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Abstract

Functional Data Analysis (FDA) is devoted to the study of data which are func-

tions. Support Vector Machine (SVM) is a benchmark tool for classification,

in particular, of functional data. SVM is frequently used with a kernel (e.g.:

Gaussian) which involves a scalar bandwidth parameter.

In this paper, we propose to use kernels with functional bandwidths. In this

way, accuracy may be improved, and the time intervals critical for classification

are identified.

Tuning the functional parameters of the new kernel is a challenging task ex-

pressed as a continuous optimization problem, solved by means of a heuristic.

Our experiments with benchmark data sets show the advantages of using func-

tional parameters and the effectiveness of our approach.

Keywords: Data mining, Functional Data classification, parameter tuning,

SVM, functional bandwidth.

1. Introduction

Functional Data Analysis (FDA) has received considerable attention from

researchers, [28, 46, 47, 62] and practitioners in many different fields, such as
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spectrometry, meteorology, [43], client segmentation, [38], speech recognition,

[49], or physical, [44, 59], and chemical processes, [6, 8].

FDA can be considered as a generalization of the standard multivariate analysis

to address problems in which data have an infinite-dimensional nature.

The direct application of classic methods of multivariate analysis on infinite-

dimensional data may have dramatic consequences in the obtained results. The

curse of dimensionality is a clear example of this situation. Indeed, although

theoretically data are described as functions, in practice functional data are rep-

resented by high dimensional vectors, yielding problems in which the number

of observations is lower than the number of features and which cannot be han-

dled by standard multivariate analysis tools. Furthermore, it is worthwhile to

mention that the methodologies used for multivariate vectors do not exploit the

functional behavior of the data since the high correlations among the different

coordinates are not taken into account.

In this work, we focus on a challenging problem in FDA: functional binary clas-

sification, i.e., how to classify functional data into two predefined classes using

the information provided by a training sample [2, 4, 23, 28, 45]. Support Vector

Machine (SVM) [13, 14, 19, 20, 39, 41, 42, 56, 61] is one of the most used tools

in multivariate classification, and it has also been widely applied for functional

data. See [7, 34, 43, 44, 49, 50] among others.

As stated before, solving functional data problems, and more specifically, the

functional classification problem, implies the use of specific techniques that take

advantage of the intrinsic functional nature of the data.

For SVM, [49] exploits the functional behavior of the data by adapting the classi-

cal kernels to functional kernels through the so-called transformation-based and

projection-based kernels. Nevertheless, the whole range of the data is weighted

with a single scalar bandwidth.

The functional nature of the data is taken into account in [36], generalizing the

work done in the multivariate case in [32, 53]. Data are classified according to

a dissimilarity measure with a functional weight. Such a functional weight is

represented in terms of simple basis functions whose parameters are sought via
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stochastic gradient.

To the best of our knowledge, no strategy has been presented in the literature

using a supervised tool, e.g., SVM, in which different ranges in the domain of

the functions are optimally selected by means of a functional weight in the ker-

nel. Therefore, one of the main contributions of this paper is to define a new

functional kernel. Such kernel has a functional bandwidth that optimally weighs

the different values of the domain of the function. Similar ideas have been used

in references such as [10, 15, 26, 52] for kernel density estimation, and in [11, 65]

for functional regression.

We propose to embed the new functional kernel into an SVM algorithm. Both

the kernel and the SVM parameters are tuned with a surrogate of the accu-

racy, namely, the correlation between the actual class and the SVM score. See

also [3, 57, 58] for more details on the use of surrogate measures for the accu-

racy. Such parameter tuning yields a continuous optimization problem, allowing

us to use gradient methods, known to be more efficient than the optimization

methods available for piecewise constant performance measures, such as the mis-

classification rate. Moreover, the proposed method is enhanced by defining a

hierarchy of kernel bandwidths models of increasing complexity, inspired by the

nested model previously proposed for Multiple Kernel Learning in [12]. Using

this hierarchy provides wide flexibility since complex parameterizations of the

functional bandwidth can be efficiently optimized from more simple ones.

The remainder of the paper is structured as follows. In Section 2 we present

the SVM classification model for functional data. Section 3 describes the op-

timization method used to tune the bandwidth parameters. We focus on the

alternating procedure proposed to this purpose, and on the structure of the hi-

erarchy of kernels. Section 4 is devoted to the numerical experiments, showing

that our approach outperforms the method in which one single scalar parameter

bandwidth is chosen. Finally, some conclusions and extensions are described in

Section 5.
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2. Functional Bandwidth

In this section, we formulate the SVM problem for functional data classifi-

cation. See [20] for a broader and more comprehensive presentation of SVM.

We have a sample s of observations; each observation i ∈ s has associated a pair

(Xi, Yi), where each Xi : [0, T ]→ R belongs to the set X of Riemann integrable

functions in the time interval [0, T ]. Furthermore, Yi ∈ {−1,+1} denotes the

class label for the observation i. Our goal is to find a classification rule to infer

the class Y of a new functional observation X ∈ X .

