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We study the value of commitment in contests and tournaments when there are
costs for the follower to observe the leader�s behavior. In a contest, the follower can
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1 Introduction

The modeling framework of contests and tournaments, settings where players under-

take e¤ort or expend resources in pursuit of some �prize,�has been usefully applied

in numerous economic settings. These include patent races, allocating resources in

elections, the private funding of public goods, designing incentive contracts in �rms,

and golf tournaments. (See, for instance, Taylor, 1995; Snyder, 1989; Morgan and

Sefton, 2000; Lazear and Rosen, 1981; and Ehrenberg and Bognanno, 1990.)

Early modeling of contests focused on equilibrium when moves are made simul-

taneously (see, for example, Tullock 1980, 1985). The usual justi�cation for this

modeling choice was that there is positive value to commitment and, therefore, if a

player faces the choice of moving at the same time as a rival or moving earlier, he

prefers to move earlier. Since all competing parties share the same incentive, they

will all race to move at the earliest possible moment. Unless there is some institu-

tional feature preventing some parties from moving at the same time as others, then,

arguably, the right model is that of simultaneous moves.

Baik and Shogren (1992) and Leininger (1993) question this argument. In both

of these papers, the order of moves is endogenous and a sequential move contest

emerges. The reason is that, even though both players indeed prefer moving �rst over

moving simultaneously, the favorite prefers moving second over moving �rst, while

the underdog prefers moving �rst over moving second.

While the literature on contests is vast, the literature on sequential contests�

and the value of commitment� is much smaller.1 The earliest analysis of sequential

contests is o¤ered by Dixit (1987), who derives conditions under which there is a

1See Nitzan (1994) for an excellent survey, particularly with respect to modeling rent-seeking.



positive value of commitment.2 That is, he shows when a player bene�ts from moving

�rst rather than moving simultaneously.

The central theme of this line of the contest literature is that the timing of moves

matters� actions in earlier stages of the contest have strategic e¤ects on those in later

stages of the contest, and this a¤ects equilibrium outcomes.

A key assumption shared by all of these models is that moves made in earlier

periods of the game are costlessly observed by players moving later in the game. In

this paper, we relax this assumption. Instead, we suppose that a player must pay a

small cost to observe the actions of other players in preceding stages of the game.

Our main �nding is that, in contests, there is no value to commitment whatsoever

when observation is costly� even if the observation costs are arbitrarily small. More

precisely, e¤orts and payo¤s in all subgame perfect equilibria of sequential and en-

dogenous move contests are identical to those in the Nash equilibrium of the standard

simultaneous contest.

The intuition for this result is most easily gained from the sequential contest:

When the sequential contest is �well-behaved�in the sense of being strictly concave,

the second player has a unique best response to any e¤ort choice by the �rst player.

Further, given that player 2 is choosing a best response, the �rst player also has

a unique payo¤ maximizing e¤ort level. This implies that, in any subgame perfect

equilibrium of the sequential contest, the �rst player is playing a pure strategy. But if

player 1 is playing a pure strategy, then, in equilibrium, obtaining information about

player 1�s choice is of no value to player 2 in . This is because player 2 can perfectly

�solve�what player 1 did, such that there is no point in paying the observation cost.

Therefore, in equilibrium, the second player will never pay to observe the �rst player�s

2See also Baik and Shogren (1992), Baye and Shin (1999), and Dixit (1999) for additional com-
ments on Dixit (1987).



choice� even if the cost of doing so is arbitrarily small. This, in turn, destroys any

strategic e¤ect player 1�s move could have on player 2. Hence, there is no value to

commitment.

The key problem for the �rst player is that, by playing a pure strategy, she destroys

the incentive for the second player ever to pay to observe. Indeed, one may well wonder

why the �rst mover does not create her own �noise�by playing a mixed strategy, as

this could restore the value of commitment. The reason is that, since her optimization

problem is �well-behaved�(in the sense of being strictly concave), she cannot resist

the temptation to �purify� any mixed strategy and instead play her unique, most

pro�table action. Thus, somewhat ironically, it ultimately is the �well-behavedness�

of the �rst player�s problem that destroys her value of commitment.

A modeling framework closely related to that of contests was introduced in the

important paper of Lazear and Rosen (1981) on rank-order tournaments. In a tour-

nament, players also compete by exerting e¤ort. This e¤ort, plus a random noise

component, then determines a player�s �output.�Prizes are awarded on the basis of

the rank-ordering of outputs. That is, �rst prize is awarded to the player with the

highest output, second prize to the player with the second-highest output, and so on.

What distinguishes tournaments from contests? According to our terminology,

in a sequential tournament, the e¤ectiveness of the �rst-mover�s e¤ort is revealed

to the second mover, rather than the e¤ort itself. That is, the second long jumper

gets to observe the distance jumped by the �rst, but not the underlying e¤ort that

produced the jump. By contrast, in a sequential contest it is e¤ort that is observable,

while its ultimate e¤ectiveness remains unobservable until the very end of the contest.

