	assumed	to	be	d	≤	N.	Here,	r2	denotes	the	number	of	iterations	during	the	ULRR	decomposition.	Accordingly,	the	computational	complexity	of	the	proposed	method	is

about	 .	More	specifically,	 the	number	of	super-pixels	N	has	a	greater	 impact	on	the	computational	complexity	of	 the	clustering	component	and	the	dimension	d	has	a	greater	 impact	on	 the

computational	complexity	of	the	ULRR	component.

4	Experiments	and	analysis
Several	sets	of	experiments	are	performed	to	verify	the	feasibility	of	our	proposed	method	(LSSC_ULRR,	for	short).	First,	we	discuss	the	impacts	of	some	parameters	on	the	proposed	method.	Secondly,	we	test	the	proposed

method	on	images	with	large-size	salient	objects	or	cluttered	backgrounds	to	verify	the	claimed	contribution.	Thirdly,	we	show	the	superiority	of	the	proposed	method	over	some	state-of-the-art	methods	using	three	public	datasets.

Finally,	we	show	and	analyze	failure	cases	for	the	proposed	method.

4.1	Impacts	of	different	parameters
In	this	subsection,	we	investigate	the	effects	of	several	key	parameters	used	in	our	algorithm	based	on	the	MSRA1000	(Achanta	and	Hemami,	2009)	dataset,	including	cluster	numbers,	number	of	potential	foreground	dictionary

atoms	and	the	parameter	α	in	Eq.	(17).

First,	we	discuss	the	impact	of	the	number	of	super-pixel	clusters	K	on	system	performance.	Fig.	6	illustrates	different	detected	results	when	varying	the	number	of	super-pixel	clusters.	For	a	better	comparison,	we	also	provide

the	detected	results	using	the	proposed	method	but	without	the	clustering	operation,	i.e.,	directly	performing	the	ULRR	decomposition	on	feature	matrix	of	the	super-pixels.	It	can	be	obviously	found	that	the	number	of	clusters	has	a

great	impact	on	the	detected	results.	As	shown	in	the	second	row	of	Fig.	6(b),	parts	of	the	background	and	the	salient	object	will	be	grouped	into	the	same	cluster	and	thus	will	be	mistakenly	labeled	as	the	salient	ones	when	K	is	set	to

too	small	value	(e.g.	 ).	In	contrast,	when	K	is	set	to	too	large	value	(e.g.	 ),	the	object	will	be	segmented	into	more	regions	and	each	region	will	have	different	saliency	values.	This	results	in	the	non-uniform	detection

Fig.	5Fig.	5.	Illustration	of	the	results	obtained	by	different	components	of	our	proposed	method.	(a)	Test	image.	(b)	Result	by	using	the	representation	coefficient	based	saliency	measure,	i.e.,	Eq.	(13).	(c)	Result	obtained	by	using	the	reconstruction	error	based	saliency	measure,	i.e.

Eq.	(14).	(d)	Result	after	fusing	(b)	and	(c),	i.e.,	Eq.	(17).	(e)	Result	by	performing	the	center	prior	on	(d),	i.e.	Eq.	(18).	(f).	Result	smooth	by	using	the	Max-Flow	method.	(g).	Ground	truth.
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results,	as	shown	in	the	last	row	of	Fig.	6(d).	This	is	particularly	true	when	the	clustering	operation	is	not	considered	during	the	saliency	detection.	In	addition,	some	background	noise	will	also	be	introduced	as	shown	in	Fig.	6(e).	This

is	also	consistent	with	the	precision	versus	recall	(PR)	curves	(Li	and	Hou,	2014),	displayed	in	Fig.	7(a).