The well-known technique SVM considers a kernel K : X ×X → R, [20, 49, 50],

and builds, from a sample s, nonlinear classifiers by means of a score Ŷ (X) of

the form:

Ŷ (X) =
∑
i∈s

αiYiK(X,Xi), X ∈ X , (1)

yielding the following classification rule: a functional observation X ∈ X is

assigned to class +1 if and only if Ŷ (X) > β, where β is a given threshold

value. Here the values αi, i ∈ s, are obtained as the optimal solution of the

following optimization problem:
max
α

∑
i∈s

αi − 1
2

∑
i,j∈s

αiαjYiYjK(Xi, Xj)

s.t.
∑
i∈s

αiYi = 0

αi ∈ [0, C], i ∈ s,

(2)

for a scalar regularization parameter C to be tuned, usually by k-fold cross-

validation with a grid search on a sufficiently large interval.

Many types of kernels for data in Rd are proposed in the literature, e.g., the

linear kernel, the polynomial kernel, or the Gaussian (RBF) kernel, given by:

K(Xi, Xj) = exp

(
−

d∑
t=1

(Xit −Xjt)
2ω

)
, Xi, Xj ∈ Rd (3)

where ω is a scalar bandwidth to be tuned, [12, 13, 20, 33, 37]. In this paper,

for simplicity, we only focus on the Gaussian kernel, one of the most used and

effective kernels, which will be used in what follows.
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The expression (3) of the Gaussian kernel for data in Rd has been generalised

to a Gaussian kernel for functional data, e.g. [35, 60]. Nevertheless, in these

papers, the associated bandwidth is always considered to be a scalar value. In

our proposal we extend the fixed scalar bandwidth parameter ω in an RBF kernel

to a functional bandwidth, ω(t), that varies along the range of the functional

data, (4):

K(Xi, Xj) = exp

(
−
∫ T

0

(Xi(t)−Xj(t))
2ω(t)dt

)
(4)

Throughout this paper, we assume that ω in (4) is a non-negative Riemann

integrable function in [0, T ], and thus K is well-defined.

It is worth mentioning that the simplest extension from the kernel with vector

data (3) to the kernel with functional data (4) would be to consider ω(t) as a

constant function, as in [35, 60]. Nevertheless, the main contribution of this

paper is to consider such bandwidth as a function which adapts to the structure

and shape of the data and may lead to better insight and classification rates.

More specifically, making ω depend on t allows us to identify those subintervals

in [0, T ] which are critical for classification, namely, those for which ω(t) takes

highest values.

Example 2.1. As an illustration, let us study the regions data set [43], in which

the daily temperature has been measured along a year in each of 35 Canadian

weather stations. Two groups can be distinguished: Atlantic climate (label -

1), with 15 records, versus the rest of climates (label 1), with 20 records. Our

objective is to discriminate between both classes. Figure 1 depicts the 15 curves

in the interval [1, 365] corresponding to the Atlantic climate, in solid black

line, and the 20 curves corresponding to the rest of climates, in dashed red line,

with the data measured every single day. This is, by nature, a Functional Data

classification problem. However, it may be considered as a classic classification

problem with 15+20 records in Rd, d = 365 (the number of time instants at

which the temperature has been actually recorded), and thus one can apply the

classic SVM in the form (3) for some ω to be tuned. Observe that this model is
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Figure 1: regions data set.

the same as model (4) with

ω(t) = ω, ∀t ∈ [0, T ] with T = 365, (5)

and the integral evaluated numerically in the grid of time instants where the

temperature is measured. Using SVM with a constant ω(t) as in (5) leads to a

classifier with the out-of-sample confusion matrix shown in Table 1.

Now, let us consider the very same RBF model with a functional bandwidth ω(t)
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of the form

ω(t) =

 ω1, if 0 ≤ t ≤ τ1
ω2, if τ1 < t ≤ 365,

(6)

where ω1, ω2, τ1 are parameters to be tuned using the techniques described in this

paper. In other words, with the bandwidth in (6) we split the interval [0, T ] into

two pieces, giving different weights to each time interval. The SVM classifier

obtained this way leads to the out-of-sample confusion matrix in Table 2.

Comparing Tables 1 and 2 we can see that the traditional SVM yields an accu-

Label -1 Label 1

Label -1 51.42% 5.71%

Label 1 11.42% 31.42%

Table 1: Confusion matrix with ω

as in (5)

Label -1 Label 1

Label -1 54.28% 2.85%

Label 1 8.57% 34.28%

Table 2: Confusion matrix with ω

as in (6)

racy of 82.84%. On the other hand, our SVM with the very same RBF kernel

but using a functional parameter of the form (6) yields an accuracy of 88.56%,

instead.

Regarding the interpretability of the results, Figures 2 and 3 show the boxplots

of the values of the bandwidth ω as in (5), and the values of ω1, ω2 and τ1, as in

(6). The single-bandwidth approach gives the same importance to all the months

of the year with the majority of the bandwidth values between 50 and 150. In

contrast, our functional-bandwidth methodology with two different pieces pro-

posed to divide the whole year into two parts, before and after summer (months

of June and July), see Figure 3. Moreover, according to the values of ω1 and ω2,

in order to get good classification predictions, we should focus on the second half

year and give more importance to the second part, i.e., the autumn and first

months of winter, which coincides to the time instants when the temperature

begins to decrease.
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(b) Bandwidth value with ω as in (6)

Figure 2: (a) and (b) show the bandwidth values for the regions data set when ω has the form

of (5) and (6), respectively.

