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Abstract

Plant leaf identification is crucial for biodiversity protection and conservation

and has gradually attracted the attention of academia in recent years. Due

to the high similarity among different varieties, leaf cultivar recognition is also

considered to be an ultra-fine-grained visual classification (UFGVC) task, which

is facing a huge challenge. In practice, an instance may be related to multiple

varieties to varying degrees, especially in the UFGVC datasets. However, deep

learning methods trained on one-hot labels fail to reflect patterns shared across

categories and thus perform poorly on this task. To address this issue, we

generate soft targets integrated with inter-class similarity information. Specif-

ically, we continuously update the prototypical features for each category and

then capture the similarity scores between instances and prototypes accordingly.

Original one-hot labels and the similarity scores are incorporated to yield en-

hanced labels. Prototype-enhanced soft labels not only contain original one-hot

label information, but also introduce rich inter-category semantic association

information, thus providing more effective supervision for deep model train-

ing. Extensive experimental results on public datasets show that our method
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can significantly improve the performance on the UFGVC task of leaf cultivar

identification.

Keywords: ultra-fine-grained visual classification, leaf cultivar identification,

prototype-enhanced learning

1. Introduction

Cultivar identification plays a vital role in the evaluation, breeding, and

production of plant multi-variety. In botany, plant leaves are widely utilized [1]

to identify varieties due to their stable, persistent, and detective morphologi-

cal characteristics. Conventional methods of plant identification often require

empirical knowledge that is not readily available to non-experts. The process

of manual variety classification is time-consuming and error-prone, making it

difficult to meet the high demand for plant ecological research.

Over the past decade, researchers have successfully extracted topological

features from leaves in terms of texture, shape, and venation. However, these

hand-crafted traits are low-level features [2], which are not descriptive enough

to distinguish cultivars belonging to the same species. Intuitively, deep learn-

ing is ideal to extract rich high-level features from leaf images. Existing leaf

classification methods can be roughly divided into two sets. One set fuses

multiple features extracted from different parts of leaves or through different

manners to jointly identify leaf cultivar [3–6]. These hybrid methods require

extra computational cost to calculate a group of inputs. The other set performs

cascaded frameworks to encode features through a pipeline [7–9]. Nevertheless,

these methods need additional network structures and some of them cannot be

trained in an end-to-end manner. In brief, existing deep learning methods for

leaf cultivar classification are not effective to meet the demands of practical

scenarios.

Moreover, deep learning approaches rely heavily on large amounts of an-

notated data, where the quality of labels is critical to model performance. In

many cases, errors in manual labeling are inevitable, directly leading to per-
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Figure 1: A case study comparing the effect of the soft and hard targets. (a) and (b) are

predicted label distributions of two instances from the same class; (c) is the one-hot hard

target; (d) is the simulated soft target. Though both instances are classified to the positive

class 4 with the same ratio, negative classes carry different ratios of probability in (a) and (b).

By computing the cross-entropy (ce) loss, the soft target reveals this information gap while

the hard target treats (a) and (b) equally. ◦-◦ represents distance calculation between two

distributions.

formance degradation. The mislabeling problem is exacerbated especially in

UFGVC datasets where each class is highly similar. Meanwhile, the typical

one-hot labeling used to train deep models assigns the full probability to one

single class, making the model particularly vulnerable to mislabeled instances

and appearing overconfident. As expected, works of knowledge distilling [10, 11]

have claimed the advantages of soft targets. When the soft targets have high

entropy, they are much more likely to provide richer information per training

case than hard targets (one-hot labels). As illustrated in Figure 1, all negative

classes are treated equally in hard targets, while soft targets can measure the

difference behind negative classes, leading to different gradient directions in the

training phase. A label smoothing(LS) method [12] was proposed to alleviate

the limitation of one-hot labels through a “confidence penalty”. However, [13]

demonstrated that LS loses information in the logits about resemblances among

different classes. In light of these pros and cons, we thus ask: how to generate

soft targets for improved ultra-fine-grained classification?
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As an analogy to natural language processing (NLP), by capturing the co-

relation between labels, label embedding [14] can select the most informative

words and neglect irrelevant ones when predicting different labels for multi-

label text classification. Based on this intuition, we propose a novel Prototype-

enhanced Learning (PEL) method for leaf cultivar identification. PEL is pred-

icated on the assumption that label embedding encoded with the inter-class

relationships would force the image classification model to focus on discrimina-

tive patterns. Unlike classical label embedding in NLP, we capture inter-class

co-relation at the feature level by generalizing categorical prototypes. The idea

of prototypes is related to prototypical networks [15, 16] in few-shot learning.