For instance, it may be easy to �nd out that a pressure group has hired a K Street

lobbying �rm for a certain amount of money. However, until the regulator has ruled



or Congress has voted, the e¤ectiveness of that lobbying e¤ort is not revealed. As

we will show, when observation is costly, the unobservability of the e¤ectiveness of

e¤ort plays a key role in the di¤erence between the value of commitment in sequential

contests as compared to sequential tournaments.

As Dixit (1987) points out, the modeling di¤erence between contests and tourna-

ments matters little when observation is costless. When observation is costly, however,

this equivalence breaks down. Indeed, the value of commitment in tournaments is

dramatically di¤erent compared to contests. Unlike in a contest, we show that the

value of commitment is completely preserved in a sequential tournament, provided

the cost of observation is su¢ ciently small.

What accounts for this di¤erence? In a tournament, the second player can pay

to observe the e¤ectiveness of the �rst player�s e¤ort, i.e., his output. Owing to the

outside noise, there is value to observing the e¤ectiveness of the �rst player�s output,

even if the �rst player is playing a pure strategy. Thus, for a small enough cost,

the second player will choose to observe, and since the incentive to observe remains

intact, the value of commitment is preserved. Hence, our results highlight that it is

the observability of the e¤ectiveness of e¤ort� rather than of the e¤ort itself� that

creates the value of commitment.

Returning to the question of the timing of moves in the contest literature, we

conclude the following. Our results suggest that in circumstances where e¤ectiveness

is unobservable, as is arguably the case in many regulatory and legislative settings,

timing does not matter at all; all subgame perfect equilibria of sequential and endoge-

nous move contests correspond to Nash equilibria of the simultaneous contest. This,

we believe, is an important new justi�cation for focusing on that particular extensive

form. However, we also show that this justi�cation must be used with caution: In



tournaments, where it is e¤ectiveness that is observable, the timing of moves clearly

does matter.

The remainder of the paper proceeds as follows: The rest of this section contains

a review of the related literature on the fragility of commitment. Section 2 presents

the model of contests. Section 3 shows that in sequential and endogenous move

contests with observation costs, the value of commitment vanishes completely� even

when these costs are arbitrarily small. Section 4 shows that in tournaments with

observation costs, the value of commitment is preserved completely when these costs

are su¢ ciently small. Finally, Section 5 concludes. A generalization of our main

result is contained in the Appendix.

Relationship to the Literature on the Fragility of Commitment

Unlike the contest literature, the prior literature on the fragility of the value

of commitment has focused on �nite games. Bagwell (1995) studies leader-follower

games where, with small but positive probability, the follower receives the wrong

signal as to the leader�s action. The pure strategy Nash equilibrium outcomes of

such a �noisy leader game�turn out to be equal to the pure-strategy Nash equilibrium

outcomes of the simultaneous game. In other words, the leader�s value of commitment

may not be robust to noise in the communication technology.3

Van Damme and Hurkens (1997) partly salvage the value of commitment in noisy

leader games by showing that these games always have a mixed strategy equilibrium in

which the value of commitment is preserved asymptotically when the noise vanishes.

They refer to such an equilibrium as a �noisy Stackelberg equilibrium�and develop

a selection theory that selects them.4 Finally, Maggi (1999) shows that the value of

3See also Huck and Müller (2000) for experiments relating to Bagwell�s game and Güth, Kirch-
steiger, and Ritzberger (1998) for an n player extension.

4In contrast, Oechssler and Schlag (2000) show that an evolutionary selection procedure selects



commitment may be restored when there is private information on the part of the

leader.

An alternative approach, and the modeling framework adopted here, is where

observation is costly, as �rst suggested by Várdy (2004).5 That paper studies bimatrix

games in which the follower faces a small cost, "; to observe the leader�s action. He

shows that the Bagwell and van Damme and Hurkens results carry over to this setting.

Thus, commitment is destroyed completely if one restricts attention to pure strategy

equilibria, but is restored if one allows for mixed strategies and observation costs are

su¢ ciently low.

2 The Model

Two risk-neutral players, labeled 1 and 2, are competing to win some object. The

players may be thought of as pressure groups and the object as a favorable piece of

legislation, a monopoly concession, and so on. Let Vi denote the (positive and �nite)

value of the object to player i: The valuation that each player places on the object

is commonly known. If i does not receive the object, his payo¤ is normalized to zero

(exclusive of contest expenditures� more on this below).

