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Abstract

The proximity π = π(G) of a connected graph G is the minimum, over all vertices,

of the average distance from a vertex to all others. Similarly, the maximum is called

the remoteness and denoted by ρ = ρ(G). The concepts of proximity and remoteness,

first defined in 2006, attracted the attention of several researchers in Graph Theory.

Their investigation led to a considerable number of publications. In this paper we

present a survey of the research work done to date.
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1 Introduction

Models involving paths, distances and location on graphs are much studied in operations

research and mathematics. Models from operations research (see e.g. [12, 26]) usually use

weighted graphs to describe some well-defined class of problems or some specific applications.

Models from mathematics most often consider unweighted graphs and relations between

graph invariants, that is, numerical quantities whose values do not depend on the labelling

of edges or vertices. In this paper, we present a survey of two graph invariants: proximity

and remoteness, defined as the minimum and maximum of the average distance from a vertex

to all others.
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Let G = (V,E) denote a simple and connected graph, with vertex set V and edge set E,

containing n = |V | vertices and m = |E| edges. All the graphs considered in the present

paper are finite, simple and connected.

For a vertex u ∈ V , the set of its neighbors in G is denoted as

Nu = {v ∈ V : uv ∈ E}.

The degree of u is the number of its neighbors, that is, d(u) = du = |Nu|. The maximum

degree ∆ and the minimum degree δ of G are defined as

∆ = max
u∈V

d(u) and δ = min
u∈V

d(u).

A graph G is said to be d-regular, or regular of degree d, if all of its vertices have degree d.

The distance between two vertices u and v in G, denoted by d(u, v), is the length of

a shortest path between u and v. The average distance between all pairs of vertices in G

is denoted by l. The eccentricity e(v) of a vertex v in G is the largest distance from v to

another vertex of G. The minimum eccentricity in G, denoted by r, is the radius of G. The

maximum eccentricity of G, denoted by D, is the diameter of G. The girth g of a graph G

is the length of its smallest cycle. The average eccentricity of G is denoted ecc. That is

r = min
v∈V

e(v), D = max
v∈V

e(v) and ecc =
1

n

∑
v∈V

e(v).

The Wiener index W = W (G), introduced in [56], of a connected graph G is defined to

be the sum of all distances in G, that is,

W (G) =
1

2

∑
u,v∈V

d(u, v).

The transmission t(v) of a vertex v is defined to be the sum of the distances from v to all

other vertices in G, that is,

t(v) =
∑
u∈V

d(u, v).

A connected graph G = (V,E) is said to be k–transmission regular if t(v) = k for every

vertex v ∈ V . The transmission regular graphs are exactly the distance–balanced graphs

introduced in [29]. They are also called self–median graphs in [15]. It is clear that any

vertex–transitive graph (a graph G in which for every two vertices u and v, there exist an

automorphism f which take a vertex u and map it to a vertex v in G. The converse is not

true in general. Indeed, the graph on 9 vertices illustrated in Figure 1 is 14–transmission

regular graph but not degree regular and therefore not vertex–transitive. Actually, the graph

in Figure 1 is the smallest transmission regular but not degree regular (see e.g. [4, 33]). For

more examples of transmission regular but not degree regular graphs see [4, 7, 33,34,55].

The proximity π = π(G) of G is the minimum average distance from a vertex of G to

all others. Similarly, the remoteness ρ = ρ(G) of G is the maximum average distance from



Proximity and Remoteness in Graphs: a survey 3

Figure 1: The transmission regular but not degree regular graph with the smallest order

a vertex to all others. The two last concepts were recently introduced in [2, 3]. They are

close to the concept of transmission t(v) of a vertex v. That is, if we denote t̃(v) the average

distance from a vertex v to all other vertices in G, we have

π = min
v∈V

t̃(v) = min
v∈V

t(v)

n− 1
and ρ = max

v∈V
t̃(v) = max

v∈V

t(v)

n− 1
.

The transmission of a vertex is also known as the distance of a vertex [24] and the

minimum distance (transmission) of a vertex is studied in [47]. A notion very close to the

average distance from a vertex is the vertex deviation introduced by Zelinka [58] as

m1(v) =
1

n

∑
u∈V

d(u, v) =
t(v)

n
.

The vector composed of the vertex transmissions in a graph was first introduced by Harary

[30] in 1959, under the name the status of a graph, as a measure of the “weights” of individuals

in social networks. The same vector was called the distance degree sequence by Bloom,

Kennedy and Quintas [13]. It was used to tackle the problem of graph isomorphism. Randić

[48] conjectured that two graphs are isomorphic if and only if they have the same distance

degree sequence. The conjecture was refuted by several authors such as Slater [52], Buckley

and Harary [14], and Entringer, Jackson and Snyder [24]. The transmission of a graph was

also introduced by Sabidussi [49] in 1966 as a measure of centrality in social networks. The

notion of centrality is widely used in different branches of sciences (see for example [37]

and the references therein) such as transportation–network theory, communication network

theory, electrical circuits theory, psychology, sociology, geography, game theory and computer

science. Notions closely related to that of the distance from a vertex are those of a center

and a centroid introduced by Jordan [36] in 1869. For mathematical properties of these two

concepts see the survey, as well as the references therein, [53]. In 1964, Hakimi [28] used for

the first time the sum of distances in solving facility location problems. In fact, Hakimi [28]

considered two problems, subsequently considered in many works: the first problem was to
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Figure 2: Relations between the invariants.

determine a vertex u ∈ V so as to minimize maxv∈V {d(u, v) : u ∈ V }, that is, the center of

a graph; and the second problem is to determine a vertex u ∈ V so as to minimize the sum

of distances from u, that is, the centroid. Interpretations of these problems can be found,

for instance, in [27]. In view of the interest of the transmission vector in different domains

of sciences, it is natural to study the properties of its extremal values themselves, and

among the set of graph parameters. The study of proximity and remoteness, since closely

related to respectively the minimum and maximum values of the transmissions, appears to

be convenient, specially, with other metric invariants, such as the diameter, radius, average

eccentricity and average distance. Indeed, it follows from the definitions that

π ≤ r ≤ ecc ≤ D, π ≤ l ≤ ρ ≤ D and l =
1

n(n− 1)

∑
v∈V

t(v).

In addition to these inequalities, several related ones can be found in the graph theory

literature. Recall that a subset S of vertices of G is said to be independent if its vertices are

pairwise non adjacent. The maximum cardinality of such a subset is called the independence

number of G and is denoted by α = α(G). Then l ≤ α [16] and r ≤ α [25]. Recall, also,

that a matching in a graph is a set of disjoint edges. The maximum possible cardinality of

a matching in a graph G is called the matching number of G and denoted by µ = µ(G).

The inequality r ≤ µ can be found in [25]. It was proved in [5] that ρ ≤ ecc. All these

inequalities are illustrated in Figure 2, where vertices correspond to invariants a, b, . . ., and

directed arcs to the relations a ≤ b. Observe that all relations mentioned are tight as all

of them but r ≤ µ become equalities for the complete graph Kn (all invariants but µ being

equal to 1) and r = µ = 1 for the star Sn.

Since their introduction in [2,3], the proximity and the remoteness attracted the attention

of several authors.

2 Proximity and Remoteness

As for any graph invariant, the first questions asked about the proximity and the remoteness

are: “what are their minimum and maximum values for given order n?” and “which extremal
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graphs are associated with these extremal values for a given order n?” Both questions are

answered in the following proposition proved in [5].

Proposition 2.1 ( [5]). Let G be a connected graph on n ≥ 3 vertices with proximity π

and remoteness ρ. Then

1 ≤ π ≤


n+ 1

4
if n is odd

n+ 1

4
+

1

4(n− 1)
if n is even

and

1 ≤ ρ ≤ n

2
.

The lower bound on π is reached if and only if G contains a dominating vertex; the upper

bound on π is attained if and only if G is either the cycle Cn or the path Pn; the lower bound

on ρ is reached if and only if G is the complete graph Kn; the upper bound on ρ is attained

if and only if G is the path Pn.

Since the proximity π and the remoteness ρ are respectively the minimum and the maxi-

mum of the same function on a graph, it is natural to ask about how large can the difference

ρ− π be, or in other words, how large can the spread of the average distances from vertices

be. This problem was solved in [5].

Proposition 2.2 ( [5]). Let G be a connected graph on n ≥ 3 vertices with remoteness ρ

and proximity π. Then

ρ− π ≤


n− 1

4
if n is odd,

n− 1

4
− 1

4n− 4
if n is even.

Equality holds if and only if G is a graph obtained from a path P⌈n
2 ⌉ and any connected graph

H on ⌊n/2⌋+ 1 vertices by a coalescence of an endpoint of the path with any vertex of H.

The problem of find bounds on π and ρ for a graph G with given order n and diameter D

was considered in [5]. Actually, the best possible lower bound on π(G) and the best possible

upper bound on ρ(G) were established. These involve a particular class of graphs, next

described. A double-tailed comet DTCn,p,q (see Figure 3 for an example, that is, DTC15,4,4),

with n ≥ p+ q + 1, p ≥ 2 and q ≥ 2 is the tree obtained from a path u0u1 · · ·upup+1 · · ·up+q

by attaching n − p − q − 1 pendant edges to up. It is said to be balanced if p = q. It

is easy to see that the diameter of DTCn,p,q is D = p + q and its maximum degree is

∆ = d(up) = n− p− q + 1. Assuming, without loss of generality, that p ≥ q, we have

π(DTCn,p,q) =
p(p+ 1)

2(n− 1)
+

q(q + 1)

2(n− 1)
− p+ q

n− 1
+ 1
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=
p(p− 1)

2(n− 1)
+

q(q − 1)

2(n− 1)
+ 1

and

ρ(DTCn,p,q) =
(p+ q)(p+ q + 1)

2(n− 1)
− p2 + pq

n− 1
+ p.

Figure 3: The double-tailed comet DTC15,4,4.

The following result gives the lower bound for π in terms of diameter and order of G.

