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Abstract

The introduction of 3D scanning has strongly influenced environmental sciences.

If the resulting point clouds can be transformed into polygon meshes, a vast

range of visualisation and analysis tools can be applied. But extracting ac-

curate meshes from large point clouds gathered in natural environments is not

trivial, requiring a suite of customisable processing steps. We present Habitat3D,

an open source software tool to generate photorealistic meshes from registered

point clouds of natural outdoor scenes. We demonstrate its capability by ex-

tracting meshes of di↵erent environments: 8, 800m2 grassland featuring several

Eucalyptus trees (combining 9 scans and 41, 989, 885 data points); 1, 018m2

desert densely covered by vegetation (combining 56 scans and 192, 223, 621 data

points); a well-structured garden; and a rough, volcanic surface. The resultant

reconstructions accurately preserve all spatial features with millimetre accuracy

whilst reducing the memory load by up to 98.5%. This enables rapid visualisa-

tion of the environments using o↵-the-shelf game engines and graphics hardware.
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Software Name Habitat3D

Developer Benjamin Risse

Contact brisse@inf.ed.ac.uk

Affiliation University of Edinburgh (IPAB)

Available since 2017

Operating System Linux, Mac, Windows

Programming language C++

Requirements Qt, PCL, VTK, BOOST

Availability insectvision.org

Costs Free (open source)

Dataset 1 Canberra

Availability insectvision.org

Format PLY

Size 470Mb

Dataset 2 Seville

Availability insectvision.org

Format PLY

Size 941Mb

For details see Appendix A.2
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1. Introduction

Recent technological advances, specifically the availability of commercially

priced Light Detection And Ranging (LiDAR) scanners, have been instrumental

in recent e↵orts to accurately map natural environments (for reviews see [1, 2,

3, 4]). Historically, airborne LiDAR scanners were used in combination with5

aerial or satellite imagery to build large scale digital terrain maps and extract

environmental properties such as canopy surface topography, leaf area index,

and above-ground biomass for applications ranging from forestry to natural

resource management and geomorphology (for a review see [5]). More recently,

the sub-field of proximal remote sensing has emerged whereby smaller areas of10

particular interest are mapped in great detail using terrestrial scanners. We

are particularly interested in the use of this approach in ethological studies, for

example the insights into the nesting habitats of birds [6], the selection of kill

sites by lions [7] and the navigation behaviours of bats [8] and wasps [9, 10],

with important implications for conservation, ecology and forest management15

among others.

The common requirements of the latter studies is to obtain an accurate 3D

description of the environment of interest. However the dataset returned by

LiDAR, raw point clouds, can be huge, noisy, highly redundant and di�cult to

interpret. Point clouds do not reflect the underlying topology (connectedness20

of the points) so useful processes such as distinguishing surfaces and objects,

adding semantic labels, and estimating volumes are di�cult. In addition, visu-

alisation of point clouds is slow and non-intuitive, e.g., with sparseness of the

points increasing with zoom. In particular, there is little possibility to manip-

ulate the appearance, e.g., removing objects, enhancing appearance of surfaces25

by adding pattern, texture or transparency, altering the lighting conditions, or

to provide physical constraints in the viewer’s interaction with the scene, such

as preventing penetration of surfaces (collision control).

As a consequence it is widely accepted that there are many benefits if a point

cloud can be converted to a more standardised polygon model (mesh) represen-30
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tation (e.g. [11, 12]). Primarily, this allows exploitation of existing optimised

hardware and software for visualisation, such as game engines and virtual real-

ity. A mesh description of the 3D structure is likely to be more compact, can

have direct semantics applied, and can be easily manipulated. However, produc-

ing a mesh from LiDAR scans remains a non-trivial process, particularly when35

a large number of high resolution scans have been taken of a natural scene,

as is frequently the case in remote sensing applications. For example, in our

specific target application, the aim was to reconstruct an 1018m2 area of desert

ant habitat, including uneven terrain and over 1000 plants, from 56 laser scans

producing almost 200 million data points, as a mesh that could be used in a40

virtual world to reproduce the visual experience of a navigating ant. Existing

tools such as the open source programs Meshlab could not process even a re-

duced subset of this data and other tools like CloudCompare does not provide

the necessary processing routines. Also commercially available software such as

Agisoft Photoscan or RealityCapture were not optimised for our purposes.45

Well-developed methods already exist for modelling outdoor environments

in specific settings and di↵erent applications (e.g. urban enviroments [13, 14],

tree structures and forestry [15, 16, 12, 17, 18], plants and leaves [19, 20], wood

volumes [11, 21, 22], archeological sites [23], robotic applications [24], geomor-

phology [25]). However, these do not generalise to the large natural scenes of50

interest in remote sensing.

Successful transformation of point cloud data to a usable mesh requires a

number of processing steps, including: merging of scans; splitting and sampling

of point clouds to facilitate computation; multiple forms of filtering, feature ex-

traction, and clustering; the transformation to a mesh itself; and post-processing55

to improve the resulting model. To complicate this process, di↵erent measure-

ments in di↵erent environments from di↵erent scanners need di↵erent combi-

nations of these processing steps. As processing of point clouds is very time

consuming, a recipe-like pipeline for batch processing is necessary; and as the

steps need to be fine-tuned (e.g. choosing parameters) for the particular task60

and data, user feedback at each stage is needed (i.e. visualisation in a GUI).
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Finally the framework needs to be able to handle the gigabytes of data that are

produced in typical remote sensing applications using modern laser scanners.

Here we present the first generic open source framework incorporating all the

above necessary requirements to extract complete and photorealistic meshes of65

natural outdoor scenes using multiple point clouds. A key contribution is that

we have identified and evaluated a unique pipeline incorporating a variety of

di↵erent processing steps that are critical to the problem of meshing point clouds

that include dense vegetation. This pipeline is successfully used to reconstruct

four qualitatively di↵erent datasets. We have incorporated and adjusted all70

the necessary processing, filtering, clustering and meshing algorithms into a

single framework greatly increasing accessibility of LiDAR processing tools for

non-experts. The resulting tool, Habitat3D, provides an interactive pipeline for

batch processing data with informative feedback for all steps. We demonstrate

its usability by evaluating di↵erent animal habitats with millimetre precision,75

representing a scale and level of detail that goes beyond the state of the art.

The resulting scene description can be used in any rendering or game engine, so

that both state-of-the-art hard- and software acceleration can be applied.

2. Methods

In this section we provide a complete description of our reconstruction ap-80

proach, starting with the key characteristics of natural outdoor scenes that

determine the overall modelling approach (c.f. Section 2.1) followed by an intro-

duction to the data representation used throughout the paper (c.f. Section 2.2).

In Section 2.3 the data collection is described in detail and Section 2.4 elaborates

the pipeline applied to these datasets.85

2.1. Overview of the Approach

To extract a polygon model (i.e. mesh) of a natural outdoor scene requires

multiple point clouds from laser scans taken from di↵erent locations, so that

objects are observed from di↵erent directions. These need to be registered
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Figure 1: Modelling approach overview. Top: Simplified mesh of a natural outdoor scene.

The ground is given in yellow, trees are given in green and grass bushes are given in orange.

Bottom: A sequence of steps is necessary to mesh natural outdoor scenes. All processing steps

done by Habitat3D are indicated.

to ensure a single global coordinate system between scans. However, a direct90

mesh extraction from the resultant registered clouds is not feasible, as meshing

relies on features and topological assumptions that are not consistent across the

variety of object surfaces in a natural scene. We thus first need to consider, from

an abstract perspective, what are the available features in a natural outdoor

scene that are meaningful for its modelling. Considering the polygon mesh95

given in Figure 1 (top), the following general characteristics can be identified:

• The curvature of the ground appears smoother than the curvature of the

above vegetation implying almost no abrupt jumps in elevation.

