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Abstract

Dynamic Parallelism (DP) is a runtime feature of the GPU programming model that allows GPU threads to execute additional GPU
kernels, recursively. Apart from making the programming of parallel hierarchical patterns easier, DP can also speedup problems
that exhibit a heterogeneous data layout by focusing, through a subdivision process, the finite GPU resources on the sub-regions
that exhibit more parallelism. However, doing an optimal subdivision process is not trivial, as there are different parameters that
play an important role in the final performance of DP. Moreover, the current programming abstraction for DP also introduces an
overhead that can penalize the final performance. In this work we present a subdivision cost model for problems that exhibit self
similar density (SSD) workloads (such as fractals), in order understand what parameters provide the fastest subdivision approach.
Also, we introduce a new subdivision implementation, named Adaptive Serial Kernels (ASK), as a smaller overhead alternative to
CUDA’s Dynamic Parallelism. Using the cost model on the Mandelbrot Set as a case study shows that the optimal scheme is to
start with an initial subdivision between g = [2, 16], then keep subdividing in regions of r = 2, 4, and stop when regions reach a
size of B ∼ 32. The experimental results agree with the theoretical parameters, confirming the usability of the cost model. In terms
of performance, the proposed ASK approach runs up to ∼ 60% faster than Dynamic Parallelism in the Mandelbrot set, and up to
12× faster than a basic exhaustive implementation, whereas DP is up to 7.5×. These results put the subdivision cost model and the
ASK approach as useful tools for analyzing the potential improvement factor from subdivision before-hand, and for implementing
an efficient GPU-based subdivision approach when developing GPU libraries or fine-tuning specific scientific algorithms.
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1. Introduction

In the last decade, GPU computing has become a widely
available tool for the development of advanced and efficient
HPC solutions for science and technology [1, 2]. The GPU pro-
gramming model allows a programmer to describe scalable par-
allel algorithms that can accelerate data-parallel problems by
up to an order of magnitude compared to a CPU-based solution
[3, 4, 5]. From top to bottom, the programming model provides
three constructs that allow mapping the work units to the data-
domain. In the case of CUDA (Nvidia’s GPU programming
platform) these are named grid, block and thread [6]. In the
early age of general-purpose GPU computing (2007 to 2012),
the programming model only allowed a static definition of these
constructs, which made GPUs less friendly to deal with prob-
lems with a hierarchical structure or heterogeneous data layout.

In the year 2012, Nvidia introduced Dynamic Parallelism
(DP)1 [8], a programming feature that allows GPU threads to
launch new kernels recursively during GPU runtime, all this
without the need to return to the CPU for synchronization. Dy-
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1In 2013, Khronos Group also introduced Dynamic Parallelism to the spec-
ification of the OpenCL 2.0 standard [7], contributing to the compatibility of
DP beyond Nvidia GPUs.

namic Parallelism contributes in two ways; i) as a programmer-
friendly abstraction to solve problems with a hierarchical struc-
ture, and ii) as a dynamic exploration method to solve problems
with an heterogeneous work layout (i.e., some of its regions re-
quire more work, while other regions require less to none), fo-
cusing GPU resources where more parallelism is required. For
problems that only benefit from i), the motivation to use DP is
the easiness of expressing parallel hierarchical exploration with
the hope of introducing the least overhead possible from the
abstraction. Techniques such as sorting [9] fall into this type of
problems. On the other hand, for problems that exhibit an het-
erogeneous work layout, the motivation to use DP is not only
the easiness in programming a parallel hierarchy, but it is also
the possibility to further increase the speedup of a GPU im-
plementation given that parallelism can now be focused on the
regions of actual work. Simulation of partial differential equa-
tions (PDE) [10] in sparse domains, Barnes-Hut n-body simula-
tion [11] and fractal generation/processing [12, 13] are example
applications that fall into this category, among others.

DP has become a useful addition to the GPU programming
model for doing a parallel subdivision process where parallel
work discovered during execution. Figure 1 (right) illustrates
Dynamic Parallelism compared to a classic flat approach (left)
when acting on a problem with a heterogeneous data layout.

Nowadays, DP is available on all modern GPUs through
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Figure 1: On the left, the classic GPU approach where many threads fall outside of the regions with work. On the right, DP first discovering the domain before
executing parallel work.

the CUDA and OpenCL platforms [8, 7], and has provided
extra speedup in problems that exhibit an heterogeneous data
layout [14, 15, 16, 17]. For example, generating the Mandel-
brot set is a well known favorable use case for DP [18, 15],
where the subdivision based approach by DP reaches a signif-
icant extra speedup over a basic GPU implementation. There
have also been several reports of performance slowdown from
DP [19, 20, 17] because of the high overhead from recursive
kernel executions along the subdivision process. In many cases
this overhead can be reduced significantly if optimal values are
used for three subdivision parameters; initial subdivision (g),
recurrent subdivision (r) and minimal region size (B). Finding
the optimal or near-optimal values for these {g, r, B} parame-
ters is not a trivial task as the configuration space is large and
may vary on the problem size as well. Being able to analyze
the efficiency of a DP-based subdivision process using a cost
model would give key insights before hand for building a more
efficient implementation of dynamic parallelism with optimal
g, r, B parameters and less overheads. Also, having a cost model
motivates the proposal of new alternative subdivision methods
that can introduce less overhead than the regular recursive DP.

This work provides two contributions: i) a cost model for
the DP-based subdivision process, in which optimal parameters
g, r, B can be estimated for the Self Similar Density (SSD) class
of problems, and ii) Adaptive Serial Kernels (ASK), an alter-
native subdivision approach that executes a series of kernels,
one after another, adapting the compute grids with the help of
an offset lookup table that is tight in memory usage. Using the
Mandelbrot Set as a case study, the proposed cost model was
able to estimate the optimal g, r, B values which were also con-
firmed by experimentation. Experimental results also showed
that the proposed ASK subdivision approach is up to ∼ 12×
faster than an exhaustive approach, whereas the regular CUDA
DP is up to 7.5× faster. This translates to ASK being up to
∼ 60% faster than DP. These results can be of great interest to
GPU developers who seek to fine tune GPU-based library, a low
level GPU algorithm, or even consider to improve the proposed
cost model and alternative approach further beyond.

The rest of the manuscript is organized as follows: Section
2 describes related work on the subject of GPU Dynamic Par-

allelism, Section 3 revisits GPU Dynamic Parallelism and ex-
plains how it is frequently utilized, Section 4 presents the work
model in order to better understand the relevant parameters and
the cost of a subdivision approach. Section 5 proposes the
alternative subdivision approach Adaptive Serial Kernels and
Section 7 describes the main aspects to consider when extend-
ing both regular DP and ASK to higher dimensions. Section
6 presents experimental performance results using the Mandel-
brot Set as a case study and Section 8 discusses and concludes
the main results of this work.

2. Related Work

Related work on GPU Dynamic Parallelism (DP) can be
classified into two groups, i) parallel algorithms developed with
DP and ii) analysis/improvements to the DP model. In general,
DP’s recursion overhead is recognized as a critical aspect that
affects performance.

2.1. DP-based Parallel Algorithms
DiMarco and Taufer (2013) [14] developed parallel DP al-

gorithms for k-means and hierarchical clustering. The authors
report speedups of up to ∼ 3× for hierarchical clustering and
a slowdown of 7.7% for k-means. Zhang et. al. (2015) [21]
proposed DP versions of breath first search and single source
shortest paths. The authors report that the performance was not
as efficient as expected, but on the other hand compensates in
the ease of programming. Alandoli et al. [16] used DP for
accelerating cluster-based community detection in social net-
works. The authors reported speedups of up to 4.45× over a
sequential implementation, but it was not as fast as an hybrid
CPU-GPU approach. In 2021, Bozorgmehret al. [20] reported
competitive performance of DP when simulating 3D wind-field
phenomena, but it was not as fast as an hybrid CPU-GPU im-
plementation following classic strategies.

