This is a preprint version of the following article, published by Elsevier (doi:10.1016/j.ins.2007.12.015):

Sergio llarri, Eduardo Mena and Arantza lllarramendi, Using cooperative mobile agents to monitor distributed and dynamic
environments, Information Sciences, Volume 178, Issue 9,1 May 2008, Pages 2105-2127.

Using Cooperative Mobile Agents to Monitor

Distributed and Dynamic Environments *

Sergio Ilarri®, Eduardo Mena®, Arantza Illarramendi”

aJIS Dept., Univ. of Zaragoza, Maria de Luna 1, Zaragoza, 50018, Spain

Phone: (+384) 976 76 23 40, Faz: (+34) 976 76 19 1

PLSI Dept., Univ. of the Basque Country, Apdo. 649, 20080 San Sebastidn, Spain

Abstract

Monitoring the changes in data values obtained from the environment (e.g., loca-
tions of moving objects) is a primary concern in many fields, as for example in the
pervasive computing environment. The monitoring task is challenging from a double
perspective. First and foremost, the environment can be highly dynamic in terms of
the rate of data changes. Second, the monitored data are often not available from
a single computer/device but are distributed; moreover, the set of data providers
can change along the course of time. Therefore, obtaining a global snapshot of the
environment and keeping it up-to-date is not easy, especially if the conditions (e.g.,

network delays) change.

In this article, a decentralized, loose, and fault-tolerant monitoring approach
based on the use of mobile agents is described. Mobile agents allow easy tracking of
the involved computers, carrying the monitoring tasks to wherever they are needed.
A deadline-based mechanism is used to coordinate the cooperative agents, which
strive to perform their continuous tasks in time while considering data as recent as

possible, constantly adapting themselves to new environmental conditions (changing

Preprint submitted to Elsevier 19 November 2007

Administrador
Cuadro de texto
This is a preprint version of the following article, published by Elsevier (doi:10.1016/j.ins.2007.12.015):

Sergio Ilarri, Eduardo Mena and Arantza Illarramendi, Using cooperative mobile agents to monitor distributed and dynamic environments, Information Sciences, Volume 178, Issue 9,1 May 2008, Pages 2105-2127.

communication and processing delays). This approach has been successfully used
in a real environment and experiments were carried out to prove its feasibility and

benefits.

Key words:
Distributed monitoring, distributed systems, mobile agents, cooperative agents,

coordination

1 Introduction

With the upcoming arrival of pervasive computing, environments where many
distributed heterogeneous entities (e.g., sensors, computing devices, portable
computers, etc.) must cooperate and interchange information to perform a
task have become commonplace. Specifically, obtaining global snapshots of
data in wireless environments and keeping the obtained global snapshots as
up-to-date and consistent as possible is difficult due to the distributed and

dynamic nature of such context.

In general, a monitoring task in the environments considered presents impor-
tant challenges. As the involved data can change very frequently, a continuous
and updated answer must be provided to the user by efficiently monitoring the
environment (e.g., a change in the answer must be detected as soon as possible
while minimizing the communication cost). On the contrary, the set of involved
%@rted by the CICYT project TIN2004-07999-C02-02. We would also like to

thank the support of the Spanish Excellence Network of Agents (CICYT TIN2005-

25869-E), and Edith Bosque for her help with some English doubts.

Email addresses: silarri@unizar.es (Sergio Ilarri), emena@unizar.es

(Eduardo Mena), jipileca@si.ehu.es (Arantza Illarramendi).

devices/computers can change dynamically over time, and so the distributed
monitoring must adapt itself quickly to the new requirements. Moreover, ev-
ery device/computer will be affected by different conditions in terms of its
network resources (connectivity and available bandwidth), processing power,
and current overload. The dynamic nature of the environment regarding the
data that must be monitored, the devices/computers involved in the moni-
toring, and the environmental conditions is a challenge. So, the continuous

distributed retrieval of highly dynamic data is of paramount importance.

A divide-and-conquer approach based on software agents [35] (autonomous
software components) is a natural way to tackle the monitoring tasks in
the aforementioned distributed environments. Thus, a monitoring application
(represented by a root agent) can achieve its goal by cooperating with a set of
remote helping agents, which could, in turn, require the collaboration of other
remote helping agents, and so on, until the devices that obtain the relevant
data can be accessed directly by agents that are leaf nodes in the agent ar-
chitecture (see Figure 1 for an example). As the involved data are constantly
changing, the agents must perform their tasks with a certain task frequency
(to limit the cost of monitoring), communicating new data recursively through
the network of agents up to the monitoring application. The number of lay-
ers needed is a consequence of the divide-and-conquer strategy applied, which
depends on the requirements of the monitoring application (e.g., the division
into layers can be guided by geographic criteria and/or the existence of dif-
ferent types of roles/tasks). Some examples of this approach are provided as

follows:

e To monitor the temperature of several cities in three states, an architecture

composed of the following components could be considered: 1) a root agent

al (root agent)

LAYER 1

a2 334 adl al LAYER 2
Communication|
of data
. > -
a8 al al LAYER 3

all ./aIZJ LAYER 4

Fig. 1. Example of layered agent architecture

(which provides the retrieved information to the user); 2) three helping
agents at layer 1 (one for each state); and 3) for each agent at layer 1, several
helping agents at layer 2 (one for each city, in the corresponding state,
whose temperature must be monitored). The designer of the multiagent
architecture could also decide to use just one layer of helping agents, i.e.,
one helping agent for each city (independent of the states). In this context,
the values of the temperatures might be required to be updated every 30
minutes.

e The monitoring of the stock quotes of the New York Stock Exchange'®
could be considered with an architecture having: 1) a root agent providing
the information to the user (layer 1); 2) several helping agents at layer 2
to monitor different industries (e.g., oil and gas, basic materials, consumer
goods, etc.); 3) several helping agents at layer 3 to monitor a specific sector
for each industry (e.g., within consumer goods we can distinguish automo-
biles, food and beverages, etc.); and 4) several helping agents at layer 4 to
monitor the quotes for different companies within that specific sector. This
division into layers can facilitate different monitoring tasks; for example,

if just the top three companies in each sector were to be monitored, the

! And according to the information shown at http://www.nyse.com/about/

listed/industry.shtml?ListedComp=A11l

agents at the corresponding layer can filter the unnecessary results, mini-
mizing the communications. Considering the task period, in this scenario
the quotes may need to be updated, for example, every 5 minutes, or as

soon as possible.

Regarding the process of continuous monitoring, it is proposed that each agent
should follow a deadline-based approach to coordinate its set of helping agents:
a coordinator agent communicates to its helping agents a deadline (the time
instant by which it should have received new data from them because it needs
to start its own tasks). The helping agents will do their best to try to meet

that deadline.

In the following sections, a monitoring example and several application con-
texts where the proposed monitoring approach can be applied are initially
introduced. Then, the advantages of mobile agents are highlighted [32], which
is the agent technology that is needed in this context. Finally, the main ad-

vantages of our monitoring proposal are summarized.

1.1 Example and Application Contexts

As a concrete sample for a monitoring application, the problem of detecting all
the Bluetooth devices on a university campus is considered. Bluetooth devices
can only be detected by a nearby Bluetooth-enabled computer. Therefore,
monitoring all the Bluetooth devices on the university campus from a single
centralized computer is not even possible directly, and a distributed monitoring

approach is required.

According to our proposal, the monitoring application would require a mon-

itoring agent in each building on the campus to detect the Bluetooth devices
inside that building. Then, each building-level monitoring agent would need
other monitoring agents in every room in the building to detect the Bluetooth
devices inside that room. These room-level monitors should communicate the
Bluetooth devices in their range to their corresponding building-level monitor-
ing agent, which would correlate the information received (e.g., by removing
duplicates, in case agents in adjacent rooms detect the same device at the
same time) and send the list of devices in the building to the user’s monitor-
ing application. This application would correlate the received data and present
the result to the user. This data flow from room-level monitoring agents to
the user’s monitoring application must be continuous, as Bluetooth devices

can be switched off/on and may enter/exit the campus at any time.

The geographic area/s under monitoring can also be changed dynamically. For
example, the user may want to dynamically add /remove buildings to/from the
set of buildings that are to be monitored. Another example can be provided
by a mobile user carrying a PDA (Personal Digital Assistant) with Bluetooth,
who may want to monitor the devices within 1000 meters around his/her loca-
tion, using the available computers/devices in the surroundings (the PDA can-
not perform this task by itself, as the range of Bluetooth is not as large as 1000
meters); the set of computers/devices needed will change as the user moves
from one place to another. In these situations, shutting down and restarting
the monitoring every time there is a change in the set of involved areas should
be avoided; similarly, having a monitoring agent on all the computers/devices

that could be possibly used in the future is impractical.

The proposed monitoring approach could be useful in scenarios of distributed

sensor interpretation [2], data fusion [34], and distributed query processing of

dynamic data [15], in which cases, a continuous monitoring of the environment
must be carried out. All these applications (monitoring applications [25]) have
in common a set of agents that is used to obtain data from different sources. In
addition, these data must be integrated to get a global view of the situation
(answer). As data can change along time, the obtained answer should be
refreshed periodically. Moreover, all the agents involved should get their data
within the same, small, time window so as to get a coherent answer (consistent
snapshot). As this is the most challenging situation, obtaining complete and

up-to-date snapshots of the relevant data has been focused on in this article

1.2 Benefits of Using Mobile Agents

Mobile agents [32,33] are programs that can move autonomously from one
computer to another. They are very useful for monitoring purposes because
mobility gives the agents the autonomy needed to monitor the environment
effectively, allowing them to keep track of the monitoring area/s easily. Thus,

mobile agents offer several advantages:

e A solution based on agents that move and distribute themselves to perform
their monitoring tasks leads to a convenient and clean design. With this
approach, there is no need to keep track explicitly of the computers/devices
involved in the monitoring, as this task is carried out distributively by the
mobile agents themselves. Mobile agents can communicate among them-
selves independently of the computers where they are currently executing
their tasks [16]: the communications are routed transparently by the mobile
agent platform, which allows the mobile agents to execute their tasks and

provides them with different services (such as migration, communication,

and security).

As opposed to an approach that is based on static agents (i.e., traditional
software agents that do not move), mobile agents lead to an adaptive ap-
proach. Thus, without mobile agents, static monitoring agents that are ready
on all the computers/devices would be needed (just in case they are needed
for monitoring in the future), which introduces an unnecessary overhead.
Moreover, if monitoring is carried out using ad-hoc networks, it is not pos-
sible to foresee the computers/devices that will be available over time (be-
cause they enter/leave the network dynamically), and therefore the required
monitoring agents cannot be “preinstalled”. On the contrary, only a mobile
agent platform is required on those computers/devices if an agent-based ap-
proach is adopted; for example, on a road, mobile agents could move from
car to car to monitor the road ahead.

A monitoring application that works on the basis of mobile agents is also
a very flexible approach. Adding new monitoring functionalities is as easy
as incorporating new types of mobile agents into the monitoring system.
An instance of a new type of agent can create more agents that will move
between the involved computers/devices as needed. This can be carried
out dynamically, without disturbing other monitoring systems in operation.
Moreover, mobile agents can move across, and interact with, heterogeneous
computers and devices.

By moving themselves “near” the environment they need to monitor, mo-
bile agents can reduce the network overload and latency: they minimize the
amount of communications that a remote monitoring would otherwise re-
quire. Furthermore, sometimes a remote monitoring is not even possible
(e.g., in the example described in Section 1.1 only nearby devices can be

detected directly).

e Mobile agents also exhibit a good performance compared to the traditional
client/server approach for remote monitoring [10,31,41]. The importance of
mobile agents for distributed, mobile, and pervasive computing has been

highlighted, for example, in [4,36,38,39,41,45].

Therefore, mobile agents are very useful from a design point of view (they
encapsulate the dynamics of the monitoring process), and they also offer other
general benefits [23]. Thus, mobility is a desirable feature for agents that have

to monitor distributed and wireless environments.

Mobile agent technology is advocated herein because it provides suitable mech-
anisms to solve the presented problem in a distributed, efficient, and conve-
nient manner. A mechanism that works on the basis of remote procedure calls
could have been used instead. However, this would lead to a nonflexible and
more difficult-to-implement solution: agent migration would be replaced by
remote invocations that create and destroy threads representing the behav-
ior of the respective agents. Mobile agents bring the required functionality to
any computer, thereby avoiding the installation and launch of specialized dae-
mons/servers on each machine to provide the required services. In addition,
mobile agents ease the addition of new services once the system is working:
new agents with new functionalities could travel to the devices/computers
without reinstalling anything there. Moreover, scalability, security, and fault
tolerance for mobile agents must be provided by the mobile agent platform

used (e.g., [9,16,37]).

1.8 Main Benefits of Our Proposal

The monitoring approach proposed in this article presents the following main
advantages: 1) use of mobile agents - agents can decide to move among com-
puters to monitor the involved “areas” effectively and efficiently; 2) adaptation
to the environment - agents adapt dynamically to the current conditions (by
postponing/anticipating their tasks, as needed); 3) data freshness - agents try
to return the most recent data that can be obtained from the environment,
performing just-in-time refreshments; 4) fault-tolerance - agents are loosely
coupled, which leads to a “graceful degrading” of performance when some of
them fail to perform their tasks in time; 5) adaptation to challenging contexts -
it deals with situations wherein some agents cannot perform their tasks at
the required frequency, constrained by challenging environmental conditions.
Moreover, an unobtrusive monitoring that does not overload existing wireless
devices with monitoring tasks and instead uses fixed computers whenever it is
possible is preferable; even if certain data were to be retrieved from a mobile
device, sometimes the raw data can be obtained and processed on a fixed com-
puter, communicating only the relevant data to the device, thereby alleviating

its processing and wireless communication overload.

Thus far, the general monitoring approach alone has been described. In the
rest of this article, how the agents coordinate to continuously monitor the
environment is described in detail. In Section 2, some related works are con-
sidered. In Section 3, the process by which the mobile agents coordinate their
tasks using soft deadlines, which indicate the time instants by which a moni-
toring agent should provide its results to its coordinator, is reconstructed. In

Section 4, some strategies are proposed that deal with the problem arising

10

when some agents cannot perform their tasks at the required frequency due
to the challenging environmental conditions. In Section 5, the proposed ap-
proach is evaluated experimentally considering a real application. Finally, in

Section 6, the conclusions of this study are summarized.

2 Related Work

In this section, some related studies are reviewed. First, a description of some
reports that used mobile agents to carry out monitoring tasks is provided.
The second focus is on researches in the field of cooperative problem solving
using software agents. Finally, a comparison of the proposed approach with an
architecture for the coordination of just-in-time production and distribution

is provided.

Several reports, such as [11,19,21,22,26,30,43], advocate the use of mobile
agents to carry out monitoring tasks. However, this is the first effort at propos-
ing a complete and general approach to continuously monitor highly dynamic,
distributed environments using mobile agents which also includes a study
and evaluation of the synchronization mechanisms needed. Thus, for exam-
ple, in [22] the focus is on a specific context (traffic monitoring for navigation
applications) and not the agent synchronization problem; in [19,21] the goal
is to obtain information about processes in a distributed system, wherein nei-
ther a continuous monitoring nor obtaining global and consistent snapshots is
required; a similar comment applies to [30] (although their goal is different:
network monitoring); in [11,26] the aim is to quantify the benefits of a moni-
toring approach that works on the basis of mobile agents; and in [43] a mobile

agent-based architecture is defined to monitor computational resources in grid

11

computing, and coordination issues are not considered.

Many reports in the field of distributed artificial intelligence focus on coop-
erative problem solving [7] among groups of independent agents, which nego-
tiate [42,47] the best plan to accomplish a given task. For example, inspired
by market mechanisms, the Contract Net Protocol (CNP) [40] for decentral-
ized allocation of tasks and many variants of increasing complexity have been
proposed. Similarly, there are several coordination mechanisms, such as those
based on bidding [6] and Partial Global Planning [8]. The general setting of
these approaches differs from the proposed context, as they consider agents
that do not necessarily share a common goal or know each other. Hence,
these protocols may not be suited to dynamic contexts (wherein the relevant
data, the set of involved devices/computers, and the environmental conditions
can change frequently along time) that require agents to perform their tasks
continuously, and therefore they cannot be easily applied when a continuous
monitoring is required from each involved agent. Moreover, the mobility of
agents could also make those protocols inappropriate. Finally, no timing guar-
antees are provided by these approaches. Despite the popularity of protocols
such as the CNP, some experimental results suggest that it is ineffective for
scenarios with a relatively high number of agents [18], and therefore, it should
be avoided when a quick allocation of tasks is required. However, it could
possibly be used to set up a cooperation structure among preexisting agents
for monitoring purposes, as a previous step to the herein proposed monitoring

approach.

Finally, in [5] an architecture for the coordination of just-in-time production
and distribution is presented. Though this is a problem different from the

one under study (a monitoring approach based on mobile agents is proposed

12

in this article, whereas they propose a multiagent architecture to coordinate
industrial processes), there are some parallelisms that are worth mentioning.
First, their goal is to achieve just-in-time production, in just the same way that
the proposed monitoring agents strive to “schedule” their tasks to be carried
out just-in-time: as late as possible (to consider the most recent data) but on
time (to meet the deadline); however, it should be noted that the temporal
scale is expected to be quite different! Second, in their problem there is a
tradeoff between the denial of service (due to a shortage in the production)
and the cost of surplus production, whereas in the proposed context sometimes
a high level of freshness of the retrieved data (i.e., a high task frequency)
cannot be achieved while maintaining its consistency (i.e., keeping the agents
synchronized), as is explained in Section 4. And third, they need to estimate
the consumer needs, whereas the method herein proposed uses estimations of

the agents’ (correlation and communication) delays.

3 Autosynchronizing Monitoring Agents: Use of Deadlines

In a dynamic environment that is constantly changing, agents must monitor
the relevant data with a certain task frequency. Thus, the agents have to carry
out certain tasks periodically, and the time instants when different agents in
the monitoring application perform their tasks must be somehow temporally
correlated to ensure some consistency in the results obtained (e.g., to com-
pare the values of two temperature sensors, two temperatures measured at
approximately the same time instant are needed). In other words, the agents
need to synchronize/coordinate their tasks according to some basic policy.

In this section, the basics of the proposed synchronization approach are first

13

described. Then, an account of how deadlines are computed on the basis of de-
lays experienced by the agents is provided. Finally, the automatic adjustment
of the required deadlines by the agents concerned, when the environmental

conditions change, is elaborated.

3.1 Basics of the Synchronization Approach

Every agent in the network is proposed to be associated with a certain dead-
line, which allows the agent to determine when it has to perform its tasks and
communicate a new result (data needed by the coordinator) to its upper-level
agent (the coordinator agent). Such a deadline must be computed by the co-
ordinator on the basis of its own deadline, so as to ensure that it will receive

the data it needs from its helping agents in time to perform its own tasks.

The use of deadlines is the only way to keep the agents synchronized with each
other. An alternative to the deadline-based approach would be a waiting-based
approach in which an agent waits until it has received all the necessary data
that it needs to correlate (correlation task) so as to communicate its own
results (communication task). However, in such a case, a single agent missing
its deadline would prevent the final result of the task from being updated
with the required frequency (its coordinator could wait too much time for the
results from such an agent). Moreover, with such a strategy, there is no way to
ensure that the agents will obtain new data at the same time, as every agent
performs its tasks independently (i.e., without any knowledge about when the

other agents will perform theirs).

A loose coupling among agents by using soft deadlines [12] is profitable, so

14

that the results from an agent are always stored by its coordinator even if
they do not arrive on time. Thus, at the expense of some uncertainty, a global
result can be obtained despite partial failures in the system, such as an agent
that fails to meet its deadline: its coordinator can still use the latest result
received from such an agent. So, a global result can always be obtained (with
some uncertainty in the case of missed deadlines). Every agent communicates
(to its coordinator) not only its results but also a measure of the quality of
the communicated results, which is computed taking into account the time
elapsed since it received (from its underlying agents) the data used to obtain
such results. In this manner, a global quality measure is eventually obtained
by the root agent, which can be used to show the user some indications of the
reliability of the relevant results. Two indicators for the quality of reliability
are the percentage of refreshed data and the average age of data. Thus, in an
ideal case, the percentage of refreshed data should be 100% (all the data are
updated) and the average age of data should be as small as possible (and less
than the required task period). The agent architecture can be configured to
consider only those results having a certain minimum quality; for example,
the user may not be interested in the answers in which less than 80% of the

data have been refreshed.

It is not enough for an agent to meet its deadline, but it should also obtain
the best results within the existing time constraints: in the context of this

discussion, this implies minimizing the uncertainty gap (see Definition 1).

Definition 1 The uncertainty gap between an agent x and another agent y
is the time elapsed since x finishes the communication of data to y until those
data are eventually processed by y (to get its own results). For example, x and

y can be a helping agent and its coordinator, respectively, in which case the

15

uncertainty gap is a measure of the synchronization degree between an agent
and its coordinator. The larger the uncertainty gap, the older the data that
are considered by y. The ideal situation is that y processes x’s data as soon
as it receives them; the existence of a time interval between the reception of
data by y and its correlation task implies that if x had communicated its data
later, then y would have correlated more recent data. Therefore, to minimize
the uncertainty gap, every agent should perform its tasks as late as possible
(to capture the most recent data from the environment) while meeting its

deadline.

In the remainder of this section, two alternative synchronization strategies are
explained and then a description of how different agents interact across the

various layers is described.

3.1.1 Synchronizing Readings vs. Communications

Synchronizing the agents implies the determination of the time when they
must perform their tasks, and thus be able to cooperate among themselves.
Between the following two possible synchronization strategies (summarized in
Table 1, with 4/ indicating a positive feature and x indicating a negative one)
one could be theoretically chosen:

Table 1

Synchronizing readings vs. synchronizing communications: a summary

Synchronize Readings Communications
Comply with Starting deadlines Ending deadlines
Benefit v/ Reading consistency... v/ Maximum freshness

X ...but only under the same coordinator

Keep track of x Delays of all helping agents v/ Only its own delays

Adjustment triggered by X Any helping agent v/ Only the coordinator

16

e Synchronizing the readings - with this approach, the helping agents created
by a certain coordinator agent would synchronize the time instant at which
they obtain new values from the environment (the starting deadlines), as
shown in Figure 2.a. In the figure, two helping agents and their coordinator
agent are shown, and the starting deadline of each agent is indicated. The
coordinator agent sets the time instant at which its helping agents should
start their tasks by taking into account the different delays of its helping
agents. This approach aims at achieving consistent snapshots of the envi-
ronment, as all the data are obtained at approximately the same time. This
is particularly important, for example, in applications relying on data fusion
techniques [34], as an inconsistent snapshot would lead to erroneous deduc-
tions. Though this approach provides reading consistency, it increases the
uncertainty gap and, therefore, the age of the data returned to the coordi-
nator agent. Moreover, the coordinator agent must keep track of the delays
of all its helping agents and adjust their deadlines when any delay changes.
Finally, even if a coordinator is able to synchronize the readings of all its
helping agents, to assume that it will be possible to coordinate the readings
of all the agents in the network (or even just of all the agents in a layer) is
very challenging (a global coordination mechanism would be needed, which
should be very sensitive to the changing delays of any agent). Therefore,
full data consistency cannot be achieved.

e Synchronizing the communications - with this approach, agents synchronize
the time instant at which they finish communicating their results to their
coordinator agent (the ending deadlines), as shown in Figure 2.b. In the
figure, two helping agents and their coordinator agent are depicted, and it
can be seen how the ending deadline of each helping agent must be computed

taking into account the starting deadline of the coordinator. The coordinator

17

StartingDeadl. StartingDeadl.

StartingDead],, 4 StartingDead],, 4

time time
— —
Coordinator| } Coordinator| }
h |
(Read_ _Communicate | i_Read _Communicate,
Helping, | | Helping, | |
| i .
i Read Communicate ' Read Communicate |
=
Helping, | ‘ | Helping, | ! +
StartingDead| , . i
helpmg Endngead;1e|ping

(@ (b)

Fig. 2. Synchronization reference: (a) synchronizing the readings or (b) synchroniz-

ing the communications

agent sets the time instant at which it should have received the results
from its helping agents by taking into account its own deadline and delays.
This approach aims at minimizing the uncertainty gap of the received data:
agents read values from the environment as late as possible while meeting
their deadlines. Another advantage is that the coordinator only needs to
communicate a new deadline to its helping agents if there is a significant
change in its own delays, as each helping agent adjusts itself to finish its tasks
in time. The disadvantage is that the results returned to the coordinator can
be based on data read at different time instants. As the tasks are started as
late as possible, this approach could be more sensitive to unexpected delays;
to avoid this, agents can start their tasks slightly before the time instant

when they estimate they should (see Section 3.2.3).

Therefore, a synchronization based on the ending of tasks (synchronizing the
communications) is preferable because it minimizes the average uncertainty
gap (i.e., it maximizes the data freshness), and the alternate strategy does
not ensure full data consistency either. However, it should be stressed that the
proposed synchronization approach is valid for both cases with minor modifi-

cations: only the interpretation of deadlines would change (starting vs. ending

18

time).

3.1.2 Synchronization across Agent Layers

To ensure that all the agents perform their tasks in time, agents at a certain
layer should have communicated their results to their coordinator before a
certain time instant (deadline) assigned to them by the coordinator. Such
a coordinator will similarly correlate the received data and communicate its
results to its coordinator agent according to its own deadline. Therefore, agents

interact in two possible ways:

e By communicating new results to their coordinator agent, which will process
the data received from its helping agents and obtain a result to communicate
to its own coordinator.

e By communicating new deadlines to its helping agents. In this manner, an
agent establishes the deadline by which time it should have received new
results from its helping agents. An agent may need to readjust the deadlines

of its helping agents when the delays change (see Section 3.3).

In Figure 3, the interaction of agents across the different layers is shown. A
notation similar to the one used in the Unified Modeling Language (UML)
sequence diagrams is used in this article: each vertical line represents the
life of a different object (in this case, a different agent) and the exchange of
messages is represented herein. It should, however, be noted that the UML
notation is not followed strictly, as for example, a change in the slope of
arrows indicates the communication delay between the agents. In the following,
the interactions regarding an intermediate agent at layer i, Agent;, created

by a certain Agent;_y) at layer (i — 1), are described. The main steps to

19

consider while managing deadlines are as follows: (1) Agent_;) communicates
to Agent; the deadline for layer i; (2) Agent; receives its deadline and calculates
the deadline of agents at layer (i + 1) by considering its own deadline and its
estimated correlation and communication delays; (3) Agent; communicates to
agents at layer (i 4+ 1) their deadlines; (4) Agent; waits until the deadline of
layer (i+ 1) arrives as, to meet its own deadline, Agent; must begin correlating
the received results right after they are obtained from layer (i 4+ 1); (5) each
Agent i1y sends its result to Agent;; (6) Agent; correlates the results received
from its helping agents, and (7) Agent; sends its result to Agent_yy. Agents
at the bottom layer of the hierarchy do not receive results from any agent;

instead, they obtain data directly from the environment.

Agent;_y,

Agent, Agent,y)

communicatiol \ Comn. delay
delay 1) ’ i
I @ Estimate of deadline .
for layer (i+1) Time

(©)

4)

i (5)
Agent deadline
(i+1) ~N

(6) Data correlation v

)
/ Comm. delay

Agent deadline

Fig. 3. Interactions among agent layers along time

Thus, the proposal described in this article relies on agents that behave re-
sponsibly (they comply with their deadlines) but do their tasks as late as
possible (so as to consider the most recent data). As a result of all the agents
in the network behaving in this manner, an emergent property is observed: the
result of the monitoring (obtained by the root agent) is based on the latest
data that can be obtained from the environment. To obtain even more recent

data, an agent should start its tasks later: this would lead the agent to miss

20

its deadline.

3.2 Computation of Deadlines

In this section, the details about how deadlines are computed and handled
by the agents are discussed. The traditional concept of absolute deadline is
first considered. Then, the concept of relative deadlines that avoid the need
for having the internal clocks of the involved computers and devices synchro-
nized is introduced. Finally, how an agent determines, from the computed
deadlines, the precise time to start its correlation and communication tasks
is determined. In this section, it is assumed that the required task period is
not smaller than the task delays experienced by the agents, and in Section 4,
the strategies that the system can adopt when this assumption does not hold
good are explained. The notation that will be used throughout the section is
summarized in Table 2; the layer where an agent is executing is indicated only

when it is relevant.

3.2.1 Absolute Deadlines

Helping agents must finish their tasks at a certain time instant set by their
coordinator so that it can meet its own deadline. This time instant is called an
absolute deadline (see Definition 2). Absolute deadlines are coded as <date,
hour>. To compute an absolute deadline, the coordinator agent must be aware

of the time it needs to perform its tasks (see Definition 3).

Definition 2 The absolute deadline of an agent y at layer (i + 1) is the time

stant when it should have made its result available to its coordinator x at

21

Table 2

Summary of the notations used

Notation Meaning
absDeadly (absDeadlyaj) Absolute deadline of agent x (z at layer i: x@z)
taskDx (taskDyayj), t@x (taﬁ@i) Task delay of agent x: real and estimated (z at layer i: x@j1)
securityMargin Security margin for the computation of the spare time
correl Dy Correlation delay of agent x=
resComDx Result communication delay of agent x
relDeadly(t), relD/e;,Elx(t) Relative deadline of agent z, relative to time t: real and estimated
tDeadlEstyx Time instant when x starts estimating the relative deadline of a helping agent
deadlCommDxy, deadlgz;anx Time needed by x to estimate and comm. a new deadline: real and estimated
startTimeTravelyx Time instant when agent z starts a trip
travelDelay, tramelay Time needed for an agent to travel to another computer/device: real and estimated
t, /t\ Time instant when a relative deadline is received: real and estimated
spareTy(t) Spare time of agent = at time t
Treq Required task period

layer i. It is given by the following equation:

absDeadlyaiv1 = absDeadlia; — taﬁ@i — securityMargin,

where taskDyq; denotes the task delay of an agent x at layer i (see Defini-

~

tion 3), and the symbol is used to denote the estimates of values. A value
securityMargin is subtracted because agent z could start its task slightly

earlier than necessary (see Section 3.2.3).

The absolute deadline of an agent is computed from the absolute deadline of
its coordinator. The root agent, which does not have a coordinator, initially
sets its absolute deadline by just considering the current time instant and an
estimate of the time needed to get the first result from its helping agents.
It should be stressed at this point that assuming a hierarchical cooperation
structure is not a limitation of this approach. Thus, in case an agent has to send

its results to several receiving agents (i.e., there are several coordinators), the

22

minimum of the deadlines of all the coordinators should be taken into account,
which would lead to an unavoidable unsynchronization between the sender
agent and the other receiving agents. However, a better approach would be
for the sender agent to have several threads for these tasks, which is equivalent
to having several sender agents. This hierarchical structure would lead to a

better and easier design.

Definition 3 The task delay of an agent x is the time it spends performing
the tasks of correlating the results received from its helping agents (maybe using
also other data that it obtains directly from the environment) and communi-

cating its own result to its coordinator agent:

taskDy = correlDy + resComDy

Agents at the same layer can experience different delays: they could execute
their tasks on different computers and/or perform different correlation tasks.
In addition, the delays can change along time, so the agents keep track of
the delays which they incur to obtain estimates of any future delay (see Sec-

tion 3.3).

3.2.2 Relative Deadlines

As the agents in the monitoring system could execute their tasks on different
computers and move from one computer to another, dealing with absolute
deadlines would require that the internal clocks of these computers be perfectly
synchronized. Therefore, in this approach, deadlines communicated among
layers/computers are relative (e.g., “I want your result in ten seconds”) rather

than absolute (e.g., “I want your result ready at 13:05:20”). Relative deadlines

23

are modeled as long values, indicating the milliseconds until the deadline.

Definition 4 shows how relative deadlines are computed.

Definition 4 The relative deadline of a certain agent x, relative to a time

instant t, is the time interval that remains at t before the next absolute deadline

of x comes:

relDeadly(t) = absDeadl, —t

A relative deadline is a way of representing an absolute deadline that does

not depend on the internal clock of the computer where the agent executes.

Thus, an agent needs to convert an absolute deadline into a relative deadline

whenever the deadline must be transmitted to another computer, which occurs

in any one of these two situations:

(1)

When an agent x needs to communicate a new deadline to its helping
agents: In this case, z will compute the relative deadline of its helping
agents, which will be relative to the time instant ¢ at which each helping
agent is expected to receive such a relative deadline. The value of ¢ is
given by the equation:
f = tDeadl Est, + deadlCommDsy,

where tDeadlEst, denotes the time instant when agent x starts esti-
mating the relative deadline of the helping agent and deadlCommDy is
the time needed by agent = in estimating and communicating the new
deadline.

When an agent x is going to travel to another computer: In this case,
the agent will transform its absolute deadline into a relative deadline
before traveling. The relative deadline obtained will be relative to the

time instant ¢ at which the agent expects to finish its journey:

24

t = startTimeTravel, + tra@lay,
where startTimelravel, denotes the time instant when agent x starts
its trip and travelDelay is the travel delay. The actual travelDelay is
computed as the difference between the time instants at the origin and
destination, using in both cases the clock of the same computer as a

reference.

An error in the estimation of travel Delay or deadlCommDy can be detected
by the agent once the trip or the communication finishes, respectively, so that
the agent can correct its mistake by adjusting the computed relative deadline
(and, in the second case, communicating a relative deadline correcting offset
to its helping agents); therefore, it can be assumed that ¢ = . In any case,
once the relative deadline has been transmitted to the target computer at time
t, the corresponding agent x transforms such a relative deadline back into an

absolute deadline:
absDeadl, = relDeadl,(t) +t

In this manner, by comparing the current time instant with the corresponding
absolute deadline, the agent is able to detect the amount of time left before its
deadline (see Section 3.2.3). In Section 5.2, it is shown experimentally that by
dealing with relative deadlines, the imprecision caused by having the clocks of

the computers/devices involved unsynchronized can be avoided.

3.2.3 Spare Time

An agent must decide when it should perform its correlation and communica-

tion tasks. If it starts too late, it will miss its deadline; if it starts too early, it

25

could process data older than necessary. The amount of time the agent should

wait is called the spare time (see Definition 5).

Definition 5 The spare time of an agent x at time instant t is defined as the
amount of time that the agent should wait before performing its tasks, so as

to correlate data as recent as possible. It is given by the following equation:
spareTy(t) = absDeadl, —t — t@x — securityMargin,

where securityMargin is a time interval that can be additionally subtracted
to prevent agents from missing their deadlines due to either (unexpected)
slight delay increases or being awoken a little bit late by the scheduler of the

operating system 2 .

Once agent x has performed its task for its deadline absDeadl,, it computes its
next deadline by adding the required task period T,., (time interval between
two monitoring tasks) to its previous deadline. The required task period may
be set by the end user depending on the monitoring requirements and the
wireless costs he/she might want to assume; alternatively, the agent network
can compute the maximum task period supported by the network of agents
and adjust dynamically to that period (using an approach similar to that

explained in Section 4.1). In Figure 4, the basic algorithm for the agents in

2 The synchronization approach described herein could benefit from the existence
of a real-time operating system (and/or a real-time programming language, such
as Java Real-Time), which ensures that agents awake in time. Several policies have
been proposed to schedule tasks based on their deadlines, such as Farliest Deadline
first, Least Slack first, or Rate Monotonic Scheduling (e.g., see [27]); however, the
monitoring agents must not perform their tasks very early, as in that case they

would retrieve information that could become obsolete more easily.

26

Jun

© 0 N O s W N

o
o

11:
12
13:
14 :
15 :
16:

Algorithm MonitoringAgent

Require: initialDeadline is the initial deadline of the agent, Treq is the required task
period, and estDelay is the estimated delay of the agent’s tasks

Ensure: a task will be performed every Treq, providing results as up-to-date

as possible within the given time constraints (required task frequency)

: securityMargin < ...; {For example, 100 ms}

: deadline < initialDeadline;

: setTaskPeriod(Treq);

: while = end do

spareTime < getSpareTime(); {See Section 3.2.3}
if spareTime < 0 then
deadline <= deadline + getTaskPeriod();
else
sleep(spareTime);
correlationAndCommunicationTask();
prevEstDelay < estDelay;
estDelay <= estimateTaskDelay();
deadline < adjustDeadll f Needed(deadline, estDelay, prevEstDelay); {See Section 3.3}
deadline <= deadline + getTaskPeriod();
end if

end while

Fig. 4. Algorithm for the agents in the monitoring application

the monitoring application is depicted.

3.3 Dynamic Deadline Adjustment

As explained in the previous section, the estimate of deadlines is based on
parameters that change over time: the correlation and communication delays.
So, the correlation tasks may become more or less time-expensive, as the
amount of data obtained from the helping agents will change and the computer
load can vary. Similarly, communication delays among agents can change due

to many reasons (the available bandwidth, network failures, the amount of

data sent, agents that move to different computers, etc.).

Therefore, after communicating the respective results to the upper layer, each
agent recalculates the deadline of its lower layer taking into consideration

its new task-delay estimate. Whenever a significant change happens, the new

27

deadline will be communicated to agents at the lower layer to make data
from the lower layer be obtained later/earlier and be able to process them
later /earlier, according to the new delay estimate. The agent whose deadline
is adjusted could also need to communicate new deadlines to its own lower
layer recursively. In this manner, the network of agents dynamically adapts
its behavior to fulfill the requested task frequency by considering the current

environmental conditions.

In Figure 5, an example about how deadlines are automatically adjusted is rep-
resented. In (1), the communication of the results from Agent; to Agent;_1)
is delayed (due to a lower network speed or network instability that implies
communication retries), and thus Agent; misses the deadline (2). At time in-
stant (3), Agent; realizes that it cannot fulfill the next deadline either (4), as
the result communication should have begun before the new delays were esti-
mated (dotted arrow in the figure). As the next deadline that can be achieved
is (5), a new deadline for layer (i+1) is computed (considering the new delays)
and communicated to Agent 1) (6), which forgets its old deadline (7). Since
then, everything works fine as the system has adapted to the new delays. The
requested task frequency is supported again at the expense of a longer uncer-
tainty gap, which is unavoidable due to the slower communication between

layer i and (i — 1).

Several techniques can be used to predict future delays, such as the method
proposed in [46], linear extrapolation, double exponential smoothing [24], ar-
tificial neural networks [3], (simple or exponential) moving averages [29], the
Kalman filter [17], or the bandwidth-estimate method in [20] (for network
delays). In different situations, different choices could be preferable so as to

react faster/slower to the delay changes. The adaptability of mobile agents

28

Aggnt(i_l) Age‘nti Age‘nt(i +1)
[
[

U T I _
old uncertainty gap, ~ | — | |deadline(i+2)
data from layer (i+1), ~ /_ deadline(i+1)

deadline(i) Task period
-
_/

@)

new uncertainty gap
data from layer (i+1)

Fig. 5. Dynamic adaptation to new delays

to the changing network conditions has also been studied in the context of
mobile agent (dynamic) planning for distributed information retrieval [1], in
which situation an agent must choose the most efficient itinerary and adapt

it dynamically if the conditions change.

4 Dealing with Too High Delays

The environmental conditions could become so difficult that some agents could
be unable to return new data to their coordinator at the requested frequency.
This happens when the time needed by an agent to perform its correlation
and communication tasks is greater than the task period because either the
required task frequency or the agent’s task delay is too high. Thus, an agent

cannot provide data faster than it can obtain them: the maximum frequency

29

at which an agent can operate is limited by its task delay. Different agents are
subject to different delays and therefore have different maximum frequencies.
If the helping agents return data at different frequencies (they are not synchro-
nized), then the data correlated by its coordinator will be a mixture of data
obtained at different moments, which can lead to a loss of quality in the data
presented to the user: it could be a snapshot that did not happen in the past.
So, the most desirable situation would be to provide data at a frequency as
high as possible with a minimum unsynchronization. In the following sections

several approaches to deal with this problem are described.

4.1 First Approach: Synchronization with the Slowest Agent

This strategy adjusts the frequency of all the agents in the network to the
maximum frequency supported by the slowest agent. With that purpose, every
agent reports to its coordinator about the highest frequency supported by all
its helping agents and itself (to save costs, along with the results). Thus,
the root agent obtains the lowest frequency of the whole agent network and
adjusts its helping agents to that frequency, which will in turn propagate the

new frequency down the network of agents recursively? .

The behavior of the agents when this strategy is applied in a scenario with a
task period of five seconds is shown in Figure 6; deadlines are labeled with time
annotations (in seconds) and an increase in delays occurs at time instant 31.
The slowest agent misses one deadline, and then the period is adjusted to seven

seconds, so that all the agents meet their deadlines after the synchronization.

3 This could also happen in other circumstances. For example, the user could in-

crease/decrease the frequency of the monitoring task at any time.

30

new frequency
received

task X

other agents ---- - 5
missed deadline
task !

Pt e e e e e g
‘ time
Deadlines: 25 30 35 40 a7 54 61 68 75

slowest agent - - W -

Fig. 6. Too high delays: synchronization with the slowest agent
With this approach, it is necessary to keep track of the maximum task frequen-
cies supported by the agents (each agent obtains the maximum frequency for
its helping agents and propagates this information upwards). If the root agent
detects that all the agents can again support the requested frequency (i.e., if
the required task frequency is not higher than the maximum task frequency
supported by the helping agents), then all the agents adjust themselves again
(under request from the root agent) to that frequency. A similar adjustment
occurs if, despite the existence of slow agents, the network is now able to

support a frequency higher than before.

4.2 Second Approach: To Ignore the Slowest Agent

Another solution to the problem of too high delays is just to ignore that one
of the agents cannot support the required frequency. That particular agent is
allowed to run unsynchronizely with respect to the remaining agents, although

it will miss some of its deadlines (see Figure 7).

change in delay
detected

task v
slow agent ”T
L]

time
Deadlines: 25 30 /\35 40 45 /\50 55 /\60 65 /\70 75

missed deadline missed deadline missed deadline missed deadline

Fig. 7. Too high delays: ignoring the slowest agent

31

In this approach an agent does not try to meet deadlines that it is going to
miss (e.g., in the example, it does not start a task at time instant 45). The
percentage of missed deadlines is given by (1 —1/[A/Teq]) X 100, where A is

the task delay and T is the required task period.

4.8 Third Approach: No Spare Time

This strategy assumes that it makes no sense to allow spare time when an
agent cannot support the required frequency. So, after detecting that the new
delays are greater than the task period, the agent could start the tasks for
its next deadline immediately, as shown in Figure 8. With this approach, the
average percentage of deadlines missed by an agent during a time interval
T is %, where N,issed = LT?qj — L%j It should be noted that the

uncertainty gap changes continually for every task period; therefore, 7" in the

Treq

previous formulae must be selected to cover a whole cycle of behavior C' (e.g.,

[
T = A XTey).
change in delay
detected
: Cycle C
task
slow agent - - - e e N
“\H Lo e e e e el
‘ ‘ time
Deadlines: 25 30 /\35 40 45 /\50 55 60 /\65 70 75
missed deadline missed deadline missed deadline

Fig. 8. Too high delays: no spare time

4.4 Fourth Approach: Multithreading

This strategy considers that, if needed, an agent can perform several tasks

concurrently so that it can meet its deadlines, by using several threads of

32

execution (see Figure 9). The number of threads used by an agent with this

strategy is [A/Teq]-

change in delay new thread lauched
detected

v

sowagent ____

‘HHHHHHHHHHHHHHHHHHHH
‘ time
Deadlines: 25 30 A35 40 45 50 55 60 65 70 75

missed deadline
Fig. 9. Too high delays: multithreading approach

Thus, in theory, the multithreading approach is the ideal solution as it allows
any frequency to be supported by using additional threads, no matter the de-
lays* . However, some limitations arise when the number of threads increases,

as this strategy can overload the computer if many threads are needed.

4.5 Summary of the Approaches Considered for Dealing with Too High Delays

The algorithm in Figure 4 should be therefore modified to add extra behavior

to deal with too high delays, depending on the approach used:

e To Ignore the Slowest Agent - In Section 3, where the algorithm in Figure 4
appears, the possibility of too high delays is ignored. Therefore, no extra
code is needed to implement this strategy.

e No Spare Time - With this strategy, the call to getSpareTime() in line 5 of
the algorithm in Figure 4 must return 0 if the agent is slow (i.e., if its task
delay is greater than the required task period), which implies that no sleep

will be performed in line 9.

4" A parallelism can be found in nature: the Hubble telescope allows us to see con-
tinuously the light of the stars, although with unavoidable delays of up to ten million

years!

33

e Synchronization with the Slowest Agent - In the communication task that
takes place when calling correlationAndCommunicationTaskin line 10 of the
algorithm in Figure 4, the agent communicates not only its results but also
the minimum task period supported by all its helping agents and itself (the
agent is informed of the period supported by a certain helping agent when
it receives the results from it). In this manner, the root agent obtains the
minimum task period supported by all the agents and (when it is necessary)
propagates this task period down the system, which is adopted by all the
agents (a call to setTaskPeriod() is performed with the received period
as argument and so the call to getTaskPeriod() in lines 7 and 14 of the
algorithm in Figure 4 will return the new task period).

e Multithreading - In this case, if an agent is slow then it performs the corre-
lation and communication tasks (line 10 of the algorithm in Figure 4) using

an auxiliary thread.

Each of the four approaches that have been described have different advan-
tages and disadvantages, which are summarized in Table 3. According to these
properties, in Table 4 are shown the conditions under which an agent dynam-
ically selects the strategy to apply for dealing with too high delays. If the
required task frequency can be supported, there is nothing particular to do,
and so the strategy selected is to ignore the slowest agent. In case there are
too high delays, the multithreading strategy is initially chosen. However, if
the agent detects that the computer is overloaded, then it will switch to an-
other strategy: synchronization with the slowest agent or to ignore the slowest
agent, depending on whether the monitoring application prefers data consis-
tency (data comparable, obtained at approximately the same time) or a low

task period (data refreshed at the highest rate), respectively. If the computer

34

stops being overloaded, then the multithreading strategy will be used again.
Different agents could experience too high delays and yet decide on different
strategies. It is not possible that one agent selects the no spare time strategy,
and another agent, the synchronization with the slowest agent strategy, as both
are exclusive (the choice depends, as has been explained, on the requirements
of the monitoring application). Moreover, there is no problem if an agent se-
lects the no spare time strategy and another agent selects the multithreading
strategy, as both are strategies that only affect the behavior of the agent with
too high delays. The synchronization with the slowest agent strategy triggers a
change in the task frequency of all the agents in the network. There is no con-
flict, however, if another agent selects multithreading: the synchronization with
the slowest agent will make the root agent to propagate a new task frequency
and that agent will probably stop needing auxiliary threads. In this case, if
the agent that selected the synchronization with the slowest agent strategy
can switch later to multithreading, it will report to its coordinator that it can
again support the required task frequency and switch to multithreading if this
report causes the root agent to propagate a new frequency. The whole network

of agents adapts to any new situation dynamically.

Table 3

Advantages and disadvantages of the strategies to deal with too high delays

Strategy

Advantage

Disadvantage

Synchronization with the Slowest Agent

Consistent snapshots

Poor data refreshment frequency

To Ignore the Slowest Agent

Quick agents are not slowed down

Inconsistent snapshots

Missed deadlines

No Spare Time

Quick agents are not slowed down

Less missed deadlines

Inconsistent snapshots

Variable uncertainty gap

Multithreading

Required task frequency

Consistent snapshots

Overloading in critical situations

35

Table 4

Selection of the strategy to deal with too high delays

Strategy Too high Computer Consistency
delays? overloaded? preferred over
data refreshment rate?
To Ignore the Slowest Agent No
No Spare Time Yes Yes No
Synchronization with the Slowest Agent Yes Yes Yes
Multithreading Yes No

5 Experimental Evaluation

In this section, some tests that were carried out to evaluate the feasibility and
suitability of the above synchronization approach are described, considering
the design and implementation of a real multiagent system that follows the
proposed guidelines to build monitoring systems. First, the architecture of the
multiagent system that is considered is described. Second, the use of relative
deadlines to effectively deal with unsynchronized computer clocks is evalu-
ated. Third, the convenience of adjusting the deadlines of agents in the net-
work when the respective conditions (i.e., delays) change is evaluated. Finally,
the multithreading strategy that has been proposed to deal with situations
where some agents cannot provide results with the requested task frequency
is evaluated. To predict delays, a Kalman filter with the parameters described
in [20] is used, although any other alternative could have also been logically

considered.

36

5.1 A Multiagent System for the Processing of Continuous Location-Dependent

Queries

For experimental evaluation, LOQOMOTION [15], a system for the process-
ing of continuous location-dependent queries issued by mobile devices (e.g.,
portable computers with wireless connection) is considered. As an example of
location-dependent query, consider the example of retrieving the police units
(police stations, policemen, and police cars) within seven miles around car38
(a stolen car) and the police cars within five miles from policeCar5 (the cur-
rent chasing police car). The goal of the query processing is twofold: 1) to
continuously update on the user device the set of moving objects that satisfy
the query constraints, and 2) to show the current location of each retrieved
moving object on a map. The query processing is performed over a set of
computers (prozies) which manage the location data of objects moving within

different geographic areas.

In the architecture of LOQOMOTION, based on mobile agents, there is a
QueryMonitor agent on the user device, which is in charge of presenting the
answer to the user. This agent delegates the continuous processing of the query
to a MonitorTracker agent. The MonitorTracker, which represents the Query-
Monitor on the fixed network, creates a network of Tracker agents for tracking
the location of the objects that are referenced in the query (called the refer-
ence objects, car38 and policeCar5 in the sample query). Each Tracker tracks
a reference object and creates a network of Updater agents in charge of track-
ing the location of moving objects that are within a certain geographical area
around that reference object. The MonitorTracker and the Trackers are mo-

bile agents which travel among computers to optimize the performance (they

37

keep themselves “close” to the user and the data they monitor, respectively).
Periodically, each agent in the network correlates the results received from the
agents that it created, and returns the results to its coordinator agent, until

the final answer is obtained by the QueryMonitor.

According to this monitoring approach, LOQOMOTION is based on a dis-
tributed and divide-and-conquer cooperation structure with four layers of
agents (QueryMonitor, MonitorTracker, Trackers, and Updaters), which co-
operate to obtain the answer to a continuous location-dependent query. More-
over, the answer depends on location data, that change constantly, and there-
fore must be refreshed efficiently with a certain frequency. The experiments
that follow were carried out considering a scenario with several moving objects
and six proxies that were simulated in four computers using the approach pre-
sented in [14]. In this scenario, the sample query presented at the beginning

of this section was issued.

5.2 Dealing With Clock Unsynchronization

In this section, an analysis of how the use of relative deadlines (see Sec-
tion 3.2.2) overcomes the inconvenience of clock unsynchronization is dealt
with. In Figure 10, a strategy based on the absolute vs. the relative dead-
lines is compared by showing the average location error for different values of
the task period and varying the clock unsynchronization (the objects in this
test move at 40 mph). In the figure, there are three axes: 1) the percentage
of unsynchronization between the computer clock of the user device and the
computer clocks of the proxies; 2) the task period (in seconds); and 3) the

average location error (i.e., the average difference between the real locations

38

of the objects and the locations shown to the user during the monitoring),
which is the measured value. The clock offset is expressed as a percentage of
the task period. For example, a clock offset of 50% with a five-second period
implies that the clock of the proxies will be 2.5 seconds ahead of the clock
on the user device. This implies that the agents at the proxies will perform
their tasks further in advance and, therefore, the age of the data returned will

increase (they wrongly believe that it is later, so they start their tasks earlier).

location
error (m)

loeation
emar [m)

(a) (b)

Fig. 10. Clock unsynchronization: (a) absolute deadlines or (b) relative deadlines

As expected, the average error is greater as the task period increases, because
the answer is updated at a lower rate. When there is no clock unsynchroniza-
tion, the error committed is approximately the same, independent of whether
absolute or relative deadlines are used. Furthermore, the error is not affected
by the clock offset if relative deadlines are used. However, the error increases
significantly with the clock offset in case the deadlines are absolute. It should
be noted that the error decreases for a clock offset of 100% when absolute
deadlines are considered: this is because an offset of 100% leads to the same

unsynchronization as an offset of 0% with respect to its previous deadline.

39

5.8 Dynamic Deadline Adjustment

In this experiment, the convenience of adjusting the deadlines of the agents
when the delays change (see Section 3.3) was evaluated quantitatively. It is
simulated that Trackers experience an increase of ten seconds in their commu-
nication delays and that the objects move at 60 mph. In Figure 11 the average
location error at each time instant is shown, both in the case of adjusting and
not adjusting the deadlines. Minimum errors are obtained when the data at
the user device are updated, and maximum errors, right before the update® .
By adjusting the deadlines, the network of agents resynchronizes itself and the

freshness of the data is maximized, which decreases the error.

0,45

0.4 4 A

7%, T AN i

D,2|5 H,‘JV MAI*"N]V,r,f"/‘j N'.VJ — Mot adjusting deadline

Dtlé 7 V_A'L/‘/ “VuW — Adjusting deadline

. 7 7
IR

0,05 /
0 — T

SOPD O H SO P DO DD

GG AT AT T G AT AT R AT T T

Error {miles

Time

Fig. 11. Location error: convenience of adjusting deadlines

5.4 Strategies to Deal with Too High Delays

In [13] the advantages and disadvantages of the four approaches proposed in
Section 4 to deal with too high delays were compared experimentally, and it
was shown that the multithreading approach achieves the best results. How-

ever, in those experiments the delays were simulated and, therefore, the real

> At 60 mph, an object travels 0.17 miles in 10 seconds, which explains the high

location error just before the data are refreshed.

40

limitations of the multithreading approach could not be detected. To account
for this situation, the tests that are explained in the following were carried
out, which show that the multithreading approach can help use the available

bandwidth in a real environment.

In this test, the QueryMonitor (which is the root agent in the monitoring
architecture of LOQOMOTION) is placed on a Pentium 111, 350 MHz, 128 MB
RAM, with Windows 98, connected to the Internet through a 56Kbps modem.
The remaining agents deploy themselves over the set of proxies available in
the Local Area Network of our university, as in the previous experiments.
A real bottleneck in this scenario is the modem communication between the
QueryMonitor and the remaining agents in the network. It is simulated herein
that the answer obtained by the MonitorTracker (and communicated to the

QueryMonitor) takes up 200 KB.

In Figures 12, 13, and 14, a three-minute test to evaluate the impact of decreas-
ing the task period (i.e., requiring a higher task frequency) is shown. As can
be seen in Figure 12, the delay increases as the task period decreases, which
leads to a higher number of missed deadlines (see Figure 13). This is due to
a higher number of threads (see Figure 14) competing for the network band-
width. Hence, it is observed that the multithreading approach is considerably
harmful for periods smaller than nine seconds®. However, the multithread-
ing approach is beneficial for a required period no smaller than 13 seconds,
wherein the agent misses a 35.71% of the deadlines; applying the formulae

appearing in Sections 4.2 and 4.3 for that period, an average of 50% missed

6 The experienced delays for these periods are represented in Figure 12 as points
that do not fit the Y-scale: the delays of the tasks cannot be precisely measured

because they take too long!

41

deadlines with the ignoring approach and 31.58% missed deadlines with the no
spare time approach is computed, although the no spare time approach cannot
minimize the uncertainty gap. The approach that adjusts to the slowest agent
does not miss deadlines, but the task period is increased (and so the required

monitoring frequency is neglected).

100

a0

80

3 F=: 2T - T B R R N - A - T O - T - 1 10 El & 7 6 5 4 3 z 1
period (s)

Fig. 12. Delays with the multithreading approach

100

a0

80

70

60

S0

40

% Missed Deadlines

30

20

10

a
26 4 23 22 o 0 1 i 17 1€ 15 % 13 1z fl 10 9 8 7 g 5 4 3 2 1
period (s)

Fig. 13. Percentage of missed deadlines with the multithreading approach

In Figure 15, a task period of 14 seconds is focused on and the test is run for the
duration of one hour, to show how the multithreading approach evolves over
time (higher delays lead to more threads that could again increase the delays).
The fluctuations in the figure are due to the variability of the performance of

the modem, and the changes in the percentage of missed deadlines at the

42

30

25

5]
=}

Avegerage Humber of Threads
= o

0

. %5 24 23 2 A 2 W wW W ® W W ow o N [3 E 7 3 5 4 2 2 1
period ()

Fig. 14. Number of threads with the multithreading approach

beginning occur because only a small number of deadlines are available to
compute the average and, therefore, any missed/met deadline has a great
impact on the average thus far. Experiments with other task periods were
also carried out and it was concluded that the performance degrades slowly

unless the required task period is already too challenging from the start.

70

50

a0

40 M—' ey
20

Time 0 . . : ; ;
(min) O 10 20 30 40 50 g0

% of missed deadlines

Fig. 15. Multithreading approach: transmitting 200 KB, 14-second task period

Though the exact quantitative results must be considered with caution (mo-
dem communications are unreliable), similar behaviors with other data sizes
and task frequencies have been observed. Hence, it can be concluded that by
using multiple threads, frequencies higher than those allowed by the network

delays can be supported (some other reports about concurrent communications

43

also confirm this conclusion [28]). The multithreading approach is adequate

in most cases, although launching new threads can also increase the delays.

6 Conclusions

In this article, an approach for continuously monitoring highly dynamic dis-
tributed environments using mobile agents has been presented. Our proposal
considers a divide-and-conquer cooperation structure with agents that take
into account the delays they experience and the environmental delays (i.e.,

processing and network delays). The main features of this approach are:

e Mobile agents are used to perform the monitoring tasks efficiently and effec-
tively, thus reducing the network traffic and carrying the tasks to wherever
the required data can be obtained with a good performance.

e Agents adapt to the current situation by taking into account the delays
experienced by their cooperative agents and the environmental delays (i.e.,
correlation and network delays) for deciding when they should perform their
tasks.

e The tasks are performed according to the task frequency required by the
user. In addition, the agents try to finish their tasks in time but as late as
possible, so as to act upon the most recent data.

e There is a loose coupling among the agents (based on soft commitments),
which increases the fault tolerance of the system, as it leads to a “graceful
degrading” of performance when some of the agents fail to perform their
tasks in time.

e Relative deadlines are used, which ensures that this approach works well

even if the internal clocks of the computers/devices involved in the monitor-

44

ing are unsynchronized (as expected when many computers are involved).
Several approaches can be used to deal with situations where some agents
cannot perform their tasks at the required frequency, due to challenging
environmental conditions (e.g., too high communication delays and/or re-
quired frequency).

Monitoring tasks are performed in wired computers whenever it is possible.
Thus, wireless devices are not overloaded with monitoring and communica-

tion tasks.

Moreover, the feasibility and practical interest of the presented approach in a

real multiagent application have been detailed. An interesting line of future

work would be to analyze the benefits of applying techniques of multiagent

learning [44] in this context.

References

J-W. Baek, H.Y. Yeom, A timed mobile agent planning approach for distributed
information retrieval in dynamic network environments, Information Sciences

176 (22) (2006) 3347-3378.

N. Carver, A New Framework for Inference in Distributed Bayesian Networks
for Multi-Agent Sensor Interpretation, In: B. Gupta (Eds.), 22nd Int. Conf. on

Computers and Their Applications, CATA’07, ISCA, 2007, pp. 101-106.

S. Crone, Stepwise Selection of Artificial Neural Network Models for Time Series

Prediction, Journal of Intelligent Systems 14 (2-3) (2005) 99-122.

P. Davidsson, M. Boman, Distributed monitoring and control of office buildings

by embedded agents, Information Sciences 171 (4) (2005) 293-307.

45

[5] P.Davidsson, F. Wernstedt, A multi-agent system architecture for coordination
of just-in-time production and distribution, ACM symposium on Applied

computing, SAC’02, ACM Press, New York, NY, 2002, pp. 294-299.

[6] R. Davis, R.G. Smith, Negotiation as a metaphor for distributed problem

solving, Artificial Intelligence 20 (1) (1983) 63-109.

[7] E.H. Durfee, V.R. Lesser, D.D. Corkill, Trends in Cooperative Distributed
Problem Solving, IEEE Transactions on Knowledge and Data Engineering 1

(1) (1989) 63-83.

[8] E.H. Durfee, V.R. Lesser, Partial Global Planning: A Coordination Framework
for Distributed Hypothesis Formation, IEEE Transactions on Systems, Man,

and Cybernetics 21 (5) (1991) 1167-1183.

9] G. Vigna (Ed.), Mobile Agents and Security, Springer-Verlag, London, UK,

1999.

[10] R.S. Gray et al., Mobile-Agent versus Client/Server Performance: Scalability in
an Information-Retrieval Task, In: G.P. Picco (Eds.), 5th IEEE Int. Conf. on
Mobile Agents, MA’01, LNCS vol. 2240, Springer-Verlag, London, UK, 2001,

pp. 229-243.

[11] D. Hart, M. Tudoreanu, E. Kraemer, Mobile agents for monitoring distributed
systems, In: P. Stone, G. Weiss (Eds.), 5th Int. Conf. on Autonomous agents,

AGENTS’01, ACM Press, New York, NY, 2001, pp. 232-233.

[12] B. Horling, V.R. Lesser, R. Vincent, T. Wagner, The Soft Real-Time Agent
Control Architecture, Autonomous Agents and Multi-Agent Systems 12 (1)

(2006) 35-92.

[13] S. Ilarri, E. Mena, A. Illarramendi, Dealing with Continuous Location-

Dependent Queries: Just-in-Time Data Refreshment, 1st IEEE Int. Conf.

46

on Pervasive Computing and Communications, PerCom’03, IEEE Computer

Society, Los Alamitos, CA, 2003, pp. 279-286.

[14] S. Tlarri, E. Mena, A. Illarramendi, Testing Agent-based Mobile Computing
Applications Using Distributed Simulations, 7th Int. DEXA Workshop on
Mobility in Databases and Distributed Systems, MDDS’04, IEEE Computer

Society, Los Alamitos, CA, 2004, pp. 652-656.

[15] S. Tlarri, E. Mena, A. Illarramendi, Location-Dependent Queries in Mobile
Contexts: Distributed Processing Using Mobile Agents, IEEE Transactions on

Mobile Computing 5 (8) (2006) 1029-1043.

[16] S. Ilarri, R. Trillo, E. Mena, SPRINGS: A Scalable Platform for Highly
Mobile Agents in Distributed Computing Environments, 4th Int. WoWMoM
2006 Workshop on Mobile Distributed Computing, MDC’06, IEEE Computer

Society, Los Alamitos, CA, 2006, pp. 633-637.

[17] A. Jain, E.Y. Change, Y. Wang, Adaptive Stream Resource Management Using
Kalman Filters, In: G. Weikum, A.C. Kénig, S. Dessloch (Eds.), ACM SIGMOD
Int. Conf. on Management of Data, SIGMOD’04, ACM Press, New York, NY,

2004, pp. 11-22.

[18] Z. Juhasz, P. Paul, Scalability Analysis of the Contract Net Protocol, 2nd
IEEE/ACM Int. Symposium on Cluster Computing and the Grid, CCGRID’02,

IEEE Computer Society, Los Alamitos, CA, 2002, pp. 346-347.

[19] R.P. Kennedy, Monitoring of Distributed Processes with Mobile Agents, 7th
IEEE Int. Conf. and Workshop on Engineering of Computer-Based Systems,

ECBS’00, IEEE Computer Society, Los Alamitos, CA, 2000, pp. 205-210.

[20) M. Kim, B. Noble, Mobile network estimation, 7th Int. Conf. on Mobile
Computing and Networking, MobiCom’01, ACM Press, New York, NY, 2001,

pp- 298-309.

47

[21] F.J. Kurfess, D.P. Shah, K. Holthaus, F. Miralles, Monitoring Distributed
Processes with Intelligent Agents, 6th IEEE Int. Conf. and Workshop on
Engineering of Computer-Based Systems, ECBS’99, IEEE Computer Society,

Los Alamitos, CA, 1999, pp. 196-202.

[22] K. Lam, A. Kwan, K. Ramamritham, RTMonitor: Real-Time Data Monitoring
Using Mobile Agent Technologies, In: P.A. Bernstein, Y.E. Ioannidis, R.
Ramakrishnan, D. Papadias (Eds.), 28th Int. Conf. on Very Large Data Bases,

VLDB’02, Morgan Kaufmann, St. Louis, MO, 2002, pp. 1063-1066.

[23] D.B. Lange, M. Oshima, Seven good reasons for mobile agents, Communications

of the ACM 42 (3) (1999) 88-89.

[24] J.J. LaViola, Double exponential smoothing: an alternative to Kalman filter-
based predictive tracking, Workshop on Virtual environments 2003, EGVE’03,

ACM Press, New York, NY, 2003, pp. 199-206.

[25] V.R. Lesser, Cooperative Multiagent Systems: A Personal View of the State of
the Art, IEEE Transactions on Knowledge and Data Engineering 11 (1) (1999)

133-142.

[26] A. Liotta, G. Knight, G. Pavlou, On the Performance and Scalability of
Decentralized Monitoring Using Mobile Agents, In: Rolf Stadler, Burkhard
Stiller (Eds.), 10th IFIP/IEEE Int. Workshop on Distributed Systems:
Operations and Management, DSOM’99, Springer-Verlag, London, UK, 1999,

pp- 3-18.

[27] C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, Readings in hardware/software co-design (2001) 179-

194.

[28] Y. Liu, W. Gong, P. Shenoy, On the impact of concurrent downloads, 33rd

Winter Simulation Conference, WSC’01, IEEE Computer Society, Los Alamitos,

48

CA, 2001, pp. 1300-1305.
[29] S. Lowry, The Magic of Moving Averages, Traders Press, Greenville, SC, 1998.

[30] S.S. Manvi, P. Venkataram, A method of Network Monitoring by Mobile Agents,
In: A. Kumar, V.U. Reddy (Eds.), Int. Conf. on Communications, Control, and

Signal Processing, CCSP’00, Viva Books, India, 2000, pp. 214-218.

[31] E. Mena, J. A. Royo, A. lllarramendi, A. Goni, Adaptable Software Retrieval
Service for Wireless Environments Based on Mobile Agents, In: C-H. Yeh, S.
Tekinay (Eds.), Int. Conf. on Wireless Networks, ICWN’02, CSREA Press,

USA, 2002, pp. 116-124.

[32] D. Milojicic, F. Douglis, R. Wheeler, Mobility: processes, computers, and

agents, ACM Press, New York, NY, 1999.

[33] D. Milojicic et al., MASIF, The OMG Mobile Agent System Interoperability
Facility, In: K. Rothermel, F. Hohl (Eds.), 2nd Int. Workshop on Mobile Agents,

MA’98, LNCS vol. 1477, Springer-Verlag, London, UK, 1999, pp. 50-67.

[34] H.B. Mitchell, Multi-Sensor Data Fusion: An Introduction, Springer-Verlag,

2007.

[35] M.J. O’Grady, G.M.P. O’Hare, Mobile devices and intelligent agents - towards a
new generation of applications and services, Information Sciences 171 (4) (2005)

335-353.

[36] S. Rahimi, J. Bjursell, M. Paprzycki, M. Cobb, D. Ali, Performance evaluation
of SDIAGENT, a multi-agent system for distributed fuzzy geospatial data

conflation, Information Sciences 176 (9) (2006) 1175-1189.

[37] V. Roth, M. Jalali-Sohi, Concepts and Architecture of a Security-Centric Mobile
Agent Server, 5th Int. Symposium on Autonomous Decentralized Systems,

ISADS’01, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 435-442.

49

[38] I. Satoh, Mobile Agents for Ambient Intelligence, First Int. Workshop Massively
Multi-Agent Systems I, MMAS’04, LNCS vol. 3446, Springer-Verlag, London,

UK, 2005, pp. 187-201.

[39] A. Selamat, H. Selamat, Analysis on the performance of mobile agents for query

retrieval, Information Sciences 172 (3-4) (2005) 281-307.

[40] R.G. Smith, The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver, Distributed Artificial Intelligence

(1988) 357-366.

[41] C. Spyrou, G. Samaras, E. Pitoura, P. Evripidou, Mobile agents for wireless
computing: the convergence of wireless computational models with mobile-agent

technologies, Mobile Networks and Applications 9 (5) (2004) 517-528.

[42] K.P. Sycara, Multiagent compromise via negotiation, Distributed Artificial

Intelligence 2 (1989) 119-137.

[43] O. Tomarchio, L. Vita, A. Puliafito, Active Monitoring in Grid Environments
using Mobile Agent Technology, In: S. Hariri, C.A. Lee, C.S. Raghavendra
(Eds.), 2nd Workshop on Active Middleware Services, AMS’00, Kluwer

Academic Publishers, USA, 2000, pp. 57-66.

[44] K. Tuyls, P.J. Hoen, K. Verbeeck, S. Sen (Eds.), Learning and Adaption in
Multi-Agent Systems: 1st Int. Workshop on Learning and Adaption in Multi-

Agent Systems, LAMAS’05, LNCS vol. 3898, Springer-Verlag, 2006.

[45] S.M.T. Yau, H.V. Leong, A. Si, Distributed agent environment: application and

performance, Information Sciences 154 (1-2) (2003) 5-21.

[46] I. Yeom, A.L.N. Reddy, ENDE: An End-to-end Network Delay Emulator Tool
for Multimedia Protocol Development, Multimedia Tools and Applications 14

(3) (2001) 269-296.

20

[47] X. Zhang, V. Lesser, Meta-Level Coordination for Solving Negotiation Chains in
Semi-Cooperative Multi-Agent Systems, 6th Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, AAMAS’07, ACM Press, New York, NY,

2007, pp. 50-57.

o1

