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In this note we study the extremes of the mass distribution associated with a tetravariate 
quasi-copula and compare our results with the bi- and trivariate cases, showing the important 
differences between them.

1. Introduction

Alsina et al. [1] introduced the notion of a quasi-copula —a more general concept than that of a copula [6,12]— in order to 
characterize operations on distribution functions that can, or cannot, be derived from operations on random variables defined on the 
same probability space. In the last few years these functions have attracted an increasing interest by researchers in some topics of 
fuzzy sets theory, such as preference modeling, similarities and fuzzy logics. For a complete overview of quasi-copulas, we refer to 
[2,19].

Cuculescu and Theodorescu [4] characterize a multivariate quasi-copula, or 𝑛-quasi-copula, —a 2-quasi-copula was previously 
characterized in [10]— as a function 𝑄∶ [0, 1]𝑛 → [0, 1] that satisfies:

1. boundary conditions: 𝑄(𝑢1, … , 𝑢𝑖−1, 0, 𝑢𝑖+1, … , 𝑢𝑛) = 0 and 𝑄(1, … , 1, 𝑢𝑖, 1, … , 1) = 𝑢𝑖, for any (𝑢1, … , 𝑢𝑛) ∈ [0, 1]𝑛;
2. monotonicity: 𝑄 is increasing in each variable; and
3. Lipschitz condition: |𝑄(𝑢1, … , 𝑢𝑛) −𝑄(𝑣1, … , 𝑣𝑛)| ≤∑𝑛

𝑖=1 |𝑢𝑖 − 𝑣𝑖|, for any (𝑢1, … , 𝑢𝑛) and (𝑣1, … , 𝑣𝑛) in [0, 1]𝑛.

Every 𝑛-quasi-copula 𝑄 satisfies the following inequalities: 𝑊 𝑛(𝑢1, … , 𝑢𝑛) = max(
∑𝑛

𝑖=1 𝑢𝑖 − 𝑛 + 1, 0) ≤𝑄(𝑢1, … , 𝑢𝑛) ≤ min(𝑢1, … , 𝑢𝑛). 
𝑊 2 is a 2-copula and 𝑊 𝑛, 𝑛 ≥ 3, is a proper 𝑛-quasi-copula, i.e., an 𝑛-quasi-copula but not an 𝑛-copula.

Consider an 𝑛-quasi-copula 𝑄 and an 𝑛-box 𝐵 = [𝑎1, 𝑏1] × ⋯ × [𝑎𝑛, 𝑏𝑛] in [0, 1]𝑛. The 𝑄-volume of 𝐵 is defined as 𝑉𝑄(𝐵) =∑
sgn(𝑐1, … , 𝑐𝑛) 𝑄(𝑐1, … , 𝑐𝑛), where the sum is taken over all the vertices (𝑐1, … , 𝑐𝑛) of 𝐵 —i.e., each 𝑐𝑘 is equal to either 𝑎𝑘 or 

𝑏𝑘— and sgn(𝑐1, … , 𝑐𝑛) is 1 if 𝑐𝑘 = 𝑎𝑘 for an even number of 𝑘′s, and −1 if 𝑐𝑘 = 𝑎𝑘 for an odd number of 𝑘′s. We refer to 𝑉𝑄 as the mass 
distribution associated with 𝑄 (on 𝑛-boxes), and to 𝑉𝑄(𝐵) as the mass accumulated by 𝑄 on 𝐵.

One of the most important occurrences of quasi-copulas in statistics is due to the following observation [13,17]: Every set  of 
(quasi-)copulas has the smallest upper bound and the greatest lower bound in the set of quasi-copulas (in the sense of pointwisely 
ordered functions). These bounds do not necessarily belong to the set  , nor they are necessarily copulas if the set consists of copulas 
only.
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Differences between copulas and quasi-copulas are studied [7,8,14], and to understand the behavior of an 𝑛-quasi-copula, the step 
from studying a certain property of a quasi-copula from dimension 2 to 3 is crucial, since, in most of the cases known in the literature, 
although the behavior of the bivariate case to the trivariate case differs, this is not usually the case for the three-dimensional case 
and higher.

