
SCARFF : a Scalable Framework for Streaming Credit

Card Fraud Detection with Spark 1

Fabrizio Carcilloa, Andrea Dal Pozzoloa, Yann-Aël Le Borgnea,
Olivier Caelenb, Yannis Mazzerb, Gianluca Bontempia

aMachine Learning Group, Computer Science Department, Faculty of Sciences ULB,
Université Libre de Bruxelles, Brussels, Belgium.

(email: {fcarcill, yleborgn, gbonte}@ulb.ac.be, dalpozz@gmail.com)
bR&D High Processing & Volume team, Worldline, Belgium.

(email: {yannis.mazzer, olivier.caelen} @worldline.com).

Abstract

The expansion of the electronic commerce, together with an increasing confi-
dence of customers in electronic payments, makes of fraud detection a critical
factor. Detecting frauds in (nearly) real time setting demands the design and
the implementation of scalable learning techniques able to ingest and anal-
yse massive amounts of streaming data. Recent advances in analytics and
the availability of open source solutions for Big Data storage and processing
open new perspectives to the fraud detection field. In this paper we present
a SCAlable Real-time Fraud Finder (SCARFF) which integrates Big Data
tools (Kafka, Spark and Cassandra) with a machine learning approach which
deals with imbalance, nonstationarity and feedback latency. Experimental
results on a massive dataset of real credit card transactions show that this
framework is scalable, efficient and accurate over a big stream of transactions.

Keywords: Big Data, Fraud Detection, Streaming Analytics, Machine
Learning, Scalable Software, Kafka, Spark, Cassandra

1. Introduction

The increasing adoption of electronic payments is opening new perspec-
tives to fraudsters and asks for innovative countermeasures to their criminal

1 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Preprint submitted to Information Fusion September 27, 2017

ar
X

iv
:1

70
9.

08
92

0v
1

 [
cs

.D
C

]
 2

6
Se

p
20

17

http://creativecommons.org/licenses/by-nc-nd/4.0/

activities. If on the one hand fraudsters continuously improve their tech-
niques to emulate genuine behaviour, on the other hand it becomes afford-
able for the companies managing transactional services to collect data about
customers and monitor their behavior.

The need of automatic systems able to detect frauds from historical data
led to the design of a number of machine learning algorithms for fraud detec-
tion [1, 2, 3]. Supervised methods, typically based on binary classification, as
well as unsupervised and one-class classification [4, 5] have been proposed in
literature. Most of these works address some specific issues of fraud detection,
notably class imbalance [6, 7, 8] (the percentage of fraudulent transactions
is usually very small), concept drift [9, 10, 11, 12, 13, 14] (the distribution of
fraudulent transactions might change in time) and stream processing [15, 16].

The authors of this paper studied and analysed in detail the existing
literature in previous works [17, 18, 19, 20] and proposed an original solution
for accurate classification of fraudulent credit card transactions in imbalanced
and non-stationary settings. In particular we assessed the superiority of
undersampling versus oversampling techniques in our specific problem, we
proposed a sliding window approach to effectively tackle concept-drift and we
addressed in [19, 20] an issue often overlooked in literature: the verification
latency due to the fact that in real settings the transaction label is obtained
only after that human investigators contacted the card holders.

Though a large number of learning techniques have been proposed, most
solutions assume a conventional setting where the entire dataset is resident
in memory. It follows that very few studies made the implementation of
these techniques scalable and studied their performances. Also what exists
is typically related to other domains than the fraud: for instance [21] and [22]
studied already the issue of data imbalance in a Hadoop/MapReduce frame-
work 2 but only for public and bioinformatics data.

In domains closer to fraud detection most of the existing works are pre-
liminary or in progress. H. Hormoz et al. [23] made a comparison between a
serial implementation and a Hadoop/MapReduce batch processing solution
based on Artificial Immune Systems (AIS). The same authors made some
tests on cloud services and provided accuracy measurements [24]. A web
service framework for near real-time credit card fraud detection is described,
together with some preliminary results, in [25]. A big data architecture based

2https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

2

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

on Flume, Hadoop and HDFS is proposed in [26] but no validation results
are provided. An example of application in a non banking environment is
presented in [27] where J. Chen et al. describe the Hadoop based fraud de-
tection infrastructure at Alibaba. Other works in progress can be found on
several git servers [28, 29, 30, 31, 32, 33, 34].

In this paper we start from the conclusions of our published works [17,
19, 20] and we propose a realistic and scalable implementation of a fraud
detection system. SCARFF (SCAlable Real-time Fraud Finder) is an open
source platform which processes and analyses streaming data in order to
return reliable alerts in a nearly real-time setting. These are the main original
contributions:

1. the design, implementation and test of an entirely open-source solution
integrating state-of-the-art components from the Apache ecosystem.
This architecture deals seamlessly with data ingestion, streaming, fea-
ture engineering, storage and classification;

2. a scalable learning solution able to provide accurate classification in
a context characterized by nonstationarity, class imbalance and veri-
fication latency. This is obtained by implementing in a scalable and
distributed manner an ensemble solution able to deal with concept drift
and delayed feedback;

3. the design of a distributed on-line feature engineering functionality,
which constantly updates historical features relevant to better iden-
tify fraud patterns. This on-line functionality relies on a MapReduce
programming model;

4. a real-world extensive assessment, in terms of scalability, computational
performance and precision, carried out by testing the platform on a
stream of more than 8 millions of transactions (corresponding to more
than 1.9 millions of cards) provided by our industrial partner;

5. the virtualisation of the complete workflow proposed in this article as
a Docker container, making the workflow fully reproducible.

The paper is organized as follows. Section 2 introduces the main charac-
teristics of real-world Fraud-Detection Systems. Section 3 gives an overview
of the big data tools from the Apache ecosystem that are integrated in our
framework. Section 4 details the learning and the streaming functionalities
of the platform. Finally, in section 5 we assess the scalability, computational
speed and precision on a real dataset, as a function of allocated resources
and incoming transaction rates.

3

Figure 1: A diagram illustrating the layers of control in a FDS [35, 20]. The paper focuses
on the data driven model part.