Players compete for the object by making irreversible e¤ort outlays. The e¤ort

of player i is denoted xi 2 R+0 . There is a continuously di¤erentiable contest success

function P (x1; x2) ; which gives the probability that the object will be awarded to

player 1 when e¤orts x1 and x2 are expended. The cost of e¤ort is Ci (xi). Hence,

the pure strategy equilibrium, where the value of commitment is lost entirely.
5See also Morgan and Várdy (2004) for experiments relating to the fragility of commitment in

this framework.



player 1�s expected payo¤ is:

E�1 = P (x1; x2)V1 � C1 (x1)

while player 2�s expected payo¤ is

E�2 = [1� P (x1; x2)]V2 � C2 (x2)

Following Dixit and much of the contest literature, in the main text we assume

that the contest success function takes the Logit form; that is

P (x1; x2) =

8><>:
f1(x1)

f1(x1)+f2(x2)
if (x1; x2) 6= (0; 0)

1
2

otherwise

where fi (0) = 0; f 0i (�) > 0; and f 00i (�) � 0. Here, we also assume that Ci (xi) = xi;

that is, the cost of e¤ort is equal to the e¤ort itself.

Note that, although the contest success function is assumed rather than derived

from some optimization problem, Clark and Riis (1998) and Skaperdas (1996) o¤er

axiomatic foundations for the Logit form of contest success functions. Moreover, in

the Appendix, we o¤er general conditions on payo¤s such that the conclusions derived

in the main text continue to hold.

Simultaneous Contests

Consider the case where x1 and x2 are selected simultaneously. The following facts

are known in the contest literature (see, e.g., Yildrim, 2003):

Fact 1. Player i�s problem is strictly concave in xi.

Fact 1 implies that for each xj; player i has a unique best response xi (xj) satisfying

@E�i=@xi = 0: Together with the earlier assumptions made on fi and Ci; this implies



that xi (xj) is continuously di¤erentiable and bounded. Hence, a pure strategy Nash

equilibrium is a pair (x�1; x
�
2) satisfying

f2 (x
�
2) f

0
1 (x

�
1)

(f1 (x�1) + f2 (x
�
2))

2V1 � 1 = 0

f1 (x
�
1) f

0
2 (x

�
2)

(f1 (x�1) + f2 (x
�
2))

2V2 � 1 = 0

Fact 2. The best response function xi (xj) is strictly increasing when e¤orts

xi; xj are such that fi (xi) > fj (xj), reaches its maximum when fi (xi) = fj (xj), and

is strictly decreasing when fi (xi) < fj (xj).

Fact 2 implies that the best-response functions x1 (x2) ; x2 (x1) cross the locust

where fi (xi) = fj (xj) exactly once. Therefore, the Nash equilibrium (x�1; x
�
2) exists

and is unique.

Sequential Contests

Next, suppose that the contest is played sequentially. That is, player 1 chooses

x1; player 2 costlessly and perfectly observes its value, and then chooses x2:

Note that player 2�s best response function, x2 (x1), is identical to his best response

function in the simultaneous contest. Player 1�s optimization problem is to choose x1

to maximize E�1 recognizing that player 2 will be playing a best response to x1:

Fact 3. Given that player 2 is playing a best response, player 1�s problem is

strictly concave in x1:

From Facts 3 it now follows that there exists a unique subgame perfect equilibrium

in the sequential contest, which we shall denote by (x��1 ; x2 (x
��
1 )).

Finally, following Dixit (1987), we say that there is value to commitment if the

pro�ts of the �rst mover in the subgame perfect equilibrium of the sequential contest



are higher than in any pure strategy Nash equilibrium of the simultaneous contest.

It is easily checked that this corresponds to f1 (x�1) 6= f2 (x�2) for the Nash equilibrium

pair x�1; x
�
2. We assume that this condition holds.

3 Contests with Observation Costs

How does the value of commitment change when there are positive observation costs?

We �rst examine the case of sequential contests in section 3.1. Next, in section 3.2,

we study an extension where the order of moves is determined endogenously. We

show that the insights of the sequential contest analysis continue to apply. Finally,

in section 3.3, we summarize the main �ndings and highlight the relationship to the

extant literature on the value of commitment.

3.1 Sequential Contests with Observation Costs

Consider the sequential contest but suppose that, prior to deciding on x2; player 2

must decide whether to pay a cost " > 0 to observe player 1�s choice. If player 2 pays

this cost, then player 1�s choice is revealed to him. If not, then player 2 obtains no

information about 1�s choice.

We now present the main result of the paper: The value of commitment vanishes

completely when observation is costly. Formally,

Proposition 1 Fix " > 0: In any subgame perfect equilibrium of the sequential con-

test with observation costs, there is no value to commitment.

To establish Proposition 1, we show that all subgame perfect equilibria of the

sequential contest with observation costs correspond to the Nash equilibrium of the

simultaneous contest.



First, we prove the following lemma.

Lemma 1 Fix " > 0: In any pure strategy subgame perfect equilibrium of the sequen-

tial contest with observation costs, player 2 never pays to observe 1�s choice.

Proof. By de�nition, in any pure strategy subgame perfect equilibrium, player 1

chooses some e¤ort level, x1, with probability 1. Let x̂1 denote player 2�s conjecture

about x1. In equilibrium, x̂1 = x1. That is, player 2�s conjecture about x1 is correct.

