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Abstract

A detailed analysis of the degrees of freedom (DOFs) (and therefore the maximum number of signals to be estimated) of the

fourth-order sum and difference co-arrays for direction of arrival (DOA) estimation in the presence of circular, strictly noncircular

and nonstrictly noncircular signals is presented. There are different ways in combining noncircularity, fourth-order cumulants and

sparse arrays to increase the DOFs of the system for DOA estimation. However, there are some confusions or a lack of clarity in

the combination. In this work, we aim to fill the gap and clarify some relevant issues by providing a detailed analysis for the fourth-

order co-array for a mixture of circular, strictly noncircular and nonstrictly noncircular signals based on a general signal model,

including consideration of the noncircular phases of signals in DOA estimation, the fourth-order co-array aperture by considering

all the fourth-order cumulants, the difference in the number of signals to be resolved for the strictly and nonstrictly noncircular

signals, and the general analysis of DOFs for a mixture of circular, strictly noncircular and nonstrictly noncircular signals based on

either uniform or sparse arrays. Furthermore, the expansion and shift scheme with one sub-array being a nested array and another

one being a stamp array is proposed, which provides the most DOFs among considered sparse array construction schemes.

Keywords: Sparse arrays, fourth-order co-array, sum co-array, difference co-array, noncircularity.

1. Introduction

For direction of arrival (DOA) estimation, one of the most

important problems is how to increase the degrees of freedom

(DOFs) of the array for underdetermined estimation. There are

three widely adopted approaches: using the noncircular prop-

erties of the signals, exploiting higher-order statistics of the

signals, in particular the fourth-order cumulants, and employ-

ing various sparse array structures. For the first approach, in

the presence of noncircular signals, both the covariance and

pseudo covariance matrices can be employed to create a much

larger virtual array [1, 2, 3, 4, 5]. The fourth-order cumu-

lant based DOA estimation algorithms provide greater DOFs

than the second-order based algorithms, and the influence of

Gaussian noise can be eliminated at the same time, although at

the cost of a very high computational complexity [6, 7, 8, 9].

For sparse arrays, a difference co-array operation is normal-

ly performed, generating a significantly larger virtual co-array

for underdetermined DOA esitmation, and representative exam-

ples include co-prime arrays (CPAs) and nested arrays (NAs)

[10, 11, 12, 13, 14].

Moreover, two or all three of the approaches can be com-

bined together to increase the DOFs further. Examples include

algorithms combining the noncircular properties and the fourth-

order cumulants [15, 16, 17, 18, 19], combining the noncircular

properties and sparse arrays [20, 21, 22, 23], or combining the
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fourth-order cumulants and sparse arrays [24, 25, 26, 27, 28].

In [29], all the three approaches are employed together.

However, there are different ways of combining noncircu-

larity, fourth-order comuments and sparse arrays together and

there are possible confusions or at least a lack of clarity in the

combination, as listed below.

1) The noncircular phases of different signals are not con-

sidered in the signal model in some existing works. Although

this may greatly increase the virtual co-array aperture, it is not

realistic in some practical scenarios to assume the noncircular

phase information is known [15, 21, 29].

2) The extended covariance matrix used in these

works normally ignore the fourth-order cumulants

cum[x∗
i
(t), x∗

j
(t), x∗u(t), x∗v(t)] (or cum[xi(t), x j(t), xu(t), xv(t)]),

and only focuses on cum[xi(t), x
∗
j
(t), xu(t), x∗v(t)] and

cum[xi(t), x
∗
j
(t), x∗u(t), x∗v(t)] (or cum[x∗

i
(t), x j(t), xu(t), xv(t)]),

where xl(t) is the received signal of the l-th sensor in an array

and the other parameters can be found in Sec. 2. Whether the

additional types of fourth-order cumulants can help extend the

virtual co-array aperture further or not has not been studied in

literature yet [6, 16, 17].

3) The ‘noncircular signal’ mentioned in these works is

mainly focused on the ‘strictly noncircular signal’, and the

possible impact of the nonstrictly noncircular signals on the

maximum number of signals to be estimated is often ignored

[5, 6, 16, 17, 18, 21].

4) There is a lack of general analysis of DOFs and the maxi-

mum number of resolvable signals by the fourth-order co-array

for a mixture of circular, strictly noncircular and nonstrictly

noncircular signals based on either uniform or sparse arrays.
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In this work, we aim to fill the gap and clarify some rele-

vant issues by providing a detailed analysis for the fourth-order

co-array for a mixture of circular, strictly noncircular and non-

strictly noncircular signals based on a general signal model.

The following is a list of important findings through our analy-

sis:

1) Considering different noncircular phases of different sig-

nals, different types of fourth-order cumulants can not be mixed

directly in the extended covariance matrix.

2) The fourth-order cumulant of the array signals

cum[x∗
i
(t), x∗

j
(t), x∗u(t), x∗v(t)] (or cum[xi(t), x j(t), xu(t), xv(t)])

does not contribute to the DOFs of the array.

3) Only the strictly noncircular signals contribute to increas-

ing the maximum number of resolvable signals by the fourth-

order co-array, while the nonstrictly noncircular signals do not,

and they play a similar role as the circular ones.

4) The rank of the extended covariance matrix is calcu-

lated as (2K − Ksnc), which determines the number of sig-

nals to be resolved by the array as (2K − Ksnc) ≤ (Ld +

Ls)/2 − 1, where K and Ksnc are the numbers of total sig-

nals and strictly noncircular signals, and Ld and Ls are the

maximum number of consecutive fourth-order cumulants of

cum[xi(t), x
∗
j
(t), xu(t), x∗v(t)] and cum[xi(t), x

∗
j
(t), x∗u(t), x∗v(t)] (or

cum[x∗
i
(t), x j(t), xu(t), xv(t)]), separately.

To demonstrate the result of the above analysis, an example

sparse array using the fourth-order cumulants for a mixture of

circular and noncircular signals is presented. The expanding

and shift (EAS) scheme is an effective sparse array construc-

tion methods using the fourth-order cumlants [25, 26], but it

is designed without considering the effect of noncircular cu-

mulants. By considering the noncircularity related fourth-order

cumulants, two new sparse arrays called EASNC-NA-STA and

EASNC-STA-NA with the first sub-array being a nested array

and the second one being a stamp array or vice versa are pro-

posed to further increase the DOFs of the array, where the stamp

array is designed for maximising the DOFs of the second-order

sum co-array [30, 31, 32, 33]. To exploit the DOFs of the array,

a MUSIC-type estimation algorithm is employed.