2.2. Analysis/Improvements to DP
In 2014, Wang and Yalamanchili [19] analyzed the mayor

causes of overhead in DP, finding that these are the recursive
calls to child kernels and a low cache hit-ratio for dynamically
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allocated memory. The authors also report an average slow-
down of 1.21× for algorithms like BFS, Graph coloring, regular
expression Match, relational join, among others, and identify
that if no execution overhead existed, DP could have provided
a speedup as high as 2.73×.

In 2016, Plauth et al. [22] studied the overhead of DP us-
ing the N-Queen problem as case study. Four different incre-
mental DP approaches were proposed to solve the problem.
The authors conclude that in all variants the performance bene-
fits were outweighed by the overhead from nested child kernel
launches and dynamic memory allocation. Other studies have
focused in designing mechanisms that help the programmer im-
plement dynamic parallelism. Such is the case of Li, Wu and
Becchi [23, 24], whom in 2015 proposed a workload consolida-
tion mechanism for irregular nested loops using dynamic par-
allelism. Their main results are speedups from 90× to 3300×
over a basic DP approach, and from 2× to 6× over a flat GPU
implementation.

In 2017, Jarząbek and Czarnul [17] analyzed the perfor-
mance of Dynamic Parallelism and Unified Memory under three
different applications: heat transfer simulation in 2D space,
adaptive integration with a trapezoidal rule and a verification of
the Goldbatch conjecture. Results show mixed performances:
for the heat transfer simulation, speedups were favorable. For
adaptive integration, DP performed similar but slightly worse
compared to the standard approach. For the Goldbatch con-
jecture, DP under-performed considerably. Authors claim that
incorporating DP in code was not trivial and increased code
complexity. Finally they conclude that DP can bring consid-
erable benefits for recursive algorithms or algorithms that use
hierarchical arranged data.

In 2017, Tang et. al. [25] proposed SPAWN, a runtime
framework that controls the launch of child kernels, reducing
overhead associated with kernel launches and queue latency.
Additionally, the work allows a better mix of child and parent
kernels for the scheduler to effectively hide the remaining over-
heads and improve the utilization of the GPU resources. Their
results show that using SPAWN provides from 57% to 69% of
speedup over DP and flat GPU implementations, respectively.
In 2016, El Hajj et. al. [26, 27] proposed a set of compile-time
techniques that reduce the total number of child kernel spawned
and increase the amount of work done per kernel. This is done
by aggregating kernels in the same warp, block, or kernel. Re-
sults show that kernel aggregation achieves up to 6.58× speedup
over regular DP.

In general, recent research on DP has recognized the per-
formance overhead of recursive GPU kernels, which limits the
potential performance of a subdivision based approach. Even
when in some cases DP does provide an extra speedup over a
classic exhaustive GPU approach, this speedup could be higher
if the subdivision parameters {g, r, B} are also considered in the
analysis. The next Section revisits the main features of GPU
Dynamic Parallelism.

3. Revisiting GPU Dynamic Parallelism

Dynamic Parallelism (DP) is a GPU programming abstrac-
tion that allows GPU threads to launch additional GPU kernels
within a given kernel and produce nested parallelism at execu-
tion time. This feature facilitates the programming on problems
that exhibit a hierarchical structure, and can potentially produce
an extra speedup for problems with an heterogeneous data lay-
out, as it allows focusing the GPU resources (threads) on the
regions that exhibit parallel work while avoiding the use of re-
sources in regions with little or no parallelism. Figure 1 (right)
illustrates how extra speedup can potentially emerge by focus-
ing parallel resources.

In terms of programming, the DP approach offers a tree-
like structure of recursive kernel calls, traversed top-down. The
root kernel is launched from the host as a regular CUDA kernel,
while the rest of the kernels are called recursively from their
parent kernels. Child kernels are recursively generated as long
as more parallel work is found at runtime for that region of the
data-parallel domain. Internal nodes of the execution tree play
the role of exploration kernels, i.e, kernels that besides some
amount of application work done, are also in charge of discov-
ering if further parallelism is required or not. On the other hand,
leaf nodes play the role of work kernels, i.e., kernels that focus
on doing the original parallel-work intended for the algorithm.

Figure 2 illustrates DP’s execution tree on a heterogeneous
data layout, where the middle block subdivides and launches
a new parallel kernel in order to handle the finer grained par-
alleism exhibited by the problem.
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Figure 2: Dynamic Parallelism acting on an heterogeneous data-parallel prob-
lem domain.
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It is worth noticing the red sub-div block of Figure 2, which
illustrates the existence of a subdivision cost in the process.
More details about DP can be found in Jones’s presentation on
Dynamic Parallelism [8].

Although Dynamic Parallelism is a tool that facilitates ex-
pressing nested parallelism for hierarchical structures, it has
also been used to obtain extra speedup for problems that ex-
hibit a heterogeneous data layout given that resources can be
dynamically mapped onto the regions that require more work.
This potential speedup may not be achievable if the subdivi-
sion parameters are too distant from its optimal values, as it
may introduce too much kernel recursion overhead. Having a
cost model that can measure the cost of a subdivision-based
approach can provide useful insights in order to build an effi-
cient subdivision process with optimal parameters and reduced
overhead. The next Section formulates a cost model in order
to understand what are the parameters that play a relevant role
in a subdivision process, and find which values contribute to an
efficient solution.

4. Cost Model for Hierarchical Subdivisions

This Section analyses the work and parallel time for both
the exhaustive parallel approach and the subdivision-based ap-
proach. The analysis focuses on problems that exhibit self sim-
ilar density which is a type of heterogeneous data layout. For
these problems, a subdivision based approach can provide extra
speedup over an exhaustive approach. This theoretical analy-
sis leads to the formulation of a cost model that contributes in
the understanding of what parameters play a relevant role on
a subdivision-based process, and what combination of values
produce optimal performance.

4.1. Exhaustive Work

The exhaustive approach maps resources to all data loca-
tions in a flat GPU kernel. The computation uses a fixed-size
grid GE that maps threads to data elements one-to-one, for the
whole n × n domain. The grid is then processed with an appli-
cation work ofA per data element, giving a total work of

WE(n) = |GE |A (1)

= n2A. (2)

The value ofA corresponds to the application’s algorithm work.
It is normally assumed that the domain exhibits sufficient data-
parallel elements to produce a potential speedup.