The previous illustrative example demonstrates that even a simple functional

bandwidth such as (6) may yield improvements in accuracy. Such improvement

is a consequence of the adequate choice of the parameter τ1, which combined

with good values of ω1 and ω2 allow us to identify the suitable intervals for

classification. The functional bandwidth parameter ω(t) gives more flexibility,

which should result in greater precision. For instance, it may be chosen in the

class of piecewise constant non-negative functions in [0, T ] with H pieces, i.e.,

one can naturally assume that ω(t) has the form (7)

ω(t) =



ω1, if 0 ≤ t ≤ τ1
ω2, if τ1 < t ≤ τ2
· · ·
ωh, if τh−1 < t ≤ τh
· · ·
ωH , if τH−1 < t ≤ T

(7)

where ω1, . . . , ωH ≥ 0 and 0 ≤ τ1 ≤ . . . ≤ τH−1 ≤ T are parameters to be

8



●

●

●

●

●●

●

τ1

Time instants

M
on

th
s

J
F

M
A

M
J

J
A

S
O

N
D

Figure 3: Time instant results for the regions data set with ω as in (6).

tuned. Instead of piecewise constant functions, one could consider ω(t) belong-

ing to the class of polynomials of degree H which are non-negative in [0, T ],

the class of piecewise polynomial functions non-negative in [0, T ], or the non-

negative splines, [24, 31].

The use of functional parameters in the kernel may lead to significant improve-

ments in the accuracy, as demonstrated in our numerical experiments. The price

to pay for obtaining such gains in the accuracy is the fact that tuning the func-

tional parameters calls for using more sophisticated optimization procedures.

In Section 3 we detail how the underlying optimization problem for tuning ω(t)

is solved.

3. Optimal Selection of the Functional Bandwidth

In this Section, a detailed study of the mathematical formulation of the

(functional) parameter tuning in SVM classification is presented. Section 3.1
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explains how to formulate the optimization problem involved and how to solve it.

In Section 3.2 a nested heuristic to address the tuning problem more efficiently

is described. In this way, we exploit the fact that the bandwidths considered

are elements of a nested family of kernels. Section 3.3 details how to choose the

number of pieces, H, of the functional bandwidth.

3.1. Problem Formulation and Optimization

Parameter tuning in the classification of functional data with SVM implies

the optimal choice of two very different elements: the scalar regularization pa-

rameter C in (2), and the kernel K in (4) through ω(t). The problem of finding

the best function ω(t) in (4), is not tractable as a rule in its full generality.

Hence, we restrict our attention to certain classes of functions parameterized by

a vector θ belonging to a certain set Θ, i.e., ω is expressed as ω(t, θ), and the

choice of the function ω is equivalent to choosing the parameters θ.

Example 3.1. For the bandwidth given in (7), one would have that

θ = (ω1, . . . , ωH , τ1, . . . , τH−1), and Θ = {(ω1, . . . , ωH , τ1, . . . , τH−1) :

ωh ≥ 0, ∀h, τh ∈ [0, T ], h = 1, . . . ,H − 1, τ1 ≤ . . . ,≤ τH−1}. For convenience,

we consider τ0 = 0 and τH = T .

In principle, in order to find the optimal values of the parameters, C, and θ, a

strategy based on a grid search on both parameters could be applied. Given a set

of predefined pairs of values (C, θ), one first solves (2) to obtain the coefficients

α of the score function (1), and then the corresponding accuracy associated to

that pair is computed. However, this approach may become too time consuming,

and thus a more sophisticated heuristic is proposed in these lines. We propose

to follow the standard grid approach to optimize C. Nevertheless, when seeking

the parameters θ and α we propose to solve a bilevel problem where some mea-

sure of the quality of θ is maximized for the α provided by the SVM classifier,

i.e., for the α solving (2).

Many criteria can be chosen to guide the choice of parameter θ. One may, for

instance, minimize the misclassification rate, which is the default approach for

10



tuning the parameter C. However, the misclassification rate has a discrete na-

ture that would prevent us from using continuous optimization techniques, and,

in particular, from gradient-based methods. Instead, we propose to maximize

the Pearson correlation, R, between the class label Yi of the functional data

Xi and the score, Ŷ (Xi, θ, α) in (1), where all the variables, including the time

instants, are treated as continuous variables. Other references in the literature,

such as [7, 34], have previously used with excellent results the Pearson corre-

lation coefficient. Despite the fact that, when using the Pearson correlation

coefficient as a surrogate of accuracy, a linear relationship between the binary

label, Y ∈ {−1, 1}, and the real-valued score, Ŷ ∈ R, is implicitly assumed, this

coefficient is very fast to compute, and even more important, it also allows us

to use gradient-based methodologies since its optimization amounts to solving

a continuous optimization problem.