Proposition 2.3 ( [5]). Let G be a connected graph on n vertices with diameter D. Then

π(G) ≥ p(p− 1)

2(n− 1)
+

q(q − 1)

2(n− 1)
+ 1

where p = ⌈D/2⌉ and q = ⌊D/2⌋. The bound is best possible as shown by the double-tailed

comet DTCn,p,q.

A comet COn,∆ is the tree obtained from a star S∆+1 and a path Pn−∆ by coalescence of

an endpoint of Pn−∆ with a pendant vertex of S∆+1. Easy computations lead to the following

expressions for the diameter and the remoteness of a comet:

D(COn,∆) = n−∆+ 1

and

ρ(COn,∆) =
(n−∆+ 1)(n+∆− 2)

2(n− 1)
.

A kite KIn,ω is the connected graph obtained from a clique Kω and a path Pn−ω by adding

an edge between an endpoint of the path and a vertex from the clique. A pseudo-kite PKIn,p
is any connected graph which is a spanning subgraph of the kite KIn,p and that contains

the comet COn,p as a spanning tree. Note that COn,p, KIn,p and PKIn,p have the same

proximity and the same remoteness.

The first relationship between the pseudo-kites and the notion of remoteness is given in

the following proposition.
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Proposition 2.4 ( [5]). Let G be a connected graph on n ≥ 3 vertices with diameter D.

Then

ρ(G) ≤ ρ(PKIn,n−D+1)

with equality if and only if G is a pseudo-kite PKIn,n−D+1.

Let G be a graph and G its complement. If I is an invariant of G, we denote by I the same

invariant but in G. Nordhaus-Gaddum relations for the graph invariant I are inequalities of

the following form

L1(n) ≤ I + I ≤ U1(n) and L2(n) ≤ I · I ≤ U2(n),

where L1(n) and L2(n) are lower bounding functions of the order n, and U1(n) and U2(n)

upper bounding functions of the order n. Note that sometimes, in addition to the order

n, other graph invariants are used in the bounds. This type of relations is so called after

Nordhaus and Gaddum [42] who were the first authors to give such relations, namely

2
√
n ≤ χ+ χ ≤ n+ 1 and n ≤ χ · χ ≤

(
n+ 1

2

)2

, (1)

where χ is the chromatic number of a graph. Since then many graph theorists have been

interested in finding such relations for various graph invariants. See [8] for a survey of

Nordhaus–Gaddum type results. These type of inequalities relate graph invariants with

their complements and information about graphs structure is encoded in some cases as it

happens with some invariant, a class of graph is uniquely identified by Nordhaus–Gaddum

inequality. For proximity and remoteness, Nordhaus–Gaddum inequalities were proved in [6]

and are stated as:

Theorem 2.5 ( [6]). For any connected graph G on n ≥ 5 vertices for which G is connected

2n

n− 1
≤ π + π ≤


n+ 1

4
+

n+ 1

n− 1
if n is odd,

n

4
+

n

4(n− 1)
+

n+ 1

n− 1
if n is even.

The lower bound is attained if and only if ∆(G) = ∆(G) = n − 2. The upper bound is

attained if and only if either G or G is the cycle Cn.

Theorem 2.6 ( [6]). For any connected graph G on n ≥ 5 vertices for which G is connected

n2

(n− 1)2
≤ π · π ≤


(n+ 1)2

4(n− 1)
if n is odd,

n(n+ 1)

4(n− 1)
+

n(n+ 1)

4(n− 1)2
if n is even.

The lower bound is attained if and only if ∆(G) = ∆(G) = n − 2. The upper bound is

attained if and only if either G or G is the cycle Cn.
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Recall that a comet Con,∆ is obtained from a star S∆+1 by appending a path Pn−∆−1 to

one of its pending vertices. Moreover, a path-complete graph PKn,m on n vertices andm edges

is the graph obtained from a path Pk, k ≥ 1, and a clique Kn−k by adding at least one edge

between one endpoint of the path and the vertices of Kn−k, where (n−k)(n−k−1)/2+k ≤
m ≤ (n − k + 1)(n − k)/2 + k − 1. One can verify that there is exactly one path-complete

graph PKn,m for all n and m such that 1 ≤ n− 1 ≤ m ≤ n(n− 1)/2.

Theorem 2.7 ( [6]). For any connected graph G on n ≥ 6 vertices for which G is connected

3 ≤ ρ+ ρ ≤ n+ 2

2
+

2

n− 1
.

The lower bound is attained if and only if n ≥ 8, G is regular and D = D = 2. The upper

bound is attained if and only if G or G is the path Pn, the comet Con,3 or the path-complete

graph PKn,n when n ≥ 7, and if and only if G or G is the path P6, the comet Co6,3, the

path-complete graph PK6,6 or one of the graphs in Fig. 4.

Figure 4: Graphs with D = 3 that maximize ρ+ ρ for n = 6.

Theorem 2.8 ( [6]). For any connected graph G on n ≥ 7 vertices for which G is connected

ρ · ρ ≤



16n+ 20

27
+

8

9(n− 1)
+

4

27(n− 1)2
if n = 0 (mod 3),

16n+ 20

27
+

2

3(n− 1)
if n = 1 (mod 3),

16n+ 20

27
+

8

9(n− 1)
+

5

27(n− 1)2
if n = 2 (mod 3).

The upper bound is the best possible as shown by the comets Con,⌈n
3 ⌉+1, and Con,⌈n

3 ⌉ if

n = 1 (mod 3).

Note that the bound provided in Theorem 2.8 is not valid for n = 4, 5, 6 (if n ≤ 3, then G

and G cannot be connected simultaneously). For the path P4 (respectively the comets Co5,3
and Co6,4), ρ · ρ = 4 (respectively 9/2 and 24/5) while the corresponding value provided by

Theorem 2.8 is 10/3 (respectively 63/16 and 112/25).

Next, we consider the some results related to the proximity for some special classes of

graphs. Czabarka et al. [17] obtained results on proximity in triangulations and quadran-

gulations, that is, graphs with maximal planer graphs and graphs with maximal bipartite

planer graphs, respectively.
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Theorem 2.9 ( [17]). Let G be a planar graph of order n and v a central vertex of G.

(i) If G is a triangulation, then

π ≤ n+ 19

12
+

25

3(n− 1)
.

(ii) If G is a 4-connected triangulation, then

π ≤ n+ 35

16
+

91

4(n− 1)
.

(iii) If G is a 5-connected triangulation, then

π ≤ n+ 57

20
+

393

10(n− 1)
.

(iv) If G is a quadrangulation, then

π ≤ n+ 11

8
+

9

2(n− 1)
.

(v) If G is a 3-connected quadrangulation, then

π ≤ n+ 25

12
+

169

12(n− 1)
.

Pei et al. [45] gave following interesting results relating proximity, average eccentricity

and domination, results earlier conjectured in [2]. A non empty set S ⊆ V (G) is said to

be a dominating set if every vertex in V \ S is adjacent to at least one vertex in S. The

domination number γ(G) is the minimum cardinality of a dominating set of G.

Recall that γ(G) ≤
⌊n
2

⌋
. In fact, the graphs with domination number

⌊n
2

⌋
have been

determined in the following result.

Figure 5: Graphs in family A
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Figure 6: Graphs in family B

Lemma 2.10 ( [43]). A connected graph G of order n satisfies γ(G) =
⌊n
2

⌋
if and only if

G ∈ G =
6⋃

i=1

Gi, where Gi, i = 1, . . . , 6, is the set defined in the following. Let H be any

graph with vertex set {v1, . . . , vk}. Denote by f(H) the graph obtained from H by adding

new vertices u1, . . . , uk and the edges viui, i = 1, . . . , k. Define

G1 = {C4} ∪ {G|G = f(H) for some connected graph H}.

Let F = A ∪ B and G2 = F − {C4}, where A = {C4, G(7, i)|i = 1, . . . , 6} and B =

{K3, G(5, i)|i = 1, . . . , 4}, as shown in Fig. 5 and Fig. 6, respectively. For any graph

H, let ϕ(H) be the set of connected graphs, each of which can be formed from f(H) by

adding a new vertex x and edges joining x to one or more vertices of H. Then define

G3 = {G|G = ϕ(H) for some graph H}. Let G ∈ G3 and y be a vertex of a copy of C4.

Denote by θ(G) the graph obtained by joining G to C4 with the single edge xy, where x is the

new vertex added in forming G. Then define

G4 = {G|G = θ(H) for some graph H ∈ G3}.

Let u, v, w be the vertex sequence of a path P3. For any graph H, let P(H) be the set of

connected graphs which may be formed from f(H) by joining each of u and w to one or more

vertices of M Then define

G5 = {G|G = P(H) for some graph H}.

For a graph X ∈ B, let U ⊂ V (X) be a set of vertices such that no fewer than γ(X) vertices

of X dominate V (X) \ U. Let R(H,X) be the set of connected graphs which may be formed

from f(H) by joining each vertex of U to one or more vertices of H for some set U as defined

above and any graph H. Then define

G6 = {G|G ∈ R(H,X) for some X ∈ B and some H}.

Lemma 2.11 ( [45]). Let G be a connected graph of order n with γ(G) ≥ 2,∆(G) ≤ n − 2

and δ(G) = 1. Then

ecc ≥ 2 +
γ(G)

n
.

Lemma 2.12 ( [45]). Let G be a connected graph with ∆(G) ≤ n − 2 and δ(G) = 2. Then

γ(G) = 2 or ecc ≥ 2 +
2

n
.
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Lemma 2.13 ( [45]). Let G be a connected graph of order n ≥ 2. If ∆(G) = n − 1, then
γ(G)

ecc
≤ 1 with equality if and only if G ∼= Kn.

Lemma 2.14 ( [45]). Let G be a connected graph on n vertices, where 2 ≤ n ≤ 5. Then

γ(G)

ecc
≤ 1,

with equality if and only if G ∈ {P2, C3, K4, C4} when n ≤ 4, and

G ∈ K5, G(5, 1), G(5, 2), G(5, 3), G(5, 4) ⊆ B

when n = 5, see Fig. 6

Based on the above lemmas, the following result were presented in [45].