This paper is organized as follows. The array model, detailed

analysis of the fourth-order cumulants and the extended covari-

ance matrix are given in Sec. 2. The EASNC-NA-STA and

EASNC-STA-NA schemes based on the fourth-order co-array

are presented in Sec. 3. Simulation results are provided in Sec.

4 and conclusions are drawn in Sec. 5.

2. The Signal Model and Fourth-order Co-array Analysis

2.1. The Signal Model

Suppose there are K far-field independent non-Gaussian nar-

rowband signals sk(t)(k = 1, . . . ,K) impinging on an M-sensor

sparse linear array (SLA) with angle θk and power ηk. Among

these signals, the first Knc signals are noncircular, while the last

Kc are circular, and the first Ksnc signals among the noncircular

ones are strictly noncircular. The observed signal xm(t) at the

mth sensor is given by

xm(t) =

K
∑

k=1

Θ
pm

k
sk(t) + nm(t), (1)

where Θk = exp(− j2πdcosθk/λ), the unit spacing d is equal

to half wavelength λ/2, pm represents the position of the m-

th sensor, and nm(t) is the additive Gaussian noise of the mth

sensor, which is independent of the signals.

For a mixture of circular and noncircular signals, both the co-

variance matrix E[xi(t)xH
j
(t)] and the pseudo-covariance matrix

E[xi(t)xT
j
(t)] are non-zero valued, where E[·] is the mathemati-

cal expectation, (·)H and (·)T denote the conjugate transpose and

transpose, separately. Suppose 1 ≤ i, j, u, v ≤ M, {i, j, u, v} ∈ Z,

and then all the fourth-order cumulants of the ith, jth, uth and

vth sensor received signals can be defined as [29]

C(i,− j, u,−v) = cum[xi(t), x
∗
j(t), xu(t), x∗v(t)]

C(−i, j,−u, v) = C∗(i,− j, u,−v)

C(i,− j,−u,−v) = cum[xi(t), x
∗
j(t), x

∗
u(t), x∗v(t)]

C(−i, j, u, v) = C∗(i,− j,−u,−v)

C(i, j, u, v) = cum[xi(t), x j(t), xu(t), xv(t)]

C(−i,− j,−u,−v) = C∗(i, j, u, v),

(2)

with

cum[y1, y2, y3, y4] =E[y1y2y3y4] − E[y1y2]E[y3y4]

− E[y1y3]E[y2y4] − E[y1y4]E[y2y3],
(3)

where (·)∗ denotes the complex conjugate operation, cum[·] de-

notes the fourth-order cumulant operation, and y1, y2, y3, y4 are

the four elements in the fourth-order cumulant calculation.

Among these fourth-order cumulants, C(i,− j, u,−v) only

contains E[xi(t)xH
j
(t)], which is non-zero in all situations.

C(i,− j,−u,−v) and C(−i, j, u, v) have both E[xi(t)xH
j
(t)] and

E[xi(t)xT
j
(t)], while C(−i,− j,−u,−v) and C(i, j, u, v) is only re-

lated to E[xi(t)xT
j
(t)], so they are non-zero when noncircular

signals are present. Substituting (1) into the fourth-order cumu-

lants, we have [25]

C(i,− j, u,−v) =

K
∑

k=1

Θ
(pi−p j+pu−pv)

k
·Cd(k)

C(i,− j,−u,−v) =

K
∑

k=1

Θ
(pi−p j−pu−pv)

k
·Cs(k)

C(−i,− j,−u,−v) =

K
∑

k=1

Θ
−(pi+p j+pu+pv)

k
·Css(k),

(4)

with

Cd(k) = cum[sk(t), s∗k(t), sk(t), s∗k(t)]

Cs(k) = cum[sk(t), s∗k(t), s∗k(t), s∗k(t)]

Css(k) = cum[s∗k(t), s∗k(t), s∗k(t), s∗k(t)].

(5)

It can be seen that the fourth-order co-array cumulants

C(i,− j, u,−v), C(i,− j,−u,−v) and C(−i,− j,−u,−v) correspond

2
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Figure 1: A general complex-valued signal model.

to the virtual array lags (pi− p j)− (pv− pu), (pi− p j)− (pu+ pv)

and −(pi + p j) − (pu + pv), separately. It is clear that these lags

are the differences between two second-order lags, so the vir-

tual steering vectors generated by these fourth-order cumulants

are related to both Θ
(pi−p j)

k
and Θ

(pu+pv)

k
.

2.2. The Fourth-Order Cumulants Analysis

For a more detailed analysis of the fourth-order cumulants,

we employ a general signal model for sk(t) as [34]

sk(t) =
√
ηke jψk















√

1 + ρk

2
sIk

(t) + j

√

1 − ρk

2
sQk

(t)















, (6)

where sIk
(t) and sQk

(t) represent the in-phase and quadrature

components of a circular signal, ψk is the rotation phase, and

ρk (0 ≤ ρk ≤ 1) is the noncircularity rate. For circular signals,

ρk = 0, and it is ρk = 1 and 0 < ρk < 1 for strictly noncircular

and nonstrictly noncircular signals, separately. As shown in

Fig. 1, the signal model in (6) describes an ellipse centered at

the origin and rotated by ψk, whose axes are parameterized by

ρk.

The components sIk
(t) and sQk

(t) are assumed to be uncorre-

lated, i.e. E[sIk
(t)sQk

(t)] = E[sQk
(t)s3

Ik
(t)] = E[sIk

(t)s3
Qk

(t)] = 0.

Suppose E[s2
Ik

(t)] = E[s2
Qk

(t)] = E[s4
Ik

(t)] = E[s4
Qk

(t)] = 1. The

fourth-order cumulants of sk(t) can be obtained according to (3)

and (5). Detailed calculation is shown in the appendix.

Cd(k) = −η2
k(1 + ρ2

k)

Cs(k) = −2η2
kρke− j2ψk

Css(k) = −η2
k(1 + ρ2

k)e− j4ψk .