The mass distribution is a popular object of investigation [5,9,11,15,16,18,20]. In the case of investigating the extremes of the 
mass distribution of an 𝑛-quasi-copula, although the bivariate and trivariant cases differ, it might be expected that this would not be 
the case for the tri- and tetravariate dimensions; however, we will show that we obtain results that reveal this difference, which is, 
in principle, surprising, since the values of these extremes exceed a priori reasonable bounds. In the case 𝑛 = 2, there exists a unique 
2-box on which the minimal mass (which turns out to be −1∕3) can be accumulated, as well as a unique 2-box (the unit square itself) 
on which the maximal mass 1 can be accumulated [15]. In the case 𝑛 = 3 there still exists a unique 3-box on which the minimal 
mass (which now turns out to be −4∕5) can be accumulated, while there exist multiple 3-boxes on which the maximal mass 1 can 
be accumulated [5]. The proof given in [15] for the case 𝑛 = 2 is direct, while the one given in [5] for the case 𝑛 = 3 is given by 
formulating this optimization problem as a linear programming problem.

In principle, the linear programming methodology can be applied to the case 𝑛 > 3 as well, with an obvious increase in complexity 
of the formulation, and, as we will show, several surprises will appear (Section 2). It is probable that other techniques can prove 
the result for any 𝑛 > 3 (for example, using characterizations of the positive volumes of an 𝑛-quasi-copula shown in [16,18]), but no 
progress has been made so far in this regard. As a consequence of the results obtained, in Section 3 we will make a conjecture about 
the extremes of the mass distribution of an 𝑛-quasi-copula for any 𝑛 > 4.

2. The mass distribution associated with a 4-quasi-copula

In this section we study the extremes of the mass distribution associated with a 4-quasi-copula. We provide the main result of 
this note.

Theorem 1. Let 𝑄 be a 4-quasi-copula and let 𝐵 be a 4-box in [0, 1]4. Then it holds −9∕7 ≤ 𝑉𝑄(𝐵) ≤ 2.

Proof. Consider the 4-box 𝐵 =
[
𝑎1, 𝑏1

]
×
[
𝑎2, 𝑏2

]
×
[
𝑎3, 𝑏3

]
×
[
𝑎4, 𝑏4

]
, and let 𝑄 be a 4-quasi-copula. In order to simplify the notation, 

we define by the following parameters the length of each of the edges of the 4-box: 𝑎 = 𝑏1 − 𝑎1, 𝑏 = 𝑏2 − 𝑎2, 𝑐 = 𝑏3 − 𝑎3 and 𝑑 = 𝑏4 − 𝑎4. 
The values of the 4-quasi-copula at the vertices of the 4-box 𝐵 are: 𝑄(𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝑒, 𝑄(𝑎1, 𝑎2, 𝑎3, 𝑏4) = 𝑓 + 𝑒, 𝑄(𝑎1, 𝑎2, 𝑏3, 𝑎4) = 𝑔 + 𝑒, 
𝑄(𝑎1, 𝑎2, 𝑏3, 𝑏4) = ℎ +𝑒, 𝑄(𝑎1, 𝑏2, 𝑎3, 𝑎4) = 𝑖 +𝑒, 𝑄(𝑎1, 𝑏2, 𝑎3, 𝑏4) = 𝑗+𝑒, 𝑄(𝑎1, 𝑏2, 𝑏3, 𝑎4) = 𝑘 +𝑒, 𝑄(𝑎1, 𝑏2, 𝑏3, 𝑏4) = 𝑙+𝑒, 𝑄(𝑏1, 𝑎2, 𝑎3, 𝑎4) =𝑚 +𝑒, 
𝑄(𝑏1, 𝑎2, 𝑎3, 𝑏4) = 𝑛 +𝑒, 𝑄(𝑏1, 𝑎2, 𝑏3, 𝑎4) = 𝑜 +𝑒, 𝑄(𝑏1, 𝑎2, 𝑏3, 𝑏4) = 𝑝 +𝑒, 𝑄(𝑏1, 𝑏2, 𝑎3, 𝑎4) = 𝑞+𝑒, 𝑄(𝑏1, 𝑏2, 𝑎3, 𝑏4) = 𝑟 +𝑒, 𝑄(𝑏1, 𝑏2, 𝑏3, 𝑎4) = 𝑠 +𝑒, 
𝑄(𝑏1, 𝑏2, 𝑏3, 𝑏4) = 𝑡 + 𝑒. We consider 24 fundamental parameters, namely: 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛, 𝑜, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡. These 
parameters, along with the values 𝑎 + 𝑎1, 𝑏 + 𝑎2, 𝑐 + 𝑎3 and 𝑑 + 𝑎4, and applying the boundary conditions of a 4-quasi-copula, must 
lie in the interval [0, 1].

