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Abstract

The relationships among organisms and their surroundiagsbe of immense
complexity. To describe and understand an ecosystem agkedapank, multi-
ple ways of interaction and their effects have to be consmlesuch as predation,
competition, mutualism and facilitation. Understandihg tesulting interaction
networks is a challenge in changing environments, e.g.ddiprknock-on effects
of invasive species and to understand how climate changeadtsiodiversity.
The elucidation of complex ecological systems with thelieiactions will benefit
enormously from the development of new machine learnintp @t aim to infer
the structure of interaction networks from field data. Inphesent study, we pro-
pose a novel Bayesian regression and multiple changepadeh{BRAM) for
reconstructing species interaction networks from obsksgecies distributions.
The model has been devised to allow robust inference in theepce of spatial
autocorrelation and distributional heterogeneity. Weehavaluated the model
on simulated data that combines a trophic niche model witloehastic popula-
tion model on a 2-dimensional lattice, and we have compdregérformance of
our model with L1-penalized sparse regression (LASSO) amdlimear Bayesian
networks with the BDe scoring scheme. In addition, we hayieg our method
to plant ground coverage data from the western shore of ther®iebrides with
the objective to infer the ecological interactions.

Keywords: Species interactions, Bayesian hierarchical model, pialti
changepoint process, reversible jump Markov chain MontéoCaiche model,
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plant ground coverage data

1. Introduction

Understanding the response of ecosystems to perturbatafparamount im-
portance in a world with diminishing arable and natural lamdere global climate
change, invasive species, and changing agriculturalipescimpact world food
supplies and biodiversity (Foley et al., 2005). But sucharathnding is not sim-
ple: ecosystems are a complex network of interactions. Mivdj populations
of one species can produce unexpected effects in othersx@ean and Mem-
mott, 2001); entire ecosystems can respond to changingyessby shifting to
alternative states (Beisner et al., 2003). In order to wtdad and predict such
phenomena, it is necessary to unravel the ecological nksxorderlying ecosys-
tem stability and fragility (O’Gorman and Emmerson, 2009nDe et al., 2002).

Revealing such networks, however, might seem prohibitidgficult when
even tracing interactions in simple food webs requiresaextinarily detailed
fieldwork (e.g. Memmott et al. (2000)). Direct observatidrntrophic interac-
tions ignores other relationships, such as inter-specdropetition and mutu-
alism, when such interactions may play significant roles etwork dynamics
(Werner and Peacor, 2003; Cheney and Coté, 2005; ValRateet and Verda,
2008; Maestre et al., 2005). Recognising this, ecologiate lattempted to mea-
sure existence of such indirect interactions (e.g. van \é&exh. (2009); Schmitz
et al. (2004)), but quantifying all the effects and identifyall the unexpected in-
teractions within complex real ecosystems may be beyonsidtyge of traditional
fieldwork.

Computational inference of ecological networks presentsliernate route to
unraveling ecosystem interactions. Traces of the intenagamong species, both
trophic and other types, should be present in the resulistgloltion of individ-
uals in space. Such species counts are available for a rdreg@gystems (e.g.
Hagemeijer and Blair (1997)). Computational network iafexe from such obser-
vational datasets has recently been developed in molesygéems biology, e.g.
discovering transcriptional regulatory networks fromas&tts on gene expression
(Friedman et al., 2000) and neural information flow from bractivity (Smith
et al., 2006). These methods present an avenue for revesdoiggical interac-
tions from, rather than observation of interaction, morglgabtainable data on
species incidence (Milns et al., 2010; van Oijen et al., 2@I0strup et al., 2008;
Faisal et al., 2010). Also, by inferring interactions baspdn their influence on



species distribution, there is r@opriori restriction to specific relationship types,
allowing competition and other relationships to be reve@alengside trophic in-
teractions.

The objective of the present paper is to adapt a method fggermposed
in computational systems biology (Lebre et al., 2010) fdeiring gene interac-
tions from time series of gene expression profiles to the ¢hskferring species
interaction networks from spatial species abundance datéypically obtained
from ecological surveys of fieldwork. The model by Lebrele{2010) is a non-
homogeneous dynamic Bayesian network, which combines #lye®tan hierar-
chical regression model of Andrieu and Doucet (1999) withudtiple change-
point process, as proposed by Punskaya et al. (2002), asdgmiBayesian infer-
ence with reversible jump Markov chain Monte Carlo (RIMCMGJjeen, 1995).
We adapt this model to the inference of ecological netwankhiee ways. First,
we allow for the fact that we have spatial rather than temptata. Second, we
expand the 1-dimensional changepoint process to two dimessby introduc-
ing two a priori independent changepoint processes in perpendiculatidimsec
Third, we correct for spatial auto-correlation by introthgca parent node (in
Bayesian network terminology) explicitly representing #patial neighborhood
of a node. To evaluate the performance of the model, we gendeda from
an ecological simulation study, which combines a trophahaimodel of Lotka-
Volterra type predator-prey interactions with a stocltagtipulation model on a
2-dimensional lattice. We have compared the performanceaiomodel with L1-
penalized sparse regression (LASSO) and non-linear Bayestworks (BDe
score).