Theorem 2.15 ( [45]). Let G be a connected graph of order n ≥ 2. Then

γ(G)

ecc
≤


1 if n ≤ 5,

n.
⌊
n
2

⌋⌊
5n
2

⌋ if n ≥ 6,

with equality if and only if G ∈ {P2, C3, K4, C4, K5, G(5, 1), G(5, 2), G(5, 3), G(5, 4)} when

n ≤ 5, or G ∈ {K⌈n
2 ⌉,⌊n

2 ⌋, G(7, 1), G(7, 2), G′, G′′} when n ≥ 6, where G′, G′′ are defined

in [46].

The first observation in [45] is that for a vertex v in a connected graph G, the proximity

is

π(v) ≥ 2n− 2− d(v)

n− 1
,

with equality if and only if e(v) ≤ 2.

We continue with the meaning of the notations x, u, v, w in the definition of G3 and G5,

where x is the vertex added in forming graph G ∈ G3, u, v, w is the vertex sequence of a path

P3 mentioned in the construction of G5. Let H∗ be any connected graph with vertex set

{v1, . . . , vk} and △(H∗) = k − 1. Assume that dH∗(vi0) = △(H∗) for some i0 ∈ {1, . . . , k},
that is, {vi0vj|j = 1, . . . , i0 − 1, i0 + 1, . . . , k} ⊆ E(H∗). Next, we define a subfamily of G,
namely, G∗ =

⋃
i∈{1,2,3,5,6}

G∗
i , where G∗

i for i = 1, 2, 3, 5, 6 are defined as below:

G∗
1 = {G|G = f(H∗) for some connected graph H∗},

G∗
2 = {G(5, 2), G(5, 3), G(5, 4), G(7, 2), G(7, 5), G(7, 6)},

G∗
3 = {G|G = ϕ(H∗) and vi0x ∈ E(G)},

G∗
5 = {G|G = P(H∗), vi0u ∈ E(G) and vi0w ∈ E(G)}

and
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G∗
6 = G1

6 ∪ G1
6 ∪ G(3,2)

6 ∪ G(3,3)
6 ∪ G(3,4)

6 ,

where

G1
6 = {G|G = R(K3, H∗) with |U | = 2, and vi0s ∈ E(G) for each vertex s ∈ U}.

G2
6 = {G|G ∈ G6 with X = K3, and svi ∈ E(G) for some vertex s ∈ U and i = 1, . . . , k}.

For i = 2, 3, 4, G(3,i)
6 = {G|G ∈ G6 with X = G(5, i), and svj ∈ E(G) for j = 1, . . . , k, some

vertex s ∈ U with dG(5, i)(s) = 3}.
The following lemma presents bounds of π for the family G∗.

Lemma 2.16 ( [45]). Let G be a connected graph of order n ≥ 5 with γ(G) =
⌊n
2

⌋
. Then

π ≥


3

2
− 1

2(n− 1)
, n is even

3

2
− 1

n− 1
, n is odd

with equality if and only if G ∈ G∗.

Theorem 2.17 ( [45]). Let G be a connected graph of order n ≥ 2. Then

γ(G)− π ≤


n− 3

2
+

1

2(n− 1)
, if n is even

n− 4

2
− 1

n− 1
, if n is odd

with equality if and only if G ∈ G∗ ∪ {P2, P3, C3, P4, C4}.

Recently Pei [44] obtained the following sequence of results for the domination number

and the remoteness of a graph.

Lemma 2.18 ( [44]). Let G be a connected graph with n ≤ 6 vertices and γ(G) =
⌊n
2

⌋
− 1.

Then for n ≥ 4, we have

γ(G)− ρ(G) <


4

5
, n = 6

0, 4 ≤ n ≤ 5,

with equality if and only if G is 4-regular when n = 6, and G ∼= Kn when 4 ≤ n ≤ 5.

Lemma 2.19 ( [44]). Suppose that G be a connected graph of order n ≥ 7 with γ(G) =⌊n
2

⌋
− 1. Then

γ(G)− ρ(G) <


n− 5

2
+

3

2n− 2
, n is even

n− 6

2
+

2

n− 1
, n is odd and n ≥ 9

n− 3

4
, n = 7.
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Lemma 2.20 ( [44]). Suppose that G be a connected graph of order n with 1 ≤ γ(G) =⌊n
2

⌋
− 2. Then

γ(G)− ρ(G) <


n− 5

2
+

3

2n− 2
, n is even

n− 6

2
+

2

n− 1
, n is odd and n ≥ 9

n− 3

4
, n is odd and n ≤ 7.

Lemma 2.21 ( [44]). If G is a connected graph with order n(≥ 2) and γ(G) =
⌊n
2

⌋
, then

γ(G)− ρ(G) ≤



2

3
, n = 4

n− 5

2
+

3

2n− 2
, n is even and n ̸= 4

n− 3

4
, n is odd and n ≤ 7

n− 6

2
+

2

n− 1
, n is odd and n ≥ 9,

with equality if and only if G ∈ {C4, Kn
2
,n
2

| n is even and n ̸= 4} ∪ (G2 − {G5
7)}) ∪

{K⌈n
2
⌉,⌊n

2
⌋, G

′, G′′ | n is odd and n ≥ 9}, where G′, G′′ are defined in [46].

Lemma 2.22 ( [44]). If G is a connected graph with n ≤ 7 vertices and γ(G) =
⌊n
2

⌋
− 1,

then n ≥ 4 and

γ(G)− ρ(G) ≤


4

5
, n = 6

0 4 ≤ n ≤ 5

with equality if and only if G is 4-regular when n = 6, and G ∼= Kn when 4 ≤ n ≤ 5.

Dankelmann related proximity and remoteness with minimum degree and gave several

interesting results [19] with sharp inequalities along with the characterization of graphs

attaining them.

Theorem 2.23 ( [19]). Let G be a connected graph of order n and minimum degree δ, where

δ ≥ 2. Then there exists a spanning tree T of G with

π(T ) ≤ 3n

4(δ + 1)
+ 3

and

ρ(T ) ≤ 3n

2(δ + 1)
+

7

2
.

The following is an immediate consequence of Theorem 2.23
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Corollary 2.24 ( [19]). Let G be a connected graph of order n and minimum degree δ,

where δ ≥ 2. Then

π(G) ≤ 3n

4(δ + 1)
+ 3

and

ρ(G) ≤ 3n

2(δ + 1)
+

7

2
.

Dankelmann, Jonck and Mafunda [21], obtained bounds for π and ρ in triangle-free and

C4-free graphs in terms of order and minimum degree. Before stating the results, we need

the following definitions.

Given positive integers n, δ with δ ≥ 3. Let A = (1, 1, δ− 1, δ− 1, 1, 1, δ− 1, δ− 1, . . . ) be

the infinite sequence repeating the (1, 1, δ − 1, δ − 1)-pattern indefinitely. Define the finite

sequence Xn,δ by

Xn,δ = (1, δ, δ − 1, a1, a2, . . . , al(A,n−4δ), δ, rn,δ),

where rn,δ = n− 3δ −
l(A,n−4δ)∑

i=1

ai.

The sequential sum of graphs G = G1 + G2 + · · · + Gn to be the sequential join such

that the vertex set V (G) = V (G1)∪ V (G2)∪ · · · ∪ V (Gn) and the edge set E(G) = E(G1)∪

E(G2) ∪ · · · ∪ E(Gn)
n−1⋃
i=1

{uv|u ∈ V (Gi), v ∈ V (Gi+1)}.

For a finite sequence X = (x0, x1, . . . , xd) of positive integers we define the graph G(X)

by

G(X) = Kx0 +Kx1 + · · ·+Kxd

Theorem 2.25 ( [21]). Let G be a connected, triangle free graph of order n and minimum

degree δ, where δ ≥ 3 and n ≥ 6δ. Then

ρ ≤ ρ(G(Xn,δ)).

Corollary 2.26 ( [21]). If G is a connected triangle-free graph of order n and minimum

degree δ ≥ 3, then

ρ ≤ 2

⌈
n− 3δ

2δ

⌉
+ 2− δ

n− 1
,

and this bound is sharp.

Theorem 2.27 ( [21]). If G is a connected, triangle-free graph of order n and minimum

degree δ ≥ 3, then

π ≤ n

2δ
+ 2− 5

2δ
− 21δ2 − 8δ − 3

2δ(n− 1)
.

Theorem 2.28 ( [21]). If G is a connected, C4-free graph of order n and minimum degree

δ ≥ 3, then

ρ ≤ 5

2

⌊
n

δ2 − 2
⌊
δ
2

⌋
+ 1

⌋
+ 2.
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Theorem 2.29 ( [21]). If G is a connected C4-free graph of order n and minimum degree

δ ≥ 3, then

π ≤ 5

4

⌊
n

δ2 − 2
⌊
δ
2

⌋
+ 1

⌋
+

147

32
.

The next theorem shows that for many values of δ the bound on remoteness is close

to being best possible in the sense that the ratio of the coefficients of n in the bound and

approach 1 as δ gets large.

Theorem 2.30 ( [21]). Let δ ≥ 3 be an integer such that δ = q− 1 for some prime power q.

Then there exists an infinite number of C4-free graphs G of minimum degree at least δ with

ρ =
5

2

n

δ2 + 3δ + 2
+O(1),

π =
5

4

n

δ2 + 3δ + 2
+O(1),

where n is the order of G.

Dankelmann and Mafunda [22] established results about the difference between π and

distance parameters in triangle-free and C4-free graphs.

Theorem 2.31 ( [22]). If G is a connected, triangle-free graph of order n ≥ 7 and minimum

degree δ ≥ 3, then

ρ− π ≤ n+ 1

2δ
+ 4.

Theorem 2.32 ( [22]). If G is a connected, C4-free graph of order n ≥ 6 and minimum

degree δ ≥ 3, then

ρ− π ≤ 5(n+ 1)

4
(
δ2 − 2

⌊
δ
2

⌋
+ 1

) +
101

20
.