They assign instance labels to the closest prototypes in the classifier. However,

we use prototypes to augment original labels, which is significantly different from

them. In PEL, the prototypes are updated via a moving average during train-

ing, thus continuously approaching the corresponding class centers on-the-fly.

We conduct similarity scoring between input features and prototypes. Simi-

larity scores are fused into one-hot label representations to generate enhanced

labels. We use the obtained logits to replace original labels for supervised model

learning.

With the help of PEL, a deep network not only learns to distinguish va-

rieties but also grasps the semantic relationship between each label. The pro-

posed PEL is compared with 22 state-of-the-art methods including hand-crafted

feature descriptors, CNN-based and transformer-based deep learning methods.

Encouraging experimental results are reported on 7 ultra-fine-grained image

datasets, demonstrating the effectiveness of PEL for the UFGVC tasks. The

main contributions are summarized as follows:

• A novel method named Prototype-enhanced Learning (PEL) is proposed

for leaf cultivar identification. Compared to existing methods, PEL is end-

to-end trainable and adds no extra parameters, which is light and effective

with negligible computational overhead.

• We develop a new prototype update module to learn inter-class relations
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by capturing label semantic overlap and iteratively update prototypes to

generate continuously enhanced soft targets.

• Extensive experiments on 7 benchmarks adequately illustrate the superi-

ority of PEL for UFGVC. State-of-the-art performances are reported on

two widely used backbones including ResNet and DenseNet.

2. Related Work

This section reviews various plant leaf recognition methods from the species

level and cultivar level separately. In detail, some representative methods are

surveyed, including hand-crafted feature-based approaches and deep learning-

based approaches.

2.1. Plant Species Recognition

Hand-crafted descriptors. Traditional hand-crafted descriptors manually

extract leaf visual characteristics, such as leaf shape, texture, vein, and color,

to identify plant species. Leaf shapes provide significant clues for botanists to

identify species[17]. [18] proposed a novel contour-based shape descriptor to

capture robust shape geometry which can be invariant to translation, rotation,

scaling, and bilateral symmetry. [19] made the first attempt to introduce the

idea of bag-of-words (BoW) for shape representation in which the shapes are

decomposed into contour fragments. [20] utilized a novel feature that captures

global and local shape information independently. Furthermore, methods based

on leaf texture and veins also have been presented in the past few decades. For

example, [21] explored to use Gabor co-occurrences in plant texture classifica-

tion. [22] presented a texture description approach by combining LBP feature

with a gray-level co-occurrence matrix (GLCM) for tea leaf classification. [23]

adopted a procedure for segmenting and classifying scanned legume leaves based

only on the analysis of their veins. [24] designed a new descriptor named Ea-

gle which characterizes the overall venation structure using the edge patterns
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among neighboring regions. Recently, [25] put forward a feature fusion frame-

work by integrating the shape information and the texture feature for plant leaf

recognition.

Deep learning methods. In the past few years, several leaf identification

approaches using deep learning have been developed. [26] designed a framework

by first segmenting the leaf from the background, extracting features represent-

ing the curvature of the leaf’s contour to identify numerous tree species. [27]

attempted using a deep convolutional neural network (CNN) for the problem

of plant identification from leaf vein patterns. [6] adopted a hybrid global-local

leaf feature extraction method for plant classification. [28] developed a deep

learning system to learn discriminative features from leaf images along with a

classifier for species identification of plants. A procedure for segmenting and

classifying scanned legume leaves based only on the analysis of their veins was

proposed [23]. [29] presented a dual-path deep convolutional neural network

(CNN) to learn joint feature representations for leaf images by exploiting their

shape and texture characteristics. [30] proposed a multi-organ plant identifica-

tion approach based on a CNN and recurrent neural network. They analyzed

features of leaf and other organs, such as fruit, steam, or flower for plant species

identification. [7] put forward a framework for simulating botanist behaviors

through three deep learning-based models. Nevertheless, these methods tend to

perform poorly when transferred from species classification to cultivar classifi-

cation. This is due to large intraclass distances and small inter-class distances

among cultivars.