2. Real-world Fraud Detection Systems

Real world Fraud-Detection Systems (FDSs) for credit card transactions
rely on both automatic and manual operations [35, 20] (Fig. 1). Manual
operations are performed offline by human investigators, while automatic
components are implemented by algorithms that work in real-time and near
real-time configurations. Real-time operations take place before the payment
is authorized, while near real-time operations are executed after the payment
occurred.

Real-time processing consists of a set of security checks of the transac-
tion. If these checks are not passed, the transaction is stopped, otherwise
the amount is virtually transferred from one account to another. Real-time
operations can be divided in Terminal controls and Transaction Blocking
Rules (TBRs). Terminal controls concern terminal-card interaction (e.g.

4

checking if the PIN code is correct) or terminal-server interaction (e.g. check-
ing if there is a sufficient balance on the account). TBRs are a set of if/else
conditions, properly designed by fraud experts to block evident fraudulent
attempts (e.g. IF attempt from a shop in black list THEN deny transaction).
Those rules are seldom updated and because of their real-time nature (execu-
tion in milliseconds) they cannot rely on a feature engineering step returning
complex features (e.g. cardholder profile or past cardholder behaviour).

Once the payment has been registered, near real-time operations are used
to score transactions for fraud investigation. Two near real-time kinds of
control are typically performed: Scoring Rules (SRs) and Data Driven Model
(DDM).

SRs are expert based rules like the TBRs, but of a more complex nature
since they can take advantage of the output of a feature engineering step.
For instance these rules can use the cardholders profile and behaviour (e.g.
IF the cardholder is a 80 year old man who never used his card on-line AND
the transaction involves a big amount AND the transaction comes from an
offshore website THEN return a score of 0.9). The SRs output is a score
obtained by merging the output of multiple rules and it is used to raise, if
necessary, an alert on the transaction. SRs are known to be effective for
specific fraudster behaviours or recurrent fraudulent patterns.

The second near real-time component is the Data Driven Model (DDM)
which is based on Machine Learning classifiers trained to predict the prob-
ability of a new transaction to be fraudulent. The scalable implementation
of this module, which is the main focus of this paper, will be detailed in
section 4.

The offline control layer is managed by investigators who take care of
the alerts returned by the TBRs, SRs and the DDM. By alert we mean a
transaction associated to high fraud risk and for which a human investigation
is needed. In practice an alert is raised according to one of those criteria:

• the estimated risk of fraud associated to the transaction is over a thresh-
old;

• the transaction belongs to the top-N transactions with the highest risk.

In the first case we may obtain an unpredictable number of alerts per day,
while in the second case we may better organize the effort of the investigators
by asking them to process alerts at a constant pace.

5

The number of credit cards a team of investigators can process depends on
the organization guidelines, as well as the number of investigators available
for such a task. Usually an organization investing a certain amount of money
on investigation (i.e. employing a number of investigators), expects that at
least a given number of alerts will be examined by its investigators. For this
reason we have chosen to implement the second option in our pipeline.

3. The Big Data ecosystem

This paper proposes a scalable implementation of the DDM learning mod-
ule which relies on standard tools from the Apache ecosystem, notably Kafka,
Spark and Cassandra (Fig. 2). A major advantage of these components is
that they similarly handle fault tolerance and tasks distribution.

Figure 2: The Big Data pipeline. In our experimental setting, we used a bash program to
emulate the web server which inputs data in the pipeline.

3.1. Transactions Collection

Apache Kafka3 is a distributed publish-subscribe messaging queue sys-
tem that is commonly used for log collection. It has a multi-producers man-
agement system able to retrieve messages from multiple sources. For testing
purposes we emulate the streaming through a bash program injecting trans-
actions in Kafka at a desired rate per second. In case of need (e.g. system
outage) the transactions may be retrieved also during a time interval (set
by the user) posterior to their processing. In general, data partitioning and
retention make of Kafka a useful tool for fault tolerant transaction collec-
tion [36].

3http://kafka.apache.org

6

http://kafka.apache.org

3.2. Data Analysis

Apache Spark4 is an in-memory, streaming-enabled, Map-Reduce im-
plementation which automatically distributes the computation among the
assigned resources and aggregates the results on a distributed file system.
The central idea of this tool is to organize data in a distributed object, the
Resilient Distributed Dataset (RDD) [37]. In case of partition lost, the RDD
object contains sufficient information to retrieve the data structure [37, 38].
Spark includes a built-in library for machine learning (package MLlib [39]),
as well as one for streaming (package Streaming). A strong point of Spark
is its capacity to enable batch and streaming analysis in the same platform.

The proposed framework relies on Spark Streaming which processes data
stream in mini-batches trailing latency of the order of seconds. Though
this could be considered as a disadvantage in some streaming contexts, it is
harmless in our nearly real-time setting.

The Spark module of the framework is written in Scala [40], a language
which combines object-oriented and functional programming. Scala runs
on top of Java VM and it is fully compatible with Java libraries. Overall,
Spark accomplishes three missions in our pipeline: the aggregation of histor-
ical transactions to perform feature engineering, the online classification of
the transactions returning the estimated fraud risk and the cold storage of
transactions in Cassandra.

3.3. Data Storage

Apache Cassandra5 is a distributed database designed for scalability,
able to support replication across multiple nodes or datacenters. It offers
linear scalability, fault tolerance, low latency when querying [41] and manages
consistency of requests at the node level. Data is stored on multiple nodes
organized in a ring shape (i.e. there is no master and every node is as
important as the others), thus avoiding a single point of failure. The creation
of a Cassandra table requires the setting of some parameters (e.g. the primary
key) having an impact on performances. We use a compound primary key
made of a partition and a clustering key. The partition key is an identifier of
the hour when the transaction has been received, making easy to retrieve old
transactions and to compute statistics for a certain cardholder over a given

4http://spark.apache.org
5http://cassandra.apache.org

7

http://spark.apache.org
http://cassandra.apache.org

period. The clustering key defines the order of the records in a partition and
it is composed of the card identifier and the timestamp.

4. Online learning and streaming solutions

This section details the functionalities of the proposed framework. Our
pipeline implements two main functionalities: a machine learning classifi-
cation engine and a streaming component. In the first subsection, 4.1, the
selected machine learning techniques are described. The machine learning
engine includes a weighted ensemble of two classifiers. The second subsec-
tion, 4.2, focuses on the streaming component. Here, more details will be
given regarding the data preprocessing (4.2.2), the data throughput (4.2.1),
the features engineering (4.2.3), the online classification(4.2.4) and the data
storage (4.2.5).