It is very well known that building a classifier and evaluating its performance

over the same data set leads to overfitting. In such a case, the model fits the

data set too well but performs poorly in unseen data. On top of that, the classi-

fier can depend on parameters that must be tuned, usually done by performing

a grid search in a suitable range of values. The usual way to avoid overfitting

in this general situation is to split the data set, perhaps within a k-fold cross-

validation framework, in three parts, the so-called training, validation, and test

samples. For a given choice of the parameters, the first two ones are used to

build the model and estimate its performance, respectively; once the best pa-

rameters have been chosen, the final model is tested on the last sample. In our

case, we take this idea further by creating four independent samples, due to the

structure of our resolution method. First, the data set is divided into k folds.

Second, k−1 folds are again split into three samples named s1, s2, and s3, while

the remaining fold is denoted by s4. Samples s1 and s2 play the role of training

samples, whereas s3 and s4 form the validation and testing sets, respectively, as

will be detailed next.

The first independent sample s1 is employed for the resolution of Problem

(2), that is the classic SVM formulation, to obtain a classification rule by
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means of α, for fixed parameters θ and C. The second independent sample

s2 is used to measure the quality of parameters θ, i.e., it is used to calculate

R((Yi, Ŷ (Xi, θ, α))i∈s2), the correlation between the class labels and the scores.

To find the regularization parameter C, we measure the accuracy in the sample

s3 for all the different possible values of C in the grid, and we keep the C pro-

viding the largest accuracy. Finally, the accuracy in the independent sample s4

is measured.

After all these considerations, for fixed C, the bilevel problem can be expressed

as: 
max
θ,α

R((Yi, Ŷ (Xi, θ, α))i∈s2)

s.t. α solves (2) in s1

θ ∈ Θ

(8)

Note that we have emphasized the dependence of the score Ŷ on θ and α by

including them in the notation. In the cases where the values of the parameters

in θ, or the classification coefficients α are clear enough, we will omit them for

the sake of simplicity.

Problem (8) is a nonlinear bilevel optimization problem, which can be handled

with off-the-shelf strategies, as those described in [18]. These techniques are,

however, rather expensive. Recall that (8) is only a surrogate of our real prob-

lem. Hence, instead of the above-mentioned standard methodologies, we next

propose an alternating approach for which only a few iterations will be carried

out. Firstly, in the first step of our alternating approach, for fixed parameters

θ and C, a classification rule is obtained by means of α solving Problem (2),

that is, the classic SVM formulation. Problem (2) is a concave quadratic max-

imization problem, which can be solved by standard local search optimizers or

specific routines, as in [29, 48]. Secondly, in the second step, for fixed α and C,

θ is chosen by solving:

max
θ∈Θ

R((Yi, Ŷ (Xi, θ))i∈s2) (9)

Problem (9) is a continuous optimization problem which is solved by using

standard local search techniques within a multi-start strategy. The alternating
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procedure will alternate these two steps until some stopping criterion is met.

Suitable values for θ and α will be obtained by this procedure for a specific

value of the regularization parameter C.

The value of C will be chosen by a grid search, as commonly done in standard

SVM. This means that, for every value of C in a given grid, we measure the

accuracy in s3 of the classification rule obtained with the best θ and α found as

solutions of Problem (9). The C with the largest accuracy in s3 will be chosen.

Finally, we estimate the correct classification rate using the fourth independent

sample, s4.

A pseudocode of the heuristic is outlined in Algorithm 1, and in Section 3.2,

we detail an extension to more complex models by means of a nested heuristic,

described above.

Algorithm 1 Heuristic for parameter tuning

Input: H

• Randomly split the sample s into s1, s2, s3 and s4.

for C in the grid do

Alternating Procedure

repeat

1. Fixed θ, calculate the parameters α of the SVM classifier

by solving Problem (2) in s1.

2. Fixed α, calculate θ by solving Problem (9) in s2.

until stopping criteria

• Evaluate the accuracy in the sample s3 with C fixed.

end for

• The optimal value of C is the one with the best accuracy in s3. The optimal

values of α and θ are the ones associated to the optimal parameter C.

Output: optimal parameters C and θ, optimal classification coefficients α,

and the corresponding accuracy estimated from s4.
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3.2. Optimization Enhancement. A Nested Optimization

When the dimension of θ is high, the approach described in Section 3.1 may

be time-consuming. The main reason is that, on top of the grid search needed

for C, Problem (9) may have many local minima, and therefore multiple local

searches are required to find a good solution. The success of the method would

be improved if, instead of a random multi-start, a more intelligent search strat-

egy were possible. This is the case, for instance, for models of the bandwidth

parameter ω(t, θ) that can be plugged into a sequence of models of increasing

complexity. Thus the optimal solution obtained in the simple model can be used

as a starting solution in the following more complex case.