2.2. Plant Cultivar Recognition

Using leaf image patterns as clues for identifying plant species has achieved

great success in the past decades. Recently, there is an increasing concern about

whether leaf image patterns can also provide powerful discriminative informa-

tion for cultivar-level recognition.

Hand-crafted descriptors [1] proposed a novel multi-scale sliding chord

matching approach to extract leaf patterns that are distinctive for soybean culti-
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var identification. [31] put forward a novel Multi-Orientation Region Transform

(MORT), which can effectively characterize both contour and structure features

simultaneously. The proposed MORT can extract local structural features at

various scales and orientations for comprehensive shape description. [2] intro-

duced a leaf cultivar classification model based on forest representation learning

and multi-scale contour feature learning. [32] designed a novel local binary

pattern, named pairwise rotation-difference LBP (PRDLBP), for the character-

ization of leaf image patterns. [33] attempted a new strategy of depicting leaf

shapes by convolving the contour vector functions with Gaussian functions of

different widths. [39] proposed a novel local R-symmetry co-occurrence method

(RsCoM) for characterizing discriminative local symmetry patterns to distin-

guish subtle differences among cultivars.

Deep learning methods [5] combined leaf hand-crafted features and deep

learning extracted features together to identify 5000 leaf images from 100 soy-

bean cultivars. [3] explored to fuse deep learning features of triplet leaves from

different parts of soybean plants for effective cultivar recognition. [34] proposed

an efficient and convenient method for the classification of apple cultivars using

a deep convolutional neural network, which is the delicate symmetry of hu-

man brain learning. [4] integrated an auxiliary self-supervised learning module

(MaskCOV) with a powerful in-image data augmentation scheme for cultivar

classification. [51] presented SPARE, a self-supervised part-erasing framework

for ultra-fine-grained visual categorization. The key insight of SPARE is to learn

discriminative representations by encoding a self-supervised module to predict

the position of the erased parts. [9] introduced a novel mixing attentive vision

transformer (Mix-ViT) incorporated with a self-supervised module to address

the UFGVC tasks. [35] concluded that most work of plant classification is per-

formed on the author’s dataset, which makes a comparison of different works

difficult. In order to achieve an adequate comparison among existing meth-

ods, we conduct comprehensive experiments with 22 competing methods on 7

benchmark datasets. Experimental results fully validate the contribution of our

proposed method.
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Figure 2: Framework of the proposed Prototype-enhanced Learning(PEL) method. Given an

input image, the CNN layers extract the instance feature representation. The classifier takes it

to predict the instance label distribution. In parallel, we use the instance feature to update the

prototype knowledge base, then compute the similarity score through Similarity Computing

Block(SCB). The similarity score is then fused into the original one-hot label by Label Fusing

Block(LFB), resulting in enhanced label distribution. Finally, the predicted label distribution

and the enhanced label distribution are used to compute the Kullback-Leibler divergence loss.

3. Methods

In this section, we present the proposed Prototype-enhanced Learning (PEL)

method. The PEL-based classification predictor consists of three modules: a

basic feature encoder, a softmax classifier, and a label simulator. An overview

of PEL is shown in figure 2.

3.1. Basic Classification Predictor

The PEL is designed to address the problem that conventional one-hot in-

stance labeling makes the network overconfident and limits the model from

learning semantic overlap between classes. We introduce PEL starting from the

basic classification predictor. A basic classification predictor usually includes

a feature encoder and a softmax classifier. Given the i-th input image xi, the

feature encoder extracts the instance feature f(xi) and feeds it to the classifier.

The classifier is a single fully connected (FC) layer followed by a softmax layer
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to generate the predicted label distribution ŷi:

ŷi = softmax(FC(f(xi))), (1)

ŷi
j =

exp(FC(f(xi))j/t1)∑N
n=1 exp(FC(f(xi))n/t1)

, (2)

where ŷi
j is the value in the j-th dimension of ŷi, FC(f(xi))j is the j-th di-

mension of the predicted label logits from the i-th instance, N is the number of

categories, and t1 is the temperature coefficient.