Theorem 2.33 ( [23]). Let G be a connected graph of order n, minimum degree δ and

maximum degree △. Then there exists a spanning tree T of G with

ρ(T ) ≤ 3(n2 −△2)

2(n− 1)(δ + 1)
+ 7.

Since ρ(G) ≤ ρ(T ) for every spanning tree of a connected graph G, the following result

follows from Theorem 2.33.

Corollary 2.34 ( [23]). If G is a connected graph of order n, minimum degree δ and maxi-

mum degree △, then

ρ ≤ 3(n2 −△2)

2(n− 1)(δ + 1)
+ 7.
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Theorem 2.35 ( [23]). Let G be a connected graph of order n, minimum degree δ and

maximum degree △.

If △ >
n

2
− 1, then

π ≤ 3(n−△)2

2(n− 1)(δ + 1)
+

13

2
.

If △ ≤ n

2
− 1, then

π ≤ 3(n2 − 2△2)

4(n− 1)(δ + 1)
+

35

4
.

A thesis about the proximity and the remoteness of graphs written by Mallu in 2022 can

be seen [40], jointly supervised by Dankelmann and Mafunda.

How about ρ(G) = π(G), where G is a simple graphs? By Computer search the authors

in [1] found two non-regular graphs with ρ(G) = π(G). Figure 7 shows two non-regular

graphs of order 9 (left) and order 11 (right) with ρ(G) = π(G).

Figure 7: A non-regular graph G of order 9 and 11 with ρ(G) = π(G).

The next result gives the infinite family of non-regular graphs with ρ(G) = π(G).

Theorem 2.36 ( [1]). There is an infinite number of non-regular graphs G with ρ(G) = π(G).

Although, survey is primarily related the simple graphs, but for the sake of completeness

and reviewer suggestions, we mention some results for digraphs. Let D = (V (D), A(D))

be a strongly connected (often shortened to “strong”) digraph with n ≥ 2 vertices (D

is strong if for every pair u, v of vertices in D there are a path from u to v and a path

from v to u). We call n = |V (D)| the order of D and m = |A(D)| the size of D. The

distance d(u, v) from vertex u to vertex v in D is the length of a shortest dipath from

u to v. The distance of a vertex u ∈ V (D) is defined as σ(u) =
∑

v∈V (D)

d(u, v), and the

average distance of a vertex as σ(u) =
σ(u)

n− 1
. The proximity π(D) and the remoteness

ρ(D) are min σ(u)|u ∈ V (D) and max σ(u)|u ∈ V (D), respectively. If v is a vertex in a

digraph D, then the out-neighborhood of v is N+(v) = {u ∈ V (D)|vu ∈ A(D)} and in-

neighborhood of v is N−(v) = {u ∈ V (D)|uv ∈ A(D)}, and the out-degree d+D(v) and
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in-degree d−D(v) of v are |N+(v)| and |N−(v)|, respectively. An orientation of a graph G

is a digraph obtained from G by replacing each edge by exactly one of the two possible

arcs. We call an orientation of a complete graph and complete k-partite graph a tournament

and a k-partite tournament,respectively. A 2-partite tournament is also called a bipartite

tournament.

The very first result establishes the sharp bounds for π and ρ of D along with the

characterization of graphs attaining them.

Theorem 2.37 ( [1]). Let D be a strong digraph on n ≥ 3 vertices. Then

1 ≤ π(D) ≤ n

2
.

The lower bound holds with equality if and only if D has a vertex of out-degree n − 1. The

upper bound holds with equality if and only if D is a dicycle. And,

1 ≤ ρ(D) ≤ n

2
.

The lower bound holds with equality if and only if D is a complete digraph. The upper bound

holds with equality if and only if D is strong and contains a Hamiltonian dipath v1v2 . . . vn
such that {vivj|2 ≤ i+ 1 < j ≤ n} ⊆ A(D).

From the above theorem, we have the following result.

Theorem 2.38 ( [1]). Let D be a strong digraph. Then

ρ(D)− π(D) ≤ n

2
− 1.

The upper bound holds with equality if and only if D contains a Hamiltonian dipath v1v2 . . . vn
such that {vivj|2 ≤ i + 1 < j ≤ n} ⊆ A(D) and at least one of the vertices vn−1, vn has

out-degree n− 1.

A natural question arises for digraphs: When is ρ(D) = π(D)? The answer is positive for

strong tournaments. Now, we have bounds for π and ρ of tournaments, which is an analog

of Theorem 2.37 and it show that for a strong tournament T , ρ(T ) = π(T ) if and only if T

is regular.

Theorem 2.39 ( [1]). Let D be a strong tournament on n vertices. Then

n

n− 1
≤ π(D) ≤


3

2
if n is odd

3

2
− 1

2(n− 1)
if n is even.

The lower bound holds with equality if and only if ∆+(D) = n − 2. The upper bound holds

with equality if and only if D is a regular or almost regular tournament. And,

n

2
≥ ρ(D) ≥


3

2
if n is odd

3

2
+

1

2(n− 1)
if n is even.
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The lower bound holds with equality if and only if D is a regular or almost regular tournament.

The upper bound holds with equality if and only if D is isomorphic to the tournament Tn

with V (Tn) = {v1, . . . , vn} and A(Tn) = {vivi+1|i ∈ [n− 1]} ∪ {vjvi|2 ≤ i+ 1 < j ≤ n}.

Theorem 2.39 allows us to easily obtain a characterization of strong tournaments T with

ρ(T ) = π(T ) in the following result.

Theorem 2.40 ( [1]). For any strong tournament T , we have ρ(T ) = π(T ) if and only if T

is a strong regular tournament.

Based on the above results, one may conjecture that every digraph D with ρ(D) = π(D)

is regular. However, this is not true as such counterexamples can be found already among

bipartite tournaments (see [1]). We need the following definition:

A vertex x of a digraph D is called bad if the out-neighborhood of x is a proper subset

of the out-neighborhood of another vertex of D. A vertex z is good if it is not bad. A

bipartite tournament is called bad if it has a bad vertex, otherwise it is called good. For a

vertex v, we denote by M(v) the set of vertices with the same out-neighborhood as v, that

is, M(v) = {u|N+(u) = N+(v)} and we denote |M(v)| by µ(u). Now, we have the following

results from [1].

Lemma 2.41 ( [1]). if T = T [A,B] be a strong bipartite tournament with partite sets A and

B of sizes n and m, respectively, then π(T ) ̸= ρ(T ).

Lemma 2.42 ( [1]). Let T = T [A,B] be good, ρ(T ) = π(T ) and u, v ∈ V (T ) such that

u ̸= v. If both u and v are in A or in B, then

µ(u)− d+(u) = µ(v)− d+(v).

If v ∈ A and u ∈ B then

2(µ(v)− d+(v)) + |B| = 2(µ(u)− d+(u)) + |A|.

The above two lemmas imply the following result.

Corollary 2.43 ( [1]). For a strong bipartite tournament T , we have ρ(T ) = π(T ) if and

only if T is good and there is a constant c such that for every v ∈ A and u ∈ B,

2(µ(v)− d+(v)) +m = 2(µ(u)− d+(u)) + n = c.

In particular, for a strong bipartite tournament T with n = m, we have ρ(T ) = π(T ) if and

only if T is good and d+(u)− µ(u) is the same for every vertex u.

Corollary 2.44 ( [1]). Let T be a good bipartite tournament and c a constant such that

µ(x) = c for every x ∈ V (T ). Then ρ(T ) = π(T ) if and only if d+(v) =
m

2
and d+(u) =

n

2
for every v ∈ A and u ∈ B.

The following result shows, in particular, that there are non-regular digraphs D for which

ρ(D) = π(D).

Theorem 2.45 ( [1]). For both |A| = |B| and |A| ̸= |B|, there is an infinite number of

bipartite tournaments T with ρ(T ) = π(T ).
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3 Proximity and Remoteness Compared to other Met-

ric Invariants

Aouchiche and Hansen [5] in 2011 compared proximity and remoteness with the metric

invariants of a graph, most notably like diameter, radius average eccentricity and other

invariants.

Proposition 3.1 ( [5]). Let G be a connected graph on n ≥ 3 vertices with diameter D

and proximity π. Then

D − π ≤


3n− 5

4
if n is odd,

3n− 5

4
− 1

4n− 4
if n is even,

with equality if and only if G is a path Pn.

Proposition 3.2 ( [5]). Let G be a connected graph on n ≥ 3 vertices with remoteness ρ

and diameter D. Then

D − ρ ≤ n− 2

2
,

with equality if and only if G is the path Pn.

Proposition 3.3 ( [5]). Let G be a connected graph on n ≥ 3 vertices with radius r and

proximity π. Then

r − π ≤


n− 1

4
− 1

4(n− 1)
if n is even,

n− 1

4
− 1

n− 1
if n is odd.

The bound is best possible as shown by the graph composed of a cycle with an additional edge

forming a triangle or two additional crossed edges on four successive vertices of the cycle if

n is odd, and by the path Pn or the cycle Cn if n is even.

Proposition 3.4 ( [5]). Let G be a connected graph on n ≥ 3 vertices with remoteness ρ

and radius r. Then

ρ− r ≤



n+ 1

8
+

1

8(n− 1)
if n = 0 (mod 4),

n+ 1

8
if n = 1 (mod 4),

n+ 1

8
− 3

8(n− 1)
if n = 2 (mod 4),

n+ 1

8
if n = 3 (mod 4).
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The bound is attained if and only if G is a pseudo-kite PKIn,n−2r∗+1 where

r∗ =



n

4
if n = 0 (mod 4),

n− 1

4
if n = 1 (mod 4),

n− 2

4
or

n+ 2

4
if n = 2 (mod 4),

n+ 1

4
if n = 3 (mod 4).

Proposition 3.5 ( [5]). Let G be a connected graph on n ≥ 3 vertices with remoteness ρ

and average eccentricity ecc. Then

ρ ≤ ecc

with equality in both cases if and only if G is a complete graph Kn.

Ma, Wu and Zhang [39] gave the following lemmas and proved a conjecture that consists

of an upper bound on ecc− π together with the corresponding extremal graphs.