(7)

2.3. Extended Covariance Matrix Analysis

As i, j,u and v take M different values, there are M4 pos-

sible cumulant values for C(i,− j, u,−v), C(i,− j,−u,−v) (or

C(−i, j, u, v)) and C(−i,− j,−u,−v) (or C(i, j, u, v)), separate-

ly. Although these fourth-order cumulants are four dimension-

al values, they are usually arranged in two-dimensional ma-

trices to make the analysis simple and easier. Convert these

four-dimensional values into two-dimensional values Cd1(h, l),

Cd2(h, l), Cs1(h, l), Cs2(h, l), Css1(h, l) and Css2(h, l) as

Cd1 (M(i − 1) + j,M(u − 1) + v)) = C(i,− j, u,−v)

=

K
∑

k=1

Θ
(pi−p j)

k
Cd(k)Θ

(pu−pv)

k

Cd2 (M(i − 1) + u,M( j − 1) + v)) = C(i,− j, u,−v)

=

K
∑

k=1

Θ
(pi+pu)

k
Cd(k)Θ

−(p j+pv)

k

(8)

Cs1 (M(i − 1) + j,M(u − 1) + v)) = C(i,− j,−u,−v)

=

K
∑

k=1

Θ
(pi−p j)

k
Cs(k)Θ

−(pu+pv)

k

Cs2 (M(i − 1) + j,M(u − 1) + v)) = C(−i, j, u, v)

=

K
∑

k=1

Θ
−(pi−p j)

k
C∗s (k)Θ

(pu+pv)

k

Css1 (M(i − 1) + j,M(u − 1) + v)) = C(−i,− j,−u,−v)

=

K
∑

k=1

Θ
−(pi+p j)

k
Css(k)Θ

−(pu+pv)

k

Css2 (M(i − 1) + j,M(u − 1) + v)) = C(i, j, u, v)

=

K
∑

k=1

Θ
(pi+p j)

k
C∗ss(k)Θ

(pu+pv)

k
,

(9)

where 1 ≤ h, l ≤ M2. These values can be further arranged in

the following form

Cd1 = AdRdAH
d Cd2 = AsRdAH

s

Cs1 = AdRsA
H
s Cs2 = AdR

∗
s AT

s

Css1 = A∗sRssA
H
s Css2 = C

∗
ss1 ,

(10)

with

Rd = diag{Cd(1), . . . ,Cd(K)}
Rs = diag{Cs(1), . . . ,Cs(K)}
Rss = diag{Css(1), . . . ,Css(K)}
Ad = [ad(θ1), . . . , ad(θK)]

As = [as(θ1), . . . , as(θK)]

ad(θk) = a(θk) ⊗ a∗(θk)

as(θk) = a(θk) ⊗ a(θk)

a(θk) = [Θ
p1

k
,Θ

p2

k
, . . . ,Θ

pM

k
]T,

(11)

where ⊗ is the Kronecker product, and diag{·} is a diagonal ma-

trix.

Using all of these fourth-order cumulants, the extended

fourth-order covariance matrix can be constructed as

Q =





















Cd1 Cs2 Cs1

C
∗
s2

C
∗
d2

Css1

C
∗
s1

Css2 Cd2





















= ARA
H , (12)
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with

R =





















Rd R
∗
s Rs

Rs R
∗
d

Rss

R
∗
s R

∗
ss Rd





















A =





















Ad 0M2×K 0M2×K

0M2×K A∗s 0M2×K

0M2×K 0M2×K As





















,

(13)

where 0l×h is an l × h all-zero matrix.

Now, the dimension of Q is 3M2 × 3M2, but there are a lot of

repeated entries in it. The real size of Q is concerned with the

DOFs of the generated fourth-order virtual co-array, and it will

be analyzed below according to the parameters ψk and ρk being

known or not.

It can be seen that the elements in Cd1, Cs1 and Css1 are sums

of −η2
k
(1 + ρ2

k
) · Θ(pi−p j+pu−pv)

k
, −2η2

k
ρke− j2ψk · Θ(pi−p j−pu−pv)

k
and

−η2
k
(1 + ρ2

k
)e− j4ψk · Θ−(pi+p j+pu+pv)

k
, separately. If the parameters

ψk and ρk are assumed to be known as ψ̂k and ρ̂k, the elements

in Cd1, Cs1 and Css1 are only concerned with the unknown pa-

rameter Θk. In the case (pi − p j + pu − pv) of the element in

Cd1 and (pi − p j − pu − pv) of the element in Cs1 are equal,

regardless of −(1+ ρ̂2
k
) and −2ρ̂ke− j2ψ̂k , the elements in Cd1 and

Cs1 are the same, which is the sum of η2
k
Θ

(pi−p j+pu−pv)

k
, and the

same applies to the elements in Css1. In another word, the virtu-

al sensors generated by Cd1, Cd2, Cs1, Cs2, Css1 and Css2 can be

mixed, and they may fill the holes of the virtual array for each

others. In this situation, the total fourth-order co-array virtual

sensor positions is a union of the positions generated by Cd1,

Cd2, Cs1, Cs2, Css1 and Css2, which is written as

P̂ = P
±
d ∪ P

+
s ∪ P

−
s ∪ P

+
ss ∪ P

−
ss , (14)

with

P
±
d = {pi − p j + pu − pv}

P
+
s = {−pi + p j + pu + pv}

P
−
s = {pi − p j − pu − pv}

P
+
ss = {pi + p j + pu + pv}

P
−
ss = {−pi − p j − pu − pv}.

(15)

The DOFs of the virtual co-array depends on the maximum con-

secutive virtual sensor lags of P̂ [15, 21, 29].

However, in general ψk and ρk are unknown, and then the

elements in Cd1 and Cs1 are clearly not equal to each other even

if (pi − p j + pu − pv) and (pi − p j − pu − pv) are equal, and the

same applies to the elements in Css1. So, the virtual co-array

sensors generated by Cd1 and Cd2 are different from those of

Cs1 and Cs2 or Css1 and Css2, separately. Thus, three separated

sets of virtual sensor positions are generated as

P1 = P
±
d P2 = P

+
s ∪ P

−
s P3 = P

+
ss ∪ P

−
ss . (16)

The DOFs of the virtual co-array depends on the sum of the

maximum consecutive virtual sensor lags of P1, P2 and P3 [20].

It will be shown later in the next subsection that the elements

concerned with P
+
ss ∪ P

−
ss provide no contribution to the virtual

co-array.

In fact, the DOFs of the systems with the parameters ψk and

ρk known and unknown are equal for a uniform linear array, but

the number of DOFs of the system with parameters known is

usually greater than that with parameters unknown in the gen-

eral case. A sparse array construction scheme for maximizing

the part related to the system with parameters known has been

proposed in [29]; however, the setting is not valid for the sys-

tem with parameters unknown in advance, which is normally

the case in practice. A sparse array aiming for maximizing the

DOFs with parameters unknown will be presented in Sec. 3 of

this paper, together with a comparison of the DOFs of these two

schemes. As expected, the number of DOFs will be smaller in

general when the parameters are unknown due to less informa-

tion available to the design.