4.1. The machine learning engine

This module is designed on the basis of our recent research in fraud de-
tection [19, 20] and it aims to take into account the specificity of a Fraud
Detection System where automatic tools have to interact with human inves-
tigators. The role of fraud investigators is to focus on the most suspicious
transactions and to contact cardholders. This means that the automatic sys-
tem receives a binary feedback (fraud or genuine) only on the small subset
of transactions (few hundreds per day) which triggered an alert. For the rest
of the transactions no feedback is received unless the cardholder reports a
fraud. This means that non-alerted transactions can be assumed to be gen-
uine only after some time. The learning strategy discussed in [19, 20] and
implemented here, is able to integrate this verification latency by taking into
consideration both transactions for which we have investigators’ feedback and
those labeled by customer with some delay. In particular, the classification
relies on Random Forests [42, 43], which have been shown to be particularly
effective in fraud detection problems [44, 45, 46].

The resulting algorithm estimating the risk of fraud is then composed of
two classifiers:

• a Feedback Random Forest classifier Ft trained on the observations
generated in the last f days and for which a Feedback was returned by
investigators;

8

• a Delayed classifier Dt made of an ensemble of Balanced Random
Trees (BRTs) [47, 43] trained on the old transactions for which we
can reasonably consider the class as known. Note that this classifier is
typically learned on a much larger number of samples than the Feedback
one.

Every tree in Dt is day specific, i.e. it uses only transactions of a given
day (Fig. 3). This allows an easier distribution of the computation and
aggregation of the results.

Figure 3: In this illustrative example, the Feedback model is a Random Forest trained
on investigator feedback from day t − 4 to t − 1. The Delayed model is an ensemble of
Balanced Random Trees (BRTs), each trained on the observations of every single day
from day t− 10 to t− 5. The transaction risk score is a function of the scores of the two
models. Note that the Delayed classifier follows a sliding window approach: as new BRTs
are trained and added to the ensemble, the oldest ones are discarded. The same is true
for the Feedback classifier, where a sliding window approach is followed when selecting the
subset of transactions used for the classifier training.

Though the two classifiers are updated periodically (e.g. once per day),
they are continuously used in the streaming module (subsection 4.2) to assess
the risk of fraud.

In order to deal with concept drift, a sliding window approach [19] is used
to update both Ft and Dt on the basis of new transactions. The classifier Ft

9

is trained on the transactions (feedback) of the latest 14 days. The classifier
Dt implements an updating strategy that keeps the BRT corresponding to a
window of 13 days and discards the oldest ones.

Given an incoming transaction i at time t, coded by a feature vector
xi, the classifiers Ft and Dt produce respectively the posterior probabilities
PFt(+|xi) and PDt(+|xi), where + denotes a fraud and − a genuine trans-
action. The aggregated posterior probability PAt(+|xi) is obtained by a
weighted average of posterior probabilities from the individual classifiers:

PAt(+|xi) = wAPFt(+|xi) + (1− wA)PDt(+|xi) (1)

where wA ∈ [0, 1] and At is the overall model which wraps Ft and Dt. On
the basis of the analysis conducted in [19] we set wA = 0.5.

The imbalanced nature of the classification problem led us to implement
our own scalable version of a Balanced Random Forest (BRF). For this
purpose we integrated Scala code with Weka [48], a well established open
source tool for machine learning in Java. The result is a scalable BRF where
every tree is trained on a subsample of the majority class (genuine cases) and
the entire minority class (fraudulent cases). The pseudo-code of the scalable
learner is detailed in Algorithm 1.

Algorithm 1 Distributed implementation of a Balanced Random Forest

1: nTrees← number of trees per partition
2: frauds← array of frauds
3: Broadcast frauds
4: genuine← RDD of genuine
5: for any partition (genuine) do
6: treeArray ← initialize an array
7: for i← 0, nTrees− 1 do
8: subsetGenuine← random subsample of the partition
9: balanced.set← Union(frauds, subsetGenuine)

10: balanced.tree← build a classifier using balanced.set
11: treeArray ← append balanced.tree to treeArray
12: end for
13: end for any partition
14: treeArrayGlobal ← collect all treeArray from partitions

Note that the genuine transactions are stored in the RDD genuine while

10

all the fraudulent transactions (array frauds) are broadcast6 to every ex-
ecutor. For any partition of the RDD genuine we build nTrees BRTs and
we collect them in treeArray. Finally we store all the models created in the
partitions in the treeArrayGlobal object. Delayed classification task is then
performed by aggregating the outcome of all the BRFs. A typical way to
perform aggregation relies on weighting

PDt(+|xi) =
k∑

n=1

wD
n PBRFt−d−n

(+|xi) (2)

where wD is a vector of k weights which sums to 1 and d is the delay (number
of days) for the reception of the labels. Different strategies can be used to
set the weights, e.g. proportionally to the size of the tree training set or to
the number of incorrect decisions (Dynamic Weighted Majority). A better
ensemble learning strategy may be used to optimize the detection task. To
further investigate ensemble strategies for streaming classification, we suggest
the read of these surveys [49, 50, 51].

4.2. The streaming analytics engine

This engine implements the following functionalities:

• data throughput;

• data preprocessing;

• features engineering;

• online classification;

• data storage.

4.2.1. Data throughput

Data throughput in Spark from Kafka produces a DStream object (Dis-
cretized Stream) [52], the basic abstraction provided by Spark Streaming to
represent a continuous stream of data. A DStream object is a continuous

6In Spark, the broadcast mechanism allows to keep a read-only variable cached on each
machine rather than shipping a copy of it with tasks. They can be used, for example, to
give every node a copy of a large input dataset in an efficient manner.

11

Figure 4: Behavior of the scheduling delay vs. batch duration in a synthetic example
where the available resources can afford a maximum delay of 300 seconds. Configuration
A refers to a situation where, only for a limited period, processing time is longer than
the batch duration. Configuration B corresponds to a longer violation period of maximal
batch duration. This event leads to an increase of delay up to a limit imposed by the
available resources.

series of RDDs, obtained by periodically generating and appending RDDs.
The frequency at which streaming data are partitioned into batches (a.k.a.
batch duration) is an important parameter of a DStream object. In fact, the
processing of a new batch starts as soon as a new RDD is generated and
the processing of the previous batch has been completed. This entails that
the processing time of an RDD should be smaller than the batch duration.
If this is not the case, the batch is stacked in a queue and the execution
postponed. Such a delay is sustainable for a limited period of time only (see
configuration A in Fig. 4). If incoming data flow at a too high rate for a long
period the application fails as soon as all the storage resources are exhausted
(see configuration B in Fig. 4).