Traditional classification models apply cross-entropy loss between ŷi and the

ground-truth class yi to supervise the training process:

CE(yi, ŷi) = −
N∑
j=1

yji log(ŷi
j). (3)

In the above yji ∈ {0, 1} specifies the one-hot ground-truth class distribution in

the j-th dimension.

However, one-hot labels are the same for samples of the same class, regardless

of their contents. In fact, samples with the same label may have quite differ-

ent contents, and naturally their label distributions should also be different.

Although a theoretically realistic label distribution is not easy to achieve, we

can try to model a distribution that reflects the degree of relationship between

instances and labels.

3.2. PEL-based Classification Predictor

Different categories exhibit varying degrees of shared features with each

other, implying that labels are not completely independent. With this basic

intuition, we propose the PEL method with a label simulator to simulate the

correlated label distribution. The pipeline of PEL is illustrated in Figure 3.

We first give a network initial prototypes [15] of each class as prior knowledge,

which is termed prototypical knowledge base P ∈ RN×D. We use normalized

features generated from the final pooling layer for all backbone networks. This

prototypical knowledge base is implemented as a matrix, where N is the number

of classes and D is the prototype dimension. Each column represents a unique
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Figure 3: Pipeline of the proposed PEL method. In this picture,
⊗

is matrix multiplication,⊕
is element-wise addition, and KL represents the Kullback-Leibler divergence loss.

prototypical feature representation of a class. During training, normalized in-

stance features in one batch will be grouped by their corresponding ground-truth

labels. We then compute the mean feature representations in each group. The

above process can be formulated as:

Fn =

∑
yi∈n

f(xi)

|n|
, (4)

where xi denotes the i-th instance in one batch, yi represents the ground-truth

label of xi, and |n| represents the number of instances belonging to the n-th

category, we have Fn denoting the mean feature representation of the n-th

category.

The output mean features F are fed to the prototypical knowledge base P

and the corresponding prototypes are updated accordingly by:

Pn ← Pn + α(Fn − Pn), (5)

where Pn denotes the prototypical feature representation of the n-th category,

α ∈ (0, 1) is the momentum coefficient that controls the updating rate of each

prototype.

After that, the similarity computing block(SCB) will compute the similarity

scores w between each instance feature and the prototypical knowledge base.
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Intuitively, if an instance is close to a prototype, it may relate to the label of

that prototype. Thus even if two instances belong to the same class, they carry

different information w.r.t the similarity with other classes. The dependency

among labels will be captured instance-specifically, which is superior to a uni-

form noise distribution as in label smoothing [12]. In practice, we use cosine

similarity distance as the similarity metric. The similarity scores are then nor-

malized by a softmax function. Given the input instance feature f(xi), the

corresponding similarity score of the i-th instance wi is computed as:

wi = softmax(P × f(xi)), (6)

wj
i =

exp((P × f(xi))j/t2)∑N
n=1 exp((P × f(xi))n/t2)

, (7)

where wj
i is the value in the j-th dimension of wi, (P × f(xi))j is the j-th

dimension of the predicted label logit from the i-th instance, N is the number

of categories, and t2 is the temperature coefficient.

The label fusing block(LFB) takes the one-hot ground-truth targets y and

similarity scores w as inputs, and fuses them with a weight coefficient. We

define the enhanced label distribution ỹi as:

ỹi = βyi + wi, (8)

where β > 0 is a weight coefficient to control the effect by the one-hot target yi

of the i-th instance .

As a result, the enhanced label distribution not only contains groud truth in-

formation but also has inter-class similarity awareness. Finally, the enhanced la-

bel distribution takes place of the one-hot target to supervise the model training.

The Kullback-Leibler divergence (KL) loss is applied to measure the distance L

between the predicted and enhanced label distribution, which is formulated by:

L = KL-divergence(ỹ, ŷ)

=

I∑
i

ỹilog(
ỹi
ŷi

),
(9)
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where I is the number of instances.

In the proposed PEL, the actual labels are dynamically changing along with

the updating of prototypes. With the additional supervision from the proto-

typical knowledge base, models can learn much more information and reduce

overfitting when facing small datasets. Moreover, the enhanced labels are more

robust to mislabeled samples since the similarity scores can allocate probability

to similar labels which usually include the right label. Please note that only the

“CNN” and “classifier” are needed during inference, so the computational cost

introduced is negligible.