This implies that player 2�s expected payo¤ conditional on observing player 1�s e¤ort

is the same as his expected payo¤ conditional on not observing player 1�s e¤ort. But

the cost of observing, "; is strictly greater than 0. Therefore, in any pure strategy

subgame perfect equilibrium, player 2 chooses to never observe player 1�s e¤ort.

Given that player 1 anticipates that player 2 never observes player 1�s e¤ort, player

1�s choice of x1 satis�es the �rst order condition

f2 (x̂2) f
0
1 (x1)

(f1 (x1) + f2 (x̂2))
2V1 � 1 = 0

Here, x̂2 is player 1�s conjecture about player 2�s choice, where player 2�s choice cannot

depend on x1 because he does not observe x1.

Agent 2�s optimal choice of x2 satis�es the �rst order condition

f1 (x̂1) f
0
2 (x2)

(f1 (x̂1) + f2 (x2))
2V2 � 1 = 0

where x̂1 is player 2�s conjecture about player 1�s choice.

Now notice that the resulting �rst-order conditions, in combination with the equi-

librium restrictions x̂1 = x1 and x̂2 = x2, are identical to those for the unique Nash

equilibrium of the simultaneous move contest. Thus, we have:



Lemma 2 The e¤ort levels in any pure strategy subgame perfect equilibrium of the

sequential contest with observation costs are identical to the e¤ort levels in the unique

pure strategy Nash equilibrium of the simultaneous move contest.

Next, we turn to mixed strategy equilibria.

As usual, we begin with player 2. Conditional on having observed player 1�s

choice, player 2�s best response is pure, because his problem is strictly concave. If

player 2 chooses not to observe, then he forms some beliefs about player 1�s choice.

We represent these beliefs by the cumulative distribution function H (�). In that case,

player 2�s optimization problem is

max
x2
E�2 = V2

Z
x1

f2 (x2)

f1 (x1) + f2 (x2)
dH (x1)� x2

=

Z
x1

�
f2 (x2)

f1 (x1) + f2 (x2)
V2 � x2

�
dH (x1)

Note that this optimization problem is also strictly concave in x2, as it consists of a

convex combination of expressions that we know to be strictly concave in x2. This

implies that player 2 best responds to beliefs H with some pure action, x̂2. We

conclude player 2 always plays a pure continuation strategy, whether he decides to

observe or not.

Now we turn to player 1. Suppose that player 1 believes that player 2 pays to

observe player 1�s e¤ort with probability p: Then, player 1�s optimization problem is

max
x1
E�1 = V1

�
p

f1 (x1)

f1 (x1) + f2 (x2 (x1))
+ (1� p) f1 (x1)

f1 (x1) + f2 (x̂2)

�
� (x1)

= p

�
f1 (x1)

f1 (x1) + f2 (x2 (x1))
V1 � x1

�
+ (1� p)

�
f1 (x1)

f1 (x1) + f2 (x̂2)
V1 � x1

�
This optimization problem is strictly concave in x1, as it is the convex combination

of two strictly concave expressions. Therefore, for all x̂2, a unique x1 maximizes this



expression. Hence, player 1 plays a pure strategy in any subgame perfect equilibrium,

which implies that p = 0. Therefore, player 2 also plays a pure strategy. We conclude:

Lemma 3 All subgame perfect equilibria of the sequential contest with observation

costs are in pure strategies.

Now, Lemmas 2 and 3 imply Proposition 1. This completes the proof of the main

result.

3.2 An Extension: Contests with Endogenous Moves

Next, we consider an extension where the sequence of moves is endogenously deter-

mined. That is, players can expend e¤ort in any one of the two periods. Depending

on the timing of their moves, players end up moving simultaneously or sequentially,

with either player leading. We assume that in period 2, players do know whether

their rival has acted in period 1. But to learn how much e¤ort he expended, players

must incur a cost ". As described in the introduction, many contests have this �avor.

For instance, in lobbying settings, it may be quite obvious that a rival lobbying group

has been active, but to determine the extent or intensity of its lobbying, one may well

have to do some research.

Our main result in this section is to show that the conclusion of Proposition 1

continues to hold in this setting.

Proposition 2 Fix " > 0: In any subgame perfect equilibrium of the endogenous

move contest with observation costs, there is no value to commitment.

To establish this result, we show that all equilibrium e¤ort levels undertaken in the

�rst period are �pure�, i.e., non-random. Hence, in equilibrium, there is no incentive



for a player moving in the second period to pay " to observe his rival�s �rst period

e¤ort level, since that e¤ort level is already �known�with certainty.

First consider the situation of a player i moving in the second period. If his rival

j is moving in the second period as well, then both players play the unique Nash

equilibrium strategies of the simultaneous game.

Now suppose that player i has moved in the �rst period, but player j has not.