A vertex v ∈ V is called a centroidal vertex if π(v) = π(G), and the set of all centroidal

vertices is the centroid (sometimes known as median or barycenter) of G.

For an edge e ∈ E(G) and a vertex u ∈ V (G), we denote by (G− e)u the component of

G− e containing u, and let Vu(e) = V ((G− e)u) and nu(e) = |Vu(e)|. Clearly, for any edge

e = uv ∈ E(G), nu(e) + nv(e) = |V (G)|. The following lemmas are given in [39].

Lemma 3.6 ( [39]). Let G be a tree of order n. For any edge e = uv ∈ E(G),

π(u) +
1

n− 1
nu(e) = π(v) +

1

n− 1
nv(e).

Lemma 3.7 ( [39]). The following holds for a tree G of order n

(i) If x is a centroidal vertex of G, then

ecc(x) ≤
⌊n
2

⌋
,

with equality if and only if there exists a path of length
⌊n
2

⌋
in G,which joins x to a

pendent vertex of G with the property that the degree of every internal vertex of it is

equal to two in G.

(ii) If there is a path P of length
⌊n
2

⌋
in G, which joins a vertex y and a pendent vertex

of G with the property that the degree of every internal vertex of it is equal to two in

G, then y is a centroidal vertex of G.

Lemma 3.8 ( [39]). Let G be a tree of order n ≥ 3. Let v0v1 . . . vd be a longest path in G.

Set V0 = {v ∈ V (G)|d(v, v0) ≥ d(v, vd)}, Vd = {v ∈ V (G)|d(v, vd) ≥ d(v, v0)}. Without loss

of generality, let |V0| ≥ |Vd|. If G is not a path, then the following holds:
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(1) there is a pendent vertex v∗ ∈ V0 distinct from vd,

(2) ecc(G)−ecc(G′) ≥ 1

2
, where G′ is the tree obtained from G by deleting the edge incident

with v∗ and joining v∗ and v0,

(3) π(G)− π(G′) <
1

2
, where G′ is the tree as defined in (2).

Lemmas 3.6, 3.7 and 3.8 help us in establishing the following result and verifies a con-

jecture of [5].

Theorem 3.9 ( [39]). For a connected graph G on n ≥ 3 vertices,

ecc− π ≤


(3n+ 1)(n− 1)

4n
− n+ 1

4
if n is odd,

n− 1

2
− n

4(n− 1)
if n is even,

with equality if and only if G is the path Pn.

Sedlar [51] studied three AutoGraphiX conjectures involving proximity and remoteness.

She solved the conjecture by using the following graph transformation for trees. Let G be a

tree. Then she used graph transformation (see proof in [51] of lemmas stated below) which

transforms tree G to G′, where G′ is either:

1) Path Pn,

2) a tree consisting of four paths if equal length with a common end point,

3) a tree consisting of three paths of almost equal length with a common end point.

Next, the following results prove that among those graphs the difference l − π is maximum

for the last.

Lemma 3.10 ( [51]). The difference l−π is greater for a tree G on n ≥ 4 vertices consisting

of three paths of almost equal length with a common end point than for path Pn.

Lemma 3.11 ( [51]). The difference l− π is greater for the tree G on n ≥ 9 vertices, where

n = 1mod(4), consisting of three paths of almost equal length with a common end point than

for the tree G′ on n vertices consisting of four paths of equal length, where G′ is tree obtained

from G by some transformation.

Lemma 3.12 ( [51]). Let G be a tree on n ≥ 6 vertices with at least four leafs (a vertex

of degree 1 in a tree).Then there is a tree G′ on n vertices with three leafs for which the

difference l − π is greater or equal than for G.

Lemma 3.13 ( [51]). Among trees with three leafs, the difference l−π is maximal for the tree

G on n vertices consisting of three paths of almost equal length with a common end vertex.



22 Aouchiche and Rather

The main conclusion of Lemmas 3.10, 3.11, 3.12 and 3.13 can be summarized into the

following result.

Theorem 3.14 ( [51]). Among all trees on n ≥ 4 (n, ̸= 5) vertices with average distance

l and proximity π, the difference l − π is maximal for a tree G composed of three paths of

almost equal lengths with a common end vertex.

From Theorem 3.14, the following result follows and settles a conjecture involving prox-

imity and remoteness.

Theorem 3.15 ( [51]). Among all connected graphs G on n ≥ 3 vertices with average

distance l and proximity π, the difference l−π is maximum for a graph G composed of three

paths of almost equal lengths with a common end point.

Sedlar [51] also proved partial results related to another conjecture: while the conjecture

is stated for all connected graphs, the results are proved for trees only.

Lemma 3.16 ( [51]). Let G be a tree on n vertices with diameter D and let P = v0v1 . . . vD

be a diametric path in G. If there is j ≤ D

2
such that the degree of vk is at most 2 for

k ≥ j + 1, then the difference ecc− ρ is greater or equal for the path Pn than for G.

Theorem 3.17 ( [51]). Among all trees on n ≥ 3 vertices, the difference ecc−ρ is maximum

for the path Pn.

The following sequence of results are given by Sedlar [51], which relates remoteness ρ

with radius r.

Lemma 3.18 ( [51]). Let G be a tree on n vertices. There is a caterpillar tree G′ on n

vertices for which the difference ρ− r is less or equal than for G.

Lemma 3.19 ( [51]). Let G ̸= Pn be a caterpillar tree on n vertices with diameter D,remoteness

ρ and only one centroidal vertex. Let P = v0v1 . . . vD be the diametric path in G such that

vj ∈ P is the only centroidal vertex in G and every of the vertices vj+1, . . . , vD is of the

degree at most 2. Then there is a caterpillar tree G′ on n vertices of the diameter D+1 and

the remoteness at most ρ+
1

2
.

Lemma 3.20 ( [51]). Let G ̸= Pn be a caterpillar tree on n vertices with diameter D,

remoteness and exactly two centroidal vertices. Let P = v0v1 . . . vD be a diametric path in

G such that vj, vj+1 ∈ P are centroidal vertices and every of the vertices vj+1, . . . , vD is of

degree at most 2. Then there is a caterpillar tree G′ on n vertices of the diameter D+1 and

the remoteness at most ρ+
1

2
.

Lemma 3.21 ( [51]). Let G ̸= Pn be a caterpillar tree on n vertices with diameter D,

remoteness ρ and exactly two centroidal vertices of different degrees. Let P = v0v1 . . . vD be
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a diametric path in G such that vj, vj+1 ∈ P are centroidal vertices and every of the vertices

v0, . . . , vj−1, vj+2, . . . , vD is of degree at most 2. Then there is a caterpillar tree G′ on n

vertices of the diameter D + 1 and the remoteness at most ρ+
1

2
.

Lemma 3.22 ( [51]). Let G ̸= Pn be a caterpillar tree on n vertices with diameter D,

remoteness ρ and exactly two centroidal vertices of equal degrees. Let P = v0v1 . . . vD be a

diametric path in G such that vj, vj+1 ∈ P are centroidal vertices and every of the vertices

v0, . . . , vj−1, vj+2, . . . , vD is of degree at most 2. Then the difference ρ− r is less or equal for

path Pn than for G.

Lemma 3.23 ( [51]). Let G be a caterpillar tree on n vertices. If n is odd, then the difference

ρ− r is less or equal for path Pn then for G. If n is even, then the difference ρ− r is less or

equal for path Pn − 1 with a leaf appended to a central vertex than for G.

Lemmas 3.18, 3.19, 3.20, 3.21, 3.22 and 3.23 can be summarized in the following result,

which gives minimal trees for ρ− r.

Theorem 3.24 ( [51]). Let G be a tree on n vertices. If n is odd, then the difference ρ− r

is less or equal for path Pn then for G. If n is even, then the difference ρ− r is less or equal

for path Pn−1 with a leaf appended to a central vertex than for G.

Let G be a connected graph. A vertex u ∈ V (G) is called a peripheral vertex if σ(u) =

ρ(G). For a vertex u ∈ V (G), let Vi(u) = {v ∈ V (G)|d(u, v) = i} and ni(u) = |Vi(u)| for
each i ∈ {1, 2, . . . , d},where d = eG(u). In what follows, Vi(u) is simply denoted by Vi for a

peripheral vertex u of G. Wu and Zhang [57] proved some lemmas and two theorems, first

conjectured in [5].

Lemma 3.25 ( [57]). Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex

of G and let d = eG(u). Let G
′ be the graph obtained from G by joining each pair of all non

adjacent vertices x, y of G, where x, y ∈ Vj ∪ Vj+1 for some j ∈ {1, 2, . . . , d− 1}. We have

ρ(G′)− l(G′) ≥ ρ(G)− l(G),

with equality if and only if G′ = G.

Lemma 3.26 ( [57]). Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex

of G and eG(v) = d. Assume that G[Vj∪Vj+1] is a clique for each j ∈ {0, 1, . . . , d−1}. Let G′

be the graph with V (G′) = V (G) and E(G′) = E(G) ∪ [xy : x ∈ Vd, y ∈ Vd. If d >

⌊
n+ 1

2

⌋
,

then

ρ(G′)− l(G′) ≤ ρ(G)− l(G),

with equality if and only if n is even and d =
n

2
+ 11.
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Lemma 3.27 ( [57]). Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex

of G and eG(v) = d. Assume that G[Vj ∪ Vj+1] is a clique for each j ∈ {0, 1, . . . , d− 1}. Let
i be the smallest integer in {1, 2, . . . , d} such that ni(u) ≥ 2. Let Vi−1(u) = {ui−1} and v a

vertex in Vi(u). Denote by G′ the graph with V (G′) = V (G) and E(G′) = E(G) \ ({ui−1y :

y ∈ Vi \ {v}} ∪ A), where A = {vx : x ∈ Vi+1}, if i ≤ d − 1, and A = ∅ otherwise. If

d <

⌊
n+ 1

2

⌋
, then

ρ(G′)− l(G′) > ρ(G)− l(G).