• The surface normals on the ground (i.e. vector perpendicular to the ap-

proximated tangent plane to the ground surface) are roughly pointing up100

(i.e. positive along the z-axis), whereas normals along plant surfaces are
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less regular and pointing in all directions.

• The underlying geometry of the ground appears as a wavy sheet whereas

individual plants form a closed volume.

• The identity of di↵erent plants is given by their mutual distance and com-105

pactness of each plant (i.e. the points in the Euclidean 3D space of an

individual plant subset are closed and bounded).

• Di↵erent types of vegetation can be roughly identified based on their max-

imal height, by di↵erent volumes (or number of points) or by variations

in colour (assuming colour point clouds have been acquired).110

Note that these generalisations might be a↵ected by the spatial resolution of the

scanner. We ensured the validity by altering the spatial resolution from sub-

millimetre precision to strongly down-sampled test sets. All characteristics were

validated under di↵erent point cloud densities indicating a robust generalisation

(data not shown).115

These characteristics provide the basis for the sequence of steps used in our

framework (Figure 1, bottom). After registration of point clouds, the above

characteristics are used to segment clouds into ground and vegetation, before

the vegetation is further clustered into individual plants. The ground and vege-

tation clouds are processed and meshed independently to generate the respective120

models. Note that the steps necessary to get these models are very di↵erent (see

Section 2.4). After merging the ground and vegetation the resultant global mesh

is retopologised and colourised to form the overall model. This model is then

ready for analysis, for example by incorporating it into a game engine for rapid

visualisation.125

2.2. Data Representation

An appropriate data representation is necessary for interlocked processing

and to enable recipe-like pipeline generation. In the Habitat3D framework each

data entity is defined by the tuple D = {C,N , I,M}. C is the actual point
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cloud (either (x, y, z) or (x, y, z, r, g, b)). If normals N are extracted each point130

p 2 C has an associated vector specifying the direction of the underlying surface

(|C| = |N |). A cluster c 2 I specifies a subset of points in C (c ⇢ C and

|I|  |C|). All filtering steps can either be performed on the entire cloud C or

the individual clusters c 2 I. The polygon mesh M unifies the vertices, edges

and faces representing the polyhedral object.135

2.3. Data Collection

Two datasets were collected following the exact same protocol to quantify

the performance of our system (called Canberra and Seville dataset). In order

to test the flexibility and generalisability of Habitat3D we applied our system

to two additional environments, namely a structured garden with trees, bushes,140

hedges and fences and a rough, volcanic surface.

2.3.1. Scanning

Colour point clouds were sampled using a laser scanner / colour camera

combination (Z + F IMAGER 5006i, with an attached motorized colour camera

(Z + F M-Cam), Zoller + Fröhlich GmbH, Wangen, Germany) as in [9]. After145

levelling the device, each scan followed a pre-programmed routine that firstly

rotated the LiDAR and then the camera producing a high-resolution colour

point cloud (angular resolution 10, 000 points/360� with a 360� horizontal and

310� vertical field of view, for a range of distances from 0.5 to 80m). Since we

used a phase-based scanner both scanning and initial preprocessing might vary150

given time-of-light based scanners are used. The actual modelling procedure

can be applied to scans from both technologies.

2.3.2. Registration

Several artificial markers (checkered pattern with two white and two black

squares) were placed within the environments, providing easily identifiable ref-155

erence points with which all scans were registered onto a common coordinate

system. Using the accompanying Zoller + Fröhlich software (Z + F Laser-

Control) each of the markers is labelled in every scan allowing all scans to be
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Figure 2: Dataset collection. Blue boxes indicate scanner positions. Di↵erent plants and

several distance measures are indicated.

registered to a common frame of reference. The same markers are also identi-

fied in the set of camera images, which allows registration of the Z+F M-Cam160

with respect to the LiDAR coordinate system and mapping of colour from the

RGB images onto the 3D points (again using Z+F LaserControl). In addition,

Z+F LaserControl is used to remove erroneous range values, mainly in the sky

region and at object boundaries (caused by the small but finite diameter of the

laser beam, hitting two or more objects of di↵erent range), and to optionally165

subsample the cloud.

2.3.3. Canberra Dataset

In 2011, we captured 9 point clouds in an urban park in Canberra, Australia,

where several ant colonies (species: Myrmecia croslandi) had their nests and

participated in navigation experiments [26, 27]. The area covered about 8800m2
170

featuring several large Eucalyptus trees exhibiting complex natural structures

like sub-branches and leaf clusters (Figure 2). The 9 clouds in total comprise

approximately 42 million points requiring 1.5Gb of memory. Distances between

scanner positions varied from ⇠ 20m to more than 100m and were placed to

cope for the density of the vegetation.175

2.3.4. Seville Dataset

The natural foraging environment of a single colony of desert ants (species:

Cataglyphis velox ) was mapped in the summer of 2012 on the outskirts of Seville,

Spain. The experimental setting restricted ant foraging to a 1018m2 area of
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gritty desert containing more than 1, 700 plants (a mixture of grasses, thistles180

and other bushes). An artificial barrier was created for the behavioural study

which circles the nest at the 8m radius and was 10cm in height. 56 laser scans

were taken with the aim of viewing all plants from multiple locations limiting

occlusions. The maximal distance between scans was ⇠ 16m and the location of

the scans are shown by the blue boxes in Figure 2. The positions were chosen to185

surround the ant nest and distributed to cope for the density of the vegetation.

Following the registration and sub-sampling steps (c.f. Section 2.3.2) each of the

56 clouds Ci (i = 1, ..., 56) contains Ni 3D RGB-D1 points pji 2 Ci (j = 1, ..., Ni)

with pji = (x, y, z, r, g, b) and 3, 231, 214  Ni  3, 673, 825. The total number

of RGB-D points was
P

i Ni = 192, 223, 621 requiring 6.95Gb of memory.190

2.4. Meshing Pipeline

As illustrated in Figure 3 the pipeline to reconstruct these natural envi-

ronments can be separated into three consecutive steps. First, the clouds are

segmented into ground and vegetation points. Second the ground and vege-

tation clouds are processed and meshed separately to create the ground and195

vegetation mesh. Finally the two meshes are merged into the global model.

2.4.1. Semantic Segmentation

After loading all clouds Ci (i = 1, ..., N) the first step of the pipeline is to seg-

ment these clouds into semantic subunits. To decrease the computational time,

we separated all clouds into chunk clusters containing 10, 000 RGB-D points at200

maximum (see Appendix A.3.3 Iterative chunk split for details). Then, progres-

sive morphological filtering was performed on each cluster separately to extract

ground clouds Gi and vegetation clouds Vi. This filter was initially introduced

to remove non-ground measurements from airborne LiDAR [28] and utilises the

di↵erence in elevation and an opening operation within a custom sized window.205

In order to apply this filter to terrestrial scans we used its high specificity in

1RGB-D is an abbreviation for colour (r,g,b) and position + depth (x,y,z) information.
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Figure 3: Meshing pipeline overview. Grey boxes represent data structures and yellow,

green, red, violet and blue boxes indicate general processing, point cloud filtering, clustering /

segmentation, feature extraction and meshing respectively. Box with light grey text indicates

an optional processing step. Resultant clouds / cloud clusters are given in the bright blue

boxes on the left. Inputs to each processing step are given next to the arrows.

order to extract the vegetation points V by tuning the parameters to ensure very

close-to-the-ground vegetation segmentation (for details see Appendix A.3.3).