In	addition	to	the	number	of	clusters	K,	the	impacts	of	the	number	of	potential	foreground	dictionary	atoms	ρ	and	the	parameter	α	in	Eq.	(17)	are	also	discussed	here.	Fig.	7(b)	and	Fig.	7(c)	provide	the	PR	curves	on	the	MSRA

1000	dataset	obtained	using	different	values	ρ	and	α,	respectively.	Fig.	7	indicates	that	the	performance	of	the	proposed	method	achieves	the	best	when	the	parameters	K,	ρ	and	α	are	set	to	10,	20	and	0.8,	respectively.	Therefore,	in	the

following	experiments,	these	parameters	are	set	to	10,	20	and	0.8,	respectively.

4.2	Validity	of	the	proposed	method	on	several	types	of	images
To	further	verify	the	claimed	contributions,	in	this	subsection,	we	establish	four	sub-datasets,	in	which	SO	dataset	is	formed	by	a	set	of	images	with	small	objects,	LO	dataset	consists	of	a	set	of	images	with	large	objects,	MO

dataset	contains	a	set	of	images	with	multiple	objects	and	CS	dataset	constitutes	a	set	of	images	with	complicated	structures.	Based	on	those	four	sub-datasets,	we	compare	our	LSSC_ULRR	with	some	traditional	LRMR	based	and

clustering	based	methods,	including	SR_RPCA	(Yan	and	Zhu,	2010),	LRR	(Lang	and	Liu,	2012),	ULR	(Shen	and	Wu,	2012)	and	LSSC_BS	(Xie	et	al.,	2013).

Figs.	8–11	 illustrate	the	detected	results	on	these	images	under	different	situations,	respectively.	All	the	results	consistently	demonstrate	that	the	proposed	method	LSSC_ULRR	performs	the	best	among	the	five	mentioned

methods.	In	most	of	cases,	it	can	uniformly	detect	the	whole	objects,	and	meanwhile,	well	suppress	the	noise	from	the	background.	In	summary,	the	detected	results	obtained	by	our	proposal	are	the	most	near	to	the	ground	truth.

Fig.	6Fig.	6.	Illustrations	of	the	results	by	using	different	cluster	numbers.

alt-text:	Fig	6

Fig.	7Fig.	7.	PR	curves	on	MSRA1000	dataset	by	using	different	parameters.	(a)	Number	of	clusters	K;	(b)	Number	of	potential	foreground	dictionary	atoms	ρ;	(c)	Parameter	α	in	Eq.	(17).

alt-text:	Fig	7



More	specifically,	 it	 can	be	 found	 that	all	 the	 five	methods	actually	achieve	satisfactory	 results	 for	 those	 images	with	small	 salient	objects.	Especially,	ULR	and	 the	proposed	LSSC_ULRR	perform	 the	best	 in	 this	case.	 In

addition,	the	two	methods	also	perform	better	than	the	others	for	those	images	with	multiple	salient	objects.	This	may	be	attributable	to	the	usage	of	ULRR	models	in	these	methods.	However,	as	shown	in	Fig.	9(e)	and	Fig.	9(f),	only

LSSC_BS	and	the	proposed	LSSC_ULRR	perform	the	best	for	those	images	with	large	salient	objects.	This	may	be	due	to	the	fact	that	the	two	methods	carry	out	the	saliency	detection	on	the	super-pixel	clusters	rather	than	only	the

local	block	patches	or	super-pixels.	Finally,	it	can	also	be	found	that	the	proposed	LSSC_ULRR	still	works	well	for	those	images	with	complicated	structures,	as	shown	in	Fig.	11(f).	In	contrast,	the	other	methods	unfortunately	fail	in	this

case.