2.4. Rank of the Extended Covariance Matrix

It is difficult to analyze the rank of the fourth-order covari-

ance matrix Q directly. According to [4], the rank of the co-

variance matrix could be obtained by analyzing the covariance

matrices of different types of signals contained in Q as given

below.

Firstly, the signals are mainly divided into three different

types: strictly noncircular signals, nonstrictly noncircular sig-

nals and circular signals. For different types of signals, the val-

ues of the fourth-order cumulants in (7) are different, as shown

in the following.

1. Strictly noncircular signals: ρk = 1 (such as BPSK (Binary

phase shift keying), PAM (Pulse amplitude modulation)

and ASK (Amplitude shift keying) signals).

Cd-snc(k) = −2η2
k

Cs-snc(k) = −2η2
k
e− j2ψk

Css-snc(k) = −2η2
k
e− j4ψk , k = 1, . . . ,Ksnc,

where the subscript “snc” indicates these three quantities

are for strictly noncircular signals.

2. Nonstrictly noncircular signals: 0 < ρk < 1 (such as UQP-

SK (Unbalanced quaternary phase shift keying) signals).

Cd-nc(k) = −η2
k
(1 + ρ2

k
)

Cs-nc(k) = −2η2
k
ρke− j2ψk

Css-nc(k) = −η2
k
(1 + ρ2

k
)e− j4ψk , k = Ksnc + 1, . . . ,Knc,

where the subscript “nc” indicates these are for nonstrictly

noncircular signals.

3. Circular signals: ρk = 0 (such as QPSK (Quadrature phase

shift keying) signals).

Cd-c(k) = −η2
k

Cs-c(k) = 0

Css-c(k) = −η2
k
e− j4ψk , k = Knc + 1, . . . ,K,

where the subscript “c” indicates they are for the case with

circular signals.

For the steering ‘vector’ A, it is rewritten into Ã by reorder-

ing the elements, so that the elements are grouped according to

the types of signals, i.e., strictly noncircular, nonstrictly non-

circular and circular signals. Then, the elements of R are also

reordered correspondingly to construct a new matrix R̃. The

newly constructed Q is written as

Q = ÃR̃Ã
H = AsncRsncA

H
snc + AncRncA

H
nc + AcRcA

H
c , (17)
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with

Ã = [Asnc,Anc,Ac]

Asnc =





















Ad-snc 0M2×Ksnc
0M2×Ksnc

0M2×Ksnc
A∗s-snc 0M2×Ksnc

0M2×Ksnc
0M2×Ksnc

As-snc





















Anc =





















Ad-nc 0M2×(Knc−Ksnc) 0M2×(Knc−Ksnc)

0M2×(Knc−Ksnc) A∗s-nc 0M2×(Knc−Ksnc)

0M2×(Knc−Ksnc) 0M2×(Knc−Ksnc) As-nc





















Ac =





















Ad-c 0M2×Kc
0M2×Kc

0M2×Kc
A∗s-c 0M2×Kc

0M2×Kc
0M2×Kc

As-c





















(18)

Ad-snc = [ad(θ1), . . . , ad(θKsnc
)]

Ad-nc = [ad(θKsnc+1
), . . . , ad(θKnc

)]

Ad-c = [ad(θKnc+1
), . . . , ad(θK)]

As-snc = [as(θ1), . . . , as(θKsnc
)]

As-nc = [as(θKsnc+1
), . . . , as(θKnc

)]

As-c = [as(θKnc+1
), . . . , as(θK)]

(19)

R̃ = diag{Rsnc,Rnc,Rc}

Rsnc =





















Rd−snc R∗s−snc Rs−snc

Rs−snc R∗
d−snc

Rss−snc

R∗s−snc R∗ss−snc Rd−snc





















Rnc =





















Rd−nc R∗s−nc Rs−nc

Rs−nc R∗
d−nc

Rss−nc

R∗s−nc R∗ss−nc Rd−nc





















Rc =





















Rd−c R∗s−c Rs−c

Rs−c R∗
d−c

Rss−c

R∗s−c R∗ss−c Rd−c





















(20)

Rd−snc = diag{Cd-snc(1), . . . ,Cd-snc(Ksnc)}
Rd−nc = diag{Cd-nc(Ksnc+1), . . . ,Cd-nc(Knc)}
Rd−c = diag{Cd-c(Knc+1), . . . ,Cd-c(K)}
Rs−snc = diag{Cs-snc(1), . . . ,Cs-snc(Ksnc)}
Rs−nc = diag{Cs-nc(Ksnc+1), . . . ,Cs-nc(Knc)}
Rs−c = diag{Cs-c(Knc+1), . . . ,Cs-c(K)}
Rss−snc = diag{Css-snc(1), . . . ,Css-snc(Ksnc)}
Rss−nc = diag{Css-nc(Ksnc+1), . . . ,Css-nc(Knc)}
Rss−c = diag{Css-c(Knc+1), . . . ,Css-c(K)}.

(21)

Note the relationships of Cd(k), Cs(k) and Css(k) for different

types of signals are

Css-snc(k) = e− j2ψkCs-snc(k) = e− j4ψkCd-snc(k)

Css-nc(k) = e− j4ψkCd-nc(k)

Css-c(k) = e− j4ψkCd-c(k).

(22)

As there are overlapped elements in each of these three co-

variance matrices AsncRsncA
H
snc, AncRncA

H
nc, and AcRcA

H
c , and

the ranks of Rsnc, Rnc and Rc are not clear, the rank of Q can

not be analyzed here directly. Then, the expression for Q can

be updated as

Q = ARAH = AsncRsncAH
snc + AncRncAH

nc + AcRcAH
c , (23)

with

A = [Asnc,Anc,Ac]

Asnc =





















Ad-sncE1

A∗s-sncE∗
1

As-sncE2





















Anc =





















Ad-nc 0M2×(Knc−Ksnc)

0M2×(Knc−Ksnc) A∗s-nc

0M2×(Knc−Ksnc) As-ncE3





















Ac =





















Ad-c 0M2×Kc

0M2×Kc
A∗s-c

0M2×Kc
As-cE4





















(24)

R = diag{Rsnc,Rnc,Rc}
Rsnc = Rd−snc

Rnc =

[

Rd−nc R∗s−nc

Rs−nc R∗
d−nc

]

Rc =

[

Rd−c R∗s−c

Rs−c R∗
d−c

]

(25)

E1 = diag{e jψ1 , . . . , e jψKsnc }
E2 = diag{e j3ψ1 , . . . , e j3ψKsnc }
E3 = diag{e j4ψKsnc+1 , . . . , e j4ψKnc }
E4 = diag{e j4ψKnc+1 , . . . , e j4ψKc }.