This filter was chosen because no preliminary filtering is necessary to identify

even very subtle vegetation structures (whereas filtering could interfere with210
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the topology of these structures). The resultant ground and vegetation clouds

are subsequently processed independently. Since this filter identifies the ground

based on abrupt elevation di↵erences, non-ground points, which form a regu-

lar surface, might still be included in Gi. This is addressed in a subsequent

segmentation step to ensure points on the main surface only (c.f. Section 2.4.2).215

2.4.2. Process & Mesh

To extract meshes for both the ground and the vegetation, di↵erent recon-

struction strategies are necessary in order to model natural outdoor scenes, since

both provide particular challenges. The requirements for ground meshing are:

• finding a controllable balance between resolution and smoothness220

• being su�ciently resilient to noise and gaps and

• taking the properties of the former ground segmentation into account (i.e.

smooth surface points with low overall curvature)

• ensuring a watertight ground model to avoid gaps and to support game

engine physics (e.g. collision control)225

The requirements for meshing di↵erent types of plants are:

• being tolerant to irregular distributions of normals and thus highly dy-

namic surface geometries present in naturally grown vegetation

• enabling meshing on non-optimised outer boundaries to preserve most of

the natural structures (filtering techniques can blur the appearance since230

they rely on certain underlying geometrical assumptions)

• being tolerant to incorrect plant point classifications (i.e. a single plant

is segmented into several sub-clusters or a single cluster contains multiple

plants or even non-plant points) and

• being able to control the distance that defines if neighbouring points are235

connected
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The latter requirement implies finding a balance between smoothing across con-

tiguous surfaces without merging nearby but distinct structures (e.g. nearby

flowers; see also Figure 8 for an example).

Ground Meshing. After merging all ground point clouds
SN

i=1 Gi = G, another240

chunk split clustering is mandatory to further process the cloud since the resul-

tant ground cloud can cover a huge area and might contain millions of redundant

points (cf. Table 1). All subsequent steps (besides meshing) are facilitated on

the resultant clusters. To further address this redundancy, we applied down-

sampling to regularly distribute the points on a grid and extracted the normals245

for each ground point (relative to the global coordinate system origin).

As described in Section 2.4.1, progressive morphological filtering was used

to extract the ground and vegetation based on abrupt jumps in elevation. Since

this filter removes points above the approximated underlying surface, points

below this surface are not explicitly removed. Furthermore, progressive mor-250

phological filtering does not ensure a single smooth surface with low curvature.

Therefore, we applied region growing segmentation to G, which allows us to

arbitrarily control smoothness and curvature (for details see Appendix A.3.3).

Finally, Poisson surface reconstruction was used to extract the ground mesh

which accounts for all above listed requirements and guarantees a watertight255

model. The resolution of the surface can be controlled by the depth of the

underlying adaptive octree (high depths result in capturing finer details, low

depths result in a smoother surface; for details see Appendix A.4). Further-

more, this strategy is very resilient to noise and gaps since all ground points

G are meshed at once (for details see Appendix A.3.4). Note that both region260

growing segmentation and Poisson surface reconstruction are based on the sur-

face normals and complement one another so that the underlying geometry can

be preserved (Section 3).

Vegetation Meshing. Equivalent to the ground processing the vegetation clouds

are merged into a global vegetation cloud
SN

i=1 Vi = V and separated into chunk265

clusters. This time however, the chunk clusters were only used to speed up the
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statistical outlier removal. As a result, the plants in V are much sharper since

noisy points and registration artefacts are removed.

The next step is to identify individual plants based on their mutual distance

and compactness (see Section 2.1). However, depending on the size (height)270

of the plants, the laser scanner resolution and the distance to the scanner, the

point density per plant can vary drastically. Therefore, the merged cloud can be

clustered into concentric regions around the (main) scanner position optionally

(see Figure 3) so that plant clustering can be done on these regions separately.

If concentric clustering was used the cluster tolerance of this distance-based275

plant clustering has to be adjusted accordingly (low for high compactness and

high for low compactness). Otherwise distance-based clustering with one global

cluster tolerance is applied to V (for a detailed discussion of the parameters

see Appendix A.4).

Laser scanners strobe the outer boundary of the objects within the scanning280

radius but inaccuracies during scanning and merging can cause points inside

these boundaries. To extract the outer boundary of the underlying plant cluster

volumes concave hulls (also called alpha-shapes) can be used which are general

enough to be applicable for di↵erent types of plants and independent to the

surface normals. Over-fitting can be avoided by a parameter ↵ which limits the285

size of the resultant hull segment (for details see Appendix A.3.4). Since this

parameter can be used to control which neighbouring points are connected, ↵

also relies on the underlying compactness and has to be chosen according to

cluster tolerance. Thus, concave hull meshing fullfills all vegetation reconstruc-

tion requirements listed above. If concentric clusters have been extracted, ↵290

should increase in proportion to the increased cluster tolerance.

2.4.3. Merge Meshes

Both Poisson surface reconstruction and concave hull meshing can generate

arbitrarily detailed polygon meshes. Depending on the application, the meshes

can be directly merged or retopologised by applying mesh filters as described295

in Appendix A.3.5. The resultant models can be concatenated since they still
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share the same global vertex coordinate system. It should be noted that a small

gap can appear between the ground surface (especially if the ground model has

a low octree depth) and concave hull plants which can be removed by retopol-

ogisation. In either case, the resultant mesh, the point clouds as well as the300

normals and clusters are exported in several well-known formats, namely ply,

obj, vtk and pcd.

3. Results

We tested our Habitat3D framework on two distinct datasets, one taken in

Canberra, Australia and the other one sampled in Seville, Spain. In both cases305

the scanning was aimed at mapping the foraging habitat around an ant nest.

The Canberra dataset features a comparatively large meadow area including

several large Eucalyptus trees, whereas the Seville dataset comprises a densely

vegetated desert scene with more than thousand smaller plants such as thistles.

The two datasets strongly di↵er in the amount of scans: Canberra is sparsely310

imaged using only 9 scans whereas 56 scans were made within a 200m2 circular

area in Seville. The resultant reconstructions of both datasets as well as the in-

termediate results are evaluated qualitatively and quantitatively in this section.

We also evaluated two additional datasets to demonstrate the generalisability

of Habitat3D (Section 3.3). All calculations, evaluations and visualisations are315

done on an Intel Xeon E3-1245 3.4GHz computer equipped with 32 Gb DDR3

RAM and an NVIDIA Quadro K4200 graphics card.

3.1. Canberra Model

After progressive morphological filtering the ground (G) and vegetation points

(V) are successfully separated. Since we set the filter to operate with high speci-320

ficity we ensure a very close-to-the-ground vegetation segmentation leading to

almost no false-positive points in the ground cloud, but some irregular points

close to the ground appear in the vegetation cloud (c.f. symbol ’⇤’ in Figure 4

semantic segmentation). The overall processing time for all 9 clouds is 13, 097s,

15
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Figure 4: natural environment reconstruction steps. Text at the top of each sub-figure

corresponds to the respective processing steps given in Figure 3. For details see text.

thus, semantic segmentation of a single cloud takes about 24 minutes, which is325

by far the most time consuming step of the pipeline (c.f. Table 1).