4.2. Sub-division Work

For a subdivision approach, its total work denoted WS (n)
is the sum of the work found at all subdivision levels, denoted
K(n, τ), added with the cost of doing algorithm work in the last
level, denoted L(n, τ), i.e.,

WS (n) = K(n, τ) + L(n, τ). (3)

In Eq. (3), symbol τ is the number of sub-division levels, equiv-
alent to the depth, and it is normally defined as a function of n.
Expanding K(n, τ) we have:

K(n, τ) =

τ−2∑
i=0

Ki(n) (4)

where Ki(n) is the work at the i-th level of the subdivision pro-
cess. Given that the summation is of the type zero-index (i.e.,
last level is τ − 1), and that the last level is treated separately,
the summation goes only up to τ − 2. In practice, the actual
value of τ in a specific application depends on the grid resolu-
tion, the subdivision factor and the dynamics of the application
problem as well, meaning that even under equal grid and sub-
division conditions, two problems with different dynamics may
still produce a different value of τ. Because of all the possible
ways an application can behave across its domain, we represent
this aspect as if, at a certain depth level, subdivision occurs with
a certain probability, meaning that regions of the i-th level sub-
divide with probability Pi ∈ [0, 1], and stop subdividing with
probability (1 − Pi). In this representation, the work of the i-th
level can be expressed as

Ki(n) =

E[|Gi |]∑
ρ=1

(
E[W i,ρ

S ] + E[W i,ρ
T ]

)
(5)

where the cost of a given level is the sum over the work of its ex-
pected number of regions, i.e., E[|Gi|], considering sub-division
(W i,ρ

S ) and algorithm (W i,ρ
T ) work. It is worth noticing that un-

der this setting, at a given depth level all regions have the same
probability of subdividing, therefore the expectation values for
E[W i,ρ

S ] and E[W i,ρ
T ] are the same for each ρ ∈ E[|Gi|] and thus

can be written simply as E[W i
S ] and E[W i

A], respectively. With
this simplification, the expectation of the subdivision work for
a region at the i-th level, i.e., W i

S , is

E[W i
S ] = Pi(Q + S ) (6)

with Q being the cost of an exploration query in order to know
if a region requires further subdivision or not, and S being the
cost of subdividing that region. The expectation value of the
application’s terminal work (i.e., ending a subdivision branch),
denoted W i

T , becomes

E[W i
T ] = (1 − Pi)(Q + T ) (7)

with T being the work involved for discarding the region and
terminating the region with a final work pass. Using these defi-
nitions in Eq. (5) leads to

Ki(n) = E[|Gi|]
(
Pi(Q + S ) + (1 − Pi)(Q + T )

)
. (8)

For E[|Gi|], its value depends on the expectation of its pre-
vious grid size, recursively. Given that i − 1 levels precede i,
E[|Gi|] can be expressed as

E[|Gi|] = Pi−1RE[|Gi−1|], i = 1..τ − 2 (9)
E[|G0|] = G (10)
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where R = rx × ry is a chosen subdivision and G = gx ×gy is the
initial number of regions, or starting subdivision, which can be
different from R in order to begin with a more populated grid
and favor parallelism at an early stage. The iterative form of the
recurrence from Eq. (9) is

E[|Gi|] = GRi
i−1∏
j=0

P j. (11)

Defining the auxiliary term Ui = Pi(Q+S )+(1−Pi)(Q+T ),
we obtain the following work expression for Ki(n),

Ki(n) = UiGRi
i−1∏
j=0

P j. (12)

For the last-level work, i.e., L(n, τ) from Eq. (3), it consid-
ers the algorithmic work performed on all data-elements that
remain after the last subdivision of K(n, τ). Its expression is de-
fined by considering the size of regions at the last level, ( n2

GRτ−1 ),
multiplied by the algorithmic cost per-thread and by the ex-
pected number of sub-regions that would exist given the accu-
mulated probability up to that level, i.e.,

L(n, τ) =
( n2

GRτ−1

)
AGRτ−1

τ−2∏
j=0

P j. (13)

= n2A

τ−2∏
j=0

P j. (14)

Using the two formulations from Eqs. (12) and (14), the total
subdivision cost WS (n) becomes

WS (n) = K(n, τ) + L(n, τ) (15)

=

τ−2∑
i=0

(
UiGRi

i−1∏
j=0

P j

) + n2A

τ−2∏
j=0

P j. (16)

Eq. (16) represents a general work expression for problems that
can exhibit different subdivision probabilities at each depth level.
If the set of probabilities P0, P1, . . . , Pτ−2, and the parameters
Q,T,A, S are well defined for a certain application, then Eq. (16)
can be used to estimate the computational work required by
a subdivision approach, and assist in finding proper values of
G,R, τ for an optimal work scheme, or one that is sufficiently
efficient for the application.

4.2.1. Subdivision Cost on the SSD Sub-class
A sub-class of subdivision-friendly problems can be defined

by introducing the following three assumptions:

i) The subdivision probability remains equal or highly sim-
ilar through its levels, i.e, P0 ∼ P1 ∼ ... ∼ Pτ−1.

i) Subdivisions are regular→ r = rx = ry, and g = gx = gy.
iii) The subdivision depth limit is τ = logr(

n
gB ), where B is

an arbitrary block-size value.

The first assumption produces a simpler sub-class of problems
where work density has a self-similar property across its depth
levels, that is, the work density found at any region, at any sub-
division level, is similar to the work density found in the whole
problem domain. We will refer to this class of problems as Self-
Similar-Density (SSD) problems. An example type of applica-
tion that belongs to the SSD class are fractals (among others),
which due to their geometric self-similarity property, exhibit
Self-Similar-Density as well.

Assumption i) simplifies Ki(n, τ) into
∏i−1

j=0 P j = Pi as well
as L(n, τ) into

∏τ−2
j=0 P j = Pτ−1. These changes lead to a work

expression of

WSSD =

τ−2∑
i=0

Ki(n, τ) + L(n, τ) (17)

=

τ−2∑
i=0

(
Q + PS + (1 − P)T

)
GRiPi

 + n2APτ−1. (18)

Assumption ii) makes the analysis easier without loss of gen-
erality, while assumption iii) allows the subdivision process to
stop at an early stage if wanted, which turns out to be important
for the remaining analysis as there can exist non-trivial optimal
values for the stopping size.

In order to further analyze WSSD(n), the parameters Q, T ,
A and S need to be specified in the context of an application. In
this work, we choose the Mandelbrot Set as a case study and the
Mariani-Silver algorithm [18] as the process for generating it
through subdivision. Also, the Mandelbrot Set is a known case
of dynamic-parallelism being applied successfully with signifi-
cant speedup. In the Mariani-Silver algorithm, the cost for the
exploration query is Q = 4nA

gri as it computes the dwell (algo-
rithm work) on the perimeter of a sub-region at the i-th depth
level. If the perimeter pixels end with equal dwell values, then
the subdivision process stops and a terminal work T is applied
to the region. In this case, the terminal work is T = n2

GRi as it
writes a constant value on each data-element. If the perimeter
is heterogeneous, then the algorithm subdivides the region into
rx × ry sub-regions with a sub-division cost of S . The value of
S does depend on the sub-division approach, that is, if using
a recursive-based approach such as in DP, or an iterative one.
Given that S also relates to the GPU hardware and its latency
produced by the subdivision approach, we opted to express S
relative to the application’s algorithm cost, i.e., S = λA. In
the case of the Mandelbrot Set, A is often chosen arbitrarily
and corresponds to the dwell which is the number passes done
on the dynamical system equation, where more passes lead to
higher precision on deciding convergence/divergence.

Updating Ki(n, τ) from Eq. (18) we get

Ki(n, τ) =
[4nA

gri + P(λA) + (1 − P)
n2

GRi

]
GRiPi. (19)

With this, the total cost of the subdivision approach applied for
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the Mandelbrot case, denoted WM
SSD

, now becomes

WM
SSD

=

τ−2∑
i=0

[4nA
gri + P(λA) + (1− P)

n2

GRi

]
GRiPi

 + n2APτ−1.