12

4.2.2. Data Preprocessing

This step deals with the treatment of missing values (replaced by median
values) and with the coding of the categorical features (e.g. product class
or merchant business type) characterized by a large number of values. The
coding step consists in replacing each categorical value by a numeric value
representing the a priori probability of the category to be associated to a
fraudulent transaction, as presented in [53] (subsection 9.2.4). The probabil-
ity is estimated from historical data and stored in a dictionary [54].

The effectiveness of such preprocessing is confirmed by previous research
as well as by our industrial partner experience. From a more theoretical
perspective it can be seen as an instance of cascade generalization [55] where
preliminary naive classifiers are used as inputs to a more powerful classifiers.
Potential risks of concept drift in this procedure could be addressed by up-
dating the dictionary every time a new batch of labels is received. A detailed
survey on data preprocessing for data stream mining can be found in [56].

4.2.3. Feature engineering

This step consists in the retrieval of historical data stored in the Cassan-
dra database and the computation of aggregated statistics. Commonly used
statistics are the maximum, minimum, count and average of relevant numer-
ical variables (e.g. transaction amount), which derive from recent transac-
tions of the concerned cardholder. In this step, crucial parameters are the
size of the historical time window (e.g. week or month) and the number of
recent transactions taken into consideration. Given the streaming nature of
the problem, the modification of these parameters can noticeably impact the
required resources and the affordable rate of data throughput. Alternative
feature engineering techniques are discussed in literature [57, 58].

4.2.4. Online classification

This step consists first in classifying any incoming transaction by using
the most recent classification model returned by the procedure described in
subsection 4.1. Once the classification is performed, the system updates a
dashboard containing a priority list of transactions (alerts) sorted by esti-
mated risk. In our prototype this dashboard is simply a database table.
Obviously a more user-friendly interface should be considered in a produc-
tion environment.

13

4.2.5. Data storage

The final step consists in storing transactions and their aggregated infor-
mation in a Cassandra table by means of a Spark Cassandra Connector, an
open source library developed by Datastax 7. Transaction and aggregated
features are periodically retrieved to build the training set of the machine
learning engine.

4.2.6. Pseudo-code

The entire streaming procedure can then be summarized by the pseudo-
code in Algorithm 2. Given a DStream, for any of its RDD components
(denoted inTrx) we perform a series of tasks:

• if the day is over [Row:12], we retrain the models F and D (section 4.1),
we save on Cassandra DB the topN alerts from AlertTable, we reset
AlertTable and we discard the unneeded transactions;

• for any given time interval in the array window, we retrieve informa-
tion about previous transactions from tableTrx and for any cardholder
(idTrx) [Row:21];

• once the feature vector featHist is built, the transaction may be clas-
sified according to the up-to-date classifiers F and D [Rows:27-30] and
the riskiest topN alerts stored in the alert table.

5. Experiments

This section assesses the proposed scalable architecture according to dif-
ferent criteria:

• Scalability;

• Impact of internal parametrization on computational performance;

• Classification precision.

Experiments were carried out on a cluster of ten machines, each with 24 cores
and 80GB of RAM. Spark was run on top of the cluster resource manager
Yarn [59]. For all experiments, each executor was allocated 1GB of RAM,

7https://github.com/datastax/spark-cassandra-connector

14

https://github.com/datastax/spark-cassandra-connector

Algorithm 2 Streaming procedure

1: DStream← RDD collection
2: tableTrx← empty cassandra table
3: tableRank ← empty cassandra table
4: AlertTable← empty array
5: topN ← number of alerts to retain
6: window ← array of window intervals for
7: features aggregation
8: modelDate← day of the last model update
9: for any RDD (DStream) do

10: inTrx← current RDD
11: currentDate← date of inTrx
12: if currentDate 6= modelDate then
13: trainFeedback ← train a new F
14: trainDelayed← train a new D
15: modelDate← currentDate
16: tableRank ← AlertTable
17: AlertTable← empty array
18: end if
19: idTrx← getUniqueIds(inTrx)
20: featHist← empty array
21: for i← 0, size(window)− 1 do
22: h← retrieveHist(idTrx, tableTrx, window(i))
23: featHist← append h to featHist
24: end for
25: augTrx← merge inTrx and featHist
26: tableTrx← insert augTrx
27: feedProb← classify augTrx using trainFeedback and get the prob-

ability for class fraud
28: delProb ← classify augTrx using trainDelayed and get the proba-

bility for class fraud
29: totalProb← ensemble delProb and feedProb
30: AlertTable ← append totalProb to AlertTable and keep the topN

alerts with the highest risk
31: end for any RDD

15

Data subset
Subset name # trx % of fraud. trx # cards % of fraud. cards
DS 8,356,811 0.4 1,921,457 0.2

Table 1: Dataset used for experiments

and the driver was allocated 10GB of RAM. Further discussion over memory
usage will be presented in this section.

The dataset DS used for experiments is a selection of 40 consecutive
days of transactions recorded from 2014, October, 18 to November, 26. This
dataset includes more than 8 millions of e-commerce transactions from al-
most 2 millions cardholders, 18 descriptive features and the label (genuine
or fraudulent). Table 1 reports the presence of frauds in terms of fraudulent
transactions and fraudulent cards. Note that the feature engineering step is
performed on a one week time window leading to the creation of 17 additional
features.

The Feedback classifier Ft is trained over all the transactions from the
100 cards alerted per day and for a period of 14 days. Given that there are
on average four transactions per card per day, Ft is trained with about 5,600
transactions.

The Delayed classifier Dt is trained on the set of transactions (about 2.7
million) occurring during 13 days (from day t−8 to t−20). The total number
of transactions can be roughly estimated as follows

2.4
trx

sec
× 86, 400

sec

day
× 13days = 2, 695, 680trx

Note however that the effective size of the final training set is smaller and
dictated by the undersampling step which returns a more balanced dataset.