Figure 4 iterative chunk split shows the result of recursively splitting the

ground into chunks containing 100, 000 points at maximum. Note that the dif-

ferent scanning positions can be identified based on the increased point density

around the terrestrial LiDAR scanners. After down-sampling, normal extrac-330

tion and region growing segmentation the ground meshes are extracted by using

Poisson surface reconstruction. To demonstrate how meshes can be used to ex-

tract compact representations of huge areas we intentionally used a low octree

depth of 6 (c.f. Figure 4 poisson surface reconstruction) resulting in a mesh

made up of 3, 564 polygons. After colourisation, the ground model needs only335
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Figure 5: Different plant reconstructions. Segmented point clouds are given on the left

and resultant meshes are given on the right. Close up meshes are given as wired surfaces. The

dimension is indicated.

276Kb disk storage, which is 0.024% of the memory used by the original ground

clouds (1, 138, 712Kb).

For individual plant identification in V distance-based clustering is used. As

visible in Figure 4 distance-based clustering densely sampled trees in the mid-

dle of the scene are correctly clustered into a single object, whereas distant340

trees are fragmented. Since concave hull meshing neither requires continuous

nor correctly segmented plants, meshing the vegetation is not a↵ected by these

subdivisions (c.f. Figure 4 concave hull meshing) and the small cluster sizes are

advantageous in terms of computational time (only 1, 037 seconds or 17 minutes

are necessary to reconstruct all vegetation). In contrast to the ground model,345

the vegetation model is not reduced in size, as almost all points in V are used

to preserve the complex topology by using a small ↵ value to build the alpha

shapes (c.f. Appendix A.3.4; mesh filtering can be used if lower vegetation re-

constructions are required as explained in Appendix A.3.5). After colourisation,

the vegetation model needs 470Mb of memory which is slightly higher than the350

amount of memory used for V (requiring 385Mb).
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A tree scanned from all directions is shown in Figure 5. Point clouds are

given on the left and resultant reconstructions are given on the right. Note that

all natural structures up to the very thin ramification are reconstructed correctly

(obviously where branches are obscured by leaves they cannot be reconstructed).355

The reconstructed tree is approximately 20m high. Even though terrestrial

scanning was used, a realistic reconstruction was possible up to the very top of

the plant. Finally the resultant ground and vegetation models are colourised

and merged to generate the overall Canberra model shown in Figure 4 merged

results.360

The accuracy of the used LiDAR hardware for natural environments has al-

ready been demonstrated elsewhere [9]. To evaluate the accuracy of our meshing

pipeline we calculated the mean distance and standard deviation between the

raw clouds and the resultant mesh using a third party software called Cloud-

Compare. Since the 9 clouds cover a comparatively large area, we only use365

a circular area with 20m radius covered by all clouds (i.e. area of interest).

Mean and standard deviation for each cloud is given in Figure 6 top and the

overall accuracy of all clouds is given in Figure 6 bottom. The median distance

between points of all clouds and the resultant mesh is below 6mm and the high-

est measured mean distance is 3.3cm. Since the ground mesh is intentionally370

meshed with low resolution and terrestrial scans are used to mesh large trees the

resultant millimetre accuracy clearly demonstrates the overall high reconstruc-

tion precision. Furthermore, the raw point clouds contain noise (random points

in the sky) which are successfully removed using our pipeline but increase the

mean deviation in this evaluation.375

3.2. Seville Model

As described in the Section 2.3.4, this dataset consisted of a much higher

number of scans within a smaller area, enabling more accurate reconstructions.

Since the 1018m2 ground cloud G comprises 156, 174, 403 points iterative chunk

splitting (maximal 100, 000 points) results in 3, 383 clusters, again with higher380

density around the terrestrial scanner positions (c.f. Figure 4 iterative chunk
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Figure 6: Quantitative Accuracy Evaluation. The resultant meshes are compared with

all raw clouds. Left: mean deviation and standard deviation between each cloud and the mesh

in mm. Right: mean deviations summaries in box plots for both datasets.

19



photo model

reconstruction

Figure 7: Natural environment reconstruction results. Top: Photography vs. meshed

model of the Seville dataset. Bottom: Rendered reconstruction from an ant’s perspective in

the Seville dataset (position indicated by a green arrow).

split). In contrast to the Canberra dataset, subsequent Poisson surface recon-

struction was tuned towards high accuracy by using an octree depth of 10. The

result is 897, 106 polygons requiring 120Mb memory but still preserving all main

topological features. For example the artificial barrier is reconstructed with very385

high accuracy as shown in Figure 4 poisson surface reconstruction and the un-

dulating surface structure (mainly caused by accumulated depositions below the

plants) as well as the small hill surrounding the nest entrance are well preserved

(cf. Figure 7).

Euclidean distance based clustering of V results in 3, 539 individual plant390

clusters (c.f. Figure 4 distance-based clustering). Since the maximal allowed

cluster size was set to 50 points, small fragments like branches, leafs and other

irregularities close to the ground cause this oversized number of clusters. How-

ever, latter concave hull meshing is not a↵ected by these fragmentations result-

ing in correctly meshed vegetation as shown in Figure 4 concave hull meshing.395

Examples of di↵erent plant types are given in Figure 5. For the thistle, it

can be seen that concave hull meshing can preserve small holes and mesh tiny

structures such as thorns. However, if the gap between the flower and the stem
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is too large, flowers can appear disconnected from their stems, i.e. free-floating.

This could only be avoided by increasing ↵ (cf. Appendix A.3.4), which would400

also merge disjoint structures. An example of incorrectly merged structures like

flowers, mainly caused by close proximity and the non-rigid character of the

plants, can be seen in Figure 5 (e.g. highest flowers of the left thistle). These

artefacts could potentially be addressed by game engine specific modifiers to

adjust the mesh. The points of an example cluster of withered grass can be seen405

in Figure 5 grass. Also using concave hull meshing, with ↵ = 1cm the branching

structure at the top of the grass is preserved in high detail (cf. Figure 5 close-

up). A low-to-the-ground green bush is shown in Figure 5 bush. Due to the flat

appearance of the bushes, either triangle meshing or concave hull meshing can

be used to reconstruct this plant. However, both strategies fail to generate a410

smooth surface so that the meshes result in sharp-edged and grainy polygons.

Despite this, the overall topology of the clouds is well preserved.

The merged result given in Figure 4 indicates the accuracy of overall mesh-

ing (distant objects outside the 1018m2 radius are also meshed and added to

the model). Figure 7 provides a comparison between a real photo and the ar-415

tificial reconstruction rendered from the equivalent location. Note that colour

gradients in the ground texture are kept in the reconstruction due to the ver-

tex attribute transfer. The resultant model only needs only 1.5% of the initial

memory requirements of the original point clouds (c.f. Table 2).

In contrast to the Canberra dataset 56 clouds were used to densely sample a420

region of 1018m2. In Figure 6 the deviations between all raw clouds within this

region and the resultant mesh are given. The median distance is below 1mm

and the maximum measured mean distance is 2.5mm. As shown in Figure 6

top only cloud number 4 has a standard deviation above 2cm. Thus, the re-

sultant deviations are mainly caused by noise (random points in the sky) and425

points inside the reconstructed surfaces, mainly caused by registration errors

and moving objects. This illustrates that Habitat3D can be used to reconstruct

3D meshes from point clouds with sub-millimetre precision.
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3.3. Other Models

To demonstrate the generalisability we used Habitat3D to extract models of430

two additional environments, namely a well-structured garden captured in Wa-

geningen (Netherlands) and a volcano surface scanned on Mount Etna (Italy).

The garden dataset consists of 16, 265, 804 points and features 3 trees, 19 bushes,

fences, two paths and several artificial objects in the back (car, container, etc.)2.