4. Experiments

The performance of our proposed PEL is compared to 22 classification meth-

ods for a thorough evaluation. The benchmark methods are broadly split into

two groups. One covers hand-crafted feature descriptors including SIT[37],

HSC[38], PH[5], RsCoM[39] and MSCM[1]. The second is deep learning meth-

ods consisting of 1) Basic CNN-based methods including Alexnet[40], VGG-

16[41], MobileNetV2[42] and Xception[43]; 2) Basic transformer-based meth-

ods including ViT[44], DeiT[45], TransFG[46] and Hybrid-ViT[44]; 3) state-

of-the-art methods for image recognition and FGVC including NTS-NET[47],

fast-MPN-COV[48], DCL[49] and Cutmix[50]; 4) state-of-the-art methods for

UFGVC including CF[3], MFCIS[5], MaskCOV[4], SPARE[51], Mix-ViT[9].

Dataset Class Train Test

Sweet cherry 88 3788 1623

CottonCultivar 80 240 240

SoyCultivarLocal 200 600 600

SoyCultivarGene 1110 12763 11143

SoyCultivarAge 198 4950 4950

SoyCultivarGlobal 1938 5814 5814

SoyCultivar200 200 3000 3000

Table 1: Statistics of the benchmark datasets.
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4.1. Leaf material and Benchmarks

In this research, we adopted 7 benchmark datasets in our experimental eval-

uation. Table 1 summarizes the statistics for each dataset, i.e., the number

of classes, training set, and testing set. For ultra-fine-grained visual classifica-

tion (UFGVC), there are 7 image datasets including sweet cherry [5], SoyCulti-

varLocal [36], CottonCultivar, SoyCultivarGlobal, SoyCultivarGene, SoyCulti-

varAge, and SoyCultivar200[1].

Methods Backbone Accuracy(%)

Cotton S.Loc S.Gene S.Age S.Glo

Alexnet[40] Alexnet 22.92 19.50 13.12 44.93 13.21

VGG-16 [41] VGG-16 50.83 39.33 63.54 70.44 45.17

MobileNetV2 [42] ResNet-50 49.58 34.67 63.17 - 31.66

NTS-NET [47] ResNet-50 51.67 42.67 - - -

fast-MPN-COV [48] ResNet-50 50.00 38.17 45.26 - 11.39

Cutmix [50] ResNet-50 45.00 26.33 66.39 62.68 30.31

DCL[49] ResNet-50 53.75 45.33 71.41 73.19 42.21

MaskCOV [4] ResNet-50 58.75 46.17 73.57 75.86 50.28

SPARE [51] ResNet-50 60.42 44.67 79.41 75.72 56.45

ViT [44] Transformer 52.50 38.83 53.63 66.95 40.57

DeiT [45] Transformer 54.17 38.67 66.80 69.54 45.34

TransFG[46] Transformer 54.58 40.67 22.38 72.16 21.24

Hybrid-ViT [44] Transformer&ResNet 50.83 37.00 71.74 73.56 18.82

Mix-ViT [9] Transformer&ResNet 60.42 56.17 79.94 76.30 51.00

PEL ResNet-50 62.92 58.67 79.50 81.45 57.58

PEL DenseNet-121 63.33 59.33 81.49 82.30 60.56

Table 2: The top 1 classification accuracy on the CottonCultivar (Cotton), SoyCultivarLocal

(S.Loc), SoyCultivarGene (S.Gene), SoyCultivarAge (S.Age) and SoyCultivarGlobal (S.Glo)

datasets. Results style: best and second-best among each method.

4.2. Implementation Details

We implement our proposed PEL in Pytorch. All networks are trained and

tested on a single Tesla A-100 GPU. We evaluate PEL on two widely used

backbones: ResNet-50 and DenseNet-121. They are initialized by the ImageNet

pre-trained model. The input images are resized to 512×512 and center cropped

into 448×448. Random rotation with a degree of 15 and random horizontal

flips are adopted for data augmentation. The above are standard setups in the

literature. We adopt an SGD optimizer with a momentum of 0.9 and weight

decay 1e-4. The base learning rate is 0.001 and the batch size is set to 8 for

all datasets, except for SoyCultivarGlobal with a learning rate of 0.01 and a
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Methods Backbone Acc(%)