2. Model

Our model is a network in which nodes represent species, @yebdi.e. con-
nections between nodes) represent potential specieactitars. We aim to recon-
struct the network from spatial species abundance profdesdon the rationale
that if species interact, a variation in the abundance ofspeeies should lead to
a variation in the abundance of the interacting species. dehthis mathemat-
ically with an approach based on Bayesian regression, whtdnsically incor-
porates a regularization effect that discourages the giiediof spurious interac-
tions. We further improve this by explicitly correcting fepatial autocorrelation
of the abundance profiles as well as by allowing for unobskelaeent variables
via a spatial changepoint process. Inference is carriedysampling the interac-
tion network structure as well as the number and locatiompatial changepoints
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from the posterior distribution, which is effected withtstaf-the-art Monte Carlo
algorithms (RIJIMCMC: reversible jump Markov chain Monte IGar

2.1. Interaction Network

The interaction network is represented by a directed géaph{m,...,7n}
with N species as nodesc {1,..., N}, wherer, denotes the so-called parents
of noden, that is the set of nodes with a directed edge pointing.t@;,, is the
subnetwork associated with target speciewhich is determined by its parent set
. A node cannot be contained in its own parent se¢ m,, i.e. we rule out
self-interactions related to e.g. cannibalism. The sjzeaie observed or surveyed
atT; x T, locations defined by their (orthogonal) coordinates, z-), at which
their abundance levels= {y,(z1, 22) }1<n<n i<z <1 1<z0<7 } @€ determined.

2.2. Multiple changepoints

The regulatory relationships among the species may be ndkeeby latent
variables, which are represented by spatial changepdiésassume that latent
effects in close spatial proximity are likely to be similbut locations where spa-
tially close areas are not similar are distinguished by gkanints. They are
modelled with twoa priori independent multiple changepoint processes along
the two orthogonal spatial directiong; = (&!,...,&), €0 .= 1,¢8% = T,
and: € {1,2}. The vectors; thus contains ana(priori unknown) number of
k; changepoints, and the changepoint vectgrand &, partition the space into
Z = Hle(ki + 1) non-overlapping segments, demarcated by the changepoints
We denote the latent variable associated with a segmentbyl, ..., Z}. If two
locations(zy, 75) and (1, 7,) are in the same segmest, < z,, 77 < £ €8 <
To, Ty < 53“, then they are assigned the same latent variable:, z;) =
h(Z1, ;). We define an isomorphism between segments and changepoatts

that segment is demarcated by changepoiftg = ¢/t ll2m=1] ey

2.3. Regression model

For all species:, the random variabl&,, (z,, z2) refers to the abundance of
species: at location(xy, ). Within any segment, this abundance depends on
the abundance levels of the species in the parent set ofespect,,, which we
model with a segment specific linear regression model. Déffi@set of parame-
ters{(a" )meco.n,0}, al € R o > 0. Forallm #0,a", =0if m ¢ m,. For
all species:, for all locations(xy, z5) in segment,, Y,,(z1, z2) depends on th&/



variables{Y,, (x1, z2) }1<m< N mxn according to
V(@ @2) = ang+ Yty V(21 22) +en(an ) (1)

where the latent variable depends on the locatigi, z5) and the change-
point vectors; and¢, defined in the previous subsection. The naiser;, z-) is
assumed to be Gaussian with mean 0 and varigné, c,,(z1, 7o) ~ N(0, (o7)?).

We definea” = (a”,,)nco. v to denote the vector of all regression parameters of

speciesu. This includes the parameters defining the strength ofantems with
other species, a”, , as well as a species-specific offset teuh,

nm!

2.4. Spatial autocorrelation

Spatial autocorrelation, the phenomenon that obsenstibnearby locations
are more similar than observations at more distant locati@nearly ubiqui-
tous in ecology and can have a strong impact on statistiéatance (Lennon,
2000; Dale and Fortin, 2002). In our case, spatial autotadrom could lead to the
identification of spurious interactions as a mere consectpiehtwo species co-
occurring in similar geographical regions. To incorponadgential spatial auto-
correlation into the model, we follow an approach proposeBdisal et al. (2010)
and illustrated in Figure 1b. The idea is to connect each imottee network to an
enforced parent node that represents the average popuddtieeighboring cells,
weighted inversely proportional to the distance of the hiays:

Z(il,i2)€/\/($1,$2) A7 (w1, @2), (1, 22)]Y5 (71, To)
Z(il,fcz)EN(xl,xz) dil[(xla 1’2), (i’b -i'Q)]
where N (z1, z5) is the spatial neighborhood of locatidm;, z2) (e.g. the
four nearest neighbors), adf(x;, z5), (71, Z2)] is the Euclidean distance between
(x1,22) and(Z, T2). The value ofA4, (x1, z2), weighted by an additional weight

a’ ,, will be included in (1):

An(xlij) = (2)

Yo(z1,m0) = CLZOJrz:m@T al Yo (21, 12)
+al  An(wy, 29) + en(T1, 72) (3)

In this way the abundance of speciest location(zy, z5) is, in the first in-
stance, determined by the spatial neighborhood. Only iéxmanatory power of
the latter is not sufficient will there be an incentive for théerence scheme to
include further edges related to species interactions.
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2.5. Prior