The above-explained methodology can be easily embedded in a nested heuris-

tic for SVM parameter tuning, [12], in which a nested structure of kernels is

assumed. More precisely, given a family of kernel functions, we construct a se-

ries of nested kernel models with their associated parameters, or equivalently, a

series of H nested functional bandwidths ω(1)(t, θ(1)) ≺ . . . ≺ ω(H)(t, θ(H)). By

ω(h)(t, θ(h)) ≺ ω(h+1)(t, θ(h+1)) we denote that the bandwidth ω(h)(t, θ(h)) has

parameters which are part of the parameters of the bandwidth ω(h+1)(t, θ(h+1)).

Example 3.2. Consider the family of piecewise constant functions with 3 pieces,

in (7). We have that ω(1)(t, θ(1)) = ω1, with θ(1) = ω1, ω(2)(t, θ(2)) = ω1I[0,τ1] +

ω2I(τ1,T ], with θ(2) = (ω1, ω2, τ1), and finally ω(3)(t, θ(3)) = ω1I[0,τ1]+ω2I(τ1,τ2]+

ω3I(τ2,T ], with θ(3) = (ω1, ω2, ω3, τ1, τ2). Here I[r,r′] denotes the indicator func-

tion, i.e., the function which is equal to 1 in the interval [r, r′] and 0 otherwise.

The idea of using nested models is to take advantage of the easy-to-tune

structure of the elementary models and consider them as a simplification of the

complex models.

When solving Problem (8) for ω(H)(t, θ(H)) we will use a sequential approach

where the (suboptimal) solution obtained when using ω(h)(t, θ(h)), will be used

as an initial solution of Problem (8) with ω(h+1)(t, θ(h+1)).

Example 3.3. For the bandwidth given in (7), once we have obtained the (sub-

optimal) solution of ω(h)(t, θ(h)) by θopt(h) = (ωopt1 , . . . , ωopth , τopt1 , . . . , τopth−1), we

14



randomly select an interval [τ`−1, τ`) and split it into two pieces by its midpoint,

assigning the same bandwidth value to such two new pieces. In other words,

the initial point of the parameters in the level h + 1 turns out to be θ(h+1) =

(ωopt1 , . . . , ωopt`−1, ω
opt
` , ωopt` , ωopt`+1, . . . , ω

opt
h , τopt1 , . . . , τopt`−1,

τopt` +τopt`−1

2 , τopt` , . . . , τopth ).

The pseudocode of the nested algorithm defined in Section 3.1, is shown in Al-

gorithm 2.

Algorithm 2 Nested heuristic for parameter tuning

Input: H, nested functional bandwidths ω(1)(t, θ(1)) ≺ . . . ≺ ω(H)(t, θ(H)).

• Randomly split the sample s into s1, s2, s3 and s4.

for C in the grid do

Initialization:

• h := 1.

• Randomly select an initial solution θ(h) ∈ Θ(h).

• Set θ := θ(h)

while h ≤ H do

1. Using samples s1 and s2, run the Alternating Procedure of

Algorithm 1 for ω(t, θ(h)), starting from θ and yielding

θopt(h) = (ωopt1 , . . . , ωopth , τopt1 , . . . , τopth−1) as solution.

2. Randomly select ` ∈ {1, 2, . . . , h}.

3. Set

θ :=(ωopt1 , . . . , ωopt`−1, ω
opt
` , ωopt` , ωopt`+1, . . . , ω

opt
h , τopt1 , . . . , τopt`−1,

τ
opt
`

+τ
opt
`−1

2 , τopt` , . . . , τopth−1)

and h := h+ 1.

4. Evaluate the accuracy in the sample s3 with C fixed.

end while

end for

• For h fixed, the optimal value of C is the one with the best accuracy in

s3. The optimal values of α and θ(h) are the ones associated to the optimal

parameter C.

Output: optimal parameters C, θopt(h) , ∀h, the associated classification coeffi-

cients α, and the accuracy estimated from s4.
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3.3. Choice of the number of pieces, H

Thus far we have assumed that the number H of pieces is given as input in

the problem, and hence the results are dependent on H. The larger H is, the

better the accuracy (in the training sample) since more flexibility is added to

the model. However, if a too large value of H is chosen, the number of param-

eters involved in the problem increases considerably, and this may deteriorate

the accuracy in the test sample.

Therefore, it is sensible to define a strategy to determine the best H. In this

respect, standard criteria, such as BIC, AIC or ICL, [1, 5, 54] can be applied in

the SVM context, as done in [17] for instance. They proposed two new infor-

mation criteria which are inspired, but not equal to AIC and BIC, with the aim

of giving consistent selection criteria without much additional computational

costs. In contrast, in this paper, we propose to keep the parameter H with the

largest accuracy on the validation sample s3.

4. Numerical Experiments

This section details the experiments performed (Section 4.1) and the main

characteristics of the data bases here considered (Section 4.2). Finally, Section

4.3 is devoted to the computational results obtained.

4.1. Description of the Experiments

In this section, a detailed description of the experiments carried out to test

our methodology is made. To obtain stable estimates, k−fold cross-validation

has been used to evaluate the performance of the algorithm on different data

sets. The number k of folds varies depending on the size of the database. For

small databases, k is equal to the number of observations, i.e., we performed

leave-one-out, whilst for large databases we take k = 10. A database is consid-

ered small here if and only if it has less than 100 observations. See Table 3.