Then, conditional on observing player i�s e¤ort level, player j�s best response in period

2 is pure, because his problem is strictly concave. Conditional on not observing player

i�s e¤ort level, player j forms some beliefs about player i�s choice of e¤ort, represented

by the cdf H (�). In that case, player j�s optimization problem is

max
xj
E�j = Vj

Z
xi

fj (xj)

fi (xi) + fj (xj)
dH (xi)� xj

=

Z
xi

�
fj (xj)

fi (xi) + fj (xj)
Vj � xj

�
dH (xi)

Since this problem is strictly concave, player�s j�s best response to any beliefsH about

i�s e¤ort outlay in the �rst period must be pure. Thus, under all circumstances, player

j plays some pure e¤ort level in period 2.

Next, consider the situation facing player i when moving in period 1. Suppose

that his beliefs are as follows: Player j also moves in the �rst period with proba-

bility qj: Conditional on moving in the �rst period, player j chooses an e¤ort level

according to some cdf L (xj) :Conditional on moving in the second period, player j

chooses to observe player i�s e¤ort with probability pj and best responds conditional

on observing. With probability 1 � pj player j does not observe and chooses some

(pure) e¤ort level x̂j: Thus, player i chooses xi to maximize

max
xi
E�i = Vi

264qj Z
xj

fi (xi)

fi (xi) + fj (xj)
dL (xj) + (1� qj)

8><>: p fi(xi)
fi(xi)+fj(xj(xi))

+

(1� p) fi(xi)
fi(xi)+fj(x̂j)

9>=>;
375�xi



= qj

Z
xj

�
fi (xi)

fi (xi) + fj (xj)
Vi � xi

�
dL (xj)

+ (1� qj) pj
�

fi (xi)

fi (xi) + fj (xj (xi))
Vi � xi

�
+(1� qj) (1� pj)

�
fi (xi)

fi (xi) + fj (x̂j)
Vi � xi

�
Notice that E�i is a convex combination of three expressions that have previously

been shown to be strictly concave in xi. Therefore, player i�s optimization problem

is strictly concave as well and, as a consequence, he must choose a pure e¤ort level

xi when going �rst in any subgame perfect equilibrium.

Of course, this then implies that, in equilibrium, it is never optimal for a player

moving second to pay the observation cost to learn about the e¤ort undertaken by

a player moving �rst. Thus, the players�e¤ort in all subgame perfect equilibria of

contests with endogenous timing of moves coincides with their e¤ort in the unique

Nash equilibrium of the corresponding simultaneous game. Hence, there is no value

to commitment.

Assumptions 1-3, given in the Appendix, which imply generalize Proposition 1,

are also su¢ cient for Proposition 2 to hold more generally as well.

3.3 Discussion

In the case of �nite games, Bagwell (1995) �rst observed that, if one restricts attention

to pure strategy equilibria, the value of commitment in sequential move games of

complete information is fragile to small perturbations of the game where the second

player only imperfectly observes the �rst player�s move. Várdy (2004) made a similar

observation for �nite games with observation costs. However, it is well known that

the value of commitment in these settings is restored if one also allows for mixed

strategies.



The cases of sequential and endogenous move contests� games with continuous

strategy spaces� lead to a stronger result. Propositions 1 and 2 show that the value

of commitment vanishes regardless of whether one includes mixed strategies.

Why is it that allowing for mixed strategies does not restore the value of commit-

ments in contests? The intuition is grasped most easily from the sequential contest.

In games with �nite strategy spaces, it is always possible to �nd two or more

actions for player 1 over which she is indi¤erent in equilibrium. This allows player

1 to �commit�to playing a mixed strategy which, in turn, creates positive value to

observing player 1�s action. Indeed, if the cost is su¢ ciently small, this induces player

2 to observe players 1�s choice, thus restoring the �transmission path�for commitment

to have value.

In the continuous case, by contrast, precisely because the game is �well-behaved�

� in the sense that the �rst player�s payo¤ is strictly concave regardless of the strategy

pro�le of the second player� the �rst player cannot credibly commit to anything other

than her unique best response. In other words, mixing is not incentive compatible

for the �rst player.

One might wonder whether the result obtained in Proposition 1 is speci�c to

the Logit form of the contest success function and the linear cost of e¤ort. As the

intuition above suggests, it is not. In the Appendix, we o¤er general conditions on

contest success and cost of e¤ort functions such that Proposition 1 continues to hold.

Returning to the problem at hand, it seems clear that what the �rst player needs is

a mechanism to credibly commit to unpredictable behavior and thereby induce player

2 to pay to observe 1�s actions. In the next section we show that sequential rank-order

tournaments � games which often have been viewed as isomorphic to contests (see,

for instance Dixit, 1987)� o¤er an avenue to restore the value of commitment.