Fig.	8Fig.	8.	Illustrations	for	images	with	small	salient	objects.	(a)	Original	images;	(b)	SR_RPCA	(Yan	and	Zhu,	2010);	(c)	LRR	(Lang	and	Liu,	2012);	(d)	ULR	(Shen	and	Wu,	2012);	(e)	LSSC_BS	(Xie	et	al.,	2013);	(f)	LSSC_ULRR;	(g)	Ground	truth.

alt-text:	Fig	8

Fig.	9Fig.	9.	Illustrations	for	images	with	large	salient	objects.	(a)	Original	images;	(b)	SR_RPCA	(Yan	and	Zhu,	2010);	(c)	LRR	(Lang	and	Liu,	2012);	(d)	ULR	(Shen	and	Wu,	2012);	(e)	LSSC_BS	(Xie	et	al.,	2013);	(f)	LSSC_ULRR;	(g)	Ground	truth.

alt-text:	Fig	9



4.3	Detection	results	on	some	public	datasets
In	this	subsection,	we	will	employ	three	public	datasets,	i.e.,	MSRA10K	(Cheng	and	Mitra,	2015),	ECSSD	(Shi	et	al.,	2016)	and	DUT-OMRON	(Yang	and	Zhang,	2013)	to	thoroughly	test	the	performance	of	the	proposed	method.	The

MSRA10K	dataset	contains	10,000	images,	most	of	which	have	a	single	object	and	high	contrast	between	foreground	objects	and	backgrounds.	The	ECSSD	dataset	includes	1000	images,	in	which	images	are	structurally	complex	and

objects	cover	various	categories.	The	DUT-OMRON	dataset	contains	5168	images	and	most	of	them	either	involve	complex	backgrounds	or	have	high	contrast	with	respect	to	the	entire	image.	Apart	from	ULR	(Shen	and	Wu,	2012)	and

LSSC_BS	(Xie	et	al.,	2013),	some	of	up	to	date	methods,	including	SR-LC	(Huo	and	Yang,	2016),	DSR	(Lu	and	Li,	2016),	RBD	(Zhu	and	Liang,	2014),	SF	(Perazzi	and	Krahenbull,	2012),	PCA	(Margolin	et	al.,	2013),	CA	(Goferman	et	al.,	2012),	SS

(Hou	et	al.,	2012),	RC	(Cheng	and	Mitra,	2015),	DCLC	(Zhou	and	Yang,	2015),	and	RW_MR	(Liu	and	Cai,	2015),	will	be	compared	with	our	proposed	method.

Fig.	12	 illustrates	the	detected	results	obtained	by	different	methods	on	the	three	public	datasets.	These	results	demonstrate	most	methods	mentioned	here	can	well	detect	the	salient	objects	contained	in	the	test	 images.

Especially,	DSR,	RBD	and	the	proposed	LSSC_ULRR	perform	better	than	the	other	methods	in	most	cases.	The	salient	objects	are	more	uniformly	highlighted	by	the	three	methods.	At	the	same	time,	the	background	noise	is	better

suppressed	by	the	three	methods.	In	general,	the	detected	results	are	closer	to	the	ground	truth.

Fig.	10Fig.	10.	Illustrations	for	images	with	multiple	salient	objects.	(a)	Original	images;	(b)	SR_RPCA	(Yan	and	Zhu,	2010);	(c)	LRR	(Lang	and	Liu,	2012);	(d)	ULR	(Shen	and	Wu,	2012);	(e)	LSSC_BS	(Xie	et	al.,	2013);	(f)	LSSC_ULRR;	(g)	Ground	truth.

alt-text:	Fig	10

Fig.	11Fig.	11.	Illustrations	for	images	with	complicated	structures.	(a)	Original	images;	(b)	SR_RPCA	(Yan	and	Zhu,	2010);	(c)	LRR	(Lang	and	Liu,	2012);	(d)	ULR	(Shen	and	Wu,	2012);	(e)	LSSC_BS	(Xie	et	al.,	2013);	(f)	LSSC_ULRR;	(g)	Ground	truth.

alt-text:	Fig	11



Fig.	12Fig.	12.	Illustrations	of	the	results	generated	by	different	methods	on	the	three	public	datasets,	i.e.,	MSRA10K,	ECSSD,	and	DUT-OMRON.	(a)	Original	images;	(b)	LRR	(Lang	and	Liu,	2012);	(c)	ULR	(Shen	and	Wu,	2012);	(d)	LSSC_BS	(Xie	et	al.,	2013);	(e)	SS	(Hou	et	al.,