To encourage sparse network structures, we impose a tathPaisson prior
with meanA and maximumm = 5 on the numbernn, of parents for node
n: P(my|A) < 221, <. There was no noticeable difference in perfor-
mance compared to higher settingsrf Conditional onm,,, the prior for the
parent setr, is a uniform distribution over all parent sets with cardityain,,:
P(m, ||mn| =m,) = 1/(N-'). The overall prior on the network structugeis
given by factorization and marginalization:

P(GIA) = H Pl );
P(ma|A) = Zmnzl P(mn|my) P(ma|A) (4)

For both spatial directions € {1,2}, thek; + 1 segments are delimited by
changepoints, wherk is distributed a priori as a truncated Poisson random vari-
able with meam\ and maximumi; = T, — 1. P(k;|\) oc 2% ]l{k, <y Condi-
tional onk; changepoints, the changepoint position ve@o# (€L, ..., €F) takes
non-overlapping integer values, which we take to be unifpmiistributed a pri-

ori. There argT; — 1) possible positions for the; changepoints, thus vectgr
has prior densityP(&|k;) = 1/ (T"l) Conditional on the parent sef, of size
m,, them,, + 2 regression coefficients, denoted &y = (a”,, a" 4, (a. )mex, ),

are assumed zero-mean multivariate Gaussian dlstrlbuthd:m/arlance matrix
(JZ)QEW

n

. nTZnha
Pl o) = Pr(ol)? n,hrﬁexp< %) ®)

where the symboj denotes matrix transpositioR,, , = 6*2D;h(y)Dn7h(y) and
Don(y) is thes,, = [T, — P71 x (m,, + 2) matrix whose first col-
umn is a vector ofis, for the constant in (1), the second column is a vector of
autocorrelation variables, defined in (2), and the remgigimlumns contain the
observed abundance valuggz,, x2) for all speciesn € m, and all locations
(z1,5) in segmenth: &M < 2, < ¢ i ¢ {1,2). This so-called g-
prior is widely used in Bayesian statistics; see e.g. Andard Doucet (1999).
Finally, the conjugate prior for the varian¢e’)? is the inverse gamma distribu-
tion, P((c")?) = ZG(vy, ). Following Lébre et al. (2010), we set the hyper-
hyperparameters for shap®, = 0.5, and scale;, = 0.05, to fixed values that
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give a vague distribution. The termsand A can be interpreted as the expected
number of changepoints and parents, respectivelyjamsithe expected signal-
to-noise ratio. Following Lébre et al. (2010), these hppeameters are drawn
from vague conjugate hyperpriors, which are in the (inyegsenma distribution
family: P(A) = P(\) = Ga(0.5,1) andP(6?) = ZG(2,0.2).

2.6. Posterior
Equation (3) implies that the Likelihood is

h)-1 h h)-1 h
Py et W W ™) g gl ohy =

(\/%UZ)_ "* o (_ (yh — Dn,h(y)af();;)géﬁ - Dn,h(y)aﬁ))

From Bayes theorem, the posterior distribution is givenhgyfollowing equation,
where all prior distributions have been defined above:

P(k?b/@,fl,f%g a, 02 A A 52‘9) X P(52) (A)P(A)P(Q‘A)

HP(k;Z-\)\ (&K HHP P(al|my, [o)]?, 0%)

h=1n=1
Plynlel ™71 eh ™ M7 e ™. G al o) (6)

2.7. Inference

An attractive feature of the chosen model is that the maligaigon over the
parametera = {a",1 <n < N1 < h < Z}ando? = {(¢")2,1<n < N,1<
h < Z} in the posterior distribution of (6) is analytically trabta (Lébre et al.,
2010; Andrieu and Doucet, 1999):

P(kb k27£17 £2aga)\aA>62‘y) =
/P(kh k??flu 527g7a70-27>\7A762|y>dad0-2 (7)
The number of changepoints and their locatianks, &1, &>, the network struc-

ture G and the hyperparameteksA, 52 can be sampled from the posterior distri-
bution P(ky, ke, &1, &2, G, A, A, §2|y) with RIMCMC (Green, 1995), following the



scheme described in Lebre et al. (2010); Andrieu and Do{i@99) and (Pun-
skaya et al., 2002). By marginalization and under the assompf convergence,
this gives us a sample of networks from the posterior distidim P(G|y). By fur-
ther marginalization, we get the posterior probabilitiéalbspecies interactions
P(n — nly), which defines a ranking of the interactions in terms of paste
confidence. If the true network structure is known, this maglallows the compu-
tation of the areas under the ROC (AUROC) and precisionHr@ddPRC) curves
(Davis and Goadrich, 2006), which are two measures widedd urs the systems
biology literature to quantify the overall network recanstion accuracy (Prill
et al., 2010), with larger values indicating a better predicperformance overall.