We apply the other conditions of a 4-quasi-copula. Since 𝑄 is non-decreasing in each variable and satisfies the 1-Lipschitz 
condition, we have

𝑚 ≤ 𝑎, 𝑖 ≤ 𝑏, 𝑔 ≤ 𝑐, and 𝑓 ≤ 𝑑,

and

max(𝑔,𝑓 ) ≤ ℎ ≤min(𝑑 + 𝑔, 𝑐 + 𝑓 ),

max(𝑖, 𝑓 ) ≤ 𝑗 ≤min(𝑏+ 𝑓,𝑑 + 𝑖),

max(𝑖, 𝑔) ≤ 𝑘 ≤min(𝑏+ 𝑔, 𝑐 + 𝑖),

max(𝑓,𝑚) ≤ 𝑛 ≤min(𝑎+ 𝑓,𝑑 +𝑚),

max(𝑔,𝑚) ≤ 𝑜 ≤min(𝑎+ 𝑔, 𝑐 +𝑚),

max(𝑖,𝑚) ≤ 𝑞 ≤min(𝑎+ 𝑖, 𝑏+𝑚),

max(ℎ, 𝑗, 𝑘) ≤ 𝑙 ≤min(𝑏+ ℎ, 𝑐 + 𝑗, 𝑑 + 𝑘),

max(ℎ, 𝑛, 𝑜) ≤ 𝑝 ≤min(𝑎+ ℎ, 𝑐 + 𝑛, 𝑑 + 𝑜),

max(𝑗, 𝑛, 𝑞) ≤ 𝑟 ≤min(𝑎+ 𝑗, 𝑏+ 𝑛, 𝑑 + 𝑞),

max(𝑘, 𝑜, 𝑞) ≤ 𝑠 ≤min(𝑎+ 𝑘, 𝑏+ 𝑜, 𝑐 + 𝑞),

max(𝑙, 𝑝, 𝑟, 𝑠) ≤ 𝑡 ≤min(𝑎+ 𝑙, 𝑏+ 𝑝, 𝑐 + 𝑟, 𝑑 + 𝑠).

Since max(𝑢 + 𝑣 +𝑤 + 𝑧 − 3, 0) ≤𝑄(𝑢, 𝑣, 𝑤, 𝑧) ≤min(𝑢, 𝑣, 𝑤, 𝑧) for all (𝑢, 𝑣, 𝑤, 𝑧) ∈ [0, 1]4, then, for each of the 16 vertices of the 4-box 
2

𝐵 we have:
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𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 − 3 ≤ 𝑒 ≤min
(
𝑎1, 𝑎2, 𝑎3, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑑 − 3 ≤ 𝑓 + 𝑒 ≤min
(
𝑎1, 𝑎2, 𝑎3, 𝑎4 + 𝑑

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑐 − 3 ≤ 𝑔 + 𝑒 ≤min
(
𝑎1, 𝑎2, 𝑎3 + 𝑐, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑐 + 𝑑 − 3 ≤ ℎ+ 𝑒 ≤min
(
𝑎1, 𝑎2, 𝑎3 + 𝑐, 𝑎4 + 𝑑

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑏− 3 ≤ 𝑖+ 𝑒 ≤min
(
𝑎1, 𝑎2 + 𝑏, 𝑎3, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑏+ 𝑑 − 3 ≤ 𝑗 + 𝑒 ≤min
(
𝑎1, 𝑎2 + 𝑏, 𝑎3, 𝑎4 + 𝑑

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑏+ 𝑐 − 3 ≤ 𝑘+ 𝑒 ≤min
(
𝑎1, 𝑎2 + 𝑏, 𝑎3 + 𝑐, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑏+ 𝑐 + 𝑑 − 3 ≤ 𝑙 + 𝑒 ≤min
(
𝑎1, 𝑎2 + 𝑏, 𝑎3 + 𝑐, 𝑎4 + 𝑑

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎− 3 ≤𝑚+ 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2, 𝑎3, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎+ 𝑑 − 3 ≤ 𝑛+ 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2, 𝑎3, 𝑎4 + 𝑑