(20)

4.2.2. Work Reduction Factor of WM

SSD

The theoretical work improvement produced by a subdivi-
sion approach over an exhaustive one will be referred to as the
work reduction factor, which is the quotient between the Ex-
haustive and Subdivision work quantities. In the case of Man-
delbrot Set, the work-reduction-factor is

Ω =
WE

WMS S D

(21)

Figure 3 presents a set of plots for Ω, exploring the effect
of different parameters, always choosing the optimal values of
g, r, B (i.e, the r, g, B values that lead to the minimum work for
the subdivision approach) in a search space of {2, 4, 8, · · · , 1024}
for each one. For all plots, one can notice that the maximum
speedup is upper bounded byA.

The first row of plots show the behavior of Ω as a function of
n, varying P, A and λ, respectively. Lower probabilities make
Ω reach its maximum work reduction factor value sooner in n
and diminishes as it approaches P ∼ 1. In the large-n regime,
all curves eventually meet at the upper bound of A. The third
plot shows how the cost of subdivision affects Ω more in the
medium to low n regime, and less in the large-n regime.

The second row of plots shows in detail what are the optimal
values for g, r, B at different values of n. In the case of g, smaller
problem sizes require a smaller value, while the largest problem
size suggests an optimal g ∼ 24. For r, a value of r ∼ 2 is the
optimal. In the case of B, less work is done near B ∼ 23.

The third row of plots present Ω as a function of P, using
four different values for g, r and B. In the case of the multi-g
plot, there is a transition point at P ∼ 0.7 in which Ω starts to re-
duce. For the multi-r plot, the transition point varies depending
of the value of r. In the case of multi-B, it has a lesser impact
on the transition point.

These theoretical work results show that the highest value of
Ω is achieved when using a subdivision stopper of B ∼ 23, with
subdivision values of r ∼ 2 and initial subdivision of g ∼ 21 for
small problems and g ∼ 24 for large problems. Converting work
to parallel time can modify these optimal values, as it requires
applying a parallelization scheme.

4.3. Theoretical Time and Speedup
A two-level GPU computing model is employed on the work

expressions in order to obtain parallel time and speedup. At the
top level there are q multiprocessors that have a PRAM-like
access to memory (a global shared memory), but no2 synchro-
nization during a kernel execution. At the bottom level, there
are c cores per multiprocessor, with a PRAM-like behavior that

2Unless special features are used, such as CUDA’s cooperative groups.

includes synchronization during kernel execution. Using this
model, the core count of a GPU becomes q×c. For the Exhaus-
tive approach, a flat-parallel GPU scheme produces a running
time of

TMEx =

⌈
n2

qc

⌉
A. (22)

This scheme is already efficient and locality can be exploited
at each block whenever is possible. For the subdivision-based
approach there are two parallel schemes that can be applied:

i) SBR: Single-Block per region.

ii) MBR: Multiple-Blocks per region.

The difference between SBR and MBR, i.e., single vs multi-
ple blocks per region, has an impact on how GPU resources
are mapped to the problem domain, how synchronized they
are, and puts into manifest a trade-off between synchronization
(SBR) and core quantity (MBR). In the SBR scheme each re-
gion is processed by only one block of c synchronized cores,
whereas in MBR each region is handled by multiple-blocks of
c cores, but these blocks of cores cannot synchronize easily
among themselves.

4.3.1. Parallel Scheme i): Single-Block per Region (SBR)
The SBR parallelization scheme works by processing each

region by one of the q multiprocessors, leaving c cores available
to do the work for Qi or Ti. The application of SBR parallelism
is denoted as ∆[x], with x being a given work expression. Ap-
plying SBR into WM

SSD
from Eq. (18) produces

TMSBR =

τ−2∑
i=0

(
∆[Qi] + PS + ∆[(1 − P)Ti]

)
∆[G(RP)i] + ∆[L(n, τ)]

=

τ−2∑
i=0

(⌈
4n

gric

⌉
A + PλA + (1 − P)

⌈
n2

GRic

⌉) ⌈
GRi

q

⌉
Pi

+A

⌈
n2

GRτ−1c

⌉ ⌈
GRτ−1

q

⌉
Pτ−1.

(23)

In the Mandelbrot Set, the query Qi is a parallel computation at
the border pixels of each region. In the case of Ti, its work is a
parallel write on the whole region. The term L(n, τ) is used as
in Eq. (14) before the region terms become simplified, this way
the SBR scheme gets applied properly for q and c. The ceiling
functions are required to keep a minimum of 1 unit of time.

4.3.2. Parallel Scheme ii): Multiple-Blocks per Region (MBR)
The MBR scheme works by mapping multiple blocks of c

cores to each region if the number of resources allow it. In the
case of the Mandelbrot Set, Ti and L provide sufficient parallel
work to apply MBR, while Qi (boundary work) and PS (sub-
division cost) are less parallel, therefore these last two terms
still use the SBR approach. The application of the MBR paral-
lel scheme will be denoted as ∇[x], with x being a given work
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Figure 3: Ω: Work-reduction-factor (Eq. (20)) plotted varying different parameters (n, g, B, r, P).

expression. Applying it into WM
SSD

from Eq. (18) produces

TMMBR =

τ−2∑
i=0

(
∆[(Qi + PS )GRi] + ∇[(1 − P)TiGRi]

)
+ ∇[L(n, τ)]

=

τ−2∑
i=0

(⌈
4n

gric

⌉ ⌈
GRi

q

⌉
APi +

⌈
GRi

q

⌉
S Pi+1 +

⌈
n2Pi(1 − P)

qc

⌉)
+A

⌈
n2

qc

⌉
Pτ−1.

(24)

In theory the MBR can potentially produce higher performance
than SBR for the first levels of the subdivision process, because
regions are naturally large in size and few in quantity. This is
an scenario where MBR can employ all of its q × c resources
efficiently, while SBR cannot. However, the GPU execution
of an MBR scheme can introduce extra performance overhead,
diminishing the benefit gained on these first levels of the sub-
division process because of the additional block scheduling per
region. When reaching deeper levels of depth there would exist

sufficient regions to match or surpass the q value, making SBR
as competitive as MBR.

4.3.3. Theoretical Speedup of SBR/MBR Schemes
The theoretical speedup is measured as the acceleration fac-

tor of the SBR/MBR schemes with respect to the Exhaustive
(Ex) approach:

SSBR =
TEx

TSBR
, SMBR =

TEx

TMBR
(25)

Figure 4 presents the set of theoretical speedup plots using q =

128, c = 64 which represents a modern GPU in terms of the
number of streaming-multiprocessors (SM) and the number of
cores per SM, respectively. The plots explore the same param-
eters as in Ω, with the addition of S (q), S (c) to observe the im-
pact of parallel resources on the speedup of each approach. As
with Ω, theA becomes an upper bound for speedup.