Algorithm 2 is run k times, one per fold. Each time, the division into four

independent samples s1, s2, s3, and s4 is done as explained in Section 3.1. The
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number of runs of the multi-start local search optimization method is set to

five. The algorithm is run until the maximum number of iterations reached

to ten, or when the difference between the objective values in two consec-

utive iterations is less than 10−5. The functional bandwidth ω(t, θ) is the

piecewise constant function in (7) with H = 8. The regularization param-

eter C varies in the set {2−10, . . . , 210}. The parameters θ(h) are in the set

Θ(h) = {(ω1, . . . , ωh, τ1, . . . , τh−1) : ω` ≥ 2−4, ` = 1, . . . , h, 0 ≤ τ1 ≤ . . . ≤

τh−1 ≤ T}, ∀h = 1, . . . , 8.

For comparison purposes, apart from the standard SVM, i.e., our approach with

H = 1, we have run three supervised classification methods for functional data,

available at the fda.usc library of R, [27], namely classif.depth, classif.kernel,

classif.knn with the default parameters. In order to obtain a fair comparison,

the accuracy obtained is estimated on the very same testing sample s4 used in

our approach.

Our algorithm is coded in R and is carried out on a cluster with 2Tb of RAM

memory at 6.2 TFlops, running CentOS Linux 7.3. The code is available upon

request.

4.2. Description of the Data Sets

Our methodology has been tested in 12 benchmark data sets, widely used

in the functional data classification literature, namely, ECG, [16, 66], growth,

[23, 44, 58], gun, [16, 66], MCO, [2, 22, 51] and Online companion of [12],

phoneme, [28, 44, 49, 58], phoneme large, [3, 25, 30, 31], rain, [43], regions,

[43], synthetic magnitude, model 3 of [40], tecator, [28, 43, 49, 58], wine, [16]

and yoga, [63, 64]. Note that the data set phoneme is used as described in the

fda.usc library, [27], of R. Table 3 summarizes the data sets description, which

gives the overall number of records, the number of time measurements, and the

number of records of each class. A plot with a sample of 10 instances of each

data set is shown in Figure 4, depicting in solid black line the observations with

label −1 and in dashed red line the records with label 1. The number of folds

is determined by leave-one-out in the data sets growth, MCO, rain, and regions,
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and with 10−fold cross-validation in the remaining databases.

#records #points measurements #records label -1 #records label +1

ECG 200 96 67 133

growth 93 31 54 39

gun 200 96 100 100

MCO 89 360 44 45

phoneme 200 150 100 100

phoneme large 1717 256 1022 695

rain 35 365 15 20

regions 35 365 20 15

synthetic magnitude 150 100 75 75

tecator 215 100 77 138

wine 111 234 54 57

yoga 306 426 150 156

Table 3: Real data description summary

4.3. Results

We provide the boxplots of the accuracy measured on s4 from h = 1 to h = 8

for the different folds in the k−fold accuracy estimation procedure.

Boxplots are not very informative for small data sets, for which leave-one-out is

performed. Indeed, for each fold either one obtains an accuracy of 0% or 100%,

since either the testing observation is wrongly or correctly classified. For this

reason, only the boxplots of the largest data sets are depicted. See Figure 6.

Moreover, the exact values of the average accuracy and its standard deviation,

as well as the corresponding values for the three fda.usc library methods con-

sidered in Section 4.1, are also presented in Table 4 for the sake of comparison.

The four gray columns correspond to the four methods we are comparing with,

denoted as depth, kernel, knn and classic SVM, h = 1. Finally, last column

of Table 4 gives the best number of pieces chosen, according to the strategy
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explained in Section 3.3.

We have highlighted in bold in Table 4 the maximum of the accuracy values for

h = 2, . . . , 8 which are equal or greater than any of the four methods. In general,

our method for h = 2, . . . , 8 is better than the four comparative aproaches in the

data sets growth, MCO, phoneme, phoneme large, and regions. This improve-

ment may be produced by the shape of the curves. The different class labels

seem to be easy to identify depending on the time subinterval, and therefore our

strategy makes easier such separation. Observe for instance, the growth data

set, in which the two classes have a different pattern around the time instant

15. Moreover, it is seen that the improvement in the accuracy strongly depends

on the data set considered. Indeed, no improvement is seen for the databases

gun, rain, and tecator when comparing our methodology with h = 1 and h ≥ 2.

However, for some of the values h ≥ 2 the accuracy obtained in gun is better

than that provided by depth. The results of our approach in the database rain

are always better than the ones provided by the three fda.usc methods. In con-

trast, such three methods should be applied if the tecator data set is studied.