R1 R3 R4 R5 R6 Avg

Alexnet[40] Alexnet 49.90 44.65 45.15 47.47 37.47 44.93

VGG-16 [41] VGG-16 72.32 72.53 74.95 71.11 61.31 70.44

NTS-NET [47] ResNet-50 63.94 67.68 51.52 61.41 55.76 60.06

fast-MPN-COV [48] ResNet-50 67.68 64.55 66.87 68.49 50.71 63.66

Cutmix [50] ResNet-50 65.56 59.19 64.24 68.79 53.64 62.28

DCL[49] ResNet-50 76.87 73.84 76.16 76.16 62.93 73.19

MaskCOV [4] ResNet-50 79.80 74.65 79.60 78.28 66.97 75.86

SPARE [51] ResNet-50 78.28 79.90 78.69 77.27 64.44 75.72

ViT [44] Transformer 69.29 64.55 70.40 71.01 59.49 66.95

DeiT [45] Transformer 73.03 70.40 69.09 74.65 60.51 69.54

TransFG[46] Transformer 74.95 74.55 74.24 76.26 60.81 72.16

Hybrid-ViT [44] Transformer&ResNet 77.17 76.97 74.75 76.36 63.53 73.56

Mix-ViT [9] Transformer&ResNet 79.29 77.17 77.98 79.19 67.88 76.30

PEL ResNet-50 84.24 82.53 84.14 84.64 71.71 81.45

PEL DenseNet-121 85.85 83.53 86.26 84.44 71.41 82.30

Table 3: The top 1 classification accuracy on the five subsets R1, R3, R4, R5 and R6 of the

SoyCultivarAge dataset. “Avg” denotes the average classification accuracy of the five subsets.

Results style: best and second-best among each method.

batch size of 64. The number of epochs is selected according to the data size.

All datasets use epoch 120 except for the larger dataset SoyCultivarGene with

epoch 200. The temperature coefficients t1 (Eq. 2) and t2 (Eq. 7) are both set as

1. The momentum coefficient α (Eq. 5) is empirically set to 0.9. Besides, we set

the weight coefficient β (Eq. 9) as 6 in all datasets except for SoyCultivarGene

and SoyCultivarGlobal with β as 8. Ablation studies on the effect of the weight

coefficient are reported in section 4.4. Given an ImageNet-pretrained backbone

network, the prototypical knowledge base is initialized as the mean feature of

each category on the training set. During test time, the architectures of SCB

and LFB are removed.

4.3. Performance Comparison

To assess the capability of PEL in the UFGVC tasks, we conduct evaluations

on 7 ultra-fine-grained datasets. Most of the datasets have been split into train

and test sets, except in the sweet cherry dataset, we adopt ten random train

and test splits as in MFCIS[5] with a split ratio of 7:3.

Comparison on CottonCultivar Dataset. As reported in Table 2, the

proposed PEL surpasses all the competitive methods w.r.t the classification ac-

14



Methods Backbone Accuracy(%)

Low Mid Up Avg

SIT [37] - 18.30 12.15 13.20 14.55

HSC [38] - 23.00 18.80 16.15 19.32

RsCoM [39] - 30.15 28.04 31.15 29.78

MSCM [1] - 34.70 33.55 31.03 33.09

CF [3] ResNet-50 37.40 40.10 39.01 38.84

CF [3] DenseNet-121 43.50 47.15 44.90 45.18

MFCIS [5] Xception 76.00 76.02 79.67 77.23

DCL[49] ResNet-50 79.52 85.40 87.20 84.04

MaskCOV [4] ResNet-50 79.70 81.20 83.50 81.47

Mix-ViT [9] Transformer&ResNet 78.82 81.74 84.13 81.56

PEL ResNet-50 79.90 84.50 85.41 83.27

PEL DenseNet-121 80.55 86.83 88.84 85.34

Table 4: The top 1 classification accuracy on the three subsets Low, Mid and Up of the

SoyCultivar200 dataset. “Avg” denotes the average classification accuracy of the three subsets.

Results style: best and second-best among each method.

curacy. Specifically, PEL based on DenseNet-121 achieves the best performance,

which is 2.91% higher than the second-best methods Mix-Vit and SPARE.