The first row of plots, S (n), shows that speedup becomes
beneficial starting from n ≥ 210 when λ ≤ 100, otherwise re-
quires a larger problem size to be beneficial. Varying q has a

7



20 25 210 215 220 225 230

n

S

P=0.7, =100.0,c=64
SBR@q1 = 512
SBR@q2 = 256
SBR@q3 = 128
SBR@q4 = 1

MBR@q1 = 512
MBR@q2 = 256
MBR@q3 = 128
MBR@q4 = 1

Theoretical S(n), multi-q

20 25 210 215 220 225 230

n

S

P=0.7, =100.0,q=128
SBR@c1 = 128
SBR@c2 = 64
SBR@c3 = 16
SBR@c4 = 1

MBR@c1 = 128
MBR@c2 = 64
MBR@c3 = 16
MBR@c4 = 1

Theoretical S(n), multi-c

20 25 210 215 220 225 230

n

S

P=0.7,q=128,c=64
SBR@ 1 = 106

SBR@ 2 = 104

SBR@ 3 = 102

SBR@ 4 = 1

MBR@ 1 = 106

MBR@ 2 = 104

MBR@ 3 = 102

MBR@ 4 = 1

Theoretical S(n), multi-

21 23 25 27 29

g

S

n = 230,P=0.7, =100.0,c=64
SBR@q1 = 512,r = 2,B = 64
SBR@q2 = 256,r = 2,B = 64
SBR@q3 = 128,r = 2,B = 64
SBR@q4 = 1,r = 2,B = 64

MBR@q1 = 512,r = 2,B = 64
MBR@q2 = 256,r = 2,B = 64
MBR@q3 = 128,r = 2,B = 64
MBR@q4 = 1,r = 2,B = 64

Theoretical S(g), multi-q

21 23 25 27 29

g

S

n = 230,P=0.7, =100.0,q=128
SBR@c1 = 128,r = 2,B = 64
SBR@c2 = 64,r = 2,B = 64
SBR@c3 = 16,r = 2,B = 64
SBR@c4 = 1,r = 2,B = 64

MBR@c1 = 128,r = 2,B = 64
MBR@c2 = 64,r = 2,B = 64
MBR@c3 = 16,r = 2,B = 64
MBR@c4 = 1,r = 2,B = 64

Theoretical S(g), multi-c

21 23 25 27 29

g

S

n = 230,P=0.7,q=128,c=64
SBR@ 1 = 106,r = 2,B = 64
SBR@ 2 = 104,r = 2,B = 64
SBR@ 3 = 102,r = 2,B = 64
SBR@ 4 = 1,r = 2,B = 64

MBR@ 1 = 106,r = 2,B = 64
MBR@ 2 = 104,r = 2,B = 64
MBR@ 3 = 102,r = 2,B = 64
MBR@ 4 = 1,r = 2,B = 64

Theoretical S(g), multi-

21 23 25 27 29

r

S

n = 230,P=0.7, =100.0,c=64
SBR@q1 = 512,g = 16,B = 64
SBR@q2 = 256,g = 16,B = 64
SBR@q3 = 128,g = 16,B = 64
SBR@q4 = 1,g = 16,B = 64

MBR@q1 = 512,g = 2,B = 64
MBR@q2 = 256,g = 2,B = 64
MBR@q3 = 128,g = 2,B = 64
MBR@q4 = 1,g = 2,B = 64

Theoretical S(r), multi-q

21 23 25 27 29

r

S

n = 230,P=0.7, =100.0,q=128
SBR@c1 = 128,g = 16,B = 64
SBR@c2 = 64,g = 16,B = 64
SBR@c3 = 16,g = 16,B = 64
SBR@c4 = 1,g = 16,B = 64

MBR@c1 = 128,g = 2,B = 64
MBR@c2 = 64,g = 2,B = 64
MBR@c3 = 16,g = 2,B = 64
MBR@c4 = 1,g = 2,B = 64

Theoretical S(r), multi-c

21 23 25 27 29

r

S

n = 230,P=0.7,q=128,c=64
SBR@ 1 = 106,g = 16,B = 64
SBR@ 2 = 104,g = 16,B = 64
SBR@ 3 = 102,g = 16,B = 64
SBR@ 4 = 1,g = 16,B = 64

MBR@ 1 = 106,g = 2,B = 64
MBR@ 2 = 104,g = 2,B = 64
MBR@ 3 = 102,g = 2,B = 64
MBR@ 4 = 1,g = 2,B = 64

Theoretical S(r), multi-

20 24 28 212 216 220 224

B

S

n = 230,P=0.7, =100.0,c=64
SBR@q1 = 512,g = 16,r = 2
SBR@q2 = 256,g = 16,r = 2
SBR@q3 = 128,g = 16,r = 2
SBR@q4 = 1,g = 16,r = 2

MBR@q1 = 512,g = 2,r = 2
MBR@q2 = 256,g = 2,r = 2
MBR@q3 = 128,g = 2,r = 2
MBR@q4 = 1,g = 2,r = 2

Theoretical S(B), multi-q

20 24 28 212 216 220 224

B

S

n = 230,P=0.7, =100.0,q=128
SBR@c1 = 128,g = 16,r = 2
SBR@c2 = 64,g = 16,r = 2
SBR@c3 = 16,g = 16,r = 2
SBR@c4 = 1,g = 16,r = 2

MBR@c1 = 128,g = 2,r = 2
MBR@c2 = 64,g = 2,r = 2
MBR@c3 = 16,g = 2,r = 2
MBR@c4 = 1,g = 2,r = 2

Theoretical S(B), multi-c

20 24 28 212 216 220 224

B

S

n = 230,P=0.7,q=128,c=64
SBR@ 1 = 106,g = 16,r = 2
SBR@ 2 = 104,g = 16,r = 2
SBR@ 3 = 102,g = 16,r = 2
SBR@ 4 = 1,g = 16,r = 2

MBR@ 1 = 106,g = 2,r = 2
MBR@ 2 = 104,g = 2,r = 2
MBR@ 3 = 102,g = 2,r = 2
MBR@ 4 = 1,g = 2,r = 2

Theoretical S(B), multi-

Figure 4: Theoretical Speedup using optimal {g, r, B} parameters.

more negative impact on the SBR scheme, while varying c has
the same impact on both SBR/MBR schemes.

The second row, S (g), shows that for the MBR scheme the
preferred initial subdivision is the smallest one g ∼ 2. In the
case of SBR, the scenario is different, as it suggests an initial
subdivision sear g ∼ 25. Varying q shifts the optimal initial
subdivision to the right, while varying c does not have any sig-
nificant effect. Varying λ affects the MBR negatively, making it
match the speedup of the SBR one for certain ranges of g.

The third row, S (r), shows that for both SBR/MBR schemes,
the highest speedup is achieved with a small recurrent subdivi-

sion, such as r ∼ 2. Variations of q and c do not have any signif-
icant impact on the optimal value of r. On the other hand, large
values of λ can shift the optimal r value to the right, such as
λ ∼ 106 that shifts the optimal recurrent subdivision to r ∼ 23.

The fourth row, S (B), shows that the optimal values for B
have slightly shifted to the right in comparison to Ω(B), now
suggesting an optimal of B ∼ 25. Varying q impacts negatively
on SBR, while varying c does not show a significant impact.
Varying λ shows that higher subdivision costs shift the optimal
B to larger values which is logical in order to reduce the total
number of subdivisions.
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The theoretical plots of S (n), S (g), S (r), S (B) have shown
relevant behaviors for SBR and MBR under the different {g, r, B}
parameters. Typically, the sub-division approach would be han-
dled by Dynamic Parallelism, but it could be handled by an al-
ternative iterative approach as well. In that regard, it would be
useful to know how each the SBR and MBR schemes perform
both in a recursive and iterative approach. In the next Section
we present Adaptive Serial Kernels as the iterative version of
Dynamic Parallelism, which is also used later for experimental
comparisons with DP.

5. Adaptive Serial Kernels (ASK)

5.1. General View of ASK

The intuition behind ASK is to replace the recursive solu-
tion design used in DP by an iterative approach where a small
number of flat kernels are executed serially one after another,
with just the necessary number of parallel resources at each it-
eration. The relevance of ASK in the context of the subdivision
cost model presented in Section 4 is that there is an opportu-
nity for ASK to introduce a lesser subdivision overhead S and
improve CUDA’s DP performance, because kernels would be
called one per depth level, instead of one kernel per node of
the subdivision tree as in DP. Figure 5 illustrates the process of
ASK in the case of a SBR scheme.