3. Data

3.1. Synthetic data

For an objective measure of network recovery, we tested thaetis ability
to recover the true network structure from test data geeeérliom a piecewise
linear regression model following equation (1). The dats wartitioned by 2-
dimensional fixed changepoints and the number of grid cedls selected to be
15 in each direction. The changepoints were inserted dipbalocation 5 and
10 along each dimension. The number of nodesgas set to 10 and the number
of parents for each node was sampled from a Poisson distnibuthe regression
coefficientsa” together with the bias] of each segment were sampled from
a uniform distribution in the interval gf-1; —0.5] and[0.5,1.0]. The noisez,
was sampled from a normal distribution. Nodes without incgredge were
initialized to a Gaussian random number. The values of tn@ng nodes were
calculated at each grid cell following equation (1).

3.2. Ecological simulation of trophic interactions

For a more realistic evaluation, we followed Faisal et 801(@) and generated
data from an ecological simulation that combines a nicheeh@dilliams and
Martinez, 2000) with a stochastic population model (Lantale 2003) in a 2-
dimensional lattice.

Niche model. The niche model defines the structure of the trophic network
and has two parameters: the number of spegieand the connectance (or net-
work density) defined as/N? whereL is the number of interactions (edges) in
the network. Each speciesis assigned a niche valug,, drawn uniformly from
[0, 1]. This gives an ordering of the species, where higher valsthat species
are higher up in the food chain. For each species a niche @@pgedrawn from

8



a beta distribution with expected val2é€' (where(' is the desired connectance),
and species consumes all species falling in a ran§e that is placed by uni-
formly drawing the centre of the range froii,,/2, z,,]. An illustration is given
in Figure 1 by Williams and Martinez (2000). Despite its slitipy, it was shown
by the same authors that the resulting networks share marpaieristics with
real food webs.

Stochastic population dynamics. The population model is defined by a
stochastic differential equation where the dynamics ofltigeabundance,, (t)
of species: at timet can be expressed as:

AXo(t) _ . ou dAut) | dBu(t)
dt " eXa dt “dt

dE(t)
dt ®)

where X is the set of allXy(t), =, is the growth rate of species, o, is the
standard deviation of the demographic effett(t) is the species-specific demo-
graphic effectg, is the standard deviation of the species-specific environahe
effect, B, (t) is the species-specific environmental effects the intra-specific
density dependencé) is the effect of competition for common resources, is
the standard deviation of the general environmental effedt=(¢) is the general
community environment. The growth rates are location dependent (depend-
ing on the cell of a rectangular grid), with a spatial pattérat is generated by
noise with spectral densitf’ (with 3 < 0, andf denoting the spatial frequency
at which the noise is measured). An illustration is giveniguife 2. To model
species dispersal, we included an exponential dispersdeimahere the prob-
ability of a species moving from one location to another isedained by the
Euclidean distance between the locations.

Interactions. To incorporate the niche model, we modified the tepnin
(8) to include predator-prey interactions in the Lotkat&ola form. We explored
two versions: one where predatory interactions had a velgtstrong negative
effect on prey (strong predation) and one where the impaptedation was less
severe (weak predation). Strong predation is more akinatittonal predator-
eat-prey interactions, whereas weak predation is moretalpartially destructive
predation (e.g., grazing) or aggression.

Simulation. We applied this model to 10 species living in a 25-by-25 rect-
angular grid. We simulated the dynamics of this model for@B6t@&ps and then
recorded species abundance levels in all grid cells at tlz $tep; this corre-
sponds to an ecological survey carried out at a fixed mometiie. For each

X (t) = QUX) +op
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grid cell we counted the number of species that went extiflsese counts were
added up over all cells, yielding a total number of extinesioA simulation was

rejected if these extinctions exceeded the value 50. Theslitiold was introduced
in order to compensate for the unrealistic artifact thatradpced by prey being
not able to escape from predators beyond grid borders. Fbr @fathe spatial

(5 parameters displayed in Figure 4, 30 surveys were colldayedinning the

simulation repeately with different networks and parametdializations.

3.3. Real world plant data

We have applied the method to real-world data from Lennon.g811),
including 106 vascular plants and 12 physical variabletectdd from a 200m
X 2162m land strip at the western shore of the Outer Hebridpeesenting a
Machair vegetation. Samples were taken at 217 locatiord, Ba X 1m in size,
equally distributed with a 50m spacing. Plant samples wezasured as ground
coverage in percentage and physical samples as absoluts\v@uch as mois-
ture, pH value, organic matter and slope). The data was ¢togral transformed
after observing substantial skeweness in the distribsti&ach sample point was
mapped into a 2D grid (locations lacking data due to geogdedhitations (lochs
and bare rocks) were left empty). The spatial autocoraatalue for each plant
and location was calculated from neighbors inside a radid®m. Since we are
interested in plant interactions not mediated by diffeprferences for soil char-
acteristics, we defined that each plant has all 12 physicaVaonables as fixed
input, i.e., permanent predictor variables. We apply ourcBBnge-points model
along the longitudinal and latitudinal directions.