Note also that in the experiments we use a weighting strategy for aggre-
gation (Equation 2) where weights are proportional to the number of training
samples per tree.

5.1. Scalability

This section aims to assess the scalability of our pipeline by running three
times the entire detection procedure on the dataset DS with an increasing
number of Spark executors (25, 35 and 45). We set the batch duration 8 to

8This is an attribute of the object StreamingContext in Spark

16

Figure 5: Processing time (lower part) and scheduling delay (upper part) behavior as a
function of the number of executors. The left facet focuses on the Initialization phase,
while the right facet reports the behaviour during the Fully Operational phase. On the
x-axes we have an in time ordered sequence of batches analysed by the application, while
on the y-axis we have the number of seconds needed to process a given batch.

240 seconds (section 4.2.1) and the data incoming rate at 100 transactions
per second (trx/sec). Note that the real throughput rate associated to DS
is 2.4 trx/sec.

Fig. 5 is divided in two vertical facets, displaying the execution behavior
during an Initialization phase and a Fully Operational phase, respectively.
During the Initialization phase, the system is in a bootstrap state, the Cas-
sandra database is not completely filled and classification is not yet started.
By Fully Operational phase we mean that all the functionalities (preprocess-

17

ing, feature engineering and classification) are fully working. Fig. 5 shows
that during the Initialization phase, the processing time increases because
of (i) the growing number of stored transactions and (ii) the increasing clas-
sification time due to the growing complexity of the random forest used for
classification.

The Fully Operational phase begins as soon as the number of days set for
features engineering is elapsed and we reach the desired number of models in
the ensemble. From this moment on, the learning system starts discarding
the oldest transactions and the oldest models from the ensemble, thus keeping
constant the memory occupation.

Considering the Fully Operational phase, a first observation is that the
processing time for the 25 executors run is longer than the limit set by the
batch duration. In this case a delay will be accumulating with a potential
risk of application failure (see also Fig. 4).

This is not the case for 35 and 45 executors, respectively, since the pro-
cessing time is typically shorter than the batch duration. Nevertheless in
the 35 executors case, we still observe some peaks passing over the batch
duration threshold. Those peaks refer to batches where the retraining of
the model takes place in addition to the feature engineering and the online
classification operations. The fact that some distributions pass over the 240
seconds threshold has not necessarily a negative impact on the resulting per-
formances. This is due to the fact that in real production setting, these
situations occur only once a day with minor impact on final schedules.

For this reason we have rearranged the Fully Operational data in Fig. 6
in order to make explicit the processing time due to the streaming and to the
learning step, respectively. It appears again evident that the configuration
with 10, 20 or 30 executors is not sufficient to absorb a streaming rate of 100
trx/sec.

Let us remark also that in Fig. 6 the average processing time is decreasing
with the number of executors suggesting that the application is scalable.
However the decreasing rate of improvement suggests that the improvement
could be negligible from a certain number of executors on. This is typically
due to the fact that the map-reduce process may become too expensive for
a large number of executors since the benefit of dividing the computation
among executors is counterbalanced by the cost of shuffling too many data
among those executors.

18

Figure 6: Processing time distribution in the Fully Operational phase, for different number
of executors. Left: execution time due to Streaming only. Right: execution time due to
Streaming and Learning.

5.2. Impact of internal parametrization on computational performance

In the previous section, we remarked that it is possible to define the min-
imal number of executors able to manage a given incoming rate (e.g. 100
trx/sec). However, given the potential saturation of a distributed approach,
it is interesting to study how to deal with high incoming rates without nec-
essarily increase the size of the cluster. A possible solution comes from an
appropriate tuning of internal parameters like the batch duration time. How-
ever an increase of the batch duration time implies two drawbacks:

• a deterioration of the precision of the features engineering step;

• a delay in raising alerts.

The precision of features engineering is reduced since during its calculation,
only the transactions stored in advance may be used; therefore if we have two

19

transactions from the same card in a given batch, information about the first
transaction will not be included to engineer features related to the second
one.

The second drawback is a minor one since, as discussed previously, in a
fraud detection scenario where human investigators have to contact clients
to obtain their feedback, a delay of few minutes makes little difference.

In Fig. 7 we report the results obtained with the dataset DS, 100 execu-
tors and by raising the incoming rate to 240 trx/sec. The aim is to test the
robustness of the infrastructure for long periods at high throughput rates.

Figure 7: Processing time distribution in the Fully Operational phase for different through-
put rates, fixed batch duration of 240 seconds and using 100 executors. The left side shows
the distribution of Streaming times while the Streaming + Learning times are shown on
the right side.

It is worth to notice that 200 trx/sec is not necessarily an upper limit
and that still higher rates could be obtained either by increasing the batch
duration or the number of executors.

In terms of RAM-Hours (the average RAM usage in gigabyte per hour re-

20

quired by a given process [60]), our solution exhibits two distinct behaviours.
In the Initialization phase, the memory use grows linearly in time until the
Fully Operational phase. In the Fully Operational phase, memory use is con-
stant (0.05 RAM-Hour in case of a 200 trx/sec stream and 100 executors).

Another interesting information concerns how the processing time is dis-
tributed among the different tasks of the Streaming functionality. From
Fig. 8, it appears that the heaviest task is the Feature Engineering (which
includes the aggregation described in 4.2), followed by the reading time from
Cassandra.

Figure 8: Distribution of processing time among Reads and Writes on Cassandra, Feature
engineering, Model Update and Classification tasks.

The distribution of Read operations and Write operations is strongly
skewed in our plot. That is happening because we are writing few lines and
reading many lines. Indeed for the aggregation purposes, we need to retrieve
old transactions information and this concerns far more lines than the one
pushed in Cassandra. As expected, the Read tasks as well the Classification
tasks, consume more resources in the Fully Operational phase than in the
Initialization one. Note that the time for Feature Engineering is similar dur-

21

ing the two phases in absolute values: the decrease visible in the figure is only
in percentage terms (Read and Write times increase). The Fully Operational
phase includes two sub-phases (Streaming and Streaming + Learning). An
additional component, the Model Update, characterizes the latter sub-phase
and impact for the 12.3% of the total processing time.