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎+ 𝑐 − 3 ≤ 𝑜+ 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2, 𝑎3 + 𝑐, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎+ 𝑐 + 𝑑 − 3 ≤ 𝑝+ 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2, 𝑎3 + 𝑐, 𝑎4 + 𝑑

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎+ 𝑏− 3 ≤ 𝑞 + 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2 + 𝑏, 𝑎3, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎+ 𝑏+ 𝑑 − 3 ≤ 𝑟+ 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2 + 𝑏, 𝑎3, 𝑎4 + 𝑑

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎+ 𝑏+ 𝑐 − 3 ≤ 𝑠+ 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2 + 𝑏, 𝑎3 + 𝑐, 𝑎4

)
,

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎+ 𝑏+ 𝑐 + 𝑑 − 3 ≤ 𝑡+ 𝑒 ≤min
(
𝑎1 + 𝑎, 𝑎2 + 𝑏, 𝑎3 + 𝑐, 𝑎4 + 𝑑

)
.

Now we apply linear programming considering to minimize the objective function

𝑉𝑄(𝐵) = ℎ+ 𝑗 + 𝑘+ 𝑛+ 𝑜+ 𝑞 + 𝑡− 𝑓 − 𝑔 − 𝑖− 𝑙 −𝑚− 𝑝− 𝑟− 𝑠

for a total of 192 linear inequality constraints, i.e., looking for the 4-boxes 𝐵 that minimize 𝑉𝑄(𝐵). The simplex method —see, e.g., 
[3]— shows the solution 𝑉𝑄(𝐵) = −9∕7, and where we have used the Mathematica®package.

Analogously, by maximizing 𝑉𝑄(𝐵), or equivalently, by minimizing −𝑉𝑄(𝐵), we obtain 𝑉𝑄(𝐵) = 2, which completes the proof. □

The linear programming in the proof of Theorem 1 shows the following solution for the parameters for the lower bound: 𝑒 = 𝑓 =
𝑔 = ℎ = 𝑖 = 𝑗 = 𝑘 =𝑚 = 𝑛 = 𝑜 = 𝑞 = 0 and 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑙 = 𝑝 = 𝑟 = 𝑠 = 𝑡 = 3∕7. This implies

𝑄 (3∕7,3∕7,3∕7,3∕7) =𝑄 (3∕7,3∕7,3∕7,6∕7) =𝑄 (3∕7,3∕7,6∕7,3∕7) =𝑄 (3∕7,3∕7,6∕7,6∕7) =

𝑄 (3∕7,6∕7,3∕7,3∕7) =𝑄 (3∕7,6∕7,3∕7,6∕7) =𝑄 (3∕7,6∕7,6∕7,3∕7) =𝑄 (6∕7,3∕7,3∕7,3∕7) =

𝑄 (6∕7,3∕7,3∕7,6∕7) =𝑄 (6∕7,3∕7,6∕7,3∕7) =𝑄 (6∕7,6∕7,3∕7,3∕7) = 0

and

𝑄 (3∕7,6∕7,6∕7,6∕7) =𝑄 (6∕7,3∕7,6∕7,6∕7) =𝑄 (6∕7,6∕7,3∕7,6∕7) =𝑄 (6∕7,6∕7,6∕7,3∕7) =

𝑄 (6∕7,6∕7,6∕7,6∕7) = 3∕7,

whence the 4-box 𝐵1 = [3∕7, 6∕7]4 is obtained, which is symmetrical with respect to the main diagonal, as in the bi- and trivariate 
cases.

On the other hand, the solution for the parameters obtained for the upper bound is 𝑒 = 𝑓 = 𝑔 = 𝑖 =𝑚 = 0, 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 𝑎 = 𝑏 =
𝑐 = 𝑑 = ℎ = 𝑗 = 𝑘 = 𝑙 = 𝑛 = 𝑜 = 𝑝 = 𝑞 = 𝑟 = 𝑠 = 1∕2 and 𝑡 = 1, whence the 4-box is given by 𝐵2 =

[
1∕2,1

]4
and the values on the vertices 

of 𝐵2 are given by:

𝑄(1∕2,1∕2,1,1) =𝑄(1,1,1∕2,1∕2) =𝑄(1∕2,1,1∕2,1) =𝑄(1∕2,1,1,1∕2) =𝑄(1,1∕2,1∕2,1) =

𝑄(1,1∕2,1,1∕2) = 1∕2.