In the databases ECG, growth, phoneme large and yoga there is a minor im-

provement (about a 0.5%) when comparing the classic SVM with our approach

for h ≥ 2. Such improvement also holds in the ECG data set when comparing

with the depth method. The accuracy value obtained in phoneme large with

our approach when h = 4 pieces are optimally chosen is better than all the

three fda.methods. Analogous conclusions are obtained in the yoga data set. A

considerably larger accuracy is obtained in databases MCO, phoneme, regions,

synthetic magnitude, and wine when solving the problem with h ≥ 2 than when

solving with h = 1, i.e., the classic SVM. In some cases such improvement yields

around ten percentage points of difference in accuracy terms. Such a large accu-

racy also occurs when comparing our approach with the three fda.usc methods

in the databases MCO, regions and wine. The improvement is not so evident

in the phoneme data set. In the data set synthetic magnitude, our results are

comparable to provided by depth and knn, but much better than the ones in

kernel.
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Apart from the improvements in the accuracy, our approach enables us to iden-

tify subintervals of special interest. This fact would be impossible if the standard

scalar bandwidth, which treats equally all time instants, were considered. We

highlight, for instance, the case of the wine data set, whose curves are almost

identical except around the time instants at which peaks occur. Figure 5 shows

the boxplots of the values of ω1, ω2, ω3, τ1 and τ2 obtained when a functional

bandwidth with h = 3 pieces is sought. We observe that the time instants which

distinguish one piece from another are around 50 and 125, which coincides with

the points of some of the peaks. Furthermore, the associated weight is greater

in the third part, where the biggest peak is located.

Regarding the trajectory of the accuracy versus the number of pieces, we

observe that there is not a clear pattern in the behavior. For instance, in the

MCO data set, we have worse results with h = 2 pieces than with the classic

SVM (h = 1). However, a difference of six points is obtained when comparing

h = 6 with h = 1.

In contrast, in the regions data set, the accuracy with h ≥ 2 are significantly

better than with h = 1, reaching the maximum value with h = 6. Similar con-

clusions can be drawn in the remaining data sets.

This fact shows the importance of using an adequate value of H. Since the

value of the parameter H depends on the division of the data set, we show in

the last column of Table 4 the average value of the best H parameter estimated

on sample s3 as explained in Section 3.3.

With respect to the running times, we first point out that most of the time

is spent in the training phase since once the classifier is built, classifying new

observations is definitely quick. Indeed, it just reduces to compute the score

given in (1) and follow the corresponding classification rule. Moreover, for a

given fold, for a fixed value of C, h and for each iteration of the alternating

approach, the resolution of both optimization problems (2) and (9) highly de-

pends on the size of the data set. Particularly, solving one SVM problem in

the rain data set lasts an average of 0.3 seconds, whereas 3.3 seconds are spent
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if Problem (2) is solved on the phoneme large data set. On the other hand,

the average running time of Problem (9) goes from 0.5 seconds to 26.8. Such

values correspond respectively to the rain and phoneme large databases. Note

also that the computational times will depend on the value of h since harder

optimization problems of type (9), involving more decision variables, are to be

solved as h grows. For example, in the data set yoga, 5.9 seconds are spent in

solving our approach with the single bandwidth case, i.e., h = 1 and 7.5 when

h = 2 pieces are sought. In order to have the whole amount of time invested

in our algorithm, we should take into account different elements, such as the

number of folds, the number of C values in the grid, the maximum number of it-

erations in the alternating approach, and the number of runs in the multi-start.

Nevertheless, the total time does not increase linearly, since running the code

in parallel, as done in this paper, reduces the elapsed time. Furthermore, our

strategy of nesting the problem alleviates the increase in running times since

the optimization of the most complex models is not started from scratch but

from the optimal solution of the simplest models. The running times of the

three methods of the fda.usc library with the default parameters are around 3

seconds, for a given fold. However, our approach gains in interpretability terms,

as has already been mentioned.

5. Conclusions and Extensions

In this paper, we have shown how SVM for functional data can be easily im-

proved if a functional bandwidth, to be tuned via a nested heuristic, is used. By

using very simple functional parameters, together with our tuning procedure,

we obtained better accuracy than with the traditional scalar parameter model

in the test sets. The methodology here proposed is able to identify the critical

points in which a change in the behavior of the functions is produced, yielding

the most relevant intervals in terms of the classification rate and also regarding

the interpretability of the results.

The difficulties associated to the tuning of more complex structures are miti-

21



gated by the use of a heuristic that exploits the nested structure of the functional

parameter, by using the (suboptimal) solution of one level as an initial solution

for the next level. Our tuning procedure takes advantage of the functional nature

of the data by expressing the tuning problem as a bilevel optimization problem

in continuous variables. In contrast to the usual approach, where the misclas-

sification rate is minimized, here the correlation between labels and scores are

optimized, allowing us to use gradient-based local search algorithms.

In our approach, the number of pieces of the functional bandwidth, H, is fixed

from the beginning, and the trajectory of the classification rates for the different

number of pieces is shown. However, since the results depend on H we choose

the value of H yielding the best accuracy, as estimated on the validation sample

The analysis performed here, using piecewise constant functions as bandwidths,

can be easily extended to other expressions such as polynomials, or piecewise

polynomials, including splines [24, 31]. Apart from the Pearson coefficient, dif-

ferent types of association measures can be applied, [57, 58].

The functional data here considered are univariate functions. The case of mul-

tivariate (hybrid) functional data, [34] can also be addressed with our proposal,

after the convenient modification of the kernel function.