(26)

It can be seen that, Rsnc is only related to Cd(k), while Rnc

and Rc are related to Cd(k) and Cs(k). As a result, Css(k) has

no additional contribution to the rank of R and the DOFs of

the virtual co-array. It can be deduced that compared with the

cumulants C(i,− j, u,−v) and C(i,− j,−u,−v) (or C(−i, j, u, v)),

the cumulant C(−i,− j,−u,−v) (or C(i, j, u, v)) has no additional

contribution to the DOFs of the system.

Moreover, from the above equation, it can be seen that the

rank of Q equals that of R, which is the sum of the ranks of

Rsnc, Rnc and Rc. The rank of Rsnc equals that of Rd−snc, which

is Ksnc. The ranks of Rnc and Rc are equal to twice the rank of

Rd−nc and Rd−c, which are 2(Knc−Ksnc) and 2Kc, separately. As

a result, the rank of Q is calculated as

r(Q) = r(Rsnc) + r(Rnc) + r(Rc)

= Ksnc + 2(Knc − Ksnc) + 2Kc

= 2(Knc + Kc) − Ksnc

= 2K − Ksnc ,

(27)

where r(·) is the rank of the matrix.

It can be seen that the presence of strictly noncircular sig-

nals has reduced the rank of Q, which means that the maximum

number of signals to be resolved has been increased; on the oth-

er hand, the presence of nonstrictly noncircular signals cannot

increase the maximum number of signals to be resolved, which

has the same effect as the circular ones.

Suppose the maximum number of consecutive fourth-

order cumulants of C(i,− j, u,−v) and C(i,− j,−u,−v) (or
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C(−i, j, u, v)) is Ld and Ls, separately. It has been analyzed

in [20] that the maximum number of signals to be resolved is

(2K − Ksnc) ≤ (Ld + Ls)/2 − 1 using the ULP (Unequal length

plus) algorithm or the ECM (Extended covariance matrix) al-

gorithm proposed there.

2.5. The MUSIC-type Algorithm for a Mixture of Circular and

Noncircular Signals

Taking the MUSIC-type algorithm as an example, the spatial

spectrum function can be written as [35]

P(θ) =
1

det{ĀH(θ)UnUH
n Ā(θ)}

, (28)

with

Ā(θ) =





















ad(θ) 0M2×1

0M2×1 a∗s (θ)

0M2×1 as(θ)





















, (29)

where det{·} is the determinant of its matrix, Un is the noise

subspace with size 3M2 × [3M2 − (2K − Ksnc)]. It should be

noticed that the maximum number of signals to be resolved is

(2K−Ksnc) ≤ Ls−1 for this algorithm, which is a little different

from that of the ULP and ECM algorithms [22].

2.6. Computational Complexity Analysis

Using the steps above, the original EAS scheme is extend-

ed to the case for a mixture of circular and noncircular signal-

s, which is named as the EASNC scheme. The computation-

al complexity of the proposed MUSIC-type algorithm for the

EASNC scheme can be summarized as follows:

1. Calculate the fourth-order cumulants of the extended co-

variance matrix Q.

The complexity of computing one fourth-order cumulant

is 9S np, where S np represents the number of snapshots. As

there are 3M2 × 3M2 fourth-order elements in Q, the total

computational complexity is O
(

9S np · 9M4
)

.

2. Eigenvalue decomposition of Q.

The noise subspace Un is obtained by eigenvalue decom-

position of Q, which requires computation of O
(

(3M2)3
)

.

3. Calculate the spatial spectrum function P(θ) for angle

searching.

With one constant θ, the computation is O
(

2 ·3M2 · [3M2−
(2K − Ksnc)]

)

. Suppose K̂ is the number of search angles,

and then the total complexity is O
(

2 · 3M2 · [3M2 − (2K −
Ksnc)] · K̂

)

.

In summary, the computational complexity of the MUSIC-

type algorithm is O
(

81M4S np + 27M6 + 6M2[3M2 − (2K −
Ksnc)]K̂

)

. The analysis above are listed in Table 1.

As a comparison, the computational complexity of the

MUSIC-type algorithm for the EAS scheme is analyzed, which

is also shown in Table 1.

It can be seen that the computational complexity of the EAS-

NC is higher than that of the EAS, but their magnitudes are

almost the same. Suppose M = 5, S np = 10, K = 10, Kc = 2,

Knc = 8, Ksnc = 7 and K̂ = 180, the computational complex-

ity of the EASNC is almost twice that of the EAS, which are

2602125 and 1034000 for EASNC and EAS, separately.

3. The EASNC-NA-STA and EASNC-STA-NA Schemes

3.1. The EASNC Scheme

The construction of the EASNC scheme is the same as that

of the EAS scheme, which contains two sub-arrays that are

both sparse arrays. Suppose an M1-sensor array and an M2-

sensor array are in the positions P1 = {p1, . . . , pM1
} · d and

P2 = {q1, . . . , qM2
} · d, separately. Define the number of con-

secutive second-order difference co-array lags for P1 and P2 as

BD1 and BD2, separately. Expand the positions of P2 to P2∆E,

where ∆E = BD1. Then, shift P2∆E to P2∆E + ∆S, where

∆S = pM1
− q1 × ∆E; this setting makes the first sensor of

P2∆E + ∆S coincide with the last sensor of P1, so that the to-

tal number of sensors is M = M1+M2−1 due to the one shared

sensor. Considering P1 and P2∆E + ∆S as the first and second

sub-arrays of the EASNC scheme, separately, the sensor posi-

tions of the final design are given by the following set [25, 26]

P = {p1, . . . , pM1
, pM1+1, . . . , pM} · d, (30)

where pM1+(l−1) = ql × ∆E + ∆S, l = 1, . . . , M2.

As mentioned in last section, the maximum number of sig-

nals that can be resolved depends on the value (Ld + Ls)/2 − 1.

The value of Ld related to C(i,− j, u,−v) has been analyzed in

[25], which is Ld = BD1BD2. Furthermore, if the first sub-array

satisfies pM1
− p1 ≤ BD1 − 1, then the consecutive fourth-order

lags will be increased to Ld = BD1BD2+2(pM1
− p1), and this re-

quirement is almost satisfied by all existing sparse arrays [25].

In the EAS scheme, the maximum number of resolvable signals

is K ≤ (Ld − 1)/2.