Comparison on SoyCultivarLocal Dataset. PEL presents favorable

performance results as listed in Table 2. DenseNet-121 based PEL achieves the

best performance at 59.33% among 15 outstanding methods, followed by the

recently proposed state-of-the-art method Mix-Vit with a classification accuracy

of 56.17%.

Comparison on SoyCultivarGene Dataset. In Table 2, DenseNet-121

based PEL obtains the highest classification accuracy of 81.49%, outperforming

all the other 14 methods. We observe that Mix-ViT shows its superiority while

evaluated on a relatively larger dataset (SoyCultivarGene) with more than 20

thousand image samples.

Comparison on SoyCultivarGlobal Dataset. As shown in Table 2,

PEL are competitive compared to the state-of-the-art methods. For example,

DenseNet-121 based PEL gains 4.11% improvement over the second-best ap-

proach SPARE.

Comparison on SoyCultivarAge Dataset. SoyCultivarAge dataset cov-
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Methods Backbone Accuracy(%)

Cherry SoyCultivar200

HSC [38] - 16.47 45.45

PH [5] - 42.08 -

DCNN [34] - 32.55 -

RsCoM [39] - - 64.93

MSCM [1] - - 72.40

CF [3] DenseNet-121 - 83.55

Xception[43] Xception 66.52 -

MFCIS [5] Xception 83.52 78.00

DCL[49] ResNet-50 95.50 87.50

MaskCOV [4] ResNet-50 91.75 83.92

Mix-ViT [9] Transformer&ResNet 93.10 84.50

PEL ResNet-50 95.34 89.33

PEL DenseNet-121 95.62 89.20

Table 5: The top 1 classification accuracy on the sweet cherry and SoyCultivar200 dataset.

Results style: best and second-best among each method.

ers five subsets where each subset contains leaves collected from a specific cul-

tivar period. The comparative performance of 14 competing methods is sum-

marized in Table 3. For each subset, PEL shows dominant capability compared

to other approaches. Particularly, DenseNet-121 based PEL achieves the best

performance with a significant margin of 6.05% over the second-best method

MaskCOV in the R1 period subset. Moreover, we observe that R6 exhibits a

substantially more than 10% lower accuracy than other periods.

Comparison on SoyCultivar200 Dataset. Table 4 presents the perfor-

mance of existing hand-crafted feature extraction methods as well as competitive

deep learning methods on the subsets of the SoyCultivar200 dataset. Accord-

ing to the results, deep learning methods are much superior to hand-crafted

feature extraction methods. Furthermore, results demonstrate that soy leaves

collected from the low part of one plant are less discriminative than those from

the mid and up parts. The finding suggests that the newly emerging leaves in

the upper part of a plant carry richer information than the mature leaves in the

lower part. In addition, we mix up all subsets in SoyCultivar200, train and test

each approach on the whole dataset. As Table 5 shows, PEL achieves the best
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Cotton S.Local S.Glo S.Age S.Gene Soy200
ResNet-5060 56.01 54.11 83.51 78.34 87.2
PEL 62.92 58.67 57.58 85.23 79.5 89.33

Cotton S.Local S.Glo S.Age S.Gene Soy200
DenseNet-58.33 58.16 56.41 85.45 79.01 88.83
PEL 63.33 59.33 60.56 86.66 81.49 89.2
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Figure 4: Performance comparison between baselines and PEL.

performance 89.33%.

Comparison on sweet cherry Dataset. In Table 5, we compare PEL

with the existing methods on the sweet cherry dataset. We observe that DenseNet-

121 based PEL achieves encouraging classification accuracy which is 95.62%.

Besides, DCL also shows its advantage with only 0.12% lower than our method.

The overall performance is consistent with the number of samples in each

category. There are only around 3 samples per cultivar in CottonCultivar,

SoyCultivarLocal, and SoyCultivarGlobal, which involves a few-shot problem

in the UFGVC tasks. Therefore, the performances on these three benchmark

datasets are relatively low which are around 60%. As we know that few shot

datasets are prone to overfitting, prototypical learning is a conventional way

for few shot tasks. Thus, our prototype-enhanced learning approach helps al-

leviate the few-shot problem in UFGVC tasks. Concluded from Table 4 and

Table 5, deep learning methods have a very high performance ceiling that dom-

inates comparison with hand-crafted feature extraction methods. In short, the

results demonstrate the potential of our proposed method toward narrowing the

performance gap between the FGVC and UFGVC tasks.