5.3. Classification Precision

Fraud Detection Systems are designed to have accurate detection perfor-
mance. A good measure for the precision, proposed in [20] and previously
used in rare item detection [61], is the Card Precision (CP), which is the
proportion of detected fraudulent cards among the alerted ones.

Figure 9: The line chart shows the distribution of frauded cards (solid/yellow line, left
y-axis) and the percentage of detected frauds in the examined period (dashed/violet line,
right y-axis). The confidence intervals were obtained by repeating the experiment ten
times and changing different random seeds.

It is therefore important to assess the CP returned by a scalable imple-
mentation of the fraud detection procedure. The precision obtained in our

22

experiments with the dataset DS is essentially in line with the results pub-
lished in [20]. The minor discordance is due to the fact that we are using
only a subset of the features used in [20].

Overall we obtained an average precision CPk = 0.24 where k is set to
100 since this is the average number of cards that can be daily checked by the
investigators working for our industrial partner. This means that on average
24 alerts out of 100 are correct.

Fig. 9 reports the total number of fraudulent cards (solid/yellow line)
and the percentage of detected fraudulent cards (dashed/violet line) for the
analysed period. As expected, we see an improvement of the precision when
we move from the Partial ensemble to the Full ensemble phase, essentially
due to the growing size of the classifier ensemble and the improvement of the
Feedback model (initially trained on inaccurate alerts). Fig. 10 and Table 2
illustrate well the effectiveness of the averaging strategy: most of the time
and on average the single classifiers perform worse than the ensemble. Those
results have been obtained over ten runs of SCARFF, streaming the same
time series, but changing the randomization seed. We have also computed
two paired t-tests between the CPk obtained using the Ensemble Classifier
and those obtained by its two components. The CPk of the Ensemble Classi-
fier results to be statistically bigger than the Delayed and Feedback Classifier
(p-values smaller than 10e-3).

Fully Operational Stage
Classifier CPk

Delayed Classifier 16.1%
Feedback Classifier 22.4%
Ensemble Classifier 24.1%

Table 2: Precision CPk for multiple classifiers during the fully operational stage.

Since the CPk assessment refers to k = 100 alerts only, we also re-
port in Fig. 11 the Area Under the receiver operating characteristic Curve
(AUC),which is a more general measure of accuracy used in fraud detection
scenarios [17, 46, 62]. The two lines represent respectively the AUC consid-
ering all the transactions and the most likely fraudulent transactions for each
credit card.

Finally, a last measure of accuracy derived from the experiment relates
to the capacity of our implemented model to detect a fraudulent card before
what actually happened in the recorded dataset. It happens in fact that some

23

Figure 10: Percentage of detected frauds from the Delayed model, the Feedback model
and the Ensemble of the two. Note that the aggregate model precision (dashed/violet line)
is usually higher. The confidence intervals were obtained by repeating the experiment ten
times and changing different random seeds.

fraudulent cards were stopped only after several fraudulent transactions. On
the basis of our simulation, it appears that the implemented classifier is able
to detect earlier fraudulent cards 3.6% of the time.

6. Conclusions and future work

The paper presented SCARFF, an original scalable platform to automati-
cally detect frauds in a near real-time horizon. The most original contribution
of this framework is the design and the implementation of an open source
big data solution for real-world Fraud Detection and its test on a massive
real-world data set. We wish to emphasize that the workflow proposed in
our article, while not disclosing the data, has been made fully open source

24

Figure 11: AUC of fraud detection at the level of card (darker color) and transaction
(lighter color).

and reproducible by means of a Docker9 container and an artificial dataset.
To the best of our knowledge this is the most complete and detailed open
source and big data solution for credit card fraud detection in the literature.

In terms of software development the paper shows that Kafka, Spark
and Cassandra, may provide easy scalability and fault tolerance, to receive,
aggregate and classify transactions at high rate. In the experimental session
we have extensively tested the system in terms of scalability, sensitivity to
parameters and classification accuracy.

We have shown that the system behaves robustly up to an incoming rate of
200 transactions per second, which is a remarkable result once compared with
the 2.4 transactions per seconds rate currently managed by our industrial

9https://hub.docker.com/r/fabriziocarcillo/scarff/

25

https://hub.docker.com/r/fabriziocarcillo/scarff/

partner. Moreover, a rate of 200 transactions per seconds should not be
considered as a hard upper limit since an appropriate setting of the number
of executors and the batch duration could allow still higher rates.

In terms of precision we have confirmed previous results obtained in a
conventional architecture with data resident in main memory.

Nevertheless, as a concluding remark, it is important to add some words of
caution about the maturity of big data solutions for large scale deployments.
Big data solutions are supported by a growing open-source community which
leads to a very fast evolution and, at the same time, to a high rate of new
releases. If on the one hand this ensures rapid debugging, on the other hand
it may induce instability in the existing running solutions. The problem
is evident when one is trying to combine several functionalities of different
tools in the same platform. For instance we encountered several problems in
querying a Cassandra table from Spark: we had a very hard time in doing
ad hoc queries to Cassandra which had as consequence that we often decided
to get the whole table from Cassandra and filter it on Spark (a suboptimal
solution).

Overall, we consider that the most important message is that the adoption
of a big data solution introduces a number of parameters having an impact
on the resulting computational and classification performances. In order to
obtain an efficient solution to a specific detection problem, several trade-offs
have to be made explicit and managed both at the software and hardware lev-
els. In our experience the most important trade-off concerned the number of
transactions processed per second, the complexity of the feature engineering
step, the batch duration and the number of available executors.

Future work will focus on porting the existing solution to the industrial
partner, testing the efficiency in a Cloud environment, assessing the robust-
ness to the adoption of alternative service providers (e.g. other databases
than Cassandra) and generalizing the framework to other streaming settings
(e.g. analytics of multivariate sensor streams). From a more theoretical point
of view, we would like to investigate innovative approaches especially in the
area of semi-supervised and active learning.

Acknowledgement

The authors FC, YLB and GB acknowledge the funding of the Brufence
project (Scalable machine learning for automating defense system) supported

26

by INNOVIRIS (Brussels Institute for the encouragement of scientific re-
search and innovation). ADP acknowledges the funding of the Doctiris
(Adaptive real-time machine learning for credit card fraud detection) project
supported by INNOVIRIS (Brussels Institute for the encouragement of sci-
entific research and innovation).