The value of Ls concerned with C(−i, j, u, v) (or

C(i,− j,−u,−v)) has never been considered in a general

expression before, and in the following we try to provide an

analysis. Define the number of consecutive second-order sum

co-array lags for P1 and P2 as BS1 and BS2, separately. The

consecutive segment generated by (p j − pi) is from (1− BD1)/2

to (BD1 − 1)/2, with 0 as the center, and there are BD1 elements

in it, while (pu + pv) generates a consecutive segment from

∆b to ∆b + BS2 − 1, where ∆b is the first consecutive lag. The

lag (−pi + p j + pu + pv) related to C(−i, j, u, v) can be written

as (p j − pi) + (pu + pv), which can be seen as the consecutive

segment generated by (p j − pi) shifted to the consecutive

positions generated by (pu + pv). In order to ensure that there is

no overlap or gap between the shifted segments, the expanding

value ∆E should be equal to BD1. It makes the segment with

BD1 elements shifted to BS2 positions with no overlap or gap,

and Ls = BD1BS2 consecutive lags are generated. With the

same solution, if we consider (p j − pi) + (pu + pv) as the

consecutive segment generated by (pu + pv) shifted to the

consecutive positions generated by (p j − pi), ∆E should be set

to BS1, and Ls = BS1BD2. An analysis of the two schemes can

be found in the next sub-section and a performance comparison

will be provided in the simulation section.
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Table 1: Computational complexity comparison

Algorithm EAS EASNC

Covariance

matrix 9S np · 4M4 9S np · 9M4

computation

Eigenvalue (2M2)3 (3M2)3

decomposition

Spectrum 2 · 2M2 · [2M2 − (2Kc + Knc)] · K̂ 2 · 3M2 · [3M2 − (2K − Ksnc)] · K̂
searching

Total 36M4S np + 8M6 81M4S np + 27M6

computational +4M2[2M2 − (2Kc + Knc)]K̂ +6M2[3M2 − (2K − Ksnc)]K̂

complexity

Most existing sparse arrays are designed for the second-order

difference co-array, which may have a larger second-order dif-

ference co-array, but smaller second-order sum co-array. The

sum co-array oriented sparse array is rarely studied and next

the postage-stamp problem is introduced for its design.

3.2. The EASNC-NA-STA and EASNC-STA-NA Schemes

In the global postage-stamp problem, no more than h el-

ements are picked from a set of z positive integers, and the

sum of these elements can generate a set of continuous inte-

gers Y = {1, 2, · · · , y}. Suppose the set of positive integers are

ℜ = {re1 = 1 < re2 < · · · < rez}, the postage-stamp solution

chooses a suitable series of rei from ℜ to produce the great-

est value for y. Specifically, the postage-stamp problem in the

case h = 2 is very similar to the problem of the second-order

sum co-array construction, which finds the maximum number

of consecutive lags (pu+pv). However, there is a little difference

between these two problems: the postage-stamp problem with

h = 2 chooses no more than two elements from ℜ, while the

second-order sum co-array problem chooses exactly two val-

ues. To solve this problem, one more lag 0 is added in the set

ℜ, so one nonzero element choosing situation for the postage-

stamp problem is equivalent to one nonzero element and one ze-

ro element choosing situation for the second-order sum co-array

problem. Using the newly constructed set of integers as the po-

sitions of the stamp array, they generates the maximum number

of continuous second-order sum co-array lags theoretically. It

has been analyzed that the number of continuous second-order

difference and sum lags are the same as BD-sta = BS-sta = y + 1

for the stamp array [31, 32].

The number of lags with different number of physical sensors

is given in Table 2, and as a comparison, the number of lags for

the nested array is given in Table 3, where the sub-array sensor

settings are all for their own best performance.

It can be seen from Tables 2 and 3 that BD-na > BD-sta and

BS-sta > BS-na. For the two types of EASNC schemes proposed

in the last section, the first type with Ls = BD1BS2 is preferred

with the first sub-array being a nested array and the second one

a stamp array, while for the second type with Ls = BS1BD2, it is

the other way around. Define the EASNC scheme with the first

and second sub-arrays being a nested array and a stamp array

Table 2: The stamp array

Number of Array setting BD-sta, BS-sta

sensors

3 0 1 2 5

4 0 1 3 4 9

5 0 1 3 5 6 13

6 0 1 3 5 7 8 17

7 0 1 2 5 8 9 10 21

8 0 1 2 5 8 11 12 13 27

9 0 1 2 5 8 11 14 15 16 33

10 0 1 3 4 9 11 16 17 19 20 41

11 0 1 2 3 7 11 15 19 21 22 23 47

12 0 1 3 5 6 13 14 21 22 24 26 27 55

13 0 1 3 4 9 11 16 21 23 28 29 31 32 65

14 0 1 3 4 9 11 16 20 25 27 32 33 35 36 73

15 0 1 3 4 5 8 14 20 26 32 35 36 37 39 40 81

Table 3: The nested array

Number of Array setting BD-na BS-na

sensors

3 1 2 4 7 5

4 1 2 3 6 11 8

5 1 2 3 6 9 17 11

6 1 2 3 4 8 12 23 15

7 1 2 3 4 8 12 16 31 19

8 1 2 3 4 5 10 15 20 39 24

9 1 2 3 4 5 10 15 20 25 49 29

10 1 2 3 4 5 6 12 18 24 30 59 35

11 1 2 3 4 5 6 12 18 24 30 36 71 41

12 1 2 3 4 5 6 7 14 21 28 35 42 83 49

13 1 2 3 4 5 6 7 14 21 28 35 42 49 97 55

14 1 2 3 4 5 6 7 8 16 24 32 40 48 56 111 63

15 1 2 3 4 5 6 7 8 16 24 32 40 48 56 64 127 71

as EASNC-NA-STA. In the same way, the array EASNC-STA-

NA can be defined. Assume the number of sub-array sensors

is M1 = M2 = 5, the array setting, the relevant Ld, Ls and

the number of signals that can be resolved by the MUSIC-type

algorithm are presented in the first two rows in Table 4. It can
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be seen that, these two types of algorithms can resolve the same

number of signals, which is BD-naBS-sta − 1 = 220.

Some other schemes EASNC-NA-NA, EAS-NA-NA and

EAS-NA-STA are also considered to compare with the pro-

posed EASNC-NA-STA and EASNC-STA-NA schemes. With

the setting M1 = M2 = 5, the analysis of these three com-

parable schemes are shown in the last three rows in Table 4.

The maximum number of resolvable signals by the MUSIC-

type algorithm is BD-naBS-na − 1 = 186 for the EASNC-NA-

NA scheme, and (BD-naBD-na + 2(pM1
− p1) − 1)/2 = 152,

(BD-naBD-sta+2(pM1
− p1)−1)/2 = 118 for the EAS-NA-NA and

EAS-NA-STA schemes, separately. It is clear that the EASNC-

NA-STA and EASNC-STA-NA resolve a greater number of sig-

nals than these three schemes.