4 Tournaments with Observation Costs

Our model of tournaments closely follows that of Lazear and Rosen (1981). In Lazear

and Rosen, e¤ort xi has an e¤ectiveness yi = xi + �i, which may be interpreted as

output. That is, the output generated by a player�s e¤ort depends on the e¤ort itself

as well as on a random component �i: The object is then awarded to the player with

the greater output. That is, player i wins when yi > yj and loses otherwise.6 We

assume that for both players, �i is drawn from the same atomless distribution, F;

with support �.

The cost to player i of exerting e¤ort xi is given by the function Ci (xi) ; where

C (0) = 0 and C (�) is continuous, strictly increasing, and strictly concave. Thus,

player i�s expected payo¤ when she exerts e¤ort xi and player j exerts e¤ort xj is

E�i = Pr (yi > yj)Vi � Ci (xi)

where Pr (yi > yj) = Pr (xi + �i > xj + �j) = Pr (�j � �i < xi � xj). We denote the

cdf of (�j � �i) by G, with associated density g:

Simultaneous Tournament

In a simultaneous tournament, both players choose e¤ort sat the same time. Fol-

lowing this, the random variables �1 and �2 are realized and the player with the higher

output is the winner. Lazear and Rosen (1981) show that, with su¢ cient structure,

there exists a pure strategy equilibrium (x�1; x
�
2) characterized by the �rst-order con-

ditions

g (x�1 � x�2)V1 � C 01 (x�1) = 0

g (x�1 � x�2)V2 � C 02 (x�2) = 0:

6We can safely ignore ties since F is atomless.



Sequential Tournament

In a sequential tournament, player 1 chooses x1 and immediately thereafter, �1 is

realized. The e¤ectiveness, y1 = x1+ �1, is then revealed to player 2. Upon observing

y1, player 2 chooses his e¤ort x2 and �2 is realized. Finally, players receive their

payo¤s.7

One can show that, with su¢ cient structure on F and Ci; there exists a subgame

perfect equilibrium in pure strategies (x��1 ; x
��
2 (y1)) where commitment has value.

8

That is, (x��1 ; x
��
2 (y1)) 6= (x�1; x�2) for any Nash equilibrium (x�1; x�2) of the simultaneous

tournament.

Next, we consider the sequential tournament with observation costs. We show

that the value of commitment is fully retained if " is su¢ ciently small. The result

follows easily from the following Lemma.

Lemma 4 For a positive measure of �1 realizations, player 2�s best response to y1 =

x��1 + �1 is not the same as his best response to y1 = x
��
1 .

Proof. We prove the lemma by contradiction. Suppose that for almost all �1 real-

izations, player 2�s best response to y1 = x��1 + �1 is the same as his best response to

y1 = x
��
1 . Or, in our notation: x2 (x

��
1 + �1) = x2 (x

��
1 ), for almost all �1. This implies

7A di¤erent type of sequential tournament has been modeled by Dixit (1987). In his model, �1
and �2 are realized after both x1 and x2 have been chosen. In that case, a sequential tournament
simply is a sequential contest with a particular functional form for the success function. However, for
tournaments such as the olympic long jump, or the sales �contest�described in Glegarry Glenn Ross
(Mamet, 1984), modeling �i as occurring contemporaneously with xi seems to us more reasonable.

8Following Lazear and Rosen, consider the case where �i v N
�
0; �2

�
, V1 6= V2, and Ci (xi) = 


2x
2
i ;

where 
 is a parameter describing the degree of convexity of the cost function. It may be veri�ed
that for su¢ ciently large values of 
 and �2 there indeed exists a pure strategy subgame perfect
equlibrium where commitment has value.



that, for almost all �1,
@x2 (x

��
1 + �1)

@x1
=
@x2 (x

��
1 )

@�1
= 0

Player 2�s best response function, x2 (y1), is characterized by

f (y1 � x2)V2 � C 02 (x2) = 0

where y1 = x1 + �1. Therefore, the best response x2 (x��1 + �1) is characterized by

f (x��1 + �1 � x2)V2 � C 02 (x2) = 0

Because x2 (x��1 + �1) = x2 (x
��
1 ), it must be that f (x

��
1 + �1 � x2) = f (x��1 � x2) for

almost all �1. This contradicts f 0 (�) > 0.

Lemma 4 implies that for su¢ ciently small "; player 2 will always observe player

1�s e¤ectiveness if he believes that player 1 plays x��1 . As a consequence, for su¢ ciently

small observation costs, the sequential tournament with observation costs e¤ectively

reduces to a �vanilla�sequential tournament. Hence, we have:

Proposition 3 For su¢ ciently small cost of observation, the value of commitment

is preserved completely in the sequential tournament with observation costs.

Formally: There exists a value, k > 0 such that when observation costs are less

than k; e¤ort levels (x��1 ; x2 (y1)) with player 2 observing with probability one constitute

a subgame perfect equilibrium of the sequential tournament with observation costs.