The standard hinge loss function has been used in the SVM. Our approach

might also be adapted to other loss functions, such as the so-called ramp loss,

[9], by replacing (2) with the corresponding SVM problem. The same happens

if the SVM in (2) is replaced by some related methods such as the least-squares

SVM, e.g., [21].

We have limited ourselves to classification problems. If instead, functional re-

gression is pursued, [55], our methodology can be easily adapted to this context,

replacing SVM by Support Vector Regression. This research line is also under

investigation.
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[10] Bugeau, A., & Pérez, P. (2007). Bandwidth selection for kernel estimation

in mixed multi-dimensional spaces, . URL: http://arxiv.org/abs/0709.

1920. arXiv:0709.1920.

[11] Cai, Z., Fan, J., & Yao, Q. (2000). Functional-coefficient regression models

for nonlinear time series. Journal of the American Statistical Association,

95 , 941–956.

[12] Carrizosa, E., Mart́ın-Barragán, B., & Romero Morales, D. (2014). A

nested heuristic for parameter tuning in support vector machines. Com-

puters & Operations Research, 43 , 328–334.

[13] Carrizosa, E., & Romero Morales, D. (2013). Supervised classification and

mathematical optimization. Computers & Operations Research, 40 , 150–

165.

[14] Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental sup-

port vector machine learning. In Advances in neural information processing

systems (pp. 409–415).

24

https://www.researchgate.net/publication/321400055_Variable_Selection_in_Classification_for_Multivariate_Functional_Data
https://www.researchgate.net/publication/321400055_Variable_Selection_in_Classification_for_Multivariate_Functional_Data
https://www.researchgate.net/publication/321400055_Variable_Selection_in_Classification_for_Multivariate_Functional_Data
http://arxiv.org/abs/0709.1920
http://arxiv.org/abs/0709.1920
http://arxiv.org/abs/0709.1920


[15] Chen, Q., Wynne, R., Goulding, P., & Sandoz, D. (2000). The application

of principal component analysis and kernel density estimation to enhance

process monitoring. Control Engineering Practice, 8 , 531 – 543.

[16] Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., & Batista,

G. (2015). The UCR time series classification archive. www.cs.ucr.edu/

~eamonn/time_series_data/.

[17] Claeskens, G., Croux, C., & Kerckhoven, J. V. (2008). An information cri-

terion for variable selection in support vector machines. Journal of Machine

Learning Research, 9 , 541–558.

[18] Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel

optimization. Annals of Operations Research, 153 , 235–256.

[19] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learn-

ing , 20 , 273–297.

[20] Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support

vector machines and other kernel-based learning methods. Cambridge Uni-

versity Press.

[21] Cruz-Cano, R., Chew, D. S., Choi, K.-P., & Leung, M.-Y. (2010). Least-

squares support vector machine approach to viral replication origin predic-

tion. INFORMS Journal on Computing , 22 , 457–470.

[22] Cuevas, A., Febrero, M., & Fraiman, R. (2006). On the use of the bootstrap

for estimating functions with functional data. Computational statistics &

data analysis, 51 , 1063–1074.

[23] Cuevas, A., Febrero, M., & Fraiman, R. (2007). Robust estimation and

classification for functional data via projection-based depth notions. Com-

putational Statistics, 22 , 481–496.

[24] De Boor, C. (1978). A practical guide to splines volume 27 of Applied

Mathematical Sciences. Springer-Verlag New York.

25

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/


[25] Delaigle, A., & Hall, P. (2012). Achieving near perfect classification for

functional data. Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology), 74 , 267–286.

[26] Duong, T., Cowling, A., Koch, I., & Wand, M. (2008). Feature significance

for multivariate kernel density estimation. Computational Statistics & Data

Analysis, 52 , 4225–4242.

[27] Febrero-Bande, M., & Oviedo de la Fuente, M. (2012). Statistical comput-

ing in functional data analysis: the r package fda.usc. Journal of Statistical

Software, 51 , 1–28.

[28] Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis:

theory and practice. Springer Science & Business Media.

[29] Ferris, M. C., & Munson, T. S. (2004). Semismooth support vector ma-

chines. Mathematical Programming , 101 , 185–204.

[30] Friedman, J., Hastie, T., & Tibshirani, R. (2001). Datasets for The

Elements of Statistical Learning. https://web.stanford.edu/~hastie/

ElemStatLearn/data.html.

[31] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statis-

tical learning volume 1 of Springer Series in Statistics. Springer, Berlin.

[32] Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector

quantization. Neural Networks, 15 , 1059 – 1068.

[33] Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in

machine learning. The Annals of Statistics, 36 , 1171–1220.
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[38] Laukaitis, A., & Račkauskas, A. (2005). Functional data analysis for clients

segmentation tasks. European Journal of Operational Research, 163 , 210–

216.

[39] Lessmann, S., & Voß, S. (2009). A reference model for customer-centric

data mining with support vector machines. European Journal of Opera-

tional Research, 199 , 520 – 530.
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Figure 4: Sample of functional data in the real data sets analyzed.
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Figure 4: Sample of functional data in the real data sets analyzed (cont.)
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