Now we compare DOFs of the EASNC-NA-STA and

EASNC-STA-NA schemes with the scheme proposed in [29],

which is based on a known ψk. As an example, the sparse array

in [29] generates 219 DOFs with 6 physical sensors, but it re-

quires 9 physical sensors for the EASNC-NA-STA or EASNC-

STA-NA schemes to achieve this level of DOFs. As mentioned

earlier, this is not surprising, since with known ψk more infor-

mation is available, which can then be exploited to further in-

crease the DOFs of the system. However, in practice, for most

of the cases, ψk will not be available and therefore the present-

ed design of EASNC-NA-STA and EASNC-STA-NA will have

more of a practical value.

4. Simulation Results

In this section, simulation results based on the EASNC-

NA-STA, EASNC-STA-NA, EASNC-NA-NA, EAS-NA-NA

and EAS-NA-STA schemes are provided. The MUSIC-type

algorithm is employed to estimate the DOAs, and the full angle

range is set from −90◦ to 90◦ with a step size of 0.1◦. The

total number of physical sensors is M = 6, the number of

sub-array sensors is M1 = 3 and M2 = 4 for EASNC-NA-STA,

EASNC-NA-NA, EAS-NA-NA and EAS-NA-STA, while it is

M1 = 4 and M2 = 3 for EASNC-STA-NA. The array setting is

{1, 2, 4, 11, 25, 32} · d for EASNC-NA-STA and EAS-NA-STA,

and it is {0, 1, 3, 4, 13, 31} ·d for EASNC-STA-NA. The number

of consecutive fourth-order lags is Ld = 69 and Ls = 63 for

EASNC-NA-STA and EAS-NA-STA, and it is Ld = 71 and

Ls = 63 for EASNC-STA-NA, separately. So the maximum

number of resolvable signals is 62 for EASNC-NA-STA and

EASNC-STA-NA, and it is 34 for EAS-NA-STA, respectively.

For EASNC-NA-NA and EAS-NA-NA, the array setting is

{1, 2, 4, 11, 18, 39} · d with Ld = 83 and Ls = 56, and then

they can resolve at most 55 and 41 signals, respectively. The

number of source signals is set to K = 13 and the DOAs are set

as [−60◦,−50◦,−40◦,−30◦,−20◦,−10◦, 0◦, 10◦, 20◦, 30◦, 40◦,
50◦, 60◦]. All the noncircular signals are with random initial

phases ψk. The number of Monte Carlo trials is 1000 for the

last two simulations.

In the first simulation, the signals are set as a mixture of

strictly noncircular, non-strictly noncircular and circular signal-

s, where the first 11 DOAs correspond to BPSK signals, the

12th DOA corresponds to a UQPSK signal, and the last one
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Figure 3: RMSE results with a varied SNR for the mixture of strictly noncircu-

lar, nonstrictly noncircular and circular signals.
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Figure 4: RMSE results with a varied number of snapshots for the mixture of

strictly noncircular, nonstrictly noncircular and circular signals.

corresponds to a circular signal. The spatial spectrum result-

s of the four algorithms are shown in Fig. 2. The SNR is set

as 0dB and the number of snapshots is 8000. From the figure,

we can see that only the EASNC-NA-STA and EASNC-STA-

NA schemes have successfully identified all the DOAs, while

all the other three have wrong results. Except for EASNC-NA-

STA and EASNC-STA-NA, EASNC-NA-NA performs better

than the other two, and EAS-NA-STA is the worst.

In the second simulation, the signals are the same set as in

the first simulation. The RMSE results versus SNRs are shown

in Fig. 3, where the number of snapshots is set as 8000 and

the SNR varies from −6dB to 10dB with a 2dB interval. The

RMSE results versus the number of snapshots are shown in Fig.

4, where the SNR is fixed as 0dB and the number of snapshots

varies from 4000 to 12000 with an interval of 1000.

In the third simulation, the signals are set as a mixture

of strictly noncircular and circular signals, where the first 11

DOAs correspond to BPSK signals and the last 2 DOAs corre-

spond to circular signals. In the fourth simulation, the signals

8



Table 4: Analysis of different schemes with M1 = M2 = 5

Schemes Array setting Ld Ls The number of

resolved signals

EASNC-NA-STA 1 2 3 6 9 26 60 94 111 237 221 220

EASNC-STA-NA 0 1 3 5 6 19 32 71 110 233 221 220

EASNC-NA-NA 1 2 3 6 9 26 43 94 145 305 187 186

EAS-NA-NA 1 2 3 6 9 26 43 94 145 305 152

EAS-NA-STA 1 2 3 6 9 26 60 94 111 237 118
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Figure 2: DOA estimation results of the five schemes.

are set as a mixture of strictly noncircular and nonstrictly non-

circular signals, where the first 11 DOAs correspond to BPSK

signals and the last 2 DOAs correspond to UQPSK signals. The

set of the SNRs and the number of snapshots are all the same

as those in the second simulation. The DOA estimation results

versus SNR are shown in Figs. 5 and 7, while the results versus

the number of snapshots are shown in Figs. 6 and 8, separately.

From the figures above, it can be seen that the performance of

EASNC-NA-STA and EASNC-STA-NA are almost the same,

which are superior to the other three schemes for all mixtures of

signals. The EAS-NA-STA and EAS-NA-NA schemes are the

worst and second worst of all the schemes, while the EASNC-

NA-NA scheme is the third worst one. It can be seen that

the EAS schemes without considering the fourth-order cumu-

lants C(i,− j,−u,−v) and C(−i, j, u, v) perform worse than the

EASNC schemes that consider these cumulants. The EASNC

schemes with one nested array and one stamp array as two sub-

arrays performs better than that with two nested arrays. Almost

in all kinds of SNR and number of snapshots settings, the RM-

SEs of the EASNC schemes with nested and stamp arrays are

0.1◦ to 0.2◦ lower than that with two nested arrays.
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Figure 5: RMSE results with a varied SNR for the mixture of strictly noncircu-

lar and circular signals.
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Figure 6: RMSE results with a varied number of snapshots for the mixture of

strictly noncircular and circular signals.
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Figure 7: RMSE results with a varied SNR for the mixture of strictly noncircu-

lar and nonstrictly noncircular signals.
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Figure 8: RMSE results with a varied number of snapshots for the mixture of

strictly noncircular and nonstrictly noncircular signals.