4. Comparative Evaluation

To evaluate the network reconstruction accuracy for thellsitad data, where
the true network structure is known, we proceed as followstwerksG are
sampled from the posterior distributidA(G|y), and we compute®(e;x|y), the
posterior probability of an edge; between nodes and k, which is given by
the proportion of networks in the MCMC sample that contaiis #dge. Let
E(0) = {ew|P(ex]y) > 0} denote the set of all edges whose posterior proba-
bility exceeds a given threshofde [0, 1], from which we determine the number
of true positive ' P), false positive {'P), true negative{ V), and false negative
(F'N) edges. We then compute the sensitivity/' /(TP + FN), the speci-
ficity = TN/(T'N + FP), and the complementary specificity = 1-specificity =
FP/(TN + FP). Rather than selecting an arbitrary value for the thresHpld
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we repeat this scoring procedure for all possible values®f|0, 1], and plot the
resulting sensitivity scores against the correspondingptementary specificity
scores. This gives the so-callegceiver operating characteristighROC) curve
shown in Figure 7. The diagonal line indicates the ROC cungeurandom ex-
pectation. The line marked with “perfect predictor” indiesia perfect retrieval of
all true edges without a single spurious edge. In general; B@ves are between
these two extremes, with a larganea under the ROC curf@UROC) indicating
a better performance. In particular, random expectatioresponds to a value of
AUROC=0.5, and a perfect predictor has an AUROC score ofAnCalternative
approach, which is preferred in many practical applicajoto plot the precision
against the recall, where recall is just another name fosigeity, and precision
is defined as the proportion of recovered interactions tteatarrect, precision =
TP/(TP + FP). The area under the precision-recall curve, AUPRC, is again
measure of the global network reconstruction accuracy wigarger value indi-
cating a better performance. Both measures are widelyepjplisystems biology
(Prill et al., 2010). They have certain pros and cons, as @sgrussed in Davis
and Goadrich (2006), and we therefore use them jointly inevatuation.

We compared the performance of BRAM, which correspondsedanrtbdel in
Figure 2c, with two alternative Bayesian regression mod&dg/esian regression
without changepoints (BR, Figure 2b) and Bayesian regvassithout change-
points and without allowing for spatial autocorrelationrR®, Figure 2a). We
included a comparison with L1-regularized linear reg@s$LASSO: Tibshirani
(1996, 2011)), using the optimization algorithm proposgdinandvalet (1998).
This method is widely applied in molecular systems biologgn( Someren et
al., 2006), has been recommended to be used more widely iogyc@®ahlgren,
2010), and was found to outperform all competing methodsdigafFet al. (2010).
The regularization parameterthat controls the network sparsity was inferred
with 10-fold cross-validation, which led to better resuttan optimizing the BIC
score. The method produces edge weights indicating thegitr@nd sign of in-
teractions among species. For obtaining the ROC and poeeiscall curves, we
ranked the potential interactions based on the absolutesalf the non-zero inter-
action parameters. We further included a comparison witbralimear Bayesian
network, as implemented in the software package BANJO. W& elized the data
with Hartemink’s pairwise mutual information method deised by Hartemink
(2001) (implemented iR packagebnlearn)®. Search was done using simulated

1This method yielded a better performance than quantileeligation. The number of dis-
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annealing with random walk proposals. Simulated annealiag run on each
dataset until convergence (typically 7 hours of CPU time)ing the top 100
high-scoring (BDe score) networks we computed edge préibabifor ranking.

Application of both LASSO and BANJO included taking spaaatocorrelation
into account. Finally, we applied BRAM to real world datayeeling putative
plant interactions.

5. Results and Discussion

In the following, we show how BRAM outperforms the other &zsimeth-
ods on synthetic data and on trophic simulations havingiapla¢terogeneity.
On simulations lacking clear spatial heterogeneity, whieeee is intrinsically no
room for improvement with a changepoint model, BRAM perfersmilarly to
LASSO. Finally, we explore how BRAM can be applied to reabdatr analysing
ecological systems.

On the synthetic data of Section 3.1, BRAM outperforms athpeting schemes
(Figure 3). This is not surprising, in that the data have lgrerated from a pro-
cess that is consistent with the modeling assumptions of BRAowever, it is
reassuring both that the MCMC inference scheme can suctigs$éal with the
increased model complexity, and that it leads to an impr@rgrover the com-
peting models in terms of actual network reconstructiorueaxy. For the data
simulated from the niche model, described in Section 3.2founad that BRAM
consistently outperforms BR-0 and BANJO (Figures 4-5). iimgrovement over
BR-0 confirms the importance of allowing for spatial auteetation in ecolog-
ical modeling. The improvement over BANJO underlines theiaental effect
of the information loss inherent in data discretization.eTomparison with BR
and LASSO leads to results that, on the face of it, appearctssusive. On the
weak predation data BRAM tends to outperform both BR and LASSgure 5),
while the latter methods are on a par with BRAM on the strorgdption data
(Figure 4). The difference between the two datasets re$temparameter choice
for the trophic interaction model described in Section B@. weak predation, the
abundance profiles showed much stronger spatial osciigttwan for strong pre-
dation, or conversely: for strong predation, these abucel@nofiles were much
flatter than for weak predation. This suggests that weakapiet leads to much
stronger spatial heterogeneity than strong predation.3@Showed, on average,

cretization levels was chosen to be 3 based on empirical¢astied out by Yu et al. (2004).
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the same performance as our simplified model without charigep If there is no

spatial heterogeneity, then there is not much benefit igusithangepoint model.
Hence, for strong predation with little spatial heteroggneur proposed model
with changepoints does not outperform our simpler modeéiovit changepoints,
and consequently it also does not outperform LASSO.