Lemma 3.28 ( [57]). Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex

of G and eG(v) = d. Assume that G[Vj ∪ Vj+1] is a clique for each j ∈ {0, 1, . . . , d− 1} and

that ni(u) ≥ 2 for some i ∈ {1, 2, . . . , d− 1}. Further, assume that i is the minimum subject

to the above condition. Let v be a vertex in Vi(u) and Vi−1 = {ui−1}. Let G′ be the graph

with V (G′) = V (G) and E(G′) = E(G)∪A\{vui−1}, where A = {vy : y ∈ Vi+2} if i ≤ d−2,

and A = ∅ otherwise. If d =

⌊
n+ 1

2

⌋
, then

ρ(G′)− l(G′) > ρ(G)− l(G).

A Soltés or path-complete graph [54] is the graph obtained from a clique and a path by

adding at least one edge between an endpoint of the path and the clique. The Soltés graphs

are known to maximize the average distance l when the number of vertices and of edges are

fixed [54].

Lemmas 3.25, 3.26, 3.27 and 3.28 lead the following result.

Theorem 3.29 ( [57]). Among all connected graphs G on n ≥ 3 vertices with average

distance l and remoteness ρ, the Soltés graphs with diameter ⌊(n + 1)/2⌋ maximize the

difference ρ− l.

Theorem 3.29 can be equivalently stated as:

Theorem 3.30 ( [57]). Among all connected graphs G on n ≥ 3 vertices with average

distance l and remoteness ρ, the maximum value of ρ − l is attained by the Soltés graphs

with diameter D, where D =
n+ 1

2
, if n is odd

D ∈ {n
2
,
n

2
+ 1} if n is even.

Wu and Zhang [57] proved the following lemma, which helped them in proving Theorem

3.32, earlier conjectured in [5].

Corollary 3.31 ( [57]). Let G be connected graph with order n ≥ 5. If n is odd and

r =
n− 1

2
. Then ρ ≥ n+ 1

4
, with equality if and only if G is the cycle Cn or the graph

composed of the cycle Cn together with two crossed edges on four successive vertices of the

cycle.
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Theorem 3.32 ( [57]). Let G be a connected graph on n ≥ 3 vertices with remoteness ρ and

radius r. Then

ρ− r ≥


3− n

4
if n is odd

n2

4n− 4
− n

2
if n is even.

The inequality is best possible as shown by the cycle Cn if n is even and by the graph composed

of the cycle Cn together with two crossed edges on four successive vertices of the cycle.

Figure 8: Graphs C1
n, C

2
n and C1

n (n is odd)

Hua, Chen and Das [32] obtained the following result, earlier conjectured in [5].

Theorem 3.33 ( [32]). Let G be a connected graph on n ≥ 3 vertices with remoteness ρ and

radius r. If n is odd, then ρ−r ≥ 3− n

4
with equality if and only if G ∼= Cn or Ci

n, i = 1, 2, 3

(see Fig. 8), and if n is even, then ρ− r ≥ 2n− n2

4(n− 1)
with equality if and only if G ∼= Cn.

Next, we have result given upper bound for ρ − π in terms of order n and minimum

degree δ.

Theorem 3.34 ( [19]). Let G be a connected graph of order n and minimum degree δ, where

δ ≥ 2. Then

ρ− π ≤ 3

4(δ + 1)
+ 3.

Dankelmann [20] obtained some new bounds on proximity and remoteness.

Theorem 3.35 ( [20]). Let G be a connected graph of order n and minimum degree δ, where

n ≥ 20 and δ ≥ 2. Then

D − π ≤ 9n

4(δ + 1)
+

3δ

4
.

Next result gives sharp bound for remoteness in terms of diameter and order od graph

Proposition 3.36 ( [20]). Let G be a connected graph of order n and diameter D. Then

ρ ≥ nd

2(n− 1)
,

and this bound is sharp for all n and D with n ≥ D + 1 ≥ 33 for which nD is even.
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Corollary 3.37 ( [20]). Let G be a connected graph of diameter D. Then

ρ >
D

2
,

and the coefficient
1

2
is best possible.

The next results gives the upper bound for r− π in terms of minimum degree and order

n of G.

Theorem 3.38 ( [20]). Let G be a connected graph of order n and minimum degree δ, where

δ <
n

4
− 1. Then

r − π ≤ 3n

4(δ + 1)
+

8δ + 5

4(δ + 1)
,

and this bound is best possible, apart from an additive constant.

An immediate consequence of the above result is:

Corollary 3.39 ( [20]). Let G be a connected graph. Then

ρ >
r

2
.

A lollipop Ln,g is the graph obtained from a cycle Cg and a path Pn−g by adding an edge

between an endpoint of Pn−g and a vertex of the cycle Cg. The lollipop L11,7 is illustrated

in Figure 9. For a lollipop Ln,g, we have

ρ(Ln,g) =


n

2
− g(g − 2)

4(n− 1)
if g is even

n

2
− g(g − 2) + 1

4(n− 1)
if g is odd.

A turnip Tn,g, with n ≥ g ≥ 3, is the graph obtained from a cycle Cg by attaching n − p

pending edges to one vertex from the cycle. The turnip T10,5 is illustrated in Figure 10. If

g = n, the turnip Tn,g = Tn,n is the cycle Cn. For a turnip Tn,g, we have

π(Tn,g) =


g2 − 4g + 4n− 1

4(n− 1)
if g is odd

g2 − 4g + 4n

4(n− 1)
if g is even.

Figure 9: The lollipop L11,7. Figure 10: The turnip T10,5.

We have results from Aouchiche and Hensen [11] which relates π with the girth of graphs.
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Lemma 3.40 ( [11]). Let G be a connected graph on n ≥ 3 vertices with girth g.

(i) If g = 3, then π ≥ 1 with equality if and only if G contains a dominating vertex.

(ii) If g = 4, then π ≥ n/(n− 1) with equality if and only if G contains the turnip Tn,4 as a

spanning subgraph and is a spanning subgraph of the complete bipartite graph Kn−2,2.

(iii) If g ≥ 5, then π ≥ π(Tn,g) with equality if and only if G is the turnip Tn,g.

Theorem 3.41 ( [11]). For any connected graph G on n ≥ 3 vertices with a finite girth g

and proximity π, we have

if n is odd,
1− 3n

4

if n is even,
4n− 3n2

4n− 4

 ≤ π − g ≤


n− 11

4
− 1

n− 1
if n is odd,

n− 11

4
− 3

4(n− 1)
if n is even;

(2)

4 ≤ π + g ≤


5n+ 1

4
if n is odd,

5n2 − 4n

4(n− 1)
if n is even;

(3)

1

2 ⌊
√
n⌋+ 1

+
⌊
√
n⌋ (⌊

√
n⌋ − 1)

(2 ⌊
√
n⌋+ 1)(n− 1)

≤ π

g
≤


n2 − 4

12n− 12
if n is even,

n+ 1

12
− 1

3n− 3
if n is odd;

(4)

3 ≤ π · g ≤


n2 + n

4
if n is odd,

n3

4(n− 1)
if n is even;

(5)

The lower bound in (2) and the upper bounds in (3) and (5) are reached if and only if G is the

cycle Cn. The upper bounds in (2) and (4) are reached if and only if G is the lollipop Ln,3.

The lower bounds in (3) and (5) are reached if and only if G contains a dominating vertex.

The lower bound in (4) is reached if and only if G is the turnip Tn,s, where s = 2
⌊√

n
⌋
+ 1

when
√
n is not an integer, and if and only if G is any one of the turnips Tn,2

√
n−1, Tn,2

√
n

or Tn,2
√
n+1 when

√
n is an integer.

Lemma 3.42 ( [11]). Let G be a connected graph on n ≥ 4 vertices with girth g ≤ n− 1 and

remoteness ρ. Then

ρ ≤ ρ(Ln,g)

with equality if and only if G is the lollipop Ln,g.

Theorem 3.43 ( [11]). For any connected graph G on n ≥ 3 vertices with remoteness ρ and

girth g, we have

if n is even,
4n− 3n2

4n− 4

if n is odd,
1− 3n

4

 ≤ ρ− g ≤ (n+ 1)(n− 2)

2n− 2
− 3; (6)
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4 ≤ ρ+ g ≤


5n2 − 4n

4n− 4
if n is even,

5n+ 1

4
if n is odd;

(7)

ρ

g
≤ (n+ 1)(n− 2)

6n− 6
; (8)

3 ≤ ρ · g ≤ ρ(Ln,g∗) · g∗ (9)

where g∗ is the girth for which ρ(Ln,gi) · gi, i = 1, . . . , 4, is maximum with

g1 =

⌊
2 +

√
6n2 − 6n+ 4

3

⌋
, g2 =

⌈
2 +

√
6n2 − 6n+ 4

3

⌉
, g3 =

⌊
2 +

√
6n2 − 6n+ 7

3

⌋

and g4 =

⌈
2 +

√
6n2 − 6n+ 7

3

⌉
.

The lower bound in (6) and the upper bound in (7) are reached if and only if G is the cycle

Cn. The upper bounds in (6) and (8) are reached if and only if G is the lollipop Ln,3. The

lower bounds in (7) and (9) are reached if and only if G is the complete graph Kn. The upper

bound in (9) is reached if and only if G is the lollipop Ln,g∗.

The lower bound on the ratio of ρ and g was first conjectured using AGX [2], and was

later proved by Hua and Das in [31].

Theorem 3.44 ( [31]). For any connected graph G on n ≥ 3 vertices with remoteness ρ and

girth g,

ρ

g
≥


n

4n− 4
if n is even,

n+ 1

4n
if n is odd.

with equality if and only if G is a cycle Cn.

Theorem 3.45 ( [31]). Let G be a connected graph on n ≥ 2 vertices with proximity π and

average distance l. Then
π

l
≥ n

2(n− 1)
,

with equality if and only if G is isomorphic to the star Sn.

The following is an immediate consequence of Theorem 3.45.

Corollary 3.46 ( [31]). Let G be a connected graph on n ≥ 2 vertices with proximity π,

average degree d and average distance l. Then

π.d ≥ l,

with equality if and only if G is isomorphic to the star Sn.