5. Conclusion

An analysis of the DOFs of the fourth-order sum and differ-

ence co-array for a mixture of circular, strictly noncircular and

nonstrictly noncircular signals has been presented in this paper.

Four important conclusions are drawn as stated in the introduc-

tion part and the maximum number of resolvable signals by the

fourth-order co-array is given as (2K − Ksnc) ≤ (Ld + Ls)/2 − 1.

The EASNC-NA-STA and EASNC-STA-NA schemes, which

are extensions of a previously proposed scheme, but with one

sub-array being a nested array and another one being a stamp

array, are analyzed as an example, which can resolve a greater

number of signals than the other constructions of the EAS-

NC or EAS schemes. As demonstrated by simulation results,

both EASNC-NA-STA and EASNC-STA-NA have achieved a

much better performance than EASNC-NA-NA, EAS-NA-NA

and EAS-NA-STA.

Appendix A.

Substitute the source signal model sk(t) into the fourth-order

cumlants, and note that E[sIk
(t)sQk

(t)] = E[sQk
(t)s3

Ik
(t)] =

E[sIk
(t)s3

Qk
(t)] = 0. The cumulant cum[sk(t), s∗

k
(t), sk(t), s∗

k
(t)]

can be derived as

cum[sk(t), s∗k(t), sk(t), s∗k(t)]

=E[sk(t)s∗k(t)sk(t)s∗k(t)] − 2E[sk(t)s∗k(t)]E[sk(t)s∗k(t)]

− E[sk(t)sk(t)]E[s∗k(t)s∗k(t)]

=η2
k

{

(
1 + ρk

2
)2E[s4

Ik
(t)] + (

1 − ρk

2
)2E[s4

Qk
(t)]

− 3(
1 + ρk

2
)2E[s2

Ik
(t)]E[s2

Ik
(t)]

−3(
1 − ρk

2
)2E[s2

Qk
(t)]E[s2

Qk
(t)]

}

,

(A.1)

with

E[sk(t)s∗k(t)sk(t)s∗k(t)]

=η2
k

{

(
1 + ρk

2
)2E[s4

Ik
(t)] + (

1 − ρk

2
)2E[s4

Qk
(t)]

+(
1 − ρ2

k

2
)E[s2

Ik
(t)s2

Qk
(t)]















E[sk(t)s∗k(t)]E[sk(t)s∗k(t)]

=η2
k

{

(
1 + ρk

2
)2E[s2

Ik
(t)]E[s2

Ik
(t)] + (

1 − ρk

2
)2E[s2

Qk
(t)]E[s2

Qk
(t)]

+(
1 − ρ2

k

2
)E[s2

Ik
(t)]E[s2

Qk
(t)]















E[sk(t)sk(t)]E[s∗k(t)s∗k(t)]

=η2
k

{

(
1 + ρk

2
)2E[s2

Ik
(t)]E[s2

Ik
(t)] + (

1 − ρk

2
)2E[s2

Qk
(t)]E[s2

Qk
(t)]

−(
1 − ρ2

k

2
)E[s2

Ik
(t)]E[s2

Qk
(t)]















.

(A.2)
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The cumulant cum[sk(t), s∗
k
(t), s∗

k
(t), s∗

k
(t)] is deduced as

cum[sk(t), s∗k(t), s∗k(t), s∗k(t)]

=E[sk(t)s∗k(t)s∗k(t)s∗k(t)] − 3E[sk(t)s∗k(t)]E[s∗k(t)s∗k(t)]

=η2
ke− j2ψk

{

(
1 + ρk

2
)2E[s4

Ik
(t)]

− (
1 − ρk

2
)2E[s4

Qk
(t)] − 3(

1 + ρk

2
)2E[s2

Ik
(t)]E[s2

Ik
(t)]

+3(
1 − ρk

2
)2E[s2

Qk
(t)]E[s2

Qk
(t)]

}

,

(A.3)

with

E[sk(t)s∗k(t)s∗k(t)s∗k(t)]

=η2
ke− j2ψk

{

(
1 + ρk

2
)2E[s4

Ik
(t)] − (

1 − ρk

2
)2E[s4

Qk
(t)]

}

E[sk(t)s∗k(t)]E[s∗k(t)s∗k(t)]

=η2
ke− j2ψk

{

(
1 + ρk

2
)2E[s2

Ik
(t)]E[s2

Ik
(t)]

−(
1 − ρk

2
)2E[s2

Qk
(t)]E[s2

Qk
(t)]

}

.

(A.4)

Similarly, the cumulant cum[s∗
k
(t), s∗

k
(t), s∗

k
(t), s∗

k
(t)] is given

by

cum[s∗k(t), s∗k(t), s∗k(t), s∗k(t)]

=E[s∗k(t)s∗k(t)s∗k(t)s∗k(t)] − 3E[s∗k(t)s∗k(t)]E[s∗k(t)s∗k(t)]

=η2
ke− j4ψk

{

(
1 + ρk

2
)2E[s4

Ik
(t)] + (

1 − ρk

2
)2E[s4

Qk
(t)]

− 3(
1 + ρk

2
)2E[s2

Ik
(t)]E[s2

Ik
(t)]

−3(
1 − ρk

2
)2E[s2

Qk
(t)]E[s2

Qk
(t)]

}

,

(A.5)

with

E[s∗k(t)s∗k(t)s∗k(t)s∗k(t)]

=η2
ke− j4ψk

{

(
1 + ρk

2
)2E[s4

Ik
(t)] + (

1 − ρk

2
)2E[s4

Qk
(t)]

−3(
1 − ρ2

k

2
)E[s2

Ik
(t)s2

Qk
(t)]















E[s∗k(t)s∗k(t)]E[s∗k(t)s∗k(t)]

=η2
ke− j4ψk

{

(
1 + ρk

2
)2E[s2

Ik
(t)]E[s2

Ik
(t)]

+(
1 − ρk

2
)2E[s2

Qk
(t)]E[s2

Qk
(t)]

−
1 − ρ2

k

2
E[s2

Ik
(t)]E[s2

Qk
(t)]















.

(A.6)

Then, substituting E[s2
Ik

(t)] = E[s2
Qk

(t)] = E[s4
Ik

(t)] =

E[s4
Qk

(t)] = 1 into these expressions, we can finally obtain

cum[sk(t), s∗k(t), sk(t), s∗k(t)] = −η2
k(1 + ρ2

k)

cum[sk(t), s∗k(t), s∗k(t), s∗k(t)] = −2η2
kρke− j2ψk

cum[s∗k(t), s∗k(t), s∗k(t), s∗k(t)] = −η2
k(1 + ρ2

k)e− j4ψk .

(A.7)
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