This raises the question of why strong predation leads tdpatial hetero-
geneity in the first place. Spatial heterogeneity implieg th some regions prey
are more affected by predators than in others. For strorgdpfion these fluctu-
ations are stronger than for weak predation, in fact so gttbat some prey are
driven to extinction. However, the way we set up the simalatiis such that pop-
ulations with an extinction rate above a threshold are tegecThis is motivated
by the limited size of the spatial area in our simulated egickl landscape. This
limited size ‘traps’ prey in an unnatural way; high extimctirates are rejected as
being ecologically unrealistic. Populations with the leghspatial heterogeneity
are the ones most affected by extinction, thus our rejectiechanism favours
more homogeneous populations when predation is stronghwhke confirmed
empirically by inspection of the spatial abundance profiles

Our simulation studies thus suggest that in the absenceatibbpeterogene-
ity, when there is no room for improvement, BRAM shows the sg@rformance
as LASSO (Figure 5). This is reassuring, given that LASSO fwasd to outper-
form all competing models by Faisal et al. (2010). When thegenuine spatial
heterogeneity, BRAM outperforms LASSO and all homogenaeonodels without
changepoints (Figure 4).

We have applied BRAM to the plant abundance data from theogamll sur-
vey described in Section 3.3. We sampled interaction nétaiouctures from the
posterior distribution with MCMC and computed the margipasterior probabil-
ities of the individual potential species interactionsgdascribed in Section 2.7.
We kept all species interactions with a marginal posterrobpbility above 0.2,
resulting in 39 out of 106 species with relevant interactionthe reconstructed
network shown in Figure 6. The right panel in this figure shokaesrecovered
network for a higher threshold of 0.5. Negative interacsiovere displayed as
dashed lines and positive interactions as full lines. Theyewderived as mean
edge weights over all segments and multiple samples froMkIC chain.

Since we had defined the 12 soil attributes as fixed preditboesich plant,
the interactions in this network represent plant-plargriattions not mediated by
similar soil preferences. This network can lead to the farmmmeof new ecological
hypotheses. For instand@anunculus bulbosuyspecies 14) is densely connected
with five interspecific links above the threshold. Can thatdbated to its tolerance
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for nutrient-poor soil and its preferred occurrence in ggecich patches? There
is a noticeable imbalance between positive and negatieeactions. The dom-
inance of positive interactions in the Machair vegetat®surprising given that
much research in ecology has emphasised the role of competiithin commu-
nities, though this is now changing as the potentially inigairrole of facilitation
is recognised (e.g. Bruno et al. (2003)). It is worth rememnmigehowever that the
interactions observed in these data occur between spétiessame trophic level
and as such are but one horizontal slice of a much more corh@earchical food
web involving plant pathogens, insect and mammalian herbs/and their preda-
tors. Nonetheless, the relative lack of negative intesastis intriguing in that it
suggests that interspecific competition does not domihgetassland system.

Figure 8 shows, for a selected plant species, the margisétpor probability
of a changepoint along the longitudinal direction as welihesposterior coocur-
rence matrix, as introduced by Grzegorczyk and Husmeiekr(ROWe clustered
plant species on the basis of these coocurrence matriceg,aisimple clustering
algorithm (K-means with restarts) combined with the gapstia for deciding on
the number of clusters (Tibshirani et al., 2001; Hastie gt26l01). The results
are shown in Figure 9. Ecologists could make use of clusiieeshese to, e.g.,
identify species which share similar ecological sengiggi These results demon-
strate that the proposed method provides a useful tool fupeative data analysis
in ecology with respect to both species interactions antadfeeterogeneity.

6. Conclusions

We have addressed the problem of reconstructing specezaation networks
from species abundance data. To this end, we have proposagesiBn model
combining Bayesian piecewise linear regression with mpldtchangepoint pro-
cesses. The work is motivated by a model recently proposeldeirmolecular
systems biology literature (Lebre et al., 2010), but hantelapted from the tem-
poral domain (gene expression time series) to the spats(srapshot of species
distributions in space, typical of ecological surveys). Wave introduced and
tested two essential modifications, illustrated and magiyan Figure 1. First,
we extended the 1-dimensional changepoint process frdmel&t al. (2010) by
a 2-dimensional one, which corresponds to a richer latemdabia structure that
allows modeling unobserved effects with smooth geograbhiariation. Sec-
ond, we explicitly introduced an additional enforced paresde for each species,
which represents the average species abundance from ttial siggghborhood
of the current location and thereby allows a correction f@tsl autocorrelation.
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We tested our model on data from a trophic simulation, whimmlgsines spatial
species dispersal with demographic and environmentatteféend predator-prey
interactions of the Lotka-Volterra form defined by a tropmétwork obtained from
a niche model. Our results show that the proposed modelstensly outperforms
a Bayesian regression model that does not allow for spatiaicarrelation, as
well as a non-linear Bayesian network with the BDe score. @amson with L1-
regularized sparse regression (LASSO) and Bayesian sggresithout change-
points reveals the following. In the absence of pronoungedial heterogeneity
(strong predation), when there is no room for improvement tive homogeneous
models, the performance of BRAM is on a par with LASSO and Bayeregres-
sion (Figure 4). In the presence of spatial heterogeneigakypredation), BRAM
clear outperforms all competing models (Figure 5).