References

References

[1] S. Ghosh, D. L. Reilly, Credit card fraud detection with a neural-
network, in: Proceedings of the Twenty-Seventh Hawaii International
Conference on System Sciences., Vol. 3, IEEE, 1994, pp. 621–630.

[2] D. Sánchez, M. Vila, L. Cerda, J. Serrano, Association rules applied to
credit card fraud detection, Expert Systems with Applications 36 (2)
(2009) 3630–3640.

[3] Y. Sahin, S. Bulkan, E. Duman, A cost-sensitive decision tree approach
for fraud detection, Expert Systems with Applications 40 (15) (2013)
5916–5923.

[4] B. Krawczyk, M. Woźniak, Incremental weighted one-class classifier for
mining stationary data streams, Journal of Computational Science 9
(2015) 19–25.

[5] B. Krawczyk, M. Woźniak, One-class classifiers with incremental learn-
ing and forgetting for data streams with concept drift, Soft Computing
19 (12) (2015) 3387–3400.

[6] B. Krawczyk, Learning from imbalanced data: open challenges and fu-
ture directions, Progress in Artificial Intelligence 5 (4) (2016) 221–232.

[7] A. Dal Pozzolo, O. Caelen, G. Bontempi, When is undersampling effec-
tive in unbalanced classification tasks?, in: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, 2015, pp.
200–215.

[8] A. Dal Pozzolo, O. Caelen, R. A. Johnson, G. Bontempi, Calibrating
probability with undersampling for unbalanced classification, in: Sym-
posium Series on Computational Intelligence, IEEE, 2015, pp. 159–166.

27

[9] J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A
survey on concept drift adaptation, ACM Comput. Surv. 46 (4) (2014)
44:1–44:37.

[10] C. Alippi, G. Boracchi, M. Roveri, Just-in-time classifiers for recurrent
concepts, IEEE Transactions on Neural Networks and Learning Systems
24 (4) (2013) 620–634.

[11] E. R. Faria, I. J. Gonçalves, A. C. de Carvalho, J. Gama, Novelty detec-
tion in data streams, Artificial Intelligence Review 45 (2) (2016) 235–
269.

[12] Z. S. Abdallah, M. M. Gaber, B. Srinivasan, S. Krishnaswamy,
Anynovel: detection of novel concepts in evolving data streams, Evolv-
ing Systems 7 (2) (2016) 73–93.

[13] H. Yang, S. Fong, Countering the concept-drift problem in big data
using iovfdt, in: 2013 IEEE International Congress on Big Data, IEEE,
2013, pp. 126–132.

[14] H. Yang, S. Fong, Countering the concept-drift problems in big data by
an incrementally optimized stream mining model, Journal of Systems
and Software 102 (2015) 158–166.

[15] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, S. Whittle, Millwheel: Fault-
tolerant stream processing at internet scale (2013) 734–746.

[16] Q. Lin, B. C. Ooi, Z. Wang, C. Yu, Scalable distributed stream join
processing, in: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, ACM, 2015, pp. 811–825.

[17] A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, G. Bon-
tempi, Learned lessons in credit card fraud detection from a practitioner
perspective, Expert Systems with Applications 41 (10) (2014) 4915–
4928.

[18] A. Dal Pozzolo, R. A. Johnson, O. Caelen, S. Waterschoot, N. V.
Chawla, G. Bontempi, Using hddt to avoid instances propagation in
unbalanced and evolving data streams, in: 2014 International Joint Con-
ference on Neural Networks (IJCNN), IEEE, 2014, pp. 588–594.

28

[19] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, G. Bontempi, Credit
card fraud detection and concept-drift adaptation with delayed super-
vised information, in: International Joint Conference on Neural Net-
works (IJCNN), IEEE, 2015, pp. 1–8.

[20] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, G. Bontempi, Credit
card fraud detection: a realistic modeling and a novel learning strat-
egy, IEEE Transactions on Neural Networks and Learning Systems (Ac-
cepted) (2017).

[21] S. del Ŕıo, V. López, J. M. Beńıtez, F. Herrera, On the use of mapreduce
for imbalanced big data using random forest, Information Sciences 285
(2014) 112–137.

[22] I. Triguero, S. del Ŕıo, V. López, J. Bacardit, J. M. Beńıtez, F. Herrera,
Rosefw-rf: the winner algorithm for the ecbdl14 big data competition:
an extremely imbalanced big data bioinformatics problem, Knowledge-
Based Systems 87 (2015) 69–79.

[23] H. Hormozi, M. K. Akbari, E. Hormozi, M. S. Javan, Credit cards fraud
detection by negative selection algorithm on hadoop (to reduce the train-
ing time), in: Information and Knowledge Technology (IKT), 2013, pp.
40–43.

[24] E. Hormozi, M. K. Akbari, H. Hormozi, M. S. Javan, Accuracy evalua-
tion of a credit card fraud detection system on hadoop mapreduce, in:
Information and Knowledge Technology (IKT), 2013, pp. 35–39.

[25] A. Tselykh, D. Petukhov, Web service for detecting credit card fraud in
near real-time, in: Proceedings of the 8th International Conference on
Security of Information and Networks, ACM, 2015, pp. 114–117.

[26] S. Phulari, U. Shantling Lamture, S. Vilas Madage, K. Tirupati Bhan-
dari, Pattern analysis and fraud detection using hadoop framework, In-
ternational Journal of Engineering Science and Innovative Technology
(IJESIT) Volume 5, Issue 1 (2016) 92–100.

[27] J. Chen, Y. Tao, H. Wang, T. Chen, Big data based fraud risk manage-
ment at alibaba, The Journal of Finance and Data Science 1 (1) (2015)
1–10.

29

[28] https://github.com/mapr-demos/frdo, [Online; accessed 7-July-
2016].

[29] https://github.com/vakshorton/CreditCardTransactionMonitor,
[Online; accessed 7-July-2016].

[30] https://github.com/bhomass/marseille, [Online; accessed 7-July-
2016].

[31] https://github.com/Azure/azure-content/

blob/master/articles/stream-analytics/

stream-analytics-real-time-fraud-detection.md, [Online; ac-
cessed 7-July-2016].

[32] https://github.com/hadooparchitecturebook/

fraud-detection-tutorial, [Online; accessed 7-July-2016].