Obviously we have

𝑄(1∕2,1,1,1) =𝑄(1,1∕2,1,1) =𝑄(1,1,1∕2,1) =𝑄(1,1,1,1∕2) = 1∕2 and 𝑄(1,1,1,1) = 1.

Also, we want to stress that the software does not indicate a unique solution for the lower bound, nor that there are infinitely 
many solutions for the upper bound, as occurs in the trivariate case, although it is probable that a similar result can be obtained for 
the tetravariate case, remaining this as an open problem. ( ) ( )
3

We now provide two examples of 4-quasi-copulas, 𝑄1 and 𝑄2, for which 𝑉𝑄1
[3∕7,6∕7]4 = −9∕7 and 𝑉𝑄2

[1∕2,1]4 = 2.
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Fig. 1. Mass distribution of the trivariate marginal of the 4-quasi-copula 𝑄1 in Example 1.

Example 1. Let 𝑄1 be the 4-quasi-copula whose mass is spread uniformly on [0, 1]4 in the following manner: 3∕7 of (positive) 
mass on the 4-boxes [3∕7, 6∕7]3 × [0, 3∕7], [3∕7, 6∕7]2 × [0, 3∕7] × [3∕7, 6∕7], [3∕7, 6∕7] × [0, 3∕7] × [3∕7, 6∕7]2 and [0, 3∕7] × [3∕7, 6∕7]3; 
1∕7 of (positive) mass on the 4-boxes [3∕7, 6∕7]3 × [6∕7, 1], [3∕7, 6∕7]2 × [6∕7, 1] × [3∕7, 6∕7], [3∕7, 6∕7] × [6∕7, 1] × [3∕7, 6∕7]2 and 
[6∕7, 1] × [3∕7, 6∕7]3; −9∕7 of (negative) mass on the 4-box [3∕7, 6∕7]4; and 0 on the remaining 4-boxes. In order to visualize, in some 
way, the 4-quasi-copula 𝑄1, we show the mass distribution of one of its identical trivariate margins, which are 3-quasi-copulas, in 
Fig. 1.

Example 2. Let 𝑄2 be the 4-quasi-copula whose mass is spread uniformly on [0, 1]4 in the following manner: 2 of (positive) mass on 
the 4-box [1∕2, 1]4; 1∕2 of (positive) mass on the 4-boxes [0, 1∕2]2 × [1∕2, 1]2, [0, 1∕2] × [1∕2, 1] × [0, 1∕2] × [1∕2, 1], [0, 1∕2] × [1∕2, 1]2 ×
[0, 1∕2], [1∕2, 1] × [0, 1∕2]2 × [1∕2, 1], [1∕2, 1] × [0, 1∕2] × [1∕2, 1] × [0, 1∕2] and [1∕2, 1]2 × [0, 1∕2]2; −1 of (negative) mass on the 4-boxes 
[0, 1∕2] × [1∕2, 1]3, [1∕2, 1] × [0, 1∕2] × [1∕2, 1]2, [1∕2, 1]2 × [0, 1∕2] × [1∕2, 1] and [1∕2, 1]3 × [0, 1∕2]; and 0 on the remaining 4-boxes. We 
note that the (identical) trivariate margins of the 4-quasi-copula 𝑄2 correspond to a 3-quasi-copula 𝑄3 for which 𝑉𝑄3

(
[1∕2,1]3

)
= 1: 

see [5, Example 2].

3. Conclusion

In this note, we have shown that, “surprisingly”, the extreme values of the mass distribution in a 4-box of a 4-quasi-copula are 
−9∕7 (less than −1) and 2 (more than 1), showing the existing differences with respect to the bi- and trivariate cases. In view of 
the results obtained in all these cases, a natural question arises: what are the extremes of the mass distribution associated with an 
𝑛-quasi-copula for 𝑛 > 4? [2, Open Problem 5]. The answer seems not to be simple, even more considering that the use of linear 
programming does not seem feasible. In any case, we conjecture, at least, for the lower bound, the following: Let 𝑛 be a natural 
number such that 𝑛 ≥ 2, let 𝑄 be an 𝑛-quasi-copula, and let 𝐵 be an 𝑛-box in [0, 1]𝑛. Then

𝑉𝑄(𝐵) ≥ −(𝑛− 1)2

2𝑛− 1
;

moreover, the equality implies

𝐵 =
[
𝑛− 1
2𝑛− 1

,
2𝑛− 2
2𝑛− 1

]𝑛
.
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