An application to plant species abundance data from a recefgical survey
has demonstrated how the proposed method can be used ad@ togbothesis
generation with respect to species interactions and s$ghsittibution patterns.
The main problem with real data analysis is the ‘objectiwaleation. In ecol-
ogy, we currently lack any gold standard, and the situasomare difficult than
in molecular systems biology, where several databased albmlacular functions
and interactions exist. A more thorough evaluation of oudei®n real data,
which is the objective of ongoing work, needs to be done iseloollaboration
with ecologists and will ultimately be based on somewhatomstantial evidence.
For the purpose of method assessment we will therefore puisyparallel, more
extensive studies based on simulated data, with the obgetctimake the under-
lying models increasingly ecologically realistic.

Future Work. There are two lines along which the current work can be exdénd
First, the present changepoint model is overly restrigtivéne sort of partitions
that it produces. For situations in which the propertieshef écosystem change
rapidly in some areas, but slowly in others, the model wiljuiee a fine partition
everywhere as the edges of small squares in rapidly chaag#ag will extend and
bisect the large rectangles in slowly changing areas. Thigld small squares
everywhere and as a result more parameters are requiraédddadess efficient
inference. Furthermore, even if the rate of change of patensies uniform, if the
geographic extent of the ecosystem is large, then rectanglebe unnecessar-
ily bisected by edges extending from distant parts of theyggahy. Instead of a
changepoint model in which the x and y axis partitions arep@hdent, an inter-
esting research project would be to use a Mondrian procegzoposed by Teh
and Roy (2009). This would allow the level of fineness of theifian to vary, so
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that details about the partition in one area do not unneabssatend to others.
Alternatively, a Pitman-Yor processes (Sudderth and Jor2@09) (i.e. a distant
dependent Dirichlet process), in analogy with image segatiem, could be at-
tempted. Or, as the locations of the points from which samate collected are
discrete, a Dirichlet process mixture of Gaussians couldiiéé; this latter option
would have the advantage of not increasing the complexitigeoimplementation.

The second potential improvement concerns the parameter por the cur-
rent prior on the regression model (3) the coefficients asaragd to be distributed
according to a zero-mean multivariate Gaussian with a cavee drawn from an
inverse gamma distribution. This prior is symmetric arotndnd hence does
not discourage sign changes. A justification can, in facgieen based on vari-
ous recent ecology publications, which discuss how thereatiinteractions can
change with varying environmental conditions (e.g. Cadlpand Walker (1997);
Valiente-Banuet and Verdl (2008); Maestre et al. (2009pl€r et al. (2001)).
Mutualistic interactions may become neutral or antagan{se. involve a sign
change), either temporarily or over parts of the range ofinteracting species,
and this is not ruled out by the prior we employ. However, tenarios described
above are, overall, quite rare, and they are in particulbkely to apply to trophic
interactions. In fact, if we know that, for two interactingexies A and B, A eats
B in rectangle 1, we would assume that it is more likely that#oa&ats B in rect-
angle 2 than the other way round. This prior notion can berpm@ted into the
model by putting a species dependent prior on the mean, avdrdy the mean
independently from this prior for each rectangle. The imm@atation of this idea
effectively adds an extra layer to the Bayesian hierarchg, lzaas recently been
investigated by (Grzegorczyk and Husmeier, 2012) in théecdrof molecular
systems biology.
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Figure 1: lllustration of the improved method for ecological network reconstruction. Panel
(a) illustrates the naive approach to modeling species intiermnetworks. Circles represent
species (nodes), and arrows present species interactidgss). Networks inferred from species
abundance or population density data alone tend to containy ispurious interaction®anel (b):
Allowing for spatial autocorrelationEach node is hard-wired to an indicator node (square) that
represents, via equation (2), the average populationigenshe spatial neighborhoo@anel (c):
Allowing for missing dataThe model can be further improved by connecting all nodedateat
node that represents unobserved effects. The observé#ims st a node is, in the first instance,
predicted by the spatial neighborhood and/or the lateriable. Only if the explanatory power
of these correction schemes is not sufficient will there bénaantive for the inference scheme
to include further edges related to species interactioesice the effect of these corrections is to
reduce the network connectivity and filter out spuriousrextéons.
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Figure 2: Spatial autocorrelation. The figure shows the spatial distribution of growth ratgs
entering equation (8) as the spatigparameter, defined in Section 3.2, decreases from -2 to -8. A
value of 0 would correspond to uniformly random noise, anig 2rownian noise.
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Figure 3: Comparison on synthetic data.Boxplots of AUROC (left panel) and AUPRC (right
panel) scores obtained with three methods on the synthatigcdescribed in Section 3.1: the pro-
posed model (BRAM), a Bayesian linear regression modelawittthangepoints and correction
for spatial autocorrelation (BR-0), sparse L1-regulatitbeear regression (LASSO), and a homo-
geneous Bayesian network with the BDe score (BANJO). Nceotion for spatial autocorrelation
is required. The boxplots show the distributions of the esdor 30 independent data sets, where
the horizontal bar shows the median, the box margins sho@3tteand 75th percentiles and the
whiskers indicate data within 2 times the inter-quartilegea.
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Figure 4: Comparative evaluation of five network reconstruction mettods, strong predation.
AUROC (left column) and AUPRC (right column) scores obtdima the trophic simulated data
described in Section 3.2. Top row: absolute scores. Botimm difference scores, with the
proposed model (BRAM) taken as a reference, i.e. positiegdtive) values indicate a better
(worse) performance of BRAM. The abscissa representgdifferalues of the spatiglparameter,
whose influence is illustrated in Figure 2. Panédg:Absolute AUROC values for BRAM (white),
BR (light gray), BR-0 (gray), LASSO (dark gray), Banjo (dask gray);(b) Absolute AUPR
values;(c) Pairwise difference of AUROC an@) AUPR. For an interpretation of the boxplots,
which show a distribution of the scores over 30 independatasts, see Figure 3.
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Figure 5: Comparative evaluation of five network reconstruction mettods, weak predation.
AUROC (left column) and AUPRC (right column) scores obtdima the trophic simulated data
described in Section 3.2. The simulations were carried sdibrFigure 4, but with a weakened
influence of the predators on the prey. See the caption of&iyfor details. Panelga) Absolute
AUROC values for BRAM (white), BR (light gray), BR-0 (gray)l ASSO (dark gray), Banjo
(darkest gray)(b) Absolute AUPR valuegc) Pairwise difference of AUROC and) AUPR.
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Figure 6: Species interaction network inferred with BRAM from the ecdogical survey data
described in Section 3.3The graph displays species interactions with an inferredjmal pos-
terior probability of0.2 (left panel) and).5 (right panel). Several soil attributes were defined to be
fixed inputs to each plant. Solid lines correspond to pasititeractions (e.g. mutualism, facili-
tation) and dashed to negative (e.g. resource competitidrg species, represented by numbers,
have been ordered phylogenetically, with the four group®dds (1-19), grasses (20-29), rushes
(30-33) and sedges (34-39). Full species names of the mdieelisted in the Supplementary