The model was generated using the same pipeline and parameters as used for435

the Seville dataset. As shown in Figure 8 (top) the ground and vegetation are

correctly reconstructed. An overgrown fence is additionally given in Figure 8

top right: Habitat3D correctly preserves most of the holes while still providing

the overall structure of the fence. Partial vegetation on the fence can also be

seen. However, some wires are missing leading to holes in the grid.440

The volcano dataset does not feature any vegetation and consists of 6 point

clouds (8, 721, 951 points) showing a rough, volcanic surface on Mt Etna. The

scans were recorded within the ROBEX project3 for simulation purposes in

preparation of the ROBEX moon analogue mission [29, 30]. The model shown

in Figure 8 (bottom) was generated using only the ground meshing pipeline445

with the same parameter settings as in the Seville dataset. As shown in the

bottom right the overall shape of the ground is correctly reconstructed with

high precision. However, the edgy shape of some stones appears unrealistically

smooth due to the use of Poisson surfaces. The size of the dataset reduces from

338.4 MB to 40.8 MB (reduction of 88%). Furthermore, the surface shown in450

Figure 8 (bottom right) demonstrates how specialised shaders can be applied

to improve the analysis of LiDAR data: the surface was rendered using the

electronic microscope shader which visually emphasises the overall three dimen-

sional structure.

2Torsten Sattler, Thomas Brox, Marc Pollefeys, Robert B. Fisher, Radim Tylecek. 3D

Reconstruction meets Semantics Reconstruction Challenge, ICCV Workshops, October 2017.

URL: http://trimbot2020.webhosting.rug.nl/events/3drms/challenge/
3Project website www.robex-allianz.de/en/
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garden fence

volcano surface

Figure 8: Reconstructions of additional environments. Top: Garden dataset featuring

several trees, bushes, man-made paths and a fence (top right for a close up indicated by the

red box). Bottom: Volcano dataset from a test site of the ROBEX analogue mission campaign

on Mount Etna. Close-up showing the surface is given in the bottom right.

4. Discussion & Conclusion455

We have introduced Habitat3D: a novel, cross-platform, open-source and

generic software framework to extract precise models of natural environments

that have been mapped using a 3D point-cloud producing technology such as

LiDAR. The system bridges the current gap between defacto environmental

mapping hardware (laser scanners) and similarly mature software and hardware460

systems (game engines and associated graphics cards) allowing for rapid visual-

isation, manipulation and analysis of complex scenes. The framework produces

meshes, rather than digital elevation models (DEM) or extracting triangulated

irregular networks (TIN) and accurately recovers the underlying surfaces in the

natural environment. Since segmentation is required for our framework, indi-465

vidual semantic subunits like ground or individual plants can be processed and
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analysed independently.

Using meshes has several advantages compared to a usage of point clouds

directly. For example, meshes are highly compressed, and are in a format that

can leverage state-of-the-art hard- and software such as graphics cards and game470

engines for improved visualisation and analysis. The memory usage and pro-

cessing times are summarised in Tables 1 and 2. The reduction of memory usage

is illustrated in Figure 9 indicating very high e�ciency in compressing the reg-

istered and merged clouds (which usually overlap to cover larger areas causing

high oversampling). However, compressing the data using meshes inevitably475

removes information which can a↵ect the quality of the final model. Since spe-

cialised shaders and mapping strategies can be applied to meshes this loss in

information can be partially compensated. For example, bump mapping can

be used to simulate a more complex surface on simplified polygon meshes [31].

Furthermore, meshes comprise a topology and appear as continuous objects480

allowing accurate visualisation even in close proximity and implicitly contain

a geometry (e.g. volume extraction). Finally, lightning and shadows can be

added, collision control can be implemented and physics can be incorporated.

Reconstructing natural scenes using ground-based LiDAR requires the ex-

traction of fundamental properties. For example, considering the overall ge-485

ometry no filtering should be applied before ground / vegetation segmentation

since di↵erent processing strategies are required: the ground points should form

a wavy sheet whereas plant points should define a volume after processing.

Furthermore, geometrical properties need to be identified to extract semantic

sub-units from raw clouds (c.f. Figure 1). An example of the technical prop-490

erties is that the point density decreases quadratically with the distance to a

ground-based scanner and inaccuracies of scanning itself have to be addressed.

Thus, processing subsets or changing filtering parameters relative to the LiDAR

scanner distance improves both computational time and overall results.

However, challenges remain when working with and converting to meshes.495

For example, for distal objects, clouds might look qualitatively better compared

to opaque meshes. This can, for example, be addressed by introducing trans-
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parency (alpha blending) which is a standard technique in Computer Graphics

and again optimised for meshes. In addition, as objects can be misaligned

across scans, and thus appear bloated in the final concatenated cloud, a more500

elaborate merging algorithm could be used to reduce oversampling and redun-

dancy. Habitat3D provides di↵erent meshing and mesh processing strategies

but only guarantees watertight surfaces (which are necessary for volume extrac-

tion) by using Poisson surface reconstruction. In case watertight surfaces are

required Poisson surface reconstruction should be used to generate the meshes.505

Finally, meshing di↵erent natural outdoor scenes involves manual trial and error

to determine the optimal routines and associated parameters for best modelling

results. We addressed this issue by implementing a GUI and user feedback of all

modelling steps and recipe-like batch processing. However, some form of data-

driven parametrisation is desirable to reduce user workload and may increase510

accuracy.

In the future we intend to extend the framework by implementing a more

selective cloud merging strategy to overcome the bloated appearance of several

vegetation clusters. If reconstructed meshes of complex vegetation is desired,

the most common method is to use skeletonisation approaches to extract the515

three-dimensional geometry of the plant. For example, directed graphs and

weak constraints have been used to guide a global optimisation for tree-skeleton

reconstruction [32]. Others have used the Dijkstra algorithm to extract the tree

skeleton by clustering boughs based on their distance to the root point [17].

Normal- and L1-medial-based skeletonisation algorithms have also been used520

for complex point cloud topologies [33, 34]. Since the segmentation and filtering

described above lead to very accurate and noise-free plant clusters, these sub-

units are ideally suited for these approaches. Skeletonisation can also help to

identify ghosting artefacts like branches moving in the wind. Thus, we plan to

add skeletonisation algorithms to improve the appearance of natural structures525

like trees and to introduce a high-level topology of plants (e.g. to make them

move with wind etc.) in newer versions of Habitat3D.

The specific motivation for the development of the Habitat3D system was
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Table 1: Computational complexity of the Canberra dataset. Size, memory usage (Kb)

and computational time (ms) of modelling the Seville dataset. The size dimension is given

in column Dim. (pts = points, clu = clusters, nor = normals and pol = polygons). We use

the memory usage of uncompressed non-binary ply files to measure the used Kb. Processing

steps correspond to Figure 3.