Dankelmann and Mafunda [22] gave results relating π with diameter and radius of

triangle-free and C4-free graphs.
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Theorem 3.47 ( [22]). If G is a connected, triangle-free graph of order n ≥ 8, minimum

degree δ ≥ 3 and diameter D, then

π ≥ δ(D − 4)(D − 1)

8(n− 1)
.

Corollary 3.48 ( [22]). If G is a connected, triangle-free graph of order n ≥ 8 and minimum

degree δ ≥ 3, then

D − π ≤ 3(n− 1)

2δ
+

5

2
.

This bound is sharp apart from an additive constant.

Theorem 3.49 ( [22]). If G is a connected, triangle-free graph of order n ≥ 6, minimum

degree δ ≥ 3 and radius r ≥ 1, then

π ≥ δ

2(n− 1)

(
r2 − 7r +

47

8

)
.

Corollary 3.50 ( [22]). If G is a connected, triangle-free graph of order n ≥ 6 and minimum

degree δ ≥ 3, then

r − π ≤ n− 1

2δ
+

11

2
.

This bound is sharp apart from an additive constant.

Theorem 3.51 ( [22]). If G is a connected, C4-free graph of order n ≥ 16 and minimum

degree δ ≥ 3, then

π ≥
δ2 − 2

⌊
δ
2

⌋
+ 1

5(n− 1)

(
r2 − 8r +

127

8

)
.

Corollary 3.52 ( [22]). If G is a connected, C4-free graph of order n ≥ 16 and minimum

degree δ ≥ 3, then

r − π ≤ 5(n− 1)

4
(
δ2 − 2

⌊
δ
2

⌋
+ 1

) + 4.

Czabarka et al. [18] gave the upper bounds on π in triangulations and quadrangulations.

The plane graph G is a triangulation (respectively quadrangulation) if every face is a

triangle (respectively 4-cycle).

Proposition 3.53 ( [18]). (a) Let G be a 5-connected triangulation of order n. Then

ρ ≤ n+ 4

10
+ ϵn,

where ϵn = − 3

5(n− 1)
if n ≡ 0 (mod 5), ϵn = − 1

n− 1
if n ≡ 1 (mod 5), ϵn =

2

5(n− 1)

if n ≡ 2 (mod 5), and ϵn = − 2

5(n− 1)
if n ≡ 3, 4 (mod 5).
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(b) If G is a 3-connected quadrangulation of order n, then

ρ ≤ n+ 2

6
+ ϵn,

where ϵn = − 5

3(n− 1)
if n ≡ 0 (mod 3), ϵn = − 1

n− 1
if n ≡ 1 (mod 3), and ϵn =

1

3(n− 1)
if n ≡ 2(mod 3).

4 Proximity and Remoteness Compared to other In-

variants

Aouchiche and Hasen [5] related remoteness with the independence number α and matching

number µ of G and presented the following results.

Proposition 4.1 ( [5]). Let G be a connected graph on n ≥ 8 vertices with remoteness ρ

and independence number α. Then

ρ− α ≥ 3− n− 1

n− 1

and

ρ− α ≤



n− 3

8
− 3

8(n− 1)
if n = 0 (mod 4),

n− 3

8
if n = 1 (mod 2),

n− 3

8
+

1

8(n− 1)
if n = 2 (mod 4).

The lower bound is attained if and only if G is the star Sn. The bound is best possible as

shown by the kites KIn,n0 where n0 = (n+ n (mod 4))/2.

Proposition 4.2 ( [5]). Let G be a connected graph on n ≥ 3 with remoteness ρ and

matching number µ. Then

ρ− µ ≤



n+ 1

8
+

1

8(n− 1)
if n = 0 (mod 4),

n+ 1

8
if n = 1 (mod 4),

n+ 1

8
− 3

8(n− 1)
if n = 2 (mod 4),

n+ 1

8
if n = 3 (mod 4),

with equality if and only if G is the comet COn,n−D∗+1 where D∗ = 2

⌊
n+ 2

4

⌋
.
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The (vertex) connectivity ν of a connected graph G is the minimum number of vertices

whose removal disconnects G or reduces it to a single vertex. The algebraic connectivity a

of a graph G is the second smallest eigenvalue of its Laplacian matrix L = Diag−A, where

Diag is the diagonal square matrix indexed by the vertices of G whose diagonal entries are

the degrees in G, and A is the adjacency matrix of G.

Sedlar et al. [50] related vertex connectivity ν, algebraic connectivity a and remoteness

ρ in the following result.

Theorem 4.3 ( [50]). Let G be a connected graph on n ≥ 2 vertices with vertex connectivity

ν, algebraic connectivity a and remoteness ρ. Then

ν · ρ ≤ n− 1

with equality if and only if G is the complete graph Kn; and

a · ρ ≤ n

with equality if and only if G is the complete graph Kn. Moreover, if G is not complete, then

a · ρ ≤ n− 1− 1

n− 1

with equality if and only if G ∼= Kn −M , where M is any non empty set of disjoint edges.

The following sequence of results of Hua and Das [31] presented results for ρ and π in

terms of clique number, average degree and average distance of G.

Theorem 4.4 ( [31]). Let G be a connected graph on n ≥ 3 vertices with remoteness ρ and

maximum degree △. If △ ≥
⌈n
4

⌉
+ 1, then

ρ+△ ≥


n+ 9

4
if n is odd,

2 +
n2

4n− 4
if n is even,

with equality if and only if G ∼= C3 or G ∼= C4.

Theorem 4.5 ( [31]). Let G be a connected graph on n vertices, m edges with proximity π

and average degree d. If m ≤ 2(n− 1)2

n
, then

π.d ≤ n− 1.

Theorem 4.6 ( [31]). Let G be a connected graph on n ≥ 3 vertices with clique number ω

and remoteness ρ. Then

ρ ≤ n2 − ω2 − n+ 3ω − 2

2(n− 1)
,

with equality if and only if G ∼= Kin,ω.
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Theorem 4.7 ( [31]). Let G be a connected graph on n ≥ 3 vertices with clique number ω,

remoteness ρ and proximity π. Then

ρ+ π ≤


3n2 − 2ω2 − 2n+ 6ω − 5

4(n− 1)
if n is odd,

3n2 − 2ω2 − 2n+ 6ω − 4

4(n− 1)
if n is odd,

with equality if and only if G ∼= Pn.

The next result gives an upper bound on ρ− π in terms of n and ω.

Theorem 4.8 ( [31]). Let G be a connected graph on n ≥ 3 vertices with clique number ω,

remoteness ρ and proximity π. Then

ρ− π ≤ (n− ω)(n+ ω − 3)

2(n− 1)
,

with equality if and only if G ∼= Kin,n−1.

Theorem 4.9 ( [31]). Let G be a connected bipartite graph with each partite set of cardinality

n ≥ 2. If the average distance

l ≤ 3

2
+

n− 2

2n(2n− 1)
,

then G is Hamiltonion.

Corollary 4.10 ( [31]). Let G be a connected bipartite graph with each partite set of cardi-

nality n ≥ 2. If

ρ ≤ 3

2
+

n− 2

2n(2n− 1)
,

then G is Hamiltonion.

The distance eigenvalues of a connected graph, denoted by ∂1, ∂2, . . . , ∂n, are those of its

distance matrix, and are indexed such that ∂1 ≥ ∂2 ≥ . . . ≥ ∂n. For a detailed survey on

distance spectra of graphs see [9]. Next, we have results relating proximity π and remoteness

ρ with the distance eigenvalues of a connected graph G.

Theorem 4.11 ( [10]). Let G be a graph on n ≥ 4 vertices with largest distance eigenvalue

∂1, proximity π and remoteness ρ. Then

π ≤ l ≤ ∂1
n− 1

≤ ρ

with equalities if and only if G is a transmission regular graph.

Corollary 4.12 ( [10]). Let G be a graph on n ≥ 2 vertices with largest distance eigenvalue

∂1 and proximity π. Then

∂1 − π ≥ n− 2

with equalities if and only if G is the complete graph Kn.
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Corollary 4.13 ( [10]). Let G be a graph on n ≥ 4 vertices with second largest distance

eigenvalue ∂2 and remoteness ρ. Then

ρ+ ∂2 ≥ 0

with equality if and only if G is the complete graph Kn.

The bound in the above corollary is best possible among the bounds of the form ρ+∂k ≥ 0,

with a fixed integer k, over the class of all connected graphs. Indeed, if we consider the

complete bipartite graphs K⌊n/2⌋,⌈n/2⌉, on n ≥ 3, by direct calculation, we get

ρ(K⌊n/2⌋,⌈n/2⌉) + ∂3(K⌊n/2⌋,⌈n/2⌉) =


−1

2
if n is odd,

−1

2
− 1

2(n− 1)
if n is even,

which is negative for n ≥ 3.

Proposition 4.14 ( [10]). Let T be a tree on n ≥ 4 vertices with remoteness ρ, diameter D

and distance spectrum ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. Then

ρ+ ∂⌊D
2 ⌋ > 0.

Corollary 4.15 ( [10]). Let G be a graph on n ≥ 4 vertices with second largest distance

eigenvalue ∂2 and proximity π. Then

π + ∂n ≤ 0

with equality if and only if G is the complete graph Kn.

Theorem 4.16 ( [10]). Let G be a graph on n ≥ 4 vertices with largest distance eigenvalue

∂1 and remoteness ρ. Then

∂1 − ρ ≥ n− 2

with equalities if and only if G is the complete graph Kn.

Proposition 4.17 ( [10]). Let G be a graph on n ≥ 4 vertices with least distance eigenvalue

∂n and remoteness ρ. Then

∂n + ρ ≤ 0

with equality if and only if G is Kn.

Theorem 4.18 ( [10]). Let G be a graph on n ≥ 4 vertices with second largest distance

eigenvalue ∂2 and proximity π. Then

π + ∂2 ≥ 0

with equality if and only if G is the complete graph Kn.
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Proposition 4.19 ( [10]). Let T be a graph on n ≥ 4 vertices with proximity π, diameter D

and distance spectrum ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. Then

π + ∂⌊D
2 ⌋ > 0.