[33] https://github.com/pranab/beymani, [Online; accessed 7-July-2016].

[34] https://github.com/namebrandon/Sparkov, [Online; accessed 7-July-
2016].

[35] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, K. Li, Ai2:
Training a big data machine to defend, in: IEEE 2nd International
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and Smart Computing
(HPSC), and IEEE International Conference on Intelligent Data and
Security (IDS), IEEE, 2016, pp. 49–54.

[36] J. Kreps, N. Narkhede, J. Rao, Kafka: A distributed messaging system
for log processing, in: Proceedings of 6th International Workshop on
Networking Meets Databases (NetDB), Athens, Greece, 2011, p. 1.

[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing, in: Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, 2012, pp. 2–2.

[38] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica,
Spark: Cluster computing with working sets, in: Proceedings of the 2Nd

30

https://github.com/mapr-demos/frdo
https://github.com/vakshorton/CreditCardTransactionMonitor
https://github.com/bhomass/marseille
https://github.com/Azure/azure-content/blob/master/articles/stream-analytics/stream-analytics-real-time-fraud-detection.md
https://github.com/Azure/azure-content/blob/master/articles/stream-analytics/stream-analytics-real-time-fraud-detection.md
https://github.com/Azure/azure-content/blob/master/articles/stream-analytics/stream-analytics-real-time-fraud-detection.md
https://github.com/hadooparchitecturebook/fraud-detection-tutorial
https://github.com/hadooparchitecturebook/fraud-detection-tutorial
https://github.com/pranab/beymani
https://github.com/namebrandon/Sparkov

USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
2010, pp. 10–10.

[39] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, et al., Mllib: Machine learning
in apache spark, arXiv preprint arXiv:1505.06807.

[40] M. Odersky, al., An overview of the scala programming language, Tech.
Rep. IC/2004/64, EPFL Lausanne, Switzerland (2004).

[41] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage
system, ACM SIGOPS Operating Systems Review 44 (2) (2010) 35–40.

[42] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.

[43] L. Rokach, Decision forest: Twenty years of research, Information Fusion
27 (2016) 111–125.

[44] S. Bhattacharyya, S. Jha, K. Tharakunnel, J. C. Westland, Data mining
for credit card fraud: A comparative study, Decision Support Systems
50 (3) (2011) 602–613.

[45] A. C. Bahnsen, D. Aouada, B. Ottersten, Example-dependent cost-
sensitive decision trees, Expert Systems with Applications 42 (19) (2015)
6609–6619.

[46] V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu,
M. Snoeck, B. Baesens, Apate: A novel approach for automated credit
card transaction fraud detection using network-based extensions, Deci-
sion Support Systems 75 (2015) 38–48.

[47] C. Chen, A. Liaw, L. Breiman, Using random forest to learn imbalanced
data, University of California, Berkeley 110.

[48] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Wit-
ten, The weka data mining software: an update, ACM SIGKDD Explo-
rations Newsletter 11 (1) (2009) 10–18.

[49] M. Woźniak, M. Graña, E. Corchado, A survey of multiple classifier
systems as hybrid systems, Information Fusion 16 (2014) 3–17.

31

[50] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, M. Woźniak, En-
semble learning for data stream analysis: a survey, Information Fusion
37 (2017) 132–156.

[51] H. M. Gomes, J. P. Barddal, F. Enembreck, A. Bifet, A survey on en-
semble learning for data stream classification, ACM Computing Surveys
(CSUR) 50 (2) (2017) 23.

[52] M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, Discretized streams: An
efficient and fault-tolerant model for stream processing on large clusters,
in: Proceedings of the 4th USENIX Conference on Hot Topics in Cloud
Ccomputing, HotCloud’12, 2012, pp. 10–10.

[53] J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learn-
ing, Vol. 1, Springer series in statistics Springer, Berlin, 2001.

[54] A. Dal Pozzolo, Adaptive Machine Learning for Credit Card Fraud De-
tection, Ph.D. thesis, Université libre de Bruxelles (2015).

[55] J. Gama, P. Brazdil, Cascade generalization, Machine Learning 41 (3)
(2000) 315–343.

[56] S. Ramrez-Gallego, B. Krawczyk, S. Garca, M. Woniak, F. Herrera, A
survey on data preprocessing for data stream mining, Neurocomputing
239 (C) (2017) 39–57.

[57] A. C. Bahnsen, D. Aouada, A. Stojanovic, B. Ottersten, Feature engi-
neering strategies for credit card fraud detection, Expert Systems With
Applications 51 (2016) 134–142.

[58] C. Whitrow, D. J. Hand, P. Juszczak, D. Weston, N. M. Adams, Trans-
action aggregation as a strategy for credit card fraud detection, Data
Mining and Knowledge Discovery 18 (1) (2009) 30–55.

[59] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, E. Baldeschwieler, Apache hadoop yarn:
Yet another resource negotiator, in: Proceedings of the 4th Annual Sym-
posium on Cloud Computing, SOCC ’13, 2013, pp. 5:1–5:16.

32

[60] A. Bifet, G. Holmes, B. Pfahringer, E. Frank, Fast perceptron decision
tree learning from evolving data streams, Advances in knowledge dis-
covery and data mining (2010) 299–310.

[61] G. Fan, M. Zhu, Detection of rare items with target, Statistics and Its
Interface 4 (2011) 11–17.

[62] S. Viaene, R. A. Derrig, G. Dedene, A case study of applying boosting
naive bayes to claim fraud diagnosis, IEEE Transactions on Knowledge
and Data Engineering 16 (5) (2004) 612–620.

33

	1 Introduction
	2 Real-world Fraud Detection Systems
	3 The Big Data ecosystem
	3.1 Transactions Collection
	3.2 Data Analysis
	3.3 Data Storage

	4 Online learning and streaming solutions
	4.1 The machine learning engine
	4.2 The streaming analytics engine
	4.2.1 Data throughput
	4.2.2 Data Preprocessing
	4.2.3 Feature engineering
	4.2.4 Online classification
	4.2.5 Data storage
	4.2.6 Pseudo-code

	5 Experiments
	5.1 Scalability
	5.2 Impact of internal parametrization on computational performance
	5.3 Classification Precision

	6 Conclusions and future work