Step Size Dim. Memory Time

All clouds (9) 41,989,885 pts 1,523,356 -

Exmpl. cloud 4,883,777 pts 169,647 -

Prog. Morph. (9) 41,989,885 pts 1,523,356 13,096,978

Merged Ground 31,170,464 pts 1,138,712 -

Chunk Split 816 clu 269,426 197,341

Down-Sampl. 2,325,996 pts 91,144 35,971

Normal Ex. 2,325,996 nor 37,220 6,331

Region Grow. 2,165,870 pts 85,026 25,035

Poisson Surf. 3,564 pol 106 3,539

Coloured Ground 3,564 pol 276 -

Merged Veget. 10,820,521 pts 384,644 -

St. Out. Rem. 10,048,165 pts 357,115 299,047

Dist. Cluster. 1,400 clu 79,952 514,768

Concave Hull 12,667,922 pol 213,012 1,037,440

Coloured Veget. 12,667,922 pol 469,833 -

Merged Model 12,671,486 pol 213,118 -

Colour Model 12,671,486 pol 470,109 -
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Figure 9: Changes in memory usage. Changes in size (Kb) of the ground (yellow) and

vegetation (green) processing. We use the memory usage of uncompressed non-binary ply

files to measure the used Kb. After filtering includes all step before meshing and mesh and

coloured mesh indicate the memory needed for the respective polygons after meshing.
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Table 2: Computational complexity of the Seville dataset. Size, memory usage (Kb)

and computational time (ms) of modelling the Seville dataset. The size dimension is given

in column Dim. (pts = points, clu = clusters, nor = normals and pol = polygons). We use

the memory usage of uncompressed non-binary ply files to measure the used Kb. Processing

steps correspond to Figure 3.

Step Size Dim. Memory Time

All clouds (56) 192,223,621 pts 6,950,754 -

Exmpl. cloud 3,603,707 pts 126,184 -

Prog. Morph (56) 192,223,621 pts 6,950,754 58,766,296

Merged Ground 156,174,403 pts 5,613,847 -

Chunk Split 3,383 clu 1,450,636 3,722,901

Down-Sampl. 6,581,853 pts 258,856 431,736

Normal Ex. 6,581,853 nor 105,314 19,747

Region Grow. 4,657,151 pts 184,960 61,174

Concen. Clu. 3,587,668 pts 141,734 643

Poisson Surf. 897,106 pol 120,199 84,546

Coloured Ground 897,106 pol 391,067 -

Merged Veget. 36,050,173 pts 1,348,755 -

St. Out. Rem. 34,021,556 pts 1,273,780 1,149,657

Concen. Clu. 25,167,697 pts 954,728 4,375

Dist. Cluster. 3,539 clu 289,687 2,747,506

Concave Hull 29,339,855 pol 513,090 2,369,191

Coloured Veget. 29,339,855 pol 546.008 -

Merged Model 30,236,961 pol 633,289 -

Colour Model 30,236,961 pol 937,075 -

to map the natural habitat of ants, in order to facilitate the evaluation of hy-

potheses regarding their sensorimotor and navigation strategies. For example,530

Figure 7 shows a rendered image of the Seville habitat from an insect’s per-

spective. Note that the mesh was down-sampled quadratically to increase the

rendering performance, which is crucial for testing algorithms of visual naviga-

tion. Even after down-sampling, all characteristics remain visible in the rendered
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views. Furthermore, a sky-dome and (sun) light source was added to improve535

realism, and lightning and sky patterns can be altered to represent di↵erent

times of day. More generally, to understand animal behaviour it is important

to characterise the natural environments in which they live and behave [35] and

the approach we have presented can make a significant contribution to that

aim. However we believe the framework we have developed can be useful in a540

variety of applications, including biomass measurements and agriculture [6, 11],

forestry [36, 37, 38], ecology and conservation [39], flood modelling [40, 41], ar-

chaeology [23, 42], geology [5], building surveys [43], virtual reality [44], mobile

robotics and game development. Other applications require other pipelines and

strategies of course. If for example individual leaves need to be reconstructed545

more fine grain clustering has to be applied to the plant clusters. Given very

dense vegetation (e.g. rain forest canopies) additional separation routines are

required to identify individual plants. Since our focus was photorealistic render-

ing of natural outdoor scenes we do not exhaustively address merged vegetation

in our pipeline.550

Both the meshing framework (Habitat3D) and the resultant 3D world mod-

els of the animal habitats are available as open source downloads at the Ant

Navigation Challenge website.
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Appendix A. Supplementary Material

Habitat3D o↵ers a variety of di↵erent filtering, clustering, segmentation and mesh-740

ing routines. All these routines can be arbitrarily assembled to pre-defined pipelines

operating on either subsets (i.e. clusters) or complete clouds. A list of all available

algorithms is given here. Furthermore, some implementation details of Habitat3D are

given.

Appendix A.1. Overview of the Implementation745

As discussed in the introduction, a key practical requirement to model a large scale

3D natural environment from dozens of scans is to be able to inspect and process the

data in a trial and error fashion. We identified four key requirements for the software:

1. An interface o↵ering all necessary processing steps (including filtering, clustering

and meshing), as described in the following sections.750

2. 3D visual feedback including cloud visualization and (intermediate) results.

3. Batch- and recipe-based processing once an appropriate pipeline has been found.

4. Reliability and extensibility of the framework is mandatory to make it useful for

a wide community.

Our platform-independent and open-source framework Habitat3D is implemented755

in C++ using well-established libraries. Most of the point cloud processing steps

are implemented by utilizing the Point Cloud Library (PCL v1.7.2) [45] and ad-

ditional mesh processing procedures are build based on the Visualization Toolkit

(VTK v3.6.0) [46]. The interface is implemented using Qt (v4.8.7) [47] and BOOST

(v1.58.0) [48] is used for performance reasons. To ensure reliability and enable ex-760

tensibility our framework as far as possible integrates (rather than reimplements)

established code libraries. Furthermore, we extended the existing libraries by several

additional routines, more general data types (i.e. abstraction layers) and implemented

a generalised template-based interface to call all filtering operations using virtual func-

tion calls. This enables an easy plug-in integration for future extensions and reduces765

the programming e↵ort.

In order to interact with the data, our framework features the following general

processing steps:

• Load, filter and inspect multiple clouds simultaneously
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• Visualise the topology, normals, clusters and polygon meshes770

• Merge and split clouds (or cloud clusters)

• Save clouds, clusters, normals and meshes in standard formats

Most importantly, all processing steps (besides merging / splitting clouds or clusters)

can be applied to an arbitrary number of clouds (i.e. batch processing) either directly

or in a recipe-like fashion. Assuming an appropriate order and parameter settings of775

processing steps has been determined, all clouds can be loaded and the sequence of

steps can be programmed upfront. After starting the batch job the user is informed

about the progress and intermediate results of all clouds can be saved on-the-fly.

Furthermore, the user is informed about the (changes in) cloud / polygon size and

a rudimentary undo function can be used for trial and error testing. All resultant780

objects (i.e. point clouds, normal clouds, segmentation results and meshes) can be

saved. Several well-known formats are supported, namely ply, obj, vtk and pcd.

In order to provide a first quality measure of the calculated meshes we implemented

the triangle quality measure which is based on the following formula: q = 4a
p
3

h2
1+h2

2+h2
3
.

a is the area and h1, h2 and h3 specify the side lengths of the triangle. We calculate785

the mean quality measure q of all triangles of the resultant mesh and output the value

on the terminal.

Appendix A.2. Software Availability, Requirements & A�liation

Both the meshing framework (Habitat3D) and the resultant 3D world models of

the animal habitats are available as open source downloads at the Ant Navigation790

Challenge website. There are no hardware or software requirements and the source

code and compiled binary both require approximately 3Mb each. The accompanying

cmake file was tested for Linux and MacOS X (10.9 or higher). The resultant Canberra

reconstruction requires 470Mb and the Seville dataset requires 941Mb. Readme files

highlighting all used processing steps and parameters are also included in the respec-795

tive folders. It was implemented by Benjamin Risse at the University of Edinburgh

(Institute for Action Perception and Behaviour; contact: brisse@inf.ed.ac.uk).

Appendix A.3. Processing Routines

All routines are described with special attention to their usability for natural out-

door scene modelling.800
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Appendix A.3.1. Point Cloud Filtering

Filtering options include noise / outlier removal, up- and down-sampling and con-

ditional filtering (i.e. position or colour).