Lin, Das and Wu [38] proved two theorems, earlier as conjectures in [10]. Following

lemmas and results were proved in [38].

Lemma 4.20 ( [38]). Let G be a connected graph of order n with diameter D and remoteness

ρ. Then

ρ ≥ D

2
.

Theorem 4.21 ( [38]). Let G be a connected graph of order n ≥ 4 with diameter D, remote-

ness ρ and distance eigenvalues ∂1 ≥ · · · ≥ ∂n. Then we have the following statements.

(i) If D = 2, then

ρ+ ∂3 ≥
⌈
n
2

⌉
− 2

n− 1
− 1,

with equality holding if and only if G ∼= Kn1,n2 .

(ii) If D ≥ 3, then

ρ+ ∂3 >
d

2
− 1.2.

Theorem 4.22 ( [38]). Let G be a connected graph of order n ≥ 4 with diameter D, remote-

ness ρ and distance spectrum ∂1 ≥ · · · ≥ ∂n. Then

ρ+ ∂⌊ 7D
8 ⌋ > 0.

Besides the above results, more results regarding remoteness and distance eigenvalues

were given in the same article [38]. Before stating them, we need the following definition.

Denote by Hn−D(n > D) a graph of order n − D such that V (Hn−d) = V (Kn−d) and

E(Hn−D) ⊇ E(Kn−D), where Kn−D is a null graph of order n−D. Let Hn,D be a graph of

order n with diameter D obtained by joining n−D edges between one end of the path PD

with each vertex of Hn−D. Now, we are in a position to state the remaining results from [38].

Lemma 4.23 ( [38]). Let G be a connected graph of order n with diameter D and remoteness

ρ. Then

ρ ≤ D − D2 −D

2(n− 1)
,

with equality holding if and only if G ∼= Hn,D.

Theorem 4.24 ( [38]). Let G be a connected graph of order n with diameter D and remote-

ness ρ. Then

ρ+ ∂n ≤ −D2 −D

2(n− 1)
,

with equality holding if and only if G ∼= Kn.
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Lemma 4.25 ( [38]). Let G be a connected graph of order n with diameter D ≥ 3. Then

∂1 > n− 2 +D.

Theorem 4.26 ( [38]). Let G ≇ Kn be a connected graph of order n and remoteness ρ.

Then

∂1 − ρ ≥
n− 1 +

√
(n− 1)2 + 8

2
− n

n− 1
,

with equality holding if and only if G ∼= Kn − e, where e is an edge of G.

Jia and Song [35] obtained various results related to remoteness, distance eigenvalues,

distance (signless) Laplacian eigenvalues of graphs.

Theorem 4.27 ( [35]). Let G be a connected graph of order n ≥ 4 with remoteness ρ. Then

n ≤ ρ+ ∂1 ≤ ρ(Pn) + ∂1(Pn),

with the left equality holding if and only if G ∼= Kn and the right equality holding if and only

if G ∼= Pn.

Theorem 4.28 ( [35]). Let G ≇ Kn be a connected graph of order n ≥ 4 with remoteness ρ.

Then

ρ+ ∂1 ≥
n

n− 1
+

n− 1 +
√

(n− 1)2 + 8

2
,

with equality holding if and only if G ∼= Kn − e.

Theorem 4.29 ( [35]). Let G ≇ (Kn, Kn − e) be a connected graph of order n ≥ 4 with

remoteness ρ. Then

ρ+ ∂1 ≥
n

n− 1
+

n− 1 +
√

(n− 1)2 + 16

2
,

with equality holding if and only if G ∼= Kn − 2e, where 2e are two matching edges.

Theorem 4.30 ( [35]). Let G be a complete bipartite graph of order n ≥ 4 with remoteness

ρ. Then

ρ+ ∂2 ≥ n− 1

n− 1
−
√
n2 − 3n+ 3,

with equality holding if and only if G is star.

For connected graphs Jia and Song [35] proposed the following conjecture.

Conjecture 1 ( [35]). Let G ≇ (Kn, Kn − e) be a connected graph of order n ≥ 4 with

remoteness ρ. Then

ρ+ ∂2 ≥
n

n− 1
+

n− 1−
√

(n− 1)2 + 8

2
,

with equality holding if and only if G ∼= Kn − 2e, where 2e are two matching edges.
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Other results of Jia and Song [35] are stated as:

Theorem 4.31 ( [35]). Let G ≇ Kn be a connected graph of order n ≥ 4 with remoteness ρ.

Then

ρ− ∂n ≥ 2,

with equality holding if and only if G ∼= Kn.

Theorem 4.32 ( [35]). Let G ≇ Kn be a connected graph of order n ≥ 4 with remoteness ρ.

Then

ρ− ∂n ≥ 3 +
1

n− 1
,

with equality holding if and only if G ∼= Kn −me, where me denotes m matching edges.

The distance Laplacian eigenvalues of a connected graph, denoted by ∂L
1 , ∂

L
2 , . . . , ∂

L
n , are

the eigenvalues of its distance Laplacian matrix, and are indexed such that ∂L
1 ≥ ∂L

2 ≥ . . . ≥
∂L
n , where ∂L

1 is known as the distance Laplacian spectral radius of G. The following results

of [35] presents bounds for ρ, ∂L
1 and ∂Q

1 and identifies the candidate graphs attaining the

equalities.

Theorem 4.33 ( [35]). Let G be a connected graph of order n ≥ 4 with remoteness ρ. Then

n+ 1 ≤ ρ+ ∂L
1 ≤ ρ(Pn) + ∂L

1 (Pn),

with the left equality holding if and only if G ∼= Kn and the right equality holding if and only

if G ∼= Pn.

Theorem 4.34 ( [35]). Let G ≇ Kn be a connected graph of order n ≥ 4 with remoteness ρ.

Then

ρ+ ∂L
1 ≥ n+

1

n− 1
+ 3,

with equality holding if and only if G ∼= Kn −me, where me denotes m matchings.

Theorem 4.35 ( [35]). Let G be a connected graph of order n ≥ 4 with remoteness ρ. Then

∂L
1 − ρ ≥ n− 1,

with equality holding if and only if G ∼= Kn.

Theorem 4.36 ( [35]). Let G ≇ Kn be a connected graph of order n ≥ 5 with remoteness ρ.

Then

∂L
1 − ρ ≥ n+ 1− 1

n− 1
,

with equality holding if and only if G ∼= Kn −me, where 1 ≤ m ≤
⌊n
2

⌋
.

The distance signless Laplacian eigenvalues of a connected graph, denoted by ∂Q
1 , ∂

Q
2 , . . . , ∂

Q
n ,

are those of its distance signless Laplacian matrix, and are indexed such that ∂Q
1 ≥ ∂Q

2 ≥
. . . ≥ ∂Q

n .
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Theorem 4.37 ( [35]). Let G be a connected graph of order n ≥ 4 with remoteness ρ. Then

2n ≤ 2ρ+ ∂Q
1 ≤ 2ρ(Pn) + ∂Q

1 (Pn),

with the left equality holding if and only if G ∼= Kn and the right equality holding if and only

if G ∼= Pn.

Theorem 4.38 ( [35]). Let G ≇ Kn be a connected graph of order n ≥ 4 with remoteness ρ.

Then

2ρ+ ∂Q
1 ≥

3n− 2 +
√

(n− 2)2 + 16

2
+

2n

n− 1
,

with equality holding if and only if G ∼= Kn − e.

Theorem 4.39 ( [35]). Let G ≇ (Kn, Kn − e) be a connected graph of order n ≥ 4 with

remoteness ρ. Then

2ρ+ ∂Q
1 ≥

3n− 2 +
√

(n− 2)2 + 32

2
+

2n

n− 1
,

with equality holding if and only if G ∼= Kn − 2e, where 2e are two matching edges.

Theorem 4.40 ( [35]). Let G be a connected graph of order n ≥ 4 with remoteness ρ. Then

∂Q
1 − 2ρ ≥ 2n− 4,

with equality holding if and only if G ∼= Kn.

Theorem 4.41 ( [35]). Let G ≇ Kn be a connected graph of order n ≥ 4 with remoteness ρ.

Then

∂Q
1 − 2ρ ≥

3n− 2 +
√

(n− 2)2 + 16

2
− 2n

n− 1
,

with equality holding if and only if G ∼= Kn − e.

Mojallal and Hansen [41] obtained relation between proximity and the third largest dis-

tance eigenvalue ∂3(G) of a graph G, some results earlier conjectured in [10].

Lemma 4.42 ( [41]). Let T1 be the tree of order n given in Fig 11. Then

π(T1) + ∂3(T1) > 0.

Lemma 4.43 ( [41]). Let G1 be the graph of order n given in Fig 11. Then

π((G1)) + ∂3(G1) > 0.

Lemma 4.44 ( [41]). Let G be a graph of order n with the diameter D = 3 and let i1 and

i4 be two vertices of G with distance 3. If dG(i1) ≥ 2 and dG(i4) ≥ 2. Then

π + ∂3 > 0.
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Figure 11: The tree T1 and the graph G1

Lemma 4.45 ( [41]). Let G be a graph of order n with the diameter D = 3 and let i1 and

i4 be two vertices of G with distance 3. If dG(i1) = 1 or dG(i4) = 1. Then

π + ∂3 > 0.

Theorem 4.46 ( [41]). Let G be a graph with the diameter D ≥ 3, proximity π(G) and third

largest distance eigenvalue ∂3. Then

π + ∂3 > 0.

Corollary 4.47 ( [41]). Let G be a graph with the diameter D ≥ 3, and the third largest

distance eigenvalue ∂3. Then

(i) D + ∂3 > 0 (ii) ρ+ ∂3 > 0 (iii) l + ∂3 > 0 (iv) ecc+ ∂3 > 0 (v) r + ∂3 > 0.

5 Conclusion

The survey collects all the results related to proximity π and remoteness ρ and its relation

with other spectral invariants published in different journals from 2006 to January 2024.
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