5 Conclusions

We have shown that the value of commitment is very fragile in contests, but not in

tournaments. In our terminology, a sequential contest is a competition where e¤ort



is observable but its e¤ectiveness is not. For instance, it may be easy to �nd out that

a rival pressure group has hired an expensive lobbying �rm. But, until the regulator

has ruled or Congress has voted, the e¤ectiveness of the lobbying e¤ort is not fully

revealed. In a sequential tournament, by contrast, it is the e¤ectiveness of e¤ort

that is observable, while the underlying e¤ort is not. For instance, a long jumper

may readily observe the distance jumped by a rival jumper, even though the e¤ort

required to produce the jump remains unknown.

Previously, Bagwell and others have shown that the value of commitment is fragile

in �nite Cournot games. However, this result only holds if one limits attention to

pure strategies. The value of commitment can always be restored in these games by

allowing for mixed strategies. In this paper, by contrast, we have shown that for a

general class of contests, mixed strategies o¤er no way out.

Ironically, the same conditions ensuring that a sequential contest is well-behaved

also ensure the destruction of the value of commitment when the follower is obliged to

pay even arbitrarily small costs to observe the action of the leader. For well-behaved

tournaments, on the other hand, the value of commitment is perfectly preserved,

provided that observation costs are su¢ ciently small.

The crucial di¤erence between sequential contests and tournaments is in the equi-

librium value of the information available to the second mover. In a sequential con-

test, the second mover gets to observe the �rst mover�s e¤ort, which has no value

in equilibrium if the latter plays a pure strategy. In a tournament, e¤ort is com-

bined with exogenous noise to determine e¤ectiveness. Hence, even if the �rst-mover

plays a pure strategy, information about the �randomly determined �e¤ectiveness

of the �rst mover�s e¤ort is still valuable to the second mover. Indeed, in a sequential

tournament with observation costs, the second mover cannot credibly commit to not



observing player 1�s e¤ectiveness� even though this would be desirable in reducing

1�s advantage of moving �rst.

Why, then, does the �rst mover in a sequential contest not inject noise into her

strategy to restore the value of observation for the second mover? While this would

clearly be desirable, the �rst mover cannot overcome the temptation to �purify�her

behavior and always play the unique pure strategy that maximizes her pro�ts given

her beliefs. Of course, the second mover anticipates this and the scenario unravels.

In an interesting paper, Yildrim (2005) studies contests with e¤ort accumulation.

In his two-period model, players have the option of exerting e¤ort in both periods,

such that a player�s total e¤ort is the sum of his e¤orts in the periods one and two.

Because Yildrim restricts attention to pure strategy subgame perfect equilibria, it

follows immediately from our Lemma 2 that these equilibria are not robust to the

introduction of small observation costs. Whether there are mixed strategy equilibria

that are robust to the introduction of observation costs remains an open question.

In this paper we have restricted attention to contests. However, it is quite obvi-

ous that the same techniques can be applied to other games where the �rst player�s

problem is strictly concave. An important example occurs in the standard Cournot

quantity competition model with linear demand. In this setting, it is easy to see that

the same conclusion is reached as in Proposition 1 is reached: In all subgame per-

fect equilibria of the sequential and endogenous move games with observation costs,

quantities produced are identical to those in the unique Cournot-Nash equilibrium of

the simultaneous move game� regardless of the size of observation costs.

Our results can be interpreted in two ways. First, they o¤er a justi�cation for

the attention that the extant literature has given to simultaneous contests. Indeed,

in settings where e¤ectiveness of lobbying is unobservable even though the lobbying



itself can be observed at some arbitrarily small cost, the sequential and endogenous

contests are outcome equivalent to the simultaneous contest. Another way to read our

results is that the fragility of the value of commitment depends crucially on modeling

assumptions that are seemingly innocuous or even mathematically equivalent in the

simultaneous case.



A Appendix: Contests with General Payo¤Struc-

tures

In this section, we derive general su¢ cient conditions for contest success and cost of

e¤ort functions such that Proposition 1 continues to hold.

First, suppose that the contest success function, P; is continuously di¤erentiable

and that P1 =
@P (x1;x2)

@x1
and P2 =

@P (x1;x2)
@x2

are such that P1 > 0 and P2 < 0 for

all x1; x2: That is, agent 1�s chances of winning are increasing in her own e¤ort and

decreasing in her rival�s e¤ort. Let Ci (xi) denote the cost of e¤ort xi to agent i

and assume that Ci (�) is continuously di¤erentiable, strictly increasing, and (weakly)

convex. We also assume limxi!1Ci (xi) =1. Since Vi is bounded, this ensures that

agents undertake �nite e¤ort levels.

Simultaneous Contest

Suppose that the two agents compete simultaneously. To ensure that this problem

is well-behaved, we make the following regularity assumption.

Assumption 1. Agent i�s problem is strictly concave. That is, for all x1; x2 :

P11 (x1; x2)V1 � C 001 (x1) < 0

and

�P22 (x1; x2)V2 � C 002 (x2) < 0

Assumption 1 is satis�ed if Ci is su¢ ciently convex or P11 < 0 and P22 > 0.