4.4. Ablation Studies

We conduct a comprehensive ablation study to further verify the contribution

of the proposed PEL method. The baseline methods includes ResNet-50[52]

and DenseNet-121[53]. As shown in Figure 4, PEL consistently improves the
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Backbone Dataset weight Accuracy(%)

4 86.46

ResNet-50 [52] SoyCultivar200 6 89.33

8 88.20

6 44.94

DenseNet-121 [53] SoyCultivarGlobal 8 60.56

10 59.49

Table 6: Ablation on the effect of weight coefficeint regarding classification accuracy on two

benchmark datasets.

Method Backbone Dimension Parameters GFLOPs

ViT[44] Transformer 0.7K 86.24M -

DeiT[45] Transformer 0.7K 86.24M -

TransFG[46] Transformer 0.7K 86.80M -

Hybrid ViT[44] Trans.&ResNet 0.7K 99.20M -

Mix-ViT[9] Trans.&ResNet 0.7K 35.42M -

Alexnet[40] Alexnet 4K 61.10M 2.84

VGG-16[41] VGG-16 4K 138.36M 61.64

ResNet-50[52] ResNet-50 2K 25.56M 16.47

DenseNet-121[53] DenseNet-121 1K 7.0M 11.53

DCL[49] ResNet-50 2K 23.68M 16.47

MaskCOV[4] ResNet-50 2K 23.75M 16.47

PEL ResNet-50 2K 25.56M 16.47

PEL DenseNet-121 1K 7.0M 11.53

Table 7: Performance comparison with respect to feature dimension, parameters and GFLOPs

with input size of 448×448. The results in bold represent the most efficient in each group of

methods.

performance over baselines, indicating the effectiveness of the PEL method.

Effect of weight coefficient on PEL. As we mentioned before, the simi-

larity scores conducted in PEL may introduce noises in the early training stage

when prototypes are unstable and imprecise. Therefore, we implement ablation

studies of the effect of the weight coefficient β (Eq. 9) on SoyCultivar200 and

SoyCltivarGlobal respectively. In Table 6, we compare ResNet-50 based PEL

evaluated on SoyCultivar200 with different weight coefficients from 4 to 8. We

set β to 6 for experiments on all datasets except SoyCultivarGene and SoyCul-

tivarGlobal. As presented in Table 6, the weight coefficient of 8 achieves the

best performance by the DenseNet-121 based PEL on SoyCltivarGlobal. We set
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β as 8 for all experiments on SoyCultivarGene and SoyCultivarGlobal.

Computational cost. In Table 7, we list the comparison results in three

aspects: feature dimension (a key measurement in classification tasks), compu-

tational complexity (GFLOPs), and memory consumption (model parameters).

For a fair comparison, the input size is set to 448×448 and the category number

is set to 80 for all the competing methods. The DenseNet-121 based PEL is rel-

atively effective in each aspect with only 11.53 GFLOPs, 1K feature dimension,

and 7M model parameters.

5. Conclusions

In this paper, we propose a novel PEL method for the challenging ultra-

fine-grained image recognition. As an open topic, cultivar identification covers

three key issues: high similarity among classes, label mislabeling, and lack of

data. On top of that, PEL generates enhanced label distributions that not only

contain the target category but also have inter-class similarity awareness, thus

being more sensitive to the similarity degree among categories. Moreover, the

enhanced labels are more robust to mislabeled samples since the similarity scores

can allocate probability to similar labels which usually include the right label,

thus the model can still learn useful information from mislabeled samples. With

the additional supervision from the prototypical knowledge base, models can

reduce overfitting when facing small datasets. Our method has achieved superior

performance on 7 UFGVC benchmark datasets compared to 22 competitive

methods.

The beneficial performance and excellent efficiency confirm the superiority

of PEL in the UFGVC tasks. However, results demonstrate that on datasets

lacking training samples, such as CottonCultivar, SoyCultivarLocal, and Soy-

CultivarAge, the overall performance remains around 60%, and there is still

much room for improvement. Therefore, the lack of data is still a crucial chal-

lenge in UFGVC tasks. Since UFGVC tasks are often accompanied by the

few-shot problem, effective methods to avoid overfitting in UGFVC can be a
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key research point in future work.
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