Radius-based Outlier Removal. Noise during scanning or inaccuracies in registration

can cause small sets of points which do not correspond to any objects in the world,805

e.g. individual points in the sky, or from moving objects. These measurements can be

characterised as outliers by setting a lower threshold for the number of neighbouring

points within a certain radius.

Statistical Outlier Removal. It can be di�cult to set the above mentioned threshold

manually, since it should be set relative to the density of the given cloud C or clusters810

c 2 I. Instead, an appropriate threshold can be generated automatically by calculating

the mean distance and standard deviation of all distances within a fixed number of

neighbouring points [49]. Removing these outliers sharpens the object surfaces of

natural structures such as plants.

Down-Sampling. Merging registered clouds with huge overlapping regions can cause815

massive redundancy, and inaccuracies in registration can cause slight displacement of

points belonging to the same (rigid) object. Thus, a down-sampling strategy which

tries to preserves the underlying surface is important. 3D voxel-grid based down-

sampling can be used in which each grid is represented by a 3D box with user specified

dimensions. All points within a grid are replaced by the centroid of the box resulting820

in evenly distributed points across the underlying surface.

Re-Sampling & Up-Sampling. Scanner blind-spots (immediately below the rig) and

occlusions caused by foreground objects result in gaps in the data. To close these

gaps, to smooth the clouds or to improve the normal estimation moving least squares

(MLS) up-sampling can be used. By assuming that a given set of points is defining825

a surface, an MLS surface is defined as the points projecting on themselves [50]. The

surface can be locally approximated by either a local plane, a random uniform density

or a voxel grid and is specified by a search radius and the polynomial order.

Conditional Filtering. Points with certain spatial properties along the x-, y- or z-axis

can be excluded using spatial conditional filtering. If for example the maximum height830
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of all objects in the scene is known, every point above this value can be excluded by

introducing an upper limit along the z-axis. Similarly, upper and lower limits can be

defined for red, green and blue colour values to exclude or extract objects with certain

colour appearances.

Appendix A.3.2. Normal Extraction835

A surface normal can be calculated for each point p 2 C and is a vector perpendic-

ular to the approximated tangent plane to the underlying surface at this point p. If

normals are used as a feature to disambiguate ground and vegetation, non-smoothed

surface perpendiculars are recommended. To approximate the underlying surface ei-

ther a fixed number of nearest neighbour points or a maximal search distance can be840

specified. A k-d tree representation is used in order to speed up neighbouring point

identification [51]. Normals can be estimated relative to the origin of the world coor-

dinate system (the global (0, 0, 0)-point) or relative to the centroid of a cloud-subset:

Normals belonging to the ground should be calculated given the global origin and nor-

mals for the respective plants should be relative to the plant cluster centroid (normal845

origin can a↵ect subsequent meshing).

Meshing strategies like triangle meshing or Poisson surface reconstruction utilize

vertex normals to generate the surface. As a consequence the smoothness of the

surface relies on the smoothness of the normals. We added a smooth normal extraction

possibility by applying moving least squares up-/re-sampling before normal calculation850

(see Appendix A.3.1).

Appendix A.3.3. Point Cloud Clustering & Segmentation

To identify points belonging to the same object we implemented several clustering

and segmentation strategies. Whilst some of the algorithms are more appropriate to

segment individual objects, others are helpful to identify global structures, e.g., finding855

all ground points G ⇢ C, and assuming the disjoint set V = C \ G = {p|p 2 C ^ p /2 G}

includes all vegetation points. Besides extracting semantically meaningful subsets,

splitting the cloud C into clusters c 2 I is mandatory to speed up processing and can

also be necessary to define regions based on their distance to the sensor (the point

density decreases with the distance to the scanner).860
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Distance-based Clustering. Assuming that points belonging to the same object form a

compact distribution, these points can be clustered into semantic entities by using L2

Euclidean distance cluster extraction (in (x, y, z) direction): By using a Kd-tree, near-

est neighbours for each point are determined. Subsequently clusters are constructed

by adding all nearest neighbours within a sphere radius (here called cluster tolerance)865

that have not been processed yet.

Concentric Clustering. Since terrestrial laser scanners sample nearby surfaces more

densely than distal surfaces, the framework also provides a circular clustering proce-

dure using a user specified centre point (x, y) and radius for the maximally allowed

Euclidean distance to this point.870

Iterative Chunk Split Clustering. The global cloud for a habitat can comprise billions

of points which is far to big to be processed by most of the algorithms, but down-

or sub-sampling could collapse or delete thin (but significant) 3D volumes. In these

situations iterative chunk split clustering can be used to separate the cloud C into

subsets c ⇢ C with |c| ⌧ |C| (
S

i ci = C). The maximal size of each cluster can be875

controlled by a reduction enforcement value specifying the maximal allowed size of a

cluster. Each cluster is recursively quartered in (x, y)-directions until the size is below

or equal to this maximal size or if it covers more than a certain percentage of the total

area. Note that this splits can separate connected components (e.g. a branch from a

tree) so that merging after processing the chunks is recommended. In case splitting880

needs to be avoided distance-based clustering with a small neighbourhood radius can

be used to generate compact super-voxel.

Progressive Morphological Filtering. Progressive morphological filtering was initially

introduced to remove non-ground measurements from airborne LiDARmeasurements [28].

The filter gradually increases the window size of an opening filter and uses elevation885

di↵erence thresholds to identify ground points. Depending on the size of the modelled

area the window size can either be increased linearly or exponentially to reduce the

number of iterations used for filtering. Since both the allowed di↵erence in elevation

and change of window size of the opening operation can be controlled by respective

parameters, this filter can be tuned to be either very specific (i.e. high true negative890

rate [true positive ground points divided by all ground points] or correct rejection rate)

or very sensitive (i.e. high true positive rate [true positive vegetation points divided
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by all vegetation points], recall or hit rate). We use this method to identify vegetation

points in terrestrial scans and cluster them into V and G. Thus, instead of remov-

ing non-ground points we iteratively add these removed points to V. By setting the895

parameters to get high specificity we ensure a very close-to-the-ground vegetation seg-

mentation. Progressive morphological filtering rejects vegetation points (i.e. negative

detections) and high specificity maximises a true negative classification.

Region Growing Segmentation. A second ground segmentation strategy in Habitat3D

is region growing segmentation. Region growing segmentation utilises surface normals900

in order to identify ground points. Assuming a more or less flat ground containing only

smooth slopes, the general curvature and distributions of normals are distinctive for

regions of the point cloud belonging to the ground plane. Consequently, region growing

segmentation utilises a smoothness constraint to find smoothly connected areas within

the cloud [52]. The connectivity is specified by the number of neighbours and the905

smoothness constraint is achieved by thresholding normals above a certain value and

restricting the curvature along the underlying ground surface. A combination of region

growing segmentation after progressive morphological filtering yielded best results to

identify ground points in our datasets.

Concave Cloud Hull Extraction. Laser scanners strobe the outer boundary of the ob-910

jects within the scanning radius. However, due to inaccuracies of the scanner and

merging several scans into a single global cloud, points are also inside the outer bound-

ary. To extract the outer boundary of the underlying objects, concave hulls (also called

alpha shapes) can be extracted [53]. In contrast to convex hull, which is uniquely de-

fined by the set of points minimizing the area covering all given points without having915

any angle that exceed 180� between edges, a concave hull also minimizes the area of

the resultant shape allowing any angle (resulting in convex and concave structures

along the boundary).