Kernel (16 blocks)CPU

Host

CPU

Device

End

Kernel (8 blocks)

dynamic domain

End

CPU

Kernel (12 blocks)

End

dynamic domain

#1

#2

#3

CPU

dynamic domain

Figure 5: Adaptive Serial Kernels (ASK) for an example with three iterations.
Light purple corresponds to exploration with no subdivision. Dark purple cor-
responds to exploration that did found further subdivision. The vertical yellow
bars correspond to application work (A). The initial grid has |Gx |×|Gy |= 4 × 4
regions with subdivisions of rx × ry = 2 × 2 at each iteration.

In the example an initial compute grid of |G0|= 4×4 thread-
blocks is applied. On the rest of the kernel calls, the grid is
dynamically defined in terms of the processing and subdivision
process of the previous kernel call. Each thread-block may sub-
divide into rx × ry = 2 × 2 blocks if further parallelism is re-
quired at that region, otherwise a final terminal pass is done, if
required. Given that it is a SBR scheme, regions are handled by
a single GPU thread-block allowing thread collaboration and
synchronization within each region.

5.2. Offset Lookup Tables (OLTs)

In order to keep track of the active regions at every iter-
ation, ASK keeps two offset-lookup-tables (OLT) updated; a
read-OLT for accessing the region coordinates of the current
level, and a write-OLT for writing the new sub-region coordi-
nates of every region, as the result of subdivision. Whenever a
thread-block subdivides, one of its threads writes down into the
write-OLT, from left to right and concurrently with the other
thread-blocks, the rx × ry coordinate offsets of the new gener-
ated thread-blocks that will be used on the next iteration. OLTs
are accessed by their block identifier, thus it allows a pure data-
parallel access pattern for the blocks of the upcoming grid in
the next iteration. In terms of memory, the size of read and
write OLTs is compact and corresponds to one (x, y) coordinate
per active regions, i.e., it does not need to store past finalized
regions neither allocate extra storage for future regions. Lastly,
the OLT can be kept in device memory throughout all of the
iterations without needing to be copied back to host in-between
kernels. One key aspect of ASK is to perform parallel opera-
tions on the OLT efficiently. The next sub-section explains the
process in detail.

5.3. Operations on the OLT

Handling the offsets lookup table (OLT) introduces two main
challenges: i) to achieve compact concurrent insertions and ii)
to keep the OLT’s size close to a minimum.

5.3.1. Compact Concurrent Insertions on the OLT
Insertions in the OLT occur when a region subdivides into

rx × ry sub-regions concurrently with the other thread-blocks
that are handling other active regions. These new sub-region
positions are inserted in the write-OLT satisfying two require-
ments: i) to occur concurrently for all thread-blocks that sub-
divide in the current iteration and ii) all insertions should end
up in a compact form, i.e., no empty spaces in the write-OLT.
These two requirements can be satisfied by using an atomic-
add operation, which offers consistent concurrent addition on a
variable shared by multiple threads of different thread-blocks,
and also returns the previous value it had for each thread that
uses the operation. Therefore, when a block decides to subdi-
vide a region, its thread in charge atomically increments a count
GPU-global variable by one and obtains its previous value as
well. The previous value of count corresponds to the position
in the write-OLT where there are rx × ry consecutive slots to
write the new sub-block offsets. By being an atomic operation,
the concurrent operations performed on the variable produce a

9



compact insertion scheme which is also free of race conditions.
Another benefit of this process is that once the current kernel fi-
nalizes (thus all the corresponding subdivisions have been done
for that iteration) the count variable will contain the total num-
ber of regions to subdivide, which corresponds to the number
of blocks (size of the grid) to use for the next kernel iteration.

The atomic-add process could also be replaced by combin-
ing per-block prefix-sum (O(log(n)) time) with global atomic-
add in case the pure atomic-add approach is not as fast as ex-
pected. A full prefix-sum is less preferred because the syn-
chronization between blocks requires special treatment, such as
collaborative groups at the cost of a limit in problem size, or
multiple kernel passes at the cost of extra overhead.

5.3.2. Swapping and Keeping the OLT Size to a Minimum
At each iteration, the read-OLT and write-OLT swap their

roles. That is, at the next iteration, the write-OLT becomes
the read-OLT, and the read-OLT is now a write-OLT with the
necessary memory reallocated to store the potential new subdi-
visions of all current active regions (i.e., the regions specified
in the current read-OLT). The memory reallocation of the new
write-OLT uses the count value to know how many regions will
be processed in the next execution. The size of the write-OLT
is count × (rx · ry), where count is the number of active regions
at a given iteration, and (rx · ry) is the extra allocated space for
the potential subdivisions at every active region.

6. Experimental Case Study: The Mandelbrot Set

Experimental tests are performed using the Mandelbrot Set
as the case study, which defines a set of complex numbers c
such that when passed into the dynamical system zi+1 = z2

i + c,
with z0 = 0, they satisfy |zi 7→∞|≤ 2. The term dwell refers to the
number of iterations on the dynamical system before checking
if |zdwell|< 2 satisfies or not. An exhaustive algorithm performs
this process on every pixel of the discrete complex plane.

The Mariani-Silver algorithm [18] is a more efficient ap-
proach, that through subdivision, can detect if a given region
can be discarded entirely or not, avoiding unnecessary work to
be done. Fig. 6 (left) shows an illustration of the Mandelbrot
Set and its resulting grid (right) after several subdivision with
the Mariani-Silver algorithm.

Figure 6: On the left, the Mandelbrot set. On the right, the dynamic grid of
regions generated through subdivision, revealing the fractal’s geometry.

6.1. Implementations and Experimental Design
Three implementations are put to test in terms of perfor-

mance:

1. Ex: Exhaustive approach in one flat kernel execution.
2. DP: Recursive kernels with CUDA Dynamic Parallelism.
3. ASK: Proposed iterative alternative to CUDA DP.

The DP and ASK approaches subdivide into two variants of
the Mariani-Silver algorithm; single-block per Region (SBR)
and multiple-blocks per region (MBR) schemes. The DP im-
plementation was developed by Adinetz [15] from Nvidia, that
uses the DP-MBR scheme. The DP-SBR variant is a modifi-
cation of Adinetz’s implementation at the subdivision stage in
order to employ one block per region. The ASK-SBR/MBR
variants were implemented by the authors. The source code of
these approaches, and its benchmark, are available in Github3.

The performance test consists of measuring the average ex-
ecution time on generating the Mandelbrot set in the complex
plane [−1.5,−1]× [0.5, 1], using a dwell of d = 512. The prob-
lem size n×n varies in the range n ∈ [1024..65536] or up to the
largest n that fits in GPU memory. The average execution time
was computed from 100 realizations, where each program exe-
cution returns a sub-average value from 20 internal repetitions.
With these settings, the standard error remained less than 1%.
The performance tests were conducted on four different GPUs
which are detailed in Table 1. Programming and testing was
done on Linux with CUDA C/C++ API [28].

6.2. Finding Optimal blocksizes and {g, r, B} configurations
Different blocksizes of 8×8, 16×16, 32×32, 64×4 and 64×8

were explored in order to find the best CUDA blocksize for
each approach, on each tested GPU. The best block was chosen
in terms of their fastest running times achieved for the largest
problem sizes. Table 2 presents the chosen configurations.