It guarantees that the �rst-order conditions are both necessary and su¢ cient for

characterizing the best-response functions of the agents. Hence, a pure strategy Nash



equilibrium is a pair (x�1; x
�
2) satisfying

P1 (x
�
1; x

�
2)V1 � C 01 (x�1) = 0

�P2 (x�1; x�2)V2 � C 02 (x�1) = 0

Note that at least one such equilibrium exists, since the best response functions are

bounded and continuous.

Sequential Contest

Next, suppose that the contest is played sequentially. That is, agent 1 chooses x1;

agent 2 costlessly and perfectly observes its value, and then chooses x2:

Agent 2�s best response function, which we denote by x2 (x1), is identical to his

best response function in the simultaneous contest. It is characterized by the �rst

order condition

P2 (x1; x2)V2 � C 02 (x1) = 0

Agent 1�s optimization problem is to choose x1 to maximize E�1; recognizing

the dependence of x2 on x1: To ensure that agent 1�s optimization problem is well-

behaved, we make the following assumption which is again satis�ed provided that C1

is su¢ ciently convex:

Assumption 2. Agent 1�s problem is strictly concave. That is, for all x1,

V1

264 P11 (x1; x2 (x1)) + 2P12 (x1; x2 (x1))
@x2
@x1
+

P22 (x1; x2 (x1))
�
@x2
@x1

�2
+ P2 (x1; x2 (x1))

@2x2
(@x1)

2

375� C 001 (x1) < 0
where x2 (x1) is agent 2�s best response to x1.

If Assumptions 1 and 2 hold, then there exists a unique subgame perfect equilib-

rium, (x��1 ; x2 (x
��
1 )), in the sequential contest. This equilibrium is characterized by

the following �rst order conditions:



V1

�
P1 (x

��
1 ; x2 (x

��
1 )) + P2 (x

��
1 ; x2 (x

��
1 ))

@x2 (x
��
1 )

@x1

�
� C 01 (x��1 ) = 0

�P2 (x1; x2)V2 � C 02 (x2) = 0

where
@x2 (x

��
1 )

@x1
=

�P12 (x��1 ; x2 (x��1 ))V2
P22 (x��1 ; x2 (x

��
1 ))V2 � C 02 (x2 (x��1 ))

Value of Commitment

Fix the e¤ort levels of the two agents at some pure strategy Nash equilibrium,

(x�1; x
�
2), of the simultaneous contest. The following assumption guarantees that there

is positive value of commitment.

Assumption 3. For all (x�1; x
�
2) ;

V1

�
P2 (x

�
1; x2 (x

�
1))
@x2 (x

�
1)

@x1

�
6= 0

Here, x2 (x�1) = x
�
2 by de�nition, and

@x2 (x
�
1)

@x1
=

�P12 (x�1; x2 (x�1))V2
P22 (x�1; x2 (x

�
1))V2 � C 02 (x2 (x�1))

Together, Assumptions 1-3 ensure that the class of contests we study excludes

�pathological cases,�where the �rst-mover�s problem is ill-behaved, equilibrium only

exists in mixed strategies, or the follower is non-reactive.

Sequential Contests with Costly Observation

Recall that our main result was:

In any subgame perfect equilibrium of the costly leader contest, there is no value

to commitment.



To establish the result for the current, more general set up, we again show that all

subgame perfect equilibria of the costly leader contest correspond to Nash equilibria

of the simultaneous contest.

First, note that Lemmas 1 and 2 carry over immediately to the more general

setting without requiring any change in their proofs. Thus, we need only worry about

mixed strategy equilibria.

As usual, we begin with player 2. If player 2 chooses to observe, then, by Assump-

tion 1, his problem is strictly concave. If player 2 chooses not to observe and believes

that player 1�s strategy is given by the cdf H; then player 2�s problem is

max
x2
E�2 = V2

Z
x1

P (x1; x2) dH (x1)� C2 (x2)

=

Z
x1

[P (x1; x2)V2 � C2 (x2)] dH (x1)

and, again by assumption 1, this problem is strictly concave. Therefore, player 2

always plays a pure continuation strategy.

Turning to player 1, if she believes that player 2 observes with probability p; then

her optimization becomes

max
x1
E�1 = V1 [pP (x1; x2 (x1)) + (1� p)P (x1; x̂2)]� C1 (x1)

= p [P (x1; x2 (x1))V1 � C1 (x1)] + (1� p) [P (x1; x̂2)V1 � C1 (x1)]

And, by Assumptions 1 and 2, this problem is strictly concave. Hence, player 1 plays

a pure strategy in any subgame perfect equilibrium. Finally, this implies that p = 0.

Therefore, all subgame perfect equilibria in the sequential contest with observation

costs are in pure strategies and Proposition 1 follows.
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