Appendix A.3.4. Meshing

The actual transformation from point clouds into 3-dimensional polyhedral objects920

is called meshing. Meshes are a collection of vertices which are connected by edges

to build closed faces. Combined faces define polygons which are used to describe

surfaces. Meshes are a generalised digital data structures of triangulated irregular

networks (TIN).
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Poisson Surface Reconstruction. All above listed ground meshing requirements are925

addressed using the Poisson Surface Reconstruction method in which the reconstruc-

tion is formulated as a spatial Poisson problem. The resolution of the reconstruction

can be controlled by the depth of the underlying adaptive octree. High tree depths

result in higher-resolution functions used to fit the indicator function (i.e. a vector

field that is zero almost everywhere except at points near the surface) so that the930

model captures finer details, whereas low depths result in a smoother surface. Since

all ground points G are meshed at once the reconstruction is more resilient to noise

and gaps. Poisson surface reconstruction utilises the relationship between oriented

points (i.e. points and normals) sampled from a surface and the indicator function of

the model [54]. Consequently, the smoothness of the resultant mesh relies crucially on935

the normal directions extracted prior to meshing.

Concave Hull Meshing. Concave hulls are directly estimated from the plant clus-

ters [53], making this procedure more general for di↵erent types of plants and in-

dependent to surface normals but at the cost of smoothness. The general principle

is equivalent to the concave cloud hull extraction explained in Appendix A.3.3. To940

avoid over-fitting a parameter ↵ is set to limit the size of the resultant hull segments

(the smaller the more detailed the alpha-shape), so that ↵ controls which neighbour-

ing points are connected. A facet is accepted if the distance from any point to the

centre of the voronoi cell (i.e. the facet centre) is smaller than ↵. Setting ↵ relative

to the minimal distance between natural structures (e.g. between two blossoms of a945

single flower) the resultant plant models have closed surfaces without merging nearby

but di↵erent structures. Note that the merged plant clusters can directly be meshed

via concave hull meshing: neither particular pre-processing nor normal extraction is

necessary. However, since the hull spans a triangle network covering the outermost

points, the resultant mesh will have sharp edges.950

Greedy Triangulation Meshing. As an alternative to the above listed meshing strate-

gies, greedy triangulation meshing can be used to generate general triangle meshes.

Since these meshes rely on local neighbourhoods and surface normals, local smoothing

is recommended before meshing. In principle the mesh is generated by successively

connecting points (i.e. add triangles) to grow the surface incrementally. The neigh-955

bourhood for a point p is determined by a user specified search radius and a tangent

42



plane is projected through these points along p’s normal [55]. The smoothness of

the resultant surface can be controlled by a minimum and maximum angles in each

triangle and a maximum surface angle (i.e. two points can only be connected if the

di↵erence of their normals is below the maximum).960

Appendix A.3.5. Mesh Filtering

The mesh appearance and complexity can be optimised by applying mesh filtering

techniques. In our framework, the natural environments are extracted from raw point

clouds so that processing of the clouds before meshing usually yields better results

than filtering the resultant polygon models. However, to o↵er a complete processing965

framework we added options for four mesh filtering strategies to reduce, refine or

smooth the mesh.

Quadric Mesh Decimation. Quadric mesh decimation reduces the number of faces

based on repeated edge collapsing by utilising priority queue-based costs [56]. It

continues until a desired reduction level is reached or topological constraints prevent970

further reduction.

Quadric Clustering. Since quadric mesh decimation is restricted by topological con-

straints, it sometimes does not yield satisfactory reduction rates. We therefore added

quadric clustering as an alternative which can be used to enforce the face reduction of

the mesh. Note that it can cause disconnected meshes (i.e. mesh topology is not pre-975

served) but allows simplification of arbitrary complex datasets in linear time. Quadric

clustering bins the 3D space by accumulating the quadric surface of each face and ex-

tracts the optimal vertex position for each bin based on the accumulated surfaces [57].

The number of divisions can either be calculated automatically or manually set for all

3 dimensions.980

Mesh Subdivision. Besides decimating a mesh to reduce the number of faces, refine-

ment or subdivision can be used to increase the number of faces. The Habitat3D

framework o↵ers three well-known subdivision schemes: linear, loop and butterfly

subdivision. The linear scheme divides each face into four new faces so that the resul-

tant polygon mesh has a smoother surfaces but at the costs of an increase in memory985

required. In the loop scheme, each face is also subdivided into four sub-faces but in

addition the vertices of the refined mesh are then positioned using a weighted average
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of the vertices in the unrefined mesh, thus approximating the initial geometry [58].

Instead of approximating (i.e. generating new control points), butterfly refinement

can be used to interpolate old and new control points on the original surface mesh990

(Butterfly subdivision is named after the shape of the scheme) [59].

Laplacian Mesh Smoothing. Similar to point cloud smoothing, mesh smoothing results

in a less sharp surface given more evenly distributed vertices. We integrated Laplacian

mesh smoothing into our framework which uses local informations (i.e. 3D position

of neighbouring vertices) to extract a new position. The coordinates of a vertex are995

modified according to an average of the neighbouring vertex positions with respect to

a relaxation factor controlling the amount of displacement [60].

Appendix A.4. Parameter Discussion

The used meshing recipes (pipelines as well as all specified parameters) are available

at insectvision.org. Here we discuss the main parameters and how di↵erent param-1000

eter settings influence the resultant models. The dimensions of the point clouds are

determined by the used scanning hardware. The overall shape of the ground model

is mainly controlled by the parameters specified for (a) the progressive morphological

filtering; (b) the voxelgrid based down-sampling; (c) the region growing segmenta-

tion; and (d) the Poisson surface reconstruction. During progressive morphological1005

filtering the slope and maximal distance between points can be specified to identify

jumps in elevation. Since we fine-tune the shape of the ground during latter meshing

comparatively large slope and distance values can be used. Down-sampling specifies

the resolution of the final model since the resultant subset is the source for the resul-

tant mesh. As explained in the main text, the most crucial parameters are set during1010

region growing segmentation and meshing since these two stages crucially depend on

each other (c.f. Section 2.4.2). If complex ground topologies need to be preserved the

smoothness and curvature threshold have to be comparatively high (e.g. 18� and 6�

respectively). Finally, the octree depth of the Poisson surface reconstruction needs to

reflect the desired complexity of the surface (e.g. 6 for approximations and 10 for high1015

resolution reconstructions).

In order to model vegetation we recommend to try a reconstruction without any

sub-sampling to avoid fragmented plants. Instead statistical outlier removal with a

comparatively small search neighbourhood (e.g. 50 points) can be used to sharpen
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the clouds. Individual plant cluster should be extracted based on the density and1020

size of the plants in the respective scene: We recommend to start with larger cluster

tolerances (> 0.5) and inspect the results using Habitat3D. If the vegetation appears

merged, smaller values can be chosen; we achieved good results with a tolerance of

0.3. Note that the minimal cluster size should be bigger than or equal to the search

neighbourhood of the statistical outlier removal since no smaller clusters will exist1025

after this procedure. Finally the ↵ value of the concave hulls specifies the details of

the plants. Given an ↵ = 0.1 very high polygon meshes will be produced. In contrast

↵ > 0.5 might result in oversimplifications of the underlying topology (e.g. merging

neighbouring leafs). Again, we recommend to start with larger ↵ values which should

be below the cluster tolerance to capture fine details of the vegetation. Given plants1030

in very close proximity to each other, like in dense forests (e.g. closed canopy), very

small cluster tolerances are recommended to approximate individual plant identities.

However, a correct segmentation cannot be achieved given highly overlapping plant

structures.
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