The {g, r, B} configuration space was also explored in the
range g, r, B ∈ {2, 4, 8, . . . , 1024} for all approaches using the
largest problem sizes each GPU allowed. Figure 6.2 presents
the configuration landscapes in terms of speedup over the Ex-
haustive approach, using their corresponding optimal block-
sizes and highlighting the optimal {g, r, B} configuration for each
approach. From the landscapes, one can note that the optimal
{g, r, B} configuration changes for each approach, and varies
on each different GPU. In the case of DP-SBR, its g param-
eter may take the values g = 16, 32, 64 depending of which
GPU is used, its r parameter remains stable and its B parameter
varies between B = 64, 128. The scenario is similar for the DP-
MBR approach, with the exception of its g = 4 value when ran
on the TITAN RTX GPU. In the case of the ASK approach,
the schemes present stable optimal configurations across the
GPUs; the ASK-SBR scheme has an optimal configuration of
{g, r, B} = {32/64, 4, 16} while the ASK-MBR scheme has an
optimal of {g, r, B} = {32/64, 2, 32}. The performance results of
the following sub-section use these optimal CUDA blocksizes
and {g, r, B} configurations.

3https://github.com/temporal-hpc/GPU-dynamic-parallelism
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Table 1: Hardware specifications of the GPUs and computer systems used for the experiments.
Attribute Nvidia A100 Nvidia TITAN RTX Nvidia TITAN V Nvidia Jetson NX
Segment HPC Server (DGX A100) Workstation Workstation Embedded
Architecture Ampere Turing Volta Volta
GPU Chip GA100 TU102 GV100 GV10B
Cores (FP32) 6912 4608 5120 384
SMs (q value) 108 72 80 6
Cores/SM (c value) 64 64 64 64
Memory 40GB 24GB 12GB 8GB (shared with CPU)
Memory Bandwidth 1.5GB/s 672GB/s 651.3GB/s 51.2GB/s
Max Power (W) 400W 280W 250W 20W

System

OS DGX OS 5.2 (Ubuntu Based) Arch Linux Arch Linux Ubuntu 18.04
CUDA 11.4.2 11.6 11.6 10.2
CPU 2 x 64-core AMD EPYC 7742 Intel 10-core i7-6950X Intel 10-core i7-6950X Nvidia 6-core Carmel ARMv8.2
RAM 1 TB RAM DDR4-3200Hz 128GB DDR4 2400Mhz 128GB DDR4 2400Mhz 8GB LPDDR4x 1600Mhz
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Figure 7: Speedup landscape of the DP and ASK approaches over Ex, using the configuration space {g, r, B}.

Table 2: Best CUDA blocksizes
A100 TITAN RTX TITAN V JETSON XAVIER NX

Ex 16x16 8x8 16x16 64x4
DP-SBR 64x8 64x8 64x8 16x16

DP-MBR 64x8 64x8 64x8 16x16
ASK-SBR 16x16 16x16 16x16 8x8

ASK-MBR 16x16 64x4 64x4 16x16

6.3. Performance Results

Figure 8 presents an experimental set of speedup vs vari-
ables n, g, r and B, for the GPUs listed in Table 1. On all plots,
optimal {g, r, B} configurations are used for each chosen com-
bination of GPU, approach and problem size. In the first row
of plots, S vs n, for all four GPUs the improvements of the
DP/ASK variants over the Exhaustive approach start approxi-
mately at n ≥ 210, with AS K − S BR being the fastest one in all
cases, reaching from 9× to 12× of speedup. This speedup take
off at n ≥ 210 agrees with the theoretical results presented ear-
lier in Figure 4. The speedup of the rest of the approaches tend
to group except in the JETSON XAVIER NX GPU where the
MBR variants exhibit a significant reduction in performance.

The second row of plots shows the speedup vs g. From the
curves one can note that ASK-MBR offers the highest speedup,
being maximum at the g ∼ [25, 26] region and overall more con-
venient when g ≤ 27. It is worth noticing how ASK-MBR be-
haves smoother than the other approaches, possibly due to the
multiple-block per region scheme being applied at each itera-
tion. This experimental range for g agrees with the theoretical
one found in Figure 4, second row, where the SBR scheme has

a non-trivial optimal value in the range g = [25, 26], while MBR
schemes just need g ≤ [25, 27] to be satisfied. This experimen-
tal behavior also agrees with the theoretical curve of Figure 3,
second row, where large problem sizes make the optimal region
for g wider and a less critical decision for the user/programmer.

The third row of plots shows the speedup vs r. For all ap-
proaches and for all GPUs, the optimal value is located at the
lower values of r. This result agrees with the theoretical curve
presented in Figure 4, third row.

The fourth plot presents the speedup vs B. For all GPUs the
optimal region for B tends to locate at B ∼ 25, which agrees
with the theoretical curve presented in Figure 4.

All experimental plots show that the SBR scheme is faster
than MBR, for both DP and ASK. This result differs from the
theoretical cost model that puts the MBR scheme with higher
speedup than SBR, because of the capability to handle the ini-
tial levels of subdivision with more parallel resources. A possi-
ble reason for this difference can be that using one block per re-
gion (SBR) can favor L1/L2 cache usage and having too many
blocks as in MBR may introduce additional scheduling over-
head. The current cost model does not consider these aspects.

When comparing the different GPUs, the highest speedup
over the exhaustive approach is achieved with the A100 GPU,
followed by the two TITAN GPUs. In the case of the JETSON
XAVIER NX GPU the MBR schemes of DP/ASK suffered a
significant reduction in performance. This reduction can be re-
lated to the small SM count (q = 6) of that particular chip. In a
low SM count scenario, it is highly probable that a multi-block
per region (MBR) scheme just introduces additional overhead
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Figure 8: Speedup curves for DP and ASK approaches with optimal {g, r, B} configurations at different problem sizes and its behavior near its optimal configuration.

instead of any performance benefit, as there are not enough SMs
to compensate the effort of producing and handling multiple
blocks in parallel at each region. Because of this, the single-
block per region (SBR) scheme becomes an even more attrac-
tive approach for embedded hardware.

7. Subdivisions at Higher Dimensions

When moving to 3+ dimensions, additional challenges emerge
for both the recursive (DP) and iterative (ASK) subdivision ap-
proaches, as the domain is now a k-orthotope that generalizes
the 2D rectangle. In this Section we describe some of these
challenges and provide insights on how they can be handled.

7.1. Challenges for DP at 3+ Dimensions

The extension of DP to k ≥ 3 dimensions would mean that
the starting domain is a k-orthotope initially subdivided into re-
gions of volume gk, which are k-orthotopes as well. Each one of
these regions could subdivide into rk smaller k-orthotopes and
continue the process recursively analogous to the 2D process.

A first challenge for DP at k ≥ 3 dimensions is to be cau-
tious on the total number of recursive kernel calls, as each one
introduces a small performance overhead that when added, may
constitute a significant part of the running time. Also the num-
ber of executing kernels should stay below the maximum num-
ber of concurrent kernels that a GPU can handle, other wise the
extra kernels will be queued up producing a sequential behav-
ior and potential performance overhead. As of 2022, high-end
GPUs can run up to 128 concurrent kernels. One way to handle
this challenge is to have low g, r values, and a higher stopping
B value, this way the total number of kernel calls is kept up to
a margin.