Material, Table Appendix A.
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Figure 7: Receiver operating characteristic (ROC) curve.The figure shows the ROC curve for
a perfect predictor, random expectation, and a typicaliptedbetween these two extremes.
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Figure 8: Inferred spatial segmentation for a selected plant specie£arex pulicaris. Left
panel: Marginal posterior probability of a change-point occuraigng the longitudinal direction
in arbitrary units (corresponding to the plot location IDnmoer in the ecological surveyRight
panel: Cooccurrence matrix for the selected plant species. The @@esent the position along
the longitudinal direction, as before. The grey shadingciaigs the posterior probability of two
longitudinal positions being assigned to the same spatghent, i.e. of not being separated by a
changepoint, ranging from 0 (black) to 1 (white).
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Gap statistic of changepoint co-allocation

Clustering of principal components (4 clusters)
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Figure 9: Clustering of plant species based on their inferred spatiasegmentation.The plant
species included in the ecological survey described ini@e& 3 were clustered on the basis of
the inferred coocurrence matrices, shown in Figureedt panel: The gap statistic, as proposed
by Tibshirani et al. (2001) and Hastie et al. (2001), suggtsitk = 2 andk = 4 are reliable
cluster numbers because the gap difference to the subgedusterGAP (k) — GAP(k + 1), is
greater than the standard erroGal P (k). This indicates that the increase of the sum of pairwise
distances fronk to k£ + 1 is significant and, hence, thatis a reasonable cluster numb&ight
panel: A plot of the plant species in the space spanned by the finstipal components that were
computed from the inferred coocurrence matrices. The sysnbdicate cluster membership and
the large crosses the center of each cluster.
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Appendix A. Table
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Table A.1: Indices with full scientific names as appearingigure 6. These plants can be assigned
to four taxonomies of forbs (1-19), grasses (20-29), ru¢B@s33) and sedges (34-39).

ID Name

Anagallis tenella
Calluna vulgaris
Drosera rotundifolia
Epilobium palustre
Galium verum
Hypochaeris radicata
Leontodon autumnalis
Lychnis flos-cuculi
Odontites verna

10 Plantago lanceolata
11 Potentilla erecta

12  Potentilla palustris

13  Prunella vulgaris

14  Ranunculus bulbosus
15 Ranunculus repens
16  Sagina procumbens
17  Succia pratensis

18  Trifolum repens

19 Violariviniana

20  Agrostis capillaris

21  Aira praecox

22 Anthoxanthum odoratum
23  Cynosurus cristatus
24 Festucarubra

25 Festuca vivipara

26  Holcus lanatus

27  Koeleria macrantha
28 Molinia caerulea

29 Poa pratensis

30 Juncus effusus

31  Juncus kochii

32  Luzula campestris

33 Luzula pilosa

34 Carex arenaria

35 Carex demissa

36 Carex dioica

37 Carex flacca

38 Carex nigra

39  Eriophorum angustifolum
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