2012);	(f)	CA	(Goferman	et	al.,	2012);	(g)	RC	(Cheng	and	Mitra,	2015);	(h)	SF	(Perazzi	and	Krahenbull,	2012);	(i)	PCA	(Margolin	et	al.,	2013);	(j)	SR-LC	(Huo	and	Yang,	2016);	(k)	RW_MR	(Liu	and	Cai,	2015);	(l)	DCLC	(Zhou	and	Yang,	2015);	(m)	RBD	(Zhu	and	Liang,	2014);	(n)	DSR

(Lu	and	Li,	2016);	(o)	LSSC_ULRR;	(p)	Ground	truth.

alt-text:	Fig	12



According	to	the	comparison,	the	proposed	LSSC_ULRR	obtains	better	visual	detected	results	than	RBD	and	DSR	in	some	cases.	For	example,	in	the	second	row	for	MSRA10K,	LSSC_ULRR	succeeds	in	separating	the	salient

objects	 from	background,	while	RBD	and	DSR	fail.	 In	 the	 third	row	for	ECSSD,	RBD	and	DSR	only	detect	some	parts	of	 the	salient	object,	while	LSSC_ULRR	can	detect	 the	whole	salient	object.	 In	 the	 last	row	for	DUT-OMRON,

LSSC_ULRR	obtains	better	suppression	of	the	background	noise	than	RBD	and	DSR	do.	Specifically,	in	the	second	rows	for	ECSSD	and	DUT-OMRON,	some	background	regions	are	mistakenly	labeled	as	salient	regions	by	DSR,	but

these	regions	can	be	well	detected	by	LSSC_ULRR.

In	addition	to	visual	comparison,	the	quantitative	comparisons	among	different	methods	on	the	three	datasets	are	also	provided	in	Fig.	12,	including	the	PR	curves	(Li	and	Hou,	2014),	the	F-measure	curves	(Li	and	Hou,	2014),

average	precision,	recall,	and	F-measure	bars	(Li	and	Hou,	2014),	and	MAE	bars	(Li	and	Hou,	2014).	Similar	conclusions	can	be	drawn	according	to	these	quantitative	results.	In	most	cases,	RBD,	DSR	and	the	proposed	LSSC_ULRR	rank

in	the	top	three	on	the	three	datasets	 through	comprehensive	consideration	of	 the	 four	evaluation	metrics.	We	also	 find	that	LSSC_ULRR	performs	better	 than	RBD	on	MSRA10K.	Especially,	 the	proposed	LSSC_ULRR	gets	 the	F-

measure	curve	over	a	wide	range	for	all	the	three	public	datasets,	meaning	that	it	gets	good	separation	of	background	and	foreground	under	all	thresholds.	In	other	words,	the	proposed	LSSC_ULRR	gets	background	suppressed	and

meanwhile	makes	foreground	prominent.

As	shown	in	the	above	quantitative	results,	DSR	generally	performs	better	than	the	proposed	LSSC_ULRR	method.	However,	for	some	cases,	e.g.,	images	with	salient	objects	of	greatly	large	sizes	or	images	in	which	the	salient

Fig.	13Fig.	13.	Quantitative	comparisons	of	different	methods	on	the	three	public	datasets.

alt-text:	Fig	13



objects	touch	the	image	boundaries,	the	proposed	LSSC_ULRR	method	performs	better	than	DSR.	For	example,	as	shown	in	the	first	two	columns	of	Fig.	14,	LSSC_ULRR	could	obtain	more	uniform	saliency	maps	for	salient	objects	of

greatly	large	sizes.	This	may	be	owing	to	the	proposed	cluster-based	saliency	measure.	As	shown	in	the	last	four	columns	of	Fig.	14,	the	proposed	LSSC_ULRR	method	could	still	detect	the	entire	salient	objects	even	if	they	touch	the

image	boundaries.	However,	in	this	case,	DSR	just	detected	parts	of	the	salient	objects.	This	may	be	owing	to	the	different	dictionaries	employed	in	the	two	methods.

However,	we	also	found	that	the	proposed	method	just	achieved	moderate	performance	among	these	mentioned	methods	in	terms	of	the	PR	metric.	As	discussed	above,	some	images	in	the	DUT-OMRON	dataset	are	too	complex

to	be	well	clustered.	The	inaccurate	clustering	results	thus	degrade	the	final	performance	of	the	proposed	method.	Fig.	15	 illustrates	some	failure	cases	of	our	proposed	method.	As	shown	in	Fig.	15,	 the	test	 images	are	extremely

complicated	and	the	clustering	results	for	these	images	are	very	inaccurate.	Subsequently,	the	salient	objects	are	not	well	detected	for	these	images.	Exploiting	a	more	effective	clustering	method	may	be	desirable	in	this	case.	This	is

still	a	challenging	problem,	especially	for	those	images	with	complex	structures.	We	leave	this	for	our	future	work.

5	Conclusion
In	this	paper,	we	propose	a	simple	but	effective	salient	object	detection	method	based	on	LSSC	and	ULRR,	in	which	the	salient	object	detection	is	achieved	via	the	saliency	detection	of	super-pixel	clusters.	We	first	segment	the

input	image	into	super-pixels	and	group	them	with	LSSC.	Then	we	formulate	the	saliency	detection	of	the	super-pixels	as	a	unified	low-rankness	and	sparsity	pursuit	problem	by	using	ULRR.	As	well,	the	ULRR	coefficients	are	employed

to	compute	a	global	saliency	measure	for	each	super-pixel	cluster	with	respect	to	the	entire	image,	and	the	sparse	reconstruction	errors	are	used	to	construct	a	local	saliency	measure	for	each	super-pixel	with	respect	to	each	super-

pixel	cluster.	Experimental	 results	demonstrate	 the	proposed	method	performs	better	 than	 the	 traditional	LRMR	based	and	clustering	based	methods	and	 is	comparable	 to	some	current	state-of-the-art	methods.	Especially,	 it	can

completely	detect	the	whole	salient	object	with	large	size	in	an	image	in	most	cases.	And	the	detection	results	are	very	close	to	the	ground-truth	images.	In	addition,	it	can	effectively	suppress	the	noise	from	the	backgrounds	when	the

backgrounds	of	the	input	images	contain	multiple	different	textures.
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Fig.	14Fig.	14.	Visual	comparison.	(a)	Original	images;	(b)	DSR	(Lu	and	Li,	2016);	(c)	LSSC_ULRR;	(d)	Ground	truth.

alt-text:	Fig	14

Fig.	15Fig.	15.	Failure	cases.	(a)	Original	images;	(b)	Cluster	results;	(c)	Saliency	maps;	(d)	Ground	truth.
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Appendix	A
In	this	appendix,	we	will	briefly	introduce	a	spectral	clustering	algorithm,	i.e.,	Laplacian	sparse	subspace	clustering	method	(LSSC),	presented	in	(Xie	et	al.,	(2013),	which	is	used	to	group	super-pixels	in	our	proposed	method.

For	spectral	clustering,	one	of	the	main	issues	is	to	construct	an	effective	adjacency	matrix	that	describes	the	similarity	between	each	pairs	of	super-pixels	accurately.	In	LSSC,	a	sparse	similarity	matrix	is	exploited	for	spectral

clustering,	which	is	motivated	by	the	following	two	observations	(Cai	et	al.,	2010).	One	observation	is	that	each	data	point	in	a	union	of	subspaces	is	assumed	to	belong	to	a	unique	subspace	and	can	be	represented	as	a	linear	or	affine

combination	of	other	points	 in	the	same	subspace.	Consequently,	each	point	has	a	sparse	representation	when	entire	set	of	data	points	 is	considered.	The	second	observation	is	that	similar	super-pixels	should	have	similar	sparse

coefficients.

Given	N	points2	 and	the	constraint	(affinity)	matrix	S	∈	RN	×	N,	the	sparse	representation	vector	 for	the	point	ui	is	obtained	by	solving	the	following	optimization	problem

where	 the	 basis	 matrix	 is	 obtained	 from	 the	 matrix	 by	 removing	 the	 i-th	 column	 ui.	 λ1	 and	 λ2	 are	 two	 positive	 trade-off	 parameters,	 and	 are	 experimentally	 set	 to	 0.01	 and	 0.2,

respectively.	The	(i,	j)-th	element	Si,	j	in	the	constraint	matrix	S	measures	the	similarity	of	the	two	super-pixels	spi	and	spj.	More	details	about	the	computation	of	the	matrix	S	are	seen	in	(Xie	et	al.,	(2013).	An	N-dimensional	vector	

is	obtained	by	inserting	a	zero	at	the	i-th	row	of	ci.

After	obtaining	the	sparse	representation	vector	 for	each	point,	a	matrix	 and	a	corresponding	symmetric	similarity	matrix	 are	 thus	constructed.	With	 the	matrix	 as	 the

adjacency	matrix,	a	graph	 is	defined,	where	V	are	the	N	points,	and	(vi,	vj)	∈	E	if	 is	non-zero.	The	Laplacian	matrix	A	of	the	graph	ϒ	is	thus	formed	as	 ,	where	B	is	a	diagonal	matrix	with	 .	The

clustering	result	is	finally	obtained	by	applying	the	K-means	algorithm	to	the	eigenvector	of	the	Laplacian	matrix	A.

Appendix	B
In	this	appendix,	the	update	scheme	required	for	solving	Eq.	(11)	in	the	text	is	described	in	detail.

(11)	Update	

This	sub-optimization	problem	has	the	following	closed-form	solution	(Wright	et	al.,	2009):

where	SVTδ(Ψ)	denotes	the	Singular	Value	Thresholding	(SVT)	operation	(Wright	et	al.,	2009)	on	the	matrix	Ψ	with	the	threshold	δ.

(22)	Update	

This	sub-optimization	problem	has	the	following	closed-form	solution:
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where	I	denotes	an	identity	matrix.

(33)	Update	E

where	 .	G	 is	 formed	by	horizontally	concatenating	G1,	G2,	 ...,	GK	 together	along	the	row,	 i.e.,	 .	And	Gk( )	 is	defined	by	 .	 To	 solve	Eq.	 (B5),

the	quadratic	term	f(E)	is	replaced	by	its	first	order	approximation	at	the	previous	iteration	by	adding	a	proximal	term	(Wright	et	al.,	2009),	i.e.,

where	ηj	is	set	to	 .	∇Ef(Ej)	is	the	partial	differential	of	f(E)	with	respect	to	E,	and	is	computed	by

Thus,	the	sub-optimization	problem	has	the	following	closed-form	solution	(Liu	and	Lin,	2013):

where	 .	E(:,	i)	and	Q(:,	i)	denote	the	i-th	column	of	the	matrix	E	and	Q,	respectively
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Footnotes
1In	this	case,	these	super-pixels	may	be	mistakenly	grouped	into	a	background	super-pixel	cluster.	For	example,	the	flower	center	region	in	Fig.	3	is	mistakenly	grouped	into	a	background	super-pixel	cluster	denoted	by	the	red	color.

2Each	point	ui	may	correspond	to	the	feature	vector	of	the	i-th	super-pixel	spi	in	our	proposed	method.

Highlights

• A	salient	object	detection	method	is	proposed	based	on	LSSC	and	ULRR.

• The	issue	is	converted	to	super-pixel	cluster	saliency	detection	using	ULRR.

• A	primitive	saliency	dictionary	is	constructed	for	ULRR	decomposition.

• Representation	coefficients	and	reconstruction	errors	are	used	in	saliency	measures.

• The	method	works	effectively	for	large-size	objects	and	complex	scenes.