A second challenge are the limits of GPU compute con-
structs (grid, block, thread), as they can only be expressed to
up to three dimensions, i.e., there are no constructs for k ≥ 4.
Higher dimensional cases can still be implemented in GPUs as-
suming the programmer builds a higher-dimensional abstrac-
tion based on based on 3D constructs. For instance, a 4-dimensional
grid can be build by stacking 3D grids which are CUDA-native.
In general, a k-dimensional space can be represented in terms
of (k − 1)-dimensional ones.
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7.2. Challenges for ASK at 3+ Dimensions

The extension of ASK to k ≥ 3 dimensions would involve
dealing with sets of k-orthotopes at each iteration, identified
by the offsets-lookup-table (OLT). A first challenge for ASK
would be controlling the OLT’s size at each iteration of the
subdivision process. An efficient k-dimensional OLT scheme
can be formulated by inferring from the particular 2D and 3D
cases. For the case of two-dimensions, the size of the OLT T k=2

i
followed the form

|T k=2
i |= |Gi|·(rx × ry) (26)

where all active regions |Gi| of kernel iteration i could subdi-
vide into rx× ry sub-regions. For three-dimensions, sub-regions
become 3-orthotopes and subdivide into rx × ry × rz regions,
producing an OLT of size

|T k=3
i |= |Gi|·(rx × ry × rz). (27)

For a k-dimensional problem, T k
i would follow the form

|T k
i |= |Gi|

k∏
j=1

r j. (28)

The effect of high-dimensionality affects |T k
i | only at the subdi-

vision factor, i.e.,
∏k

j=1 ri, and not necessarily through |Gi|, be-
cause the number of active regions follows a scheme that is spe-
cific to the problem itself and not necessarily to the entire em-
bedding grid. This makes it possible to have sizes of |Gi|∈ o(nk)
for problems with fractal dimension or PDE simulations on
highly sparse domains, among others. In the case of highly
dense domains, the upper bound would indeed be |Gi|∈ Θ(nk),
but then the subdivision approach could compensate by doing
fewer subdivision levels, or none at all. Also, the r j values from
Eq. (28) can be chosen such that

∏k
j=1 r j ∈ o(nk); for example

r j = log2(n) would produce
∏k

j=1 log2(n) = logk
2(n) < nk ∈

o(nk). With this change the OLT’s size can be kept asymptot-
ically smaller than the embedding space, |T k

i | ∈ o(nk), in both
sparse and dense domains.

A second challenge for ASK is the extra space used by stor-
ing the k-dimensional coordinates explicitly. In this case, an
improvement for the OLT at high-dimensions is to store single
scalars in the OLT instead of k-dimensional coordinates. This
compacts the OLT size by an extra factor of k. A space filling
curve (SFC) can provide the required mapping, i.e.,

Ω : Zk 7→ Z (29)

Ω−1 : Z 7→ Zk. (30)

such that each k-dimensional region coordinate is mapped into
a unique scalar value through Ω, and recovered back with Ω−1.
For the case of two-dimensions (k = 2), a frequently used SFC
is the canonical order one which is defined as

Ω(p)k=2 = |Gi|x·py + px (31)

where |G|x is the hypothetical grid size in the x dimension and
px, py are the given region’s top-left corner coordinate as refer-
ence. For three-dimensions, Ωsweep follows the form

Ω(p)k=3 = |G|y|G|x pz + |G|x py + px. (32)

For k-dimensions, its general expression would be

Ω(p)k =

k∑
d=1

(
pd

d∏
q=1

|G|q
)

(33)

Although the canonical order (also known as nested loops) SFC
is simple in computation, storing high-dimensional data under
this scheme introduces significant cache misses and penalizes
performance. Other SFC schemes can be more efficient at han-
dling memory locality at higher dimensions, such as ones based
on the Hilbert or Z (also known as Morton order/code) SFCs
[29].

Similar to DP, a third challenge is the native dimensional
limit of compute constructs (grid, block, thread). As in DP,
higher dimensional cases are still possible to achieve, but will
require an adaptation by the programmer, such as stacking 3D
dimensional constructs following the SFC scheme selected.

From all the challenges, the lack of higher-dimensional CUDA
constructs is one of the more limiting ones for both DP and
ASK, as it requires an advanced programming effort in build-
ing an abstraction layer to identify parallel resources (threads
and blocks) with k-dimensional coordinates.

8. Discussion and Conclusions

This work revisited Dynamic Parallelism (DP), a GPU pro-
gramming feature that allows the GPU to employ its parallel
resources more efficiently on heterogeneous workloads. A sub-
division cost model was formulated to analyze the parameters
involved in the cost of the hierarchical subdivision process for
problems that exhibit Self Similar Density (SSD) in their het-
erogeneous data layout. These parameters are the initial grid
subdivision (g), the exploration subdivision (r) and the region
size (B) where subdivision stops. An experimental study was
also conducted using two implementations of the Mandelbrot
set; one using the CUDA DP feature (recursive kernels) and the
other using a new proposed iterative subdivision scheme based
on iterative kernels, named Adaptive Serial Kernels (ASK). Each
implementation was evaluated in two schemes, single-block per
region (SBR) and multiple-blocks per region (MBR).

The subdivision cost model provided relevant results for
the case of heterogeneous problems where the are asymptoti-
cally less work-regions than the total embedding space, such as
in the computation of the Mandelbrot set. For this case study
the model showed that the maximum speedup of a subdivision-
based approach is upper bounded by A which correlates with
the dwell of the Mandelbrot process. Also, when doing subdivi-
sion, the theoretical cost model suggests that the MBR scheme
is potentially faster than the SBR approach, although eventually
the two reach the same performance at the large-n regime. In
terms of the {r, g, B} parameters, the model finds optimal values
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lie in the range {[2, 26], r ∼ 2, B ∼ 25}, values that agreed with
the experimental validation.

Experimental results showed that solving the Mandelbrot
set with Adaptive Serial Kernels (ASK) as the subdivision ap-
proach can be up to 12× faster than the Exhaustive approach,
whereas DP is only 7.5× faster. This translates to ASK being
up to 60% faster than DP for the same task. Such performance
improvement is significant and may compensate the program-
ming effort for many scientific simulations that can take from
days to weeks. When comparing the behavior of the different
GPUs, we can identify that the high-end ones such as the A100
and TITAN GPUs share a similar behavior and parameter con-
figuration, while the embedded JETSON XAVIER NX showed
a significant performance reduction for the MBR schemes of
both DP and ASK.

One aspect that differed between the theoretical and ex-
perimental results is that the theoretical model suggested that
MBR schemes would be more efficient than SBR ones, how-
ever experimentation proved the contrary; SBR was faster in
all cases. An explanation for this can be the fact that there are
some overheads in the GPU thread-block scheduling process
that can make MBR work slower in practice, as the model does
not consider these overheads. Also, the SBR approach could
favor L1/L2 hit ratios more than in MBR, as it reuses the same
thread-block for the entire region.

Future work can focus on improving the cost model to con-
sider the GPU overhead introduced by the MBR approach, which
ended up being slower than SBR in empirical tests. Another fu-
ture research can be to explore if Tensor and Ray-Tracing cores
could further improve the efficiency of a subdivision-based pro-
cess. Recent works have shown that Tensor cores can be used
to accelerate several workloads different from AI, including
thread mapping, arithmetic reductions and prefix-sums [30, 13,
31, 32]. Expressing the subdivision arithmetic as Matrix Multi-
ply Accumulate (MMA) operations could further improve per-
formance assuming that the benefits overcome the cost of the
extra data movement required from memory to the matrix reg-
isters (fragments in CUDA). On the other hand, the use of Ray-
Tracing (RT) cores allows exploring unstructured space effi-
ciently in GPU and recent works have also shown that using
them on non-graphical applications can still provide significant
performance improvement [33, 34, 35]. The use of RT-cores
could help in rapidly detecting the location of dense workloads
in an heterogeneous data-parallel domain